EP0219629A1 - Heat-resisting aluminium alloy and process for its manufacture - Google Patents

Heat-resisting aluminium alloy and process for its manufacture Download PDF

Info

Publication number
EP0219629A1
EP0219629A1 EP86110727A EP86110727A EP0219629A1 EP 0219629 A1 EP0219629 A1 EP 0219629A1 EP 86110727 A EP86110727 A EP 86110727A EP 86110727 A EP86110727 A EP 86110727A EP 0219629 A1 EP0219629 A1 EP 0219629A1
Authority
EP
European Patent Office
Prior art keywords
aluminum alloy
alloy
particles
aluminum
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP86110727A
Other languages
German (de)
French (fr)
Other versions
EP0219629B1 (en
Inventor
Ignaz Dipl.-Ing. Mathy
Günther Dr.-Ing. Scharf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vereinigte Aluminium Werke AG
Original Assignee
Vereinigte Aluminium Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vereinigte Aluminium Werke AG filed Critical Vereinigte Aluminium Werke AG
Priority to AT86110727T priority Critical patent/ATE47890T1/en
Publication of EP0219629A1 publication Critical patent/EP0219629A1/en
Application granted granted Critical
Publication of EP0219629B1 publication Critical patent/EP0219629B1/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys

Definitions

  • the invention relates to a highly heat-resistant aluminum alloy consisting essentially of an aluminum matrix which contains a dispersion mixture of solidifying Al-Fe particles, part of the Fe content being at least one of the most refractory elements titanium, zirconium, niobium, molybdenum, tungsten, chromium and vanadium including nickel and cobalt can be replaced.
  • the invention was therefore based on the object of developing new wrought aluminum alloys which can be produced from powder particles of a relatively large average particle size and can be easily processed, and which not only have good heat resistance with high RT strength at the same time but also show improved corrosion behavior and higher fatigue strength.
  • this object is achieved by the alloys and methods for producing objects from certain alloy elements specified in the patent claims. It was not to be expected that copper and manganese additions in a content of more than 1% lead to good strength behavior over temperature, since the person skilled in the art knew from various references that precipitation hardening occurs with AlCuMn alloys. This would be disadvantageous in the case of reheating, since the Al2Cu (Mn) phases become coarser by dissolving the sub-excretions (Ostwald ripening) and the strength-increasing effect is lost.
  • the test evaluation shows that the heat resistance of the developed alloys is determined by the formation of fine, stable intermetallic phases of the AlCuMn, Al3Fe, Al3Ni and Al9Co2 type and their mixed phases. At the same time, a high room temperature strength with RT strengths of up to 6OO N / mm2 could be achieved.
  • Very stable intermetallic phases which separate out due to the rapid solidification process of the melt (average particle size less than 1 ⁇ m), are formed from the alloying elements iron, nickel and cobalt. These fine, stable, intermetallic phases of aluminum are distributed in the aluminum alloy at levels between 2O-4O% and have a positive influence on the corrosion behavior.
  • the wrought aluminum alloys according to the invention are produced in comparison to continuous casting at average quenching speeds of 1O2-1O4 K / s.
  • the average quenching speed of the alloy from the melt is achieved by gas atomization, melt spinning, production of particles using the centrifugal mold process, among others. These rapidly solidified particles can then by known Powder metallurgical processes for semi-finished products, such as extruded products, parts produced by explosion compression, etc. are processed.
  • the atomization of the alloy according to the invention leads to fine dendrite gaps (cell sizes), while an AlCuMn alloy produced by continuous casting has a cell size of approximately 50 ⁇ m, the average cell size according to the present invention is approximately 0.5 ⁇ m.
  • the solubility of the alloy elements according to the invention in aluminum and thus the alloy content of the usual wrought aluminum alloys is significantly increased.
  • the addition of O, 4-2, O% titanium, zirconium and chromium to the aluminum alloy enables the formation of very fine phases ⁇ O, 2 ⁇ m in a proportion of 80%.
  • the heat resistance is significantly increased due to the low diffusion coefficient and the fine, stable intermetallic phases of aluminum with these elements.
  • the spherical particles only form when the ratio of copper: manganese is in the range from 2: 1 to 1: 1.
  • the strength or the machinability decrease.
  • the powdery particles have an average particle size larger than 8O ⁇ m, preferably 1OO-2OO ⁇ m, if the compression before the forming leads to a minimum density of the block of 7O-85%.
  • high extrusion speeds of 5-1O m / sec can be achieved.
  • powder particles of 16O microns in the alloy according to the invention still have a very fine casting structure (cell size).
  • very fine, rounded particles are formed from the casting structure by heterogeneous nucleation and shaping by the forming process. These fine, rounded particles allow a high extrusion speed of the alloys according to the invention.
  • the high press speeds mean that economical production is endangered, although the forming forces for the P / M alloys naturally increase due to the high alloy contents.
  • the special alloy contents according to the invention also ensure higher extrusion temperatures up to 5OO ° C. without greater impairment of the mechanical properties than is described for comparable metastably supersaturated P / M alloys in US Pat. No. 4,464,199.
  • the very fine, homogeneous structure of rounded particles in the alloy according to the invention ensures that there are no pik-ups (chatter marks due to local melting).
  • the extruded profiles show particularly good smooth surfaces, which are almost without any defects and perfectly anodizable.
  • the fatigue strength of the heat-resistant alloys according to the invention is better than 250 N / mm 2 and thus not only better than conventional aluminum alloys with particularly good fatigue strengths, but also better than comparable heat-resistant aluminum P / M alloys. This high fatigue strength applies both at RT and at 150 ° C.
  • the particularly high elastic modulus is also particularly characteristic of the heat-resistant Al-P / M alloys according to the invention.
  • the modulus of elasticity is 85-1OO G Pa compared to 72 G Pa for the conventional heat-resistant Al alloy AA 2618.
  • a conventional heat-resistant wrought aluminum alloy which was produced by continuous casting, contains 2.7% copper, O, 2% manganese and 1.2% magnesium.
  • the mechanical properties that can be achieved after precipitation hardening are summarized in Table 1.
  • the good corrosion behavior of the alloy according to the invention was assessed on the basis of the following test experiments:
  • the alloys according to the invention not only show good behavior with respect to general corrosion but are also particularly well resistant to corrosion under stress or stress corrosion cracking. Stress corrosion cracking was tested in the critical transverse direction (LT) in 2% NaCl + O, 5% Na2CrO4 / pH 3 under constant stress.
  • LT critical transverse direction
  • the AA 2618 I / M is not SRK-resistant, while the Al2Cu1.5Mn4Fe4Ni-P / M alloy is SRK-resistant.
  • the alloy according to the invention contains 0.5-1.5% magnesium.
  • the addition of magnesium does not lead to an improvement due to precipitation hardening, because aging treatment between 12 ° C and 22 ° C does not lead to an increase in the F-values or there is no dependence of the F-values on the aging conditions.
  • the magnesium additive leads through the formation of fine magnesium oxide in the P / M semifinished product - which can increase strength like intermetallic phases - through a reduction in the defects of the quenched alloys - as defects - "sink" etc. - to an improvement in the mechanical Properties of the Al-P / M alloy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Coating With Molten Metal (AREA)
  • Casings For Electric Apparatus (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

A high temperature-resistant aluminum alloy is disclosed, comprising an aluminum matrix containing a dispersion mixture of reinforcing aluminum-iron particles with 2-16% nickel and/or cobalt, 1-6% copper and 1-3% manganese. The weight ratio of the copper to manganese is between about 2:1 and 1:1, and the intermetallic phases of the type AlCuMn, Al3Ni and/or Al9Co2 are present in spherical forms.

Description

Die Erfindung betrifft eine hochwarmfeste Aluminiumlegierung, bestehend im wesentlichen aus einer Aluminiummatrix, die ein Dispersionsgemisch von verfestigenden Al-Fe-Teilchen enthält, wobei ein Teil des Fe-Gehalts durch mindestens eines der feuerfensten Elemente Titan, Zirkon, Niob, Molybdän, Wolfram, Chrom und Vanadin incl. Nickel und Kobalt ersetzt werden kann.The invention relates to a highly heat-resistant aluminum alloy consisting essentially of an aluminum matrix which contains a dispersion mixture of solidifying Al-Fe particles, part of the Fe content being at least one of the most refractory elements titanium, zirconium, niobium, molybdenum, tungsten, chromium and vanadium including nickel and cobalt can be replaced.

Eine Aluminiumlegierung der genannten Art ist aus DE-OS 31 44 445 bekannt. Aus Figur 2 der Offenlegungsschrift ergibt sich, daß die mit Al8Fe2Mo bezeichnete Legierung eine RT-Festigkeit nach einer Kaltverformung von 39O N/mm² und eine Warmfestigkeit bei 3OO ° von 25O N/mm² aufweist. Zur Herstellung dieser Legierung ist es aber erforderlich, eine durchschnittliche Teilchengröße von weniger als O,O5 µm und eine hohe Abkühlgeschwindigkeit von mehr als 1O⁵ °C pro Sekun­de einzuhalten. Ferner hat sich in der Praxis gezeigt, daß die Verarbeitbarkeit insbesondere bei hohen Gehalten an feuer­festen Elementen zu Wünschen übrig ließ.An aluminum alloy of the type mentioned is known from DE-OS 31 44 445. From Figure 2 of the published specification it follows that the alloy designated Al8Fe2Mo has an RT strength after cold working of 39O N / mm² and a heat strength at 300 ° of 25O N / mm². To produce this alloy, however, it is necessary to maintain an average particle size of less than 0.05 μm and a high cooling rate of more than 10 ° C. per second. Furthermore, it has been shown in practice that the processability, in particular at high levels of refractory elements, left something to be desired.

Ferner ist aus der EP O1 37 18O eine warmfeste Aluminiumle­gierung mit 6-8 % Mangan, O,5-2 % Eisen, O,O3-O,5 % Zirkon und 2-5 % Kupfer bekannt, wobei eine Überhitzung des ge­schmolzenen Metalls bei der Herstellung des Pulvers auf 15O °C über den Schmelzpunkt der Ausgangsmetalle erfolgt (Anspruch 6). Die pulverförmigen Teilchen hatten eine Größe kleiner 12O mesh (Seite 7, Sp. 4). Versuche haben gezeigt, daß die danach hergestellten Legierungen keine gute Zerspanbarkeit und Duktilität aufwiesen.Furthermore, from EP O1 37 18O a heat-resistant aluminum alloy with 6-8% manganese, O, 5-2% iron, O, O3-O, 5% zirconium and 2-5% copper is known, with overheating of the molten metal the powder is produced at 150 ° C. above the melting point of the starting metals (claim 6). The powdery particles had a size of less than 120 mesh (page 7, column 4). Tests have shown that the alloys produced thereafter did not have good machinability and ductility.

Der Erfindung lag daher die Aufgabe zugrunde, neue Aluminium-­Knetlegierungen zu entwickeln, die aus Pulverpartikeln real­tiv großer mittlerer Teilchengröße hergestellt und einfach verarbeitet werden können und dabei nicht nur eine gute Warm­festigkeit bei gleichzeitig hoher RT-Festigkeit besitzen sondern auch ein verbessertes Korrosionsverhalten und eine höhere Dauerfestigkeit zeigen.The invention was therefore based on the object of developing new wrought aluminum alloys which can be produced from powder particles of a relatively large average particle size and can be easily processed, and which not only have good heat resistance with high RT strength at the same time but also show improved corrosion behavior and higher fatigue strength.

Erfindungsgemäß wird diese Aufgabe durch die in den Patent­ansprüchen angegebenen Legierungen und Verfahren zur Her­stellung von Gegenständen aus bestimmten Legierungselemen­ten gelöst. Es war nicht zu erwarten, daß Kupfer und Mangan-­Zusätze in Gehalten von über 1 % zu einem guten Festigkeits­verhalten über der Temperatur führen, da dem Fachmann aus verschiedenen Literaturstellen bekannt war, daß bei AlCuMn-Legierungen eine Ausscheidungshärtung auftritt. Dies wäre bei einer Wiedererwärmung von Nachteil, da durch Auf­lösung der Subausscheidungen (Ostwald-Reifung) die Al₂Cu(Mn)-­Phasen vergröbern und die festigkeitssteigernde Wirkung ver­loren geht.According to the invention, this object is achieved by the alloys and methods for producing objects from certain alloy elements specified in the patent claims. It was not to be expected that copper and manganese additions in a content of more than 1% lead to good strength behavior over temperature, since the person skilled in the art knew from various references that precipitation hardening occurs with AlCuMn alloys. This would be disadvantageous in the case of reheating, since the Al₂Cu (Mn) phases become coarser by dissolving the sub-excretions (Ostwald ripening) and the strength-increasing effect is lost.

Die Versuchsauswertung zeigt, daß die Warmfestigkeit der entwickelten Legierungen durch die Bildung feiner stabiler intermetallischer Phasen vom Typ AlCuMn, Al₃Fe, Al₃Ni und Al₉Co₂ und deren Mischphasen bestimmt wird. Dabei konnte gleichzeitig eine hohe Raumtemperaturfestigkeit mit RT-Festig­keiten bis 6OO N/mm² erreicht werden.The test evaluation shows that the heat resistance of the developed alloys is determined by the formation of fine, stable intermetallic phases of the AlCuMn, Al₃Fe, Al₃Ni and Al₉Co₂ type and their mixed phases. At the same time, a high room temperature strength with RT strengths of up to 6OO N / mm² could be achieved.

Sehr stabile intermetallische Phasen, die sich durch den schnellen Erstarrungsprozeß der Schmelze fein ausscheiden, (mittlere Teilchengröße kleiner 1 µm) bilden sich aus den Legierungselementen Eisen, Nickel und Cobalt. Diese feinen stabilen intermetallischen Phasen des Aluminiums sind in Gehalten zwischen 2O-4O % in der Aluminiumlegierung verteilt und beeinflussen das Korrosionsverhalten positiv.Very stable intermetallic phases, which separate out due to the rapid solidification process of the melt (average particle size less than 1 µm), are formed from the alloying elements iron, nickel and cobalt. These fine, stable, intermetallic phases of aluminum are distributed in the aluminum alloy at levels between 2O-4O% and have a positive influence on the corrosion behavior.

Die erfindungsgemäßen Aluminium-Knetlegierungen werden im Vergleich zum Stranggießen bei mittleren Abschreckgeschwin­digkeiten von 1O²-1O⁴ K/s hergestellt. Die mittlere Ab­schreckgeschwind¦igkeit der Legierung aus der Schmelze wird durch Gasverdüsung, Schmelzspinnen, Herstellung von Partikeln mit dem Schleuder-Kokillen-Verfahren u.a. erreicht. Diese rasch erstarrten Partikel können anschließend durch bekannte pulvermetallurgische Verfahren zu Halbzeug, wie Strang­preßerzeugnisse, durch Explosionsverdichten hergestellte Teile u.a. verarbeitet werden. Die Verdüsung der erfindungsge­mäßen Legierung führt zu feinen Dendritenabständen (Zell­größen), während eine durch Strangguß hergestellte AlCuMn-­Legierung eine Zellgröße von ca. 5O µm aufweist, ist die mittlere Zellgröße gemäß vorliegender Erfindung ca. O,5 µm.The wrought aluminum alloys according to the invention are produced in comparison to continuous casting at average quenching speeds of 1O²-1O⁴ K / s. The average quenching speed of the alloy from the melt is achieved by gas atomization, melt spinning, production of particles using the centrifugal mold process, among others. These rapidly solidified particles can then by known Powder metallurgical processes for semi-finished products, such as extruded products, parts produced by explosion compression, etc. are processed. The atomization of the alloy according to the invention leads to fine dendrite gaps (cell sizes), while an AlCuMn alloy produced by continuous casting has a cell size of approximately 50 μm, the average cell size according to the present invention is approximately 0.5 μm.

Durch die Überhitzung von mindestens 3OO °C über Schmelz­temperatur und anschließender Abschreckgeschwindigkeit zwischen 1O²-1O⁴ K/sec wird die Löslichkeit der erfindungs­gemäßen Legierungselemente im Aluminium und damit der Le­gierungsgehalt der üblichen Al-Knetlegierungen wesentlich erhöht. Außerdem wird durch die Zulegierung sowohl von O,4-2,O % Titan, Zirkon und Chrom zur Aluminiumlegierung die Bildung sehr feiner Phasen < O,2 µm in einem Anteil von 8O % ermöglicht. Durch die Zugabe von Wolfram, Molybdän, Cerium und Vanadin wird die Warmfestigkeit wegen des nie­drigen Diffusionskoefizienten und den sich bildenden feinen stabilen intermetallischen Phasen von Aluminium mit diesen Elementen wesentlich erhöht.By overheating at least 3OO ° C above the melting temperature and subsequent quenching speed between 1O²-1O⁴ K / sec, the solubility of the alloy elements according to the invention in aluminum and thus the alloy content of the usual wrought aluminum alloys is significantly increased. In addition, the addition of O, 4-2, O% titanium, zirconium and chromium to the aluminum alloy enables the formation of very fine phases <O, 2 µm in a proportion of 80%. Through the addition of tungsten, molybdenum, cerium and vanadium, the heat resistance is significantly increased due to the low diffusion coefficient and the fine, stable intermetallic phases of aluminum with these elements.

TEM-Untersuchungen zeigen kugelförmige Partikel aus inter­metallischen Phasen des Typs Al-Cu-Mn neben den sie umge­benden Phasen von Al₃Fe, Al₃Ni und Al₉Co₂ und deren Misch­phasen. Diese Struktur der feinen stabilen intermetalli­schen Phasen des Aluminiums beeinflußten entscheidend die Verarbeitbarkeit der erfindungsgemäßen Aluminiumlegierungen.TEM studies show spherical particles made of intermetallic phases of the Al-Cu-Mn type in addition to the surrounding phases of Al₃Fe, Al₃Ni and Al₉Co₂ and their mixed phases. This structure of the fine stable intermetallic phases of aluminum decisively influenced the processability of the aluminum alloys according to the invention.

Die kugelförmigen Teilchen bilden sich nur, wenn das Verhält­nis von Kupfer : Mangan im Bereich von 2:1 bis 1:1 liegt. Versuche haben gezeigt, daß bei anderen Gewichtsverhältnis­sen entweder die Festigkeit oder die Zerspanbarkeit abnimmt. Um diese kugelige Struktur auch bei der Weiterverarbeitung unverändert beibehalten zu können, ist es erforderlich, die Vorwärmtemperaturen und die Preßgeschwindigkeit innerhalb bestimmter Bereiche einzustellen. Danach hat es sich als günstig erwiesen - im Gegensatz zur bisher herrschenden Lehre - daß die pulverförmigen Partikel eine mittlere Teilchengröße größer 8O µm, vorzugsweise 1OO-2OO µm, auf­weisen, wenn die Verdichtung vor der Umformung zu einer Mindestdichte des Blockes von 7O-85 % führt. Trotz der groben Pulverfraktionen erreicht man hohe Strangpreß­geschwindigkeiten von 5-1O m/sec. Dies ist möglich, weil Pulverpartikel von 16O µm bei der erfindungsgemäßen Le­gierung noch ein sehr feines Gußgefüge (Zellgröße) be­sitzen. Aus dem Gußgefüge bilden sich während der Umfor­mung sehr feine rundliche Partikel durch heterogene Keimbildung und Einformung durch dem Umformprozeß. Diese feinen rundlichen Partikel erlauben eine hohe Strangpreß­geschwindigkeit der erfindungsgemäßen Legierungen. Durch die hohen Preßgeschwindigkeiten ist eine wirtschaftliche Herstellung gefährleistet, obwohl natürlich die Umform­kräfte für die P/M-Legierungen durch die hohen Legierungs­gehalte zunehmen.The spherical particles only form when the ratio of copper: manganese is in the range from 2: 1 to 1: 1. Experiments have shown that with different weight ratios either the strength or the machinability decrease. In order to be able to keep this spherical structure unchanged even during further processing, it is necessary to set the preheating temperatures and the pressing speed within certain ranges. After that it turned out to be Conveniently proven - in contrast to the previous teaching - that the powdery particles have an average particle size larger than 8O µm, preferably 1OO-2OO µm, if the compression before the forming leads to a minimum density of the block of 7O-85%. Despite the coarse powder fractions, high extrusion speeds of 5-1O m / sec can be achieved. This is possible because powder particles of 16O microns in the alloy according to the invention still have a very fine casting structure (cell size). During the forming process, very fine, rounded particles are formed from the casting structure by heterogeneous nucleation and shaping by the forming process. These fine, rounded particles allow a high extrusion speed of the alloys according to the invention. The high press speeds mean that economical production is endangered, although the forming forces for the P / M alloys naturally increase due to the high alloy contents.

Die besonderen erfindungsgemäßen Legierungsgehalte gewähr­leisten auch höhere Strangpreßtemperaturen bis 5OO °C ohne stärkere Beeinträchtigung der mechanischen Eigenschaften, als dies für vergleichbare metastabil übersättigte P/M-­Legierungen in US 44 64 199 beschrieben wird.The special alloy contents according to the invention also ensure higher extrusion temperatures up to 5OO ° C. without greater impairment of the mechanical properties than is described for comparable metastably supersaturated P / M alloys in US Pat. No. 4,464,199.

Außerdem wird bei der erfindungsgemäßen Legierung durch das sehr feine homogene Gefüge von rundlichen Partikeln gewähr­leistet, daß keine pik up's (Rattermarken durch örtliche Ausschmelzungen) auftreten. Die Strangpreßprofile zeigen besonders gute glatte Oberflächen, die fast ohne irgend­welche Fehler und einwandfrei eloxierbar sind.In addition, the very fine, homogeneous structure of rounded particles in the alloy according to the invention ensures that there are no pik-ups (chatter marks due to local melting). The extruded profiles show particularly good smooth surfaces, which are almost without any defects and perfectly anodizable.

Die Dauerfestigkeit der erfindungsgemäßen warmfesten Legie­rungen ist besser als 25O N/mm² und damit nicht nur besser als konventionelle Al-Legierungen mit besonders guten Er­müdungsfestigkeiten sondern auch besser als vergleichbare warmfeste Al-P/M-Legierungen. Diese hohe Dauerfestigkeit gilt sowohl bei RT als auch bei 15O °C.The fatigue strength of the heat-resistant alloys according to the invention is better than 250 N / mm 2 and thus not only better than conventional aluminum alloys with particularly good fatigue strengths, but also better than comparable heat-resistant aluminum P / M alloys. This high fatigue strength applies both at RT and at 150 ° C.

Besonders kennzeichnend für die erfindungsgemäßen warmfesten Al-P/M-Legierungen ist weiterhin der besonders hohe E-Modul. Der E-Modul beträgt 85-1OO G Pa gegenüber 72 G Pa für die konventionelle warmfeste Al-Legierung AA 2618.The particularly high elastic modulus is also particularly characteristic of the heat-resistant Al-P / M alloys according to the invention. The modulus of elasticity is 85-1OO G Pa compared to 72 G Pa for the conventional heat-resistant Al alloy AA 2618.

Im folgenden wird die Erfindung anhand mehrerer Ausfüh­rungs- und Vergleichsbeispiele näher erläutert:The invention is explained in more detail below on the basis of several exemplary and comparative examples:

Eine konventionelle warmfeste Aluminium-Knetlegierung, die über das Stranggießen hergestellt wurde, enthält 2,7 % Kup­fer, O,2 % Mangan und 1,2 % Magnesium. Die nach einer Aus­scheidungshärtung erreichbaren mechanischen Eigenschaften sind in Tab. 1 zusammengefaßt.

Figure imgb0001
A conventional heat-resistant wrought aluminum alloy, which was produced by continuous casting, contains 2.7% copper, O, 2% manganese and 1.2% magnesium. The mechanical properties that can be achieved after precipitation hardening are summarized in Table 1.
Figure imgb0001

In Tabelle 2 werden 2 auf dem pulvermetallurgischen Verfah­rensweg über die rasche Erstarrung mit ca.1O⁴ K/sec hergestell­te Legierungen Al6Fe und Al8Fe zum Vergleich herangezogen. Die Verarbeitungstemperatur lag bei 48O °C Dabei wiesen die Teilchen eine Größe von ca. O,3 µm auf. Die Struktur der intermetallischen Phasen war mehr plattenförmig.

Figure imgb0002
In Table 2, 2 alloys Al6Fe and Al8Fe produced on the powder metallurgical process via the rapid solidification with approx. 10⁴ K / sec are used for comparison. The processing temperature was 48 ° C. The particles had a size of approximately 0.3 μm. The structure of the intermetallic phases was more plate-shaped.
Figure imgb0002

Ein wesentliches Ergebnis der Erfindung ist, daß das Zulegieren von Kupfer und Mangan zu den Legierungen mit Eisen, Nickel, Kobalt, Chrom, Molybdän, Vandium, Cerium u.a. (welche die sehr stabilen intermetallischen Phasen bilden) zu sehr guten RT-Festigkeiten führt und da­bei die Warmfestigkeit gegenüber den Kupfer-Mangan-freien Legierungen nicht oder kaum feststellbar abfällt, siehe Tabelle 3. Die etwa gleichen Warmzugfestigkeiten bei 3OO °C nach 2OO h Vorbehandlung bei 3OO °C bestätigen, daß keine Oswald-Reifung der Al-Cu-Mn-Phasen auftritt.

Figure imgb0003
An important result of the invention is that the alloying of copper and manganese to the alloys with iron, nickel, cobalt, chromium, molybdenum, vandium, cerium and others (which form the very stable intermetallic phases) leads to very good RT strengths and thereby the heat resistance compared to the copper-manganese-free alloys does not decrease or is hardly noticeable, see Table 3. The approximately the same hot tensile strengths at 3OO ° C after 2OO h pretreatment at 3OO ° C confirm that Oswald ripening of the Al-Cu-Mn Phases occurs.
Figure imgb0003

Außerdem wurde durch weitere Untersuchungen bestätigt, daß erst beim Zulegieren beider Legierungselemente Kupfer und Mangan die guten RT-Festigkeiten und die guten Warmfestig­keiten erreicht werden, siehe Tabelle 4. Wird zu der Legie­rung Al4Fe4Ni nur Mangan zulegiert, so besitzt diese Legie­rung nicht die gewünschte RT-Festigkeit, siehe Tabelle 4. Ein Zulegieren von Kupfer zu Al4Fe4Ni führt zwar zu rela­tiv guten RT-Festigkeiten, aber die Warmfestigkeit die­ser Legierung ist bei höheren Temperaturen schlechter als die Cu + Mn haltige Legierungen, siehe Tabelle 4. Enthält die Legierung Al4Fe4Ni nun Kupfer und Mangan, so wird wieder eine gute RT-Festigkeit und eine gute Warmzugfestigkeit er­reicht, siehe Tabelle 4. Eine Auslagerungsbehandlung zwi­schen 12O bis 22O °C zeigte keine Anzeichen eines Festig­keitseinflusses durch thermische Aushärtung. Die im TEM zu findenden AlCuMn-Ausscheidungsphasen müssen während der Pulverherstellung und/oder pulvermetallurgischen Ver­arbeitung auftreten. Die Ausscheidungskinetik dieser sta­bilen Phasen wird scheinbar durch die hohen Gehalte an Eisen, Nickel etc. beeinflußt.

Figure imgb0004
In addition, further investigations confirmed that the good RT strengths and the good heat strengths are only achieved when both alloy elements copper and manganese are alloyed, see Table 4. If only manganese is added to the alloy Al4Fe4Ni, this alloy does not have the desired RT Strength, see Table 4. Alloying copper to Al4Fe4Ni leads to relatively good RT strengths, but the heat resistance of this alloy is worse at higher temperatures than the alloys containing Cu + Mn, see Table 4. Does the alloy Al4Fe4Ni now contain copper and Manganese, so it will be again good RT strength and good hot tensile strength achieved, see Table 4. An aging treatment between 12O and 22O ° C showed no signs of an influence of strength by thermal curing. The AlCu Mn precipitation phases to be found in the TEM must occur during powder production and / or powder metallurgical processing. The kinetics of excretion of these stable phases are apparently influenced by the high levels of iron, nickel, etc.
Figure imgb0004

Das gute Korrosionsverhalten der erfindungsgemäßen Legie­rung wurde anhand folgender Testversuche beurteilt:
Die erfindungsgemäßen Legierungen zeigen nicht nur ein gutes Verhalten geger'über allgemeiner Korrosion sondern sind auch besonders gut teständig gegenüber Korrosion unter Spannung bzw. Spannungsrißkorrosion. Die Spannungsrißkorrosion wurde in der kritischen Querrichtung (LT) in 2 % NaCl + O,5 % Na₂CrO₄/pH 3 unter konstanter Spannung getestet.
The good corrosion behavior of the alloy according to the invention was assessed on the basis of the following test experiments:
The alloys according to the invention not only show good behavior with respect to general corrosion but are also particularly well resistant to corrosion under stress or stress corrosion cracking. Stress corrosion cracking was tested in the critical transverse direction (LT) in 2% NaCl + O, 5% Na₂CrO₄ / pH 3 under constant stress.

Die konventionelle warmfeste I/M-Al-Legierung AA 2618 wurde zum Vergleich mit geprüft, siehe Tabelle 5.

Figure imgb0005
The conventional heat-resistant I / M-Al alloy AA 2618 was tested for comparison, see Table 5.
Figure imgb0005

Es zeigt sich, daß die AA 2618 I/M nicht SRK-beständig ist, während die Al2Cu1,5Mn4Fe4Ni-P/M-Legierung SRK-beständig ist.It can be seen that the AA 2618 I / M is not SRK-resistant, while the Al2Cu1.5Mn4Fe4Ni-P / M alloy is SRK-resistant.

Eine nochmalige Verbesserung der Warmfestigkeit der beschriebenen Legierungs­einflüsse wird dann erreicht, wenn die erfindungsgemäße Legierung O,5-1,5 % Magnesium enthält. Der Magnesiumzu­satz führt nicht zu einer Verbesserung durch Ausscheidungs­härtung, denn eine Auslagerungsbehandlung zwischen 12O °C und 22O °C führt nicht zu einer Erhöhung der F-Werte bzw. es ist keine Abhängigkeit der F-Werte von den Auslagerungs­bedingungen feststellbar. Der Magnesium-Zusatz führt durch die Bildung von feinem Magnesiumoxid im P/M-Halbzeug - was wie intermetallische Phasen festigkeitssteigernd wirken kann -, durch eine Verminderung der Fehlstellen der abge­schreckten Legierungen - als Fehlstellen - "Senke" etc. - zu einer Verbesserung der mechanischen Eigenschaften der Al-­P/M-Legierung. Ein Zusatz von O,55 % Magnesium zu der er­findungsgemäßen Legierung Al3Cu1,5Mn4Fe4NiO,5Ti steigert die Warmzugfestigkeit, siehe Tabelle 6. Die Warmzug-Festigkei­ten der Tab. 6 wurden nach 5OOO h Temperatur-Warmauslagerung gemessen. Hiermit wird die thermische Stabilität der Legie­rung nochmals bestätigt.

Figure imgb0006
A further improvement in the heat resistance of the alloy influences described is achieved if the alloy according to the invention contains 0.5-1.5% magnesium. The addition of magnesium does not lead to an improvement due to precipitation hardening, because aging treatment between 12 ° C and 22 ° C does not lead to an increase in the F-values or there is no dependence of the F-values on the aging conditions. The magnesium additive leads through the formation of fine magnesium oxide in the P / M semifinished product - which can increase strength like intermetallic phases - through a reduction in the defects of the quenched alloys - as defects - "sink" etc. - to an improvement in the mechanical Properties of the Al-P / M alloy. The addition of 0.55% magnesium to the alloy Al3Cu1.5Mn4Fe4NiO.5Ti according to the invention increases the hot tensile strength, see Table 6. The hot tensile strengths in Table 6 were measured after 5,000 hours of hot aging. This confirms the thermal stability of the alloy again.
Figure imgb0006

Claims (7)

1. Hochwarmfeste Aluminiumlegierung, bestehend im wesent­lichen aus einer Aluminiummatrix, die ein Dispersions­gemisch von verfestigenden Al-Fe-Teilchen enthält, wo­bei ein Teil des Fe-Gehalts durch mindestens eines der feuerfesten Elemente Titan, Zirkon, Niob, Molybdän, Wolfram, Chrom und Vanadinersetzt werden kann, dadurch gekennzeichnet, daß in der Aluminiumlegierung 2-16 % Nickel und/oder Cobalt, 1-6 % Kupfer und 1-3 % Mangan enthalten sind, wobei das Gewichtsverhältnis von Kupfer : Mangan im Bereich von 2:1 bis 1:1 liegt, daß intermetallische Phasen des Typs Al-Cu-Mn, Al₃Ni und/oder Al₉Co₂ in kugelförmiger Struktur anwesend sind, und daß der Gesamtgehalt der verfestigenden Teilchen zwischen 2O-4O Gew.-% liegt.1. High-temperature aluminum alloy, consisting essentially of an aluminum matrix, which contains a dispersion mixture of solidifying Al-Fe particles, part of the Fe content being replaced by at least one of the refractory elements titanium, zirconium, niobium, molybdenum, tungsten, chromium and vanadium can be characterized in that the aluminum alloy contains 2-16% nickel and / or cobalt, 1-6% copper and 1-3% manganese, the weight ratio of copper: manganese in the range from 2: 1 to 1: 1 is that intermetallic phases of the type Al-Cu-Mn, Al₃Ni and / or Al₉Co₂ are present in a spherical structure, and that the total content of the solidifying particles is between 2O-4O wt .-%. 2. Hochwarmfeste Aluminiumlegierung nach Anspruch 1, da­durch gekennzeichnet, daß die verfestigenden Teilchen eine mittlere Teilchengröße zwischen O,2 und 1 µm auf­weisen.2. Highly heat-resistant aluminum alloy according to claim 1, characterized in that the solidifying particles have an average particle size between O, 2 and 1 µm. 3. Hochwarmfeste Aluminiumlegierung nach einem der vorher­gehenden Ansprüche, dadurch gekennzeichnet, daß in der Aluminiumlegierung O,4-2 Gew.-% Chrom, Titan und/oder Zirkon in Form feiner Phasen zu einem Anteil von größer 8O %, kleiner O,2 µm vorliegen.3. High-temperature aluminum alloy according to one of the preceding claims, characterized in that in the aluminum alloy O, 4-2 wt .-% chromium, titanium and / or zircon in the form of fine phases in a proportion of greater than 8O%, less than O, 2 microns are available. 4. Hochwarmfeste Aluminiumlegierung nach einem der vorher­gehenden Ansprüche, dadurch gekennzeichnet, daß O,5-­1,5 Gew.-% Wolfram, Cer, Molybdän und/oder Vanadium, überwiegend an den Phasengrenzen der intermetallischen Verbindung vorliegen.4. High-temperature aluminum alloy according to one of the preceding claims, characterized in that O, 5-1.5 wt .-% tungsten, cerium, molybdenum and / or vanadium, predominantly at the phase boundaries of the intermetallic compound. 5. Hochwarmfeste Aluminiumlegierung nach einem der vor­hergehenden Ansprüche, dadurch gekennzeichnet, daß in der Aluminiumlegierung O,5-1,5 % Magnesium ent­halten sind und der Anteil der Mg-Phasen unter O,5 Vol.-% liegt.5. High-temperature aluminum alloy according to one of the preceding claims, characterized in that the aluminum alloy contains 0.5-1.5% magnesium and the proportion of the Mg phases is below 0.5% by volume. 6. Verfahren zur Herstellung einer hochwarmfesten Alu­miniumlegierung aus einer Legierungsschmelze nach einem der vorhergehenden Ansprüche, dadurch gekenn­zeichnet, daß die Schmelze auf mindestens 3OO ° über Schmelztemperatur der jeweiligen Legierung erhitzt wird und mit einer Abkühlungsgeschwindigkeit von 1O²-1O⁴ K pro Sekunde in pulverförmige Partikel über­führt wird, deren Teilchengröße zu mindest 5O % über 8O µm liegt, wobei das Pulver eine mittlere Zellgröße kleiner 1 µm aufweist.6. A method for producing a heat-resistant aluminum alloy from an alloy melt according to one of the preceding claims, characterized in that the melt is heated to at least 3OO ° above the melting temperature of the respective alloy and is converted into powdery particles at a cooling rate of 1O²-1O⁴ K per second whose particle size is at least 50% more than 80 µm, the powder having an average cell size of less than 1 µm. 7. Verfahren zur Herstellung eines Aluminiumgegenstandes unter Verwendung einer Legierung nach einem der vorher­gehenden Ansprüche, dadurch gekennzeichnet, daß ein Block aus Legierungspulverteilchen bei Raumtemperatur mit einer Dichte von 7O-8O% hergestellt wird, der Block auf 35O-48O °C angewärmt und mit einer Preßgeschwin­digkeit von 2-1O m pro Minute umgeformt wird.7. A method for producing an aluminum object using an alloy according to any one of the preceding claims, characterized in that a block of alloy powder particles is produced at room temperature with a density of 7O-8O%, the block heated to 35O-48O ° C and with a Pressing speed of 2-1O m per minute is formed.
EP86110727A 1985-09-18 1986-08-02 Heat-resisting aluminium alloy and process for its manufacture Expired EP0219629B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86110727T ATE47890T1 (en) 1985-09-18 1986-08-02 HIGH HEAT RESISTANT ALUMINUM ALLOY AND PROCESS FOR THEIR PRODUCTION.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19853533233 DE3533233A1 (en) 1985-09-18 1985-09-18 HIGH-TEMPERATURE-RESISTANT ALUMINUM ALLOY AND METHOD FOR THEIR PRODUCTION
DE3533233 1985-09-18

Publications (2)

Publication Number Publication Date
EP0219629A1 true EP0219629A1 (en) 1987-04-29
EP0219629B1 EP0219629B1 (en) 1989-11-08

Family

ID=6281255

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86110727A Expired EP0219629B1 (en) 1985-09-18 1986-08-02 Heat-resisting aluminium alloy and process for its manufacture

Country Status (7)

Country Link
US (1) US4832737A (en)
EP (1) EP0219629B1 (en)
JP (1) JPS6274042A (en)
AT (1) ATE47890T1 (en)
DE (1) DE3533233A1 (en)
ES (1) ES2000977A6 (en)
NO (1) NO168257C (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0587186A1 (en) * 1992-09-11 1994-03-16 Ykk Corporation Aluminum-based alloy with high strength and heat resistance
CN109226767A (en) * 2018-07-27 2019-01-18 常州大学 Prepare the high pressure high temperature synthetic method of second phase particles simulation material in aluminium alloy

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63157831A (en) * 1986-12-18 1988-06-30 Toyo Alum Kk Heat-resisting aluminum alloy
JP2752971B2 (en) * 1987-06-11 1998-05-18 アルミニウム粉末冶金技術研究組合 High strength and heat resistant aluminum alloy member and method of manufacturing the same
JPS63312901A (en) * 1987-06-16 1988-12-21 Kobe Steel Ltd Heat resistant high tensile al alloy powder and composite ceramics reinforced heat resistant al alloy material using said powder
JPH0234740A (en) * 1988-07-25 1990-02-05 Furukawa Alum Co Ltd Heat-resistant aluminum alloy material and its manufacture
DE3902032A1 (en) * 1989-01-25 1990-07-26 Mtu Muenchen Gmbh SINED LIGHTWEIGHT MATERIAL WITH MANUFACTURING PROCESS
US20040156739A1 (en) * 2002-02-01 2004-08-12 Song Shihong Gary Castable high temperature aluminum alloy
DE102008024531A1 (en) * 2008-05-21 2009-11-26 Bayerische Motoren Werke Aktiengesellschaft Aluminum cast alloy used for cylinder heads, pistons of combustion engines, crank housings or engine blocks contains alloying additions of silicon, magnesium, titanium and vanadium
US9963770B2 (en) 2015-07-09 2018-05-08 Ut-Battelle, Llc Castable high-temperature Ce-modified Al alloys
US11009074B1 (en) * 2019-11-11 2021-05-18 Aktiebolaget Skf Lightweight bearing cage for turbine engines and method of forming a lightweight bearing cage

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE897921C (en) * 1938-02-13 1953-11-26 Metallgesellschaft Ag Process for the production of bearings from aluminum and its alloys by pressing and sintering the powdery components
US4021271A (en) * 1975-07-07 1977-05-03 Kaiser Aluminum & Chemical Corporation Ultrafine grain Al-Mg alloy product
GB2088409A (en) * 1980-11-24 1982-06-09 United Technologies Corp Dispersion Strengthened Aluminium Alloy Article and Method
US4464199A (en) * 1981-11-20 1984-08-07 Aluminum Company Of America Aluminum powder alloy product for high temperature application
EP0137180A1 (en) * 1983-08-17 1985-04-17 Nissan Motor Co., Ltd. Heat-resisting aluminium alloy

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2963780A (en) * 1957-05-08 1960-12-13 Aluminum Co Of America Aluminum alloy powder product
US2966731A (en) * 1958-03-27 1961-01-03 Aluminum Co Of America Aluminum base alloy powder product
US3004331A (en) * 1960-11-08 1961-10-17 Aluminum Co Of America Aluminum base alloy powder product
US3637441A (en) * 1968-04-08 1972-01-25 Aluminum Co Of America Aluminum-copper-magnesium-zinc powder metallurgy alloys
US3754905A (en) * 1971-12-23 1973-08-28 Johnson & Co Inc A Exothermic structuring of aluminum
US4347076A (en) * 1980-10-03 1982-08-31 Marko Materials, Inc. Aluminum-transition metal alloys made using rapidly solidified powers and method
JPS601947B2 (en) * 1981-03-25 1985-01-18 株式会社神戸製鋼所 Manufacturing method for aluminum alloy forgings
JPS59126761A (en) * 1983-01-10 1984-07-21 Kobe Steel Ltd Production of heat treatment type aluminum alloy having excellent formability
JPS59137180A (en) * 1983-01-25 1984-08-07 Honda Motor Co Ltd Automatic welding device
JPS60125347A (en) * 1983-12-12 1985-07-04 Mitsubishi Metal Corp Sintered al alloy for sliding member

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE897921C (en) * 1938-02-13 1953-11-26 Metallgesellschaft Ag Process for the production of bearings from aluminum and its alloys by pressing and sintering the powdery components
US4021271A (en) * 1975-07-07 1977-05-03 Kaiser Aluminum & Chemical Corporation Ultrafine grain Al-Mg alloy product
GB2088409A (en) * 1980-11-24 1982-06-09 United Technologies Corp Dispersion Strengthened Aluminium Alloy Article and Method
US4464199A (en) * 1981-11-20 1984-08-07 Aluminum Company Of America Aluminum powder alloy product for high temperature application
EP0137180A1 (en) * 1983-08-17 1985-04-17 Nissan Motor Co., Ltd. Heat-resisting aluminium alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0587186A1 (en) * 1992-09-11 1994-03-16 Ykk Corporation Aluminum-based alloy with high strength and heat resistance
US5419789A (en) * 1992-09-11 1995-05-30 Ykk Corporation Aluminum-based alloy with high strength and heat resistance containing quasicrystals
CN109226767A (en) * 2018-07-27 2019-01-18 常州大学 Prepare the high pressure high temperature synthetic method of second phase particles simulation material in aluminium alloy

Also Published As

Publication number Publication date
EP0219629B1 (en) 1989-11-08
JPS6274042A (en) 1987-04-04
DE3533233A1 (en) 1987-03-19
ATE47890T1 (en) 1989-11-15
NO168257C (en) 1992-01-29
ES2000977A6 (en) 1988-04-01
US4832737A (en) 1989-05-23
NO863441D0 (en) 1986-08-27
NO863441L (en) 1987-03-19
NO168257B (en) 1991-10-21

Similar Documents

Publication Publication Date Title
DE69117494T2 (en) ULTRA-HIGH-STRENGTH ALLOY BASED ALLOYS
DE69326838T3 (en) TOUGH ALUMINUM ALLOY WITH COPPER AND MAGNESIUM
DE10352932B4 (en) Cast aluminum alloy
DE69921925T2 (en) High strength aluminum alloy forgings
EP1978120B1 (en) Aluminium-silicon alloy and method for production of same
DE19727096B4 (en) Aluminum alloy with excellent machinability and process for its production
DE3805794C2 (en) Wear-resistant copper alloy
DE60200928T2 (en) High temperature resistant magnesium alloys
CA2135790C (en) Low density, high strength al-li alloy having high toughness at elevated temperatures
DE4103934A1 (en) SUITABLE ALUMINUM ALLOY FOR PISTON
WO2017067647A1 (en) Aluminum alloy
DE2517275B2 (en) Process for the production and further processing of a plastically deformable cast product based on an aluminum-silicon alloy and the use of the further processed cast product
WO2008138614A1 (en) Use of an al-mn alloy for high temperature resistant products
EP1718778A1 (en) Material based on an aluminum alloy, method for the production thereof and its use
DE68906999T2 (en) METHOD FOR THE PRODUCTION OF WORKPIECES FROM AN ALUMINUM ALLOY, WHICH KEEPS GOOD FATIGUE RESISTANCE WHEN STAYING LONGER AT HIGHER TEMPERATURES.
EP0219629B1 (en) Heat-resisting aluminium alloy and process for its manufacture
EP2236637A2 (en) Pressure casting mould made of a hypereutectic aluminium silicon cast alloy and method for producing same
DE2921222A1 (en) MAGNESIUM ALLOYS AND PRODUCTS MADE THEREOF
DE3839795C2 (en)
DE1966949A1 (en) PROCESS FOR THE PRODUCTION OF NICKEL-BASED ALLOYS DIRECTLY PROCESSED INTO HIGHLY TEMPERATURE-RESISTANT CASTINGS
DE69919307T2 (en) ALUMINUM PLATE FOR AUTOMOBILES AND CORRESPONDING MANUFACTURING PROCESS
DE1483228B2 (en) ALUMINUM ALLOY WITH HIGH PERFORMANCE
DE69120299T2 (en) OVEREUTECTIC ALUMINUM-SILICONE POWDER AND THEIR PRODUCTION
DE69017448T2 (en) ALLOY BASED ON NICKEL ALUMINUM FOR CONSTRUCTIVE APPLICATION AT HIGH TEMPERATURE.
DE2029962A1 (en) Nickel alloy

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19870624

17Q First examination report despatched

Effective date: 19880817

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 47890

Country of ref document: AT

Date of ref document: 19891115

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19910729

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19910809

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19910819

Year of fee payment: 6

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19910831

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19920802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19920831

BERE Be: lapsed

Owner name: VEREINIGTE ALUMINIUM-WERKE A.G.

Effective date: 19920831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19930301

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930726

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930816

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930920

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940831

Ref country code: CH

Effective date: 19940831

EUG Se: european patent has lapsed

Ref document number: 86110727.4

Effective date: 19930307

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950428

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050802