WO2016039429A1 - Austenitic stainless steel sheet which is not susceptible to diffusion bonding - Google Patents

Austenitic stainless steel sheet which is not susceptible to diffusion bonding Download PDF

Info

Publication number
WO2016039429A1
WO2016039429A1 PCT/JP2015/075766 JP2015075766W WO2016039429A1 WO 2016039429 A1 WO2016039429 A1 WO 2016039429A1 JP 2015075766 W JP2015075766 W JP 2015075766W WO 2016039429 A1 WO2016039429 A1 WO 2016039429A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
film
amount
steel sheet
stainless steel
Prior art date
Application number
PCT/JP2015/075766
Other languages
French (fr)
Japanese (ja)
Inventor
浩史 神尾
正美 澤田
雄一 福村
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to KR1020177009165A priority Critical patent/KR101939510B1/en
Priority to JP2016547507A priority patent/JP6376218B2/en
Priority to CN201580048499.6A priority patent/CN106687622B/en
Publication of WO2016039429A1 publication Critical patent/WO2016039429A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F1/00Electrolytic cleaning, degreasing, pickling or descaling
    • C25F1/02Pickling; Descaling
    • C25F1/04Pickling; Descaling in solution
    • C25F1/06Iron or steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite

Definitions

  • the present invention relates to an austenitic stainless steel sheet that is difficult to be diffusion bonded.
  • Austenitic stainless steel is used for heat-resistant parts such as exhaust gaskets for automobiles and motorcycles that require high heat resistance. From the viewpoint of improving fuel consumption, exhaust temperatures are increasing year by year, and these heat-resistant components may be exposed to high temperatures of 700 ° C. or higher. At such a high temperature, in addition to softening of the material, there is a problem that it joins with surrounding parts. This is a phenomenon called diffusion junction in which atoms in contact with each other diffuse.
  • Patent Document 1 proposes a ferritic stainless steel that is difficult to be diffusion bonded by adding 3 to 10% Al and forming an Al 2 O 3 film.
  • ferritic stainless steel cannot provide sufficient high-temperature strength as an exhaust system gasket. Further, as disclosed in Patent Document 1, when a large amount of Al is added, inclusions made of AlN are easily generated, and a thin part such as a gasket has a remarkable adverse effect on fatigue characteristics.
  • An object of the present invention is to provide industrially stable austenitic stainless steel that is difficult to be diffusion bonded even at high temperatures in order to solve the problems of the prior art.
  • the present inventors considered that the diffusion bondability is greatly influenced by the surface film of the steel sheet, and investigated and examined the relationship between the composition and thickness of the film and the structure of the film constituent material and the diffusion bondability. As a result, it is effective to suppress diffusion bonding by reducing the amount of Fe in the film and concentrating the amount of Si present as SiO 2 in the film and increasing the thickness of the Si-concentrated layer. I found out.
  • SiO 2 in the film on the surface of the austenitic stainless steel is hard to disappear even at a high temperature as compared with Cr 2 O 3 which is a general stainless steel film, it has an effect of suppressing bonding.
  • Fe is present in a large amount in the base material of austenitic stainless steel, it can be present in the vicinity of the bonding interface as an Fe oxide.
  • the Fe oxide easily disappears in the diffusion bonding process as compared with the above-described SiO 2 and Cr 2 O 3 . For this reason, when a large amount of Fe is present in the vicinity of the bonding interface, even if SiO 2 in the surface film is concentrated, it is difficult to suppress the diffusion of Fe, and the effect of suppressing the bonding is insufficient. It becomes. Therefore, it is important to reduce Fe in the surface coating and concentrate Si present as SiO 2 .
  • FIG. 1 shows the relationship between the heat treatment temperature (° C.), the maximum Si amount (mass%) in the coating on the stainless steel surface after the heat treatment, and the Si concentrated layer thickness (nm).
  • This experiment was performed using a heat treatment furnace in a mixed gas atmosphere (dew point: -50 ° C.) containing N 2 : 90 vol% and H 2 : 10 vol% and changing various temperatures.
  • dew point -50 ° C.
  • N 2 90 vol%
  • H 2 10 vol%
  • the heat treatment conditions are specifically the treatment temperature, the atmosphere, and the dew point.
  • the treatment temperature is a temperature after soaking for a certain time in a heat treatment furnace set to a predetermined temperature, and specifically, is the same as the set temperature of the heat treatment furnace.
  • FIG. 2 shows the relationship between the current density during electrolytic treatment (mA / cm 2 ) and the maximum amount of Si (mass%) in the coating on the stainless steel surface.
  • the inventors have found that an austenitic stainless steel sheet capable of achieving the object of the present invention can be provided industrially stably at a specific current density because the amount of Si in the film is very large.
  • the present invention has been made based on the above findings, and the gist thereof is as follows.
  • An austenitic stainless steel sheet having a film formed on at least a part of its surface The chemical composition of the austenitic stainless steel sheet is mass%, C: 0.01% or more and 0.10% or less, Si: 0.2% or more and 2.0% or less, Mn: 1.5% or less, Mo: 1.0% or less, Cr: 15.0% to 22.0%, Ni: 4.5% or more and 10.0% or less, Cu: 1.0% or less, Nb: 0.30% or less, N: 0.01% or more and 0.15% or less, The balance is Fe and inevitable impurities,
  • the film includes a Si-concentrated layer having a maximum Si amount in a range from the surface layer to 10 nm of 10.0% or more and a maximum Fe amount of 8.5% or less, An austenitic stainless steel sheet in which the thickness of the Si-concentrated layer is 5 nm or more and is difficult to be diffusion bonded.
  • the chemical composition of the steel sheet of the present invention is the chemical composition necessary for obtaining an austenitic stainless steel sheet, heat resistance such as high-temperature strength, and chemical composition necessary for obtaining a high Si film. In addition, it is stipulated. Specifically, it is as follows. However,% means the mass%.
  • C 0.01% or more and 0.10% or less
  • C is an element that contributes to high strength at high temperatures by solid solution strengthening or precipitation strengthening. Therefore, C is contained in an amount of 0.01% or more. Preferably it is 0.03% or more. If it is contained in a large amount, coarse Cr carbide precipitates at the grain boundaries during heat treatment, and the oxidation resistance at high temperature is lowered, so the content is made 0.10% or less. Preferably it is 0.08% or less.
  • Si 0.2% or more and 2.0% or less Si is one of the most important elements in the steel sheet of the present invention.
  • Si is an element that forms a high Si amount film composed of SiO 2 on the surface of the steel sheet and makes diffusion bonding difficult. Therefore, Si is contained by 0.2% or more. Preferably, it is 0.31% or more, more preferably 0.5% or more. If contained in a large amount, the toughness is reduced and the manufacturability of the plate is deteriorated, so the content is made 2.0% or less. Preferably it is 1.8% or less, More preferably, it is 1.20%.
  • Mn 1.5% or less Mn is an element that contributes to preventing brittle fracture during hot working and strengthening steel. However, if contained in a large amount, the corrosion resistance deteriorates, so the content is made 1.5% or less. Preferably it is 1.35% or less, More preferably, it is 1.2% or less.
  • the lower limit includes 0%, but unavoidably about 0.001% is mixed from the iron raw material and usually remains in the steel sheet. Therefore, 0.001% is a practical lower limit. In order to surely obtain the above effect, 0.21% or more is preferable, and 0.5% or more is more preferable.
  • Mo 1.0% or less Mo is an element contributing to the improvement of corrosion resistance. However, even if contained in a large amount, the cost is significantly increased, so the content is made 1.0% or less. Preferably, it is 0.80% or less, more preferably 0.7% or less.
  • the lower limit includes 0%, but it is unavoidably mixed from the iron raw material and about 0.001% and remains in the steel sheet. Therefore, 0.001% is a practical lower limit. In order to surely obtain the above effect, 0.02% or more is preferable, and 0.5% or more is more preferable.
  • Cr 15.0% or more and 22.0% or less
  • Cr is a basic element of stainless steel, and is an element that forms a metal oxide layer Cr 2 O 3 on the surface of the steel sheet and enhances corrosion resistance. Therefore, Cr is contained 15.0% or more. Preferably it is 16.1% or more, more preferably 17.0% or more. However, Cr is also a strong ferrite stabilizing element, and if it is contained in a large amount, ⁇ ferrite that inhibits the hot workability of the material is generated, so its content is made 22.0% or less. Preferably it is 21.0%, More preferably, it is 20.0% or less.
  • Ni 4.5% or more and 10.0% or less
  • Ni is an austenite-generating element and is an element necessary for stabilizing the austenite phase at room temperature.
  • Ni is also an element effective for improving high-temperature strength. Therefore, Ni is contained 4.5% or more. Preferably it is 4.9% or more, more preferably 5.0% or more.
  • the Ni content is 10.0% or less. Preferably it is 9.5% or less, More preferably, it is 8.0% or less.
  • Cu 1.0% or less
  • Cu is an austenite-forming element and is an element capable of adjusting the stability of the austenite phase. However, if it is contained in a large amount, it segregates at the grain boundary during the production process, remarkably hinders hot workability and makes production difficult. Preferably it is 0.8% or less, More preferably, it is 0.70% or less.
  • the lower limit includes 0%, but it is unavoidably mixed from the iron raw material and about 0.001% and remains in the steel sheet. Therefore, 0.001% is a practical lower limit. In order to surely obtain the above effect, 0.02% or more is preferable, and 0.5% or more is more preferable.
  • Nb 0.30% or less
  • Nb is an element that forms fine carbides or nitrides, contributes to high strength, and suppresses softening due to recrystallization at high temperatures. However, even if contained in a large amount, the cost is increased, so the content is made 0.30% or less. Preferably it is 0.20% or less, More preferably, it is 0.079% or less.
  • the lower limit includes 0%, but it is unavoidably mixed from the iron raw material and about 0.001% and remains in the steel sheet. Therefore, 0.001% is a practical lower limit. In order to surely obtain the above effect, 0.01% or more is preferable.
  • N 0.01% or more and 0.15% or less
  • N is a solid solution strengthening element, and is an element contributing to the improvement of high temperature strength. Therefore, N is contained by 0.01% or more. Preferably it is 0.03% or more, More preferably, it is 0.04% or more. On the other hand, if it is contained in a large amount, a large number of coarse nitrides that become the starting point of fracture are produced in the production process of the steel sheet, hot workability is deteriorated, and production may be difficult. The following. Preferably it is 0.13% or less, More preferably, it is 0.12% or less.
  • the balance is Fe and inevitable impurities.
  • the austenitic stainless steel sheet of the present invention has a film formed on at least a part of the surface, and after reducing Fe in the film, the maximum Si content in the range from the surface layer to 10 nm is 10%.
  • the Si-enriched layer having the maximum Fe content of 8.5% or less is provided.
  • the film is an oxide film mainly composed of an oxide.
  • Si in the film in the present invention exists mainly as Si oxide (SiO 2 ). Si oxide exists stably at high temperature compared with Cr oxide which is a general film composition of stainless steel.
  • the Si content on the outermost surface of the coating is set to 10.0% or more. Preferably it is 12.5% or more, More preferably, it is 14.0% or more.
  • the upper limit is not particularly defined, but is 30.0% on the practical steel plate.
  • Maximum Fe content in the range from the surface layer to 10 nm 8.5% or less Since Fe is present in a large amount in the base material of austenitic stainless steel, it can be present in the vicinity of the bonding interface as Fe oxide. However, Fe oxide disappears more easily in the diffusion bonding process than SiO 2 and Cr 2 O 3 . For this reason, when a large amount of Fe is present in the vicinity of the bonding interface, even if SiO 2 in the surface film is concentrated, it is difficult to suppress the diffusion of Fe, and the effect of suppressing the bonding is insufficient. It becomes. Therefore, the maximum Fe content in the range from the surface layer to 10 nm is set to 8.5% or less.
  • Si-enriched layer thickness 5 nm or more
  • the thickness of the Si concentrated layer is set to 5 nm or more. Preferably it is 8 nm or more.
  • FIG. 3 shows the definition of the maximum Si amount (% by mass) and the Si concentrated layer thickness (nm) based on the relationship between the distance from the surface (nm) and the Si amount (% by mass).
  • the thickness of the Si concentrated layer is a thickness until the Si amount becomes 1/2 of the maximum Si amount (1/2 Si amount in the figure).
  • the Si amount on the outermost surface of the film is 10% or more as a surface state in which diffusion bonding is difficult.
  • finish annealing of austenitic stainless steel is performed in a mixed atmosphere of H 2 and N 2 in order to maintain surface gloss, and the temperature is about 1100 to 1150 ° C.
  • the coating may be partially broken or divided, and a new Cr oxide coating may be generated on the new surface, thereby reducing the amount of Si in the coating.
  • the finish annealing is preferably carried out by maintaining at 750 to 1000 ° C. in a mixed atmosphere of H 2 and N 2 . This is because a predetermined Si-enriched layer is formed on the surface layer of the film (see FIG. 1).
  • a preferable lower limit of the treatment temperature is 800 ° C, and a preferable upper limit is 950 ° C.
  • the in-furnace time is not particularly defined as long as the steel plate can be soaked at the above processing temperature, but if the time is too short, Si concentration in the film may be insufficient, so the in-furnace time is 10 seconds or more is desirable.
  • the dew point of the mixed atmosphere of H 2 and N 2 is high, the film formed during the heat treatment becomes a film mainly composed of Cr oxide, so the dew point is preferably ⁇ 45 ° C. or lower. Preferably, it is ⁇ 60 ° C. or lower. On the other hand, in order to obtain an excessively low dew point, a large cost is required. Therefore, in practice, the dew point is set to ⁇ 70 ° C. or higher. Preferably, it is ⁇ 65 ° C. or higher.
  • the mixing ratio of H 2 and N 2 is not particularly limited, but the mixing ratio is preferably 1/19 or more in order to obtain an atmosphere exhibiting sufficient reducing properties.
  • increasing the proportion of expensive hydrogen gas has a problem in economy, so it is preferable to set it to 1/2 or less.
  • an electrolytic cleaning process is performed in which the steel sheet after heat treatment is subjected to electrolytic treatment in a predetermined liquid to remove the film generated by the heat treatment.
  • the film-modified electrolytic treatment has a part in common with the conventional electrolytic cleaning treatment in that the electrolytic treatment is performed in a predetermined solution.
  • the film-modified electrolytic treatment is performed after reducing Fe in the film and then in the film. This is greatly different in that it is performed to enrich Si.
  • the steel sheet is preferably passed through a nitric acid aqueous solution having a liquid temperature of 30 to 50 ° C. and a concentration of about 5 to 10% while applying a voltage so that the steel sheet becomes positive. If the liquid temperature or concentration is too low, a sufficient reforming effect cannot be obtained, and if the liquid temperature or concentration is too high, the surface roughness of the steel sheet may be increased or the electrolytic cell may be damaged.
  • This electrolytic treatment is preferably performed so that the current density is 100 mA / cm 2 or more with respect to the plate area.
  • Si is concentrated after reducing Fe in the film on the surface of the steel sheet (see FIG. 2).
  • it is 150 mA / cm 2 or more.
  • Si in the electrolysis process, Fe, Cr, etc. are eluted and removed from the surface by oxidation reaction, but Si present as SiO 2 is not oxidized any more and remains on the surface. It is to do.
  • Si does not concentrate on the steel sheet surface, and particularly when the current density is about 20 mA / cm 2, which is the current density during general electrolytic cleaning treatment, the amount of Si is reduced. (See FIG. 2).
  • the current density is preferably 300 mA / cm 2 or less (see FIG. 2). Preferably it is 250 mA / cm 2 or less.
  • the concentration of Si is small, so the energization time should be 10 seconds or more. Preferably it is 15 seconds or more.
  • the upper limit of the energization time is not particularly defined, but is practically about 60 seconds.
  • a voltage may be applied by using a steel plate as a positive electrode or a negative electrode, or a voltage may be applied by alternately repeating positive and negative, but the time for energization using the steel plate as a positive electrode is more than twice the time for energization as a negative electrode. To do. Also in this case, the time for energizing the steel plate as positive is set to 10 seconds or more.
  • the conditions in the examples are one example of conditions used for confirming the feasibility and effects of the present invention, and the present invention is based on this one example of conditions. It is not limited.
  • the present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
  • Table 1 shows the chemical composition of the test steel.
  • the maximum Si amount is the Si amount (% by mass) at which the Si amount is maximum
  • the maximum Fe amount is the Fe amount (% by mass) at which the Fe amount is maximum
  • the Si concentrated layer thickness is the outermost surface To a position where the Si amount is a half of the maximum Si amount.
  • the steel plate was processed into two ⁇ 8 mm disk-shaped test pieces. Two test pieces were overlapped, and a load of 20 MPa was applied in a vacuum chamber at 750 ° C., followed by pressurization for 30 seconds.
  • Steel plates 1 to 7 (invention examples) shown in Table 2 are steel plates that satisfy the provisions of the present invention and are difficult to be diffusion bonded.
  • the steel plates 8 to 13 of the comparative examples are steel plates that are easy to be diffusion bonded.
  • the steel sheet 8 has a very low maximum Si content in the film. This is due to the low temperature of the film modification heat treatment.
  • the steel sheet 9 is a steel sheet that has a high dew point at the time of film reforming heat treatment and is easy to be diffusion bonded because it is a film mainly composed of Cr oxide.
  • the steel plate 10 is SUS304, which was prototyped under relatively general manufacturing conditions. Although the heat treatment temperature and the current density during the electrolytic treatment have general conditions, the maximum amount of Si in the film is low and the Si concentrated layer depth is also small, so that the steel plate 10 is a steel plate that is easily joined. Since the maximum amount of Si is extremely low, the steel plate 11 is a steel plate that does not concentrate Si on the surface of the steel plate even by a film reforming heat treatment under appropriate conditions and is easily diffusion bonded.
  • the steel plate 12 is also a steel plate that is easy to be diffusion bonded because the maximum amount of Si in the film is low and the Si concentrated layer depth is also small. This is because the film modification heat treatment and the film modification electrolytic treatment are not performed.
  • the steel plate 13 is a steel plate that is easily diffusion-bonded because the maximum amount of Si in the film is in the range defined by the present invention, but the maximum Fe amount is excessive. This is because the energization time as a negative electrode is long.
  • the maximum Si amount in the Si concentrated layer is 10% by mass or more, the Si concentrated layer thickness is 5 nm or more, and the maximum Fe amount in the Si concentrated layer is 8.5% or less.
  • the ratio of the grain boundary straddling the bonding interface is rapidly reduced, and the effect of suppressing diffusion bonding is exhibited.
  • “ ⁇ ” in the figure is the point of Comparative Example 13.
  • the maximum amount of Si in the film is in the range specified by the present invention, but the maximum Fe amount is excessive, so that the ratio of grain boundaries straddling the bonding interface was high.
  • the present invention it is possible to provide industrially stable austenitic stainless steel that is difficult to be diffusion bonded even at high temperatures. Therefore, the present invention has high applicability in the stainless steel manufacturing / utilizing industry.

Abstract

An austenitic stainless steel sheet which is provided with a coating film on at least a part of the surface thereof, and which has a chemical composition containing, in mass%, from 0.01% to 0.10% (inclusive) of C, from 0.2% to 2.0% (inclusive) of Si, 1.5% or less of Mn, 1.0% or less of Mo, from 15.0% to 22.0% (inclusive) of Cr, from 4.5% to 10.0% (inclusive) of Ni, 1.0% or less of Cu, 0.30% or less of Nb and from 0.01% to 0.15% (inclusive) of N, with the balance made up of Fe and unavoidable impurities. The coating film is provided with an Si-increased layer in a region from the surface to the depth of 10 nm, said Si-increased layer having a maximum Si amount of 10.0% or more and a maximum Fe amount of 8.5% or less. The Si-increased layer has a thickness of 5 nm or more. This austenitic stainless steel sheet is not susceptible to diffusion bonding even at high temperatures.

Description

拡散接合し難いオーステナイト系ステンレス鋼板Austenitic stainless steel sheet that is difficult to diffuse and bond
 本発明は、拡散接合し難いオーステナイト系ステンレス鋼板に関する。 The present invention relates to an austenitic stainless steel sheet that is difficult to be diffusion bonded.
 高い耐熱性が要求される自動車や二輪車の排気系ガスケット等の耐熱部品には、オーステナイト系ステンレス鋼が使われている。燃費向上の観点から、排気温度が年々上昇しており、これらの耐熱部品は、700℃以上の高温に曝される場合がある。このような高温では、素材の軟化に加え、周辺のパーツと接合してしまうという問題がある。これは、接触した部分の原子が相互に拡散する拡散接合と呼ばれる現象である。 Austenitic stainless steel is used for heat-resistant parts such as exhaust gaskets for automobiles and motorcycles that require high heat resistance. From the viewpoint of improving fuel consumption, exhaust temperatures are increasing year by year, and these heat-resistant components may be exposed to high temperatures of 700 ° C. or higher. At such a high temperature, in addition to softening of the material, there is a problem that it joins with surrounding parts. This is a phenomenon called diffusion junction in which atoms in contact with each other diffuse.
 例えば、特許文献1には、Alを3~10%添加し、Al23皮膜を生成させることで拡散接合し難いフェライト系ステンレス鋼が提案されている。 For example, Patent Document 1 proposes a ferritic stainless steel that is difficult to be diffusion bonded by adding 3 to 10% Al and forming an Al 2 O 3 film.
特開2011-032524号公報JP 2011-032524 A
 特許文献1の技術のように、フェライト系ステンレス鋼では、排気系ガスケットとして十分な高温強度が得られない。また、特許文献1が開示するように、多量にAlを添加すると、AlNからなる介在物が生成し易く、ガスケットのような薄い部品では、疲労特性などに顕著な悪影響を与える。 As in the technique of Patent Document 1, ferritic stainless steel cannot provide sufficient high-temperature strength as an exhaust system gasket. Further, as disclosed in Patent Document 1, when a large amount of Al is added, inclusions made of AlN are easily generated, and a thin part such as a gasket has a remarkable adverse effect on fatigue characteristics.
 本発明の目的は、従来技術の問題を解決するため、高温でも拡散接合し難いオーステナイト系ステンレス鋼を工業的に安定して提供することである。 An object of the present invention is to provide industrially stable austenitic stainless steel that is difficult to be diffusion bonded even at high temperatures in order to solve the problems of the prior art.
 本発明者らは、拡散接合性は、鋼板の表面皮膜に大きな影響を受けると考え、皮膜の組成、厚みおよび皮膜構成物質の構造と拡散接合性の関係について調査、検討した。その結果、皮膜中のFeを低減した上で、皮膜中にSiOとして存在するSiの量を濃化させること、及び、このSi濃化層を厚くすることが、拡散接合の抑制に効果的であることを知見した。 The present inventors considered that the diffusion bondability is greatly influenced by the surface film of the steel sheet, and investigated and examined the relationship between the composition and thickness of the film and the structure of the film constituent material and the diffusion bondability. As a result, it is effective to suppress diffusion bonding by reducing the amount of Fe in the film and concentrating the amount of Si present as SiO 2 in the film and increasing the thickness of the Si-concentrated layer. I found out.
 オーステナイト系ステンレス鋼表面の皮膜中のSiOは、ステンレス鋼の皮膜として一般的なCrと比較して、高温でも消失し難いため、接合を抑制する効果を有する。Feは、オーステナイト系ステンレス鋼の母材に多量に存在するため、Fe酸化物として接合界面近傍に存在し得る。しかし、Fe酸化物は、上記のSiOおよびCrに比べて拡散接合工程において容易に消失する。このため、接合界面近傍にFeが多量に存在する場合は、表面皮膜中のSiOを濃化させたとしても、Feの拡散を抑制することが困難であり、接合を抑制する効果は不十分となる。よって、表面皮膜中のFeを低減し、SiOとして存在するSiを濃化させることが重要である。 Since SiO 2 in the film on the surface of the austenitic stainless steel is hard to disappear even at a high temperature as compared with Cr 2 O 3 which is a general stainless steel film, it has an effect of suppressing bonding. Since Fe is present in a large amount in the base material of austenitic stainless steel, it can be present in the vicinity of the bonding interface as an Fe oxide. However, the Fe oxide easily disappears in the diffusion bonding process as compared with the above-described SiO 2 and Cr 2 O 3 . For this reason, when a large amount of Fe is present in the vicinity of the bonding interface, even if SiO 2 in the surface film is concentrated, it is difficult to suppress the diffusion of Fe, and the effect of suppressing the bonding is insufficient. It becomes. Therefore, it is important to reduce Fe in the surface coating and concentrate Si present as SiO 2 .
 また、製造方法についても、詳細に検討した結果、上記のようなSi量の高い皮膜形成に有効な熱処理条件を見出した。例えば、図1に、熱処理温度(℃)と、熱処理後のステンレス鋼表面の皮膜中の最大Si量(質量%)及びSi濃化層厚さ(nm)の関係を示す。なお、この実験は、N2:90vol%およびH2:10vol%を含む混合ガス雰囲気(露点が-50℃)の熱処理炉を用い、種々温度を変更して行った。図1に示すように、特定の熱処理温度で、表面皮膜中の最大Si量が極めて多くなり、Si濃化層が厚くなることを知見した。なお、熱処理条件は、具体的には、処理温度、雰囲気、及び、露点である。処理温度とは、所定温度に設定された熱処理炉内で一定時間均熱した後の温度であり、具体的には熱処理炉の設定温度と同じである。この知見により、表面にSi濃化層を形成することができるが、必ずしも表面のFeを低減させることはできず、接合の抑制は不十分である。 Further, as a result of detailed examination of the production method, the present inventors have found heat treatment conditions effective for forming a film having a high Si amount as described above. For example, FIG. 1 shows the relationship between the heat treatment temperature (° C.), the maximum Si amount (mass%) in the coating on the stainless steel surface after the heat treatment, and the Si concentrated layer thickness (nm). This experiment was performed using a heat treatment furnace in a mixed gas atmosphere (dew point: -50 ° C.) containing N 2 : 90 vol% and H 2 : 10 vol% and changing various temperatures. As shown in FIG. 1, it was found that the maximum amount of Si in the surface film becomes extremely large and the Si concentrated layer becomes thick at a specific heat treatment temperature. The heat treatment conditions are specifically the treatment temperature, the atmosphere, and the dew point. The treatment temperature is a temperature after soaking for a certain time in a heat treatment furnace set to a predetermined temperature, and specifically, is the same as the set temperature of the heat treatment furnace. With this knowledge, a Si-enriched layer can be formed on the surface, but the Fe on the surface cannot always be reduced, and the suppression of bonding is insufficient.
 そこで、本発明者らは、皮膜中のFeを低減させた上でSi濃化層を工業的に安定して形成できる方法について検討を行った結果、高電流密度で電解処理を施すことがよいことが判明した。図2には、電解処理時の電流密度(mA/cm2)と、ステンレス鋼表面の皮膜中の最大Si量(質量%)との関係を示す。図2に示すように、特定の電流密度で、皮膜中のSi量が非常に多くなり、本発明の目的を達成し得るオーステナイト系ステンレス鋼板を、工業的に安定して提供できることを見出した。 Therefore, as a result of studying a method capable of industrially stably forming a Si concentrated layer after reducing Fe in the film, it is preferable to perform electrolytic treatment at a high current density. It has been found. FIG. 2 shows the relationship between the current density during electrolytic treatment (mA / cm 2 ) and the maximum amount of Si (mass%) in the coating on the stainless steel surface. As shown in FIG. 2, the inventors have found that an austenitic stainless steel sheet capable of achieving the object of the present invention can be provided industrially stably at a specific current density because the amount of Si in the film is very large.
 本発明は、上記知見に基づいてなされたもので、その要旨は以下の通りである。 The present invention has been made based on the above findings, and the gist thereof is as follows.
 (1)表面の少なくとも一部に皮膜が形成されたオーステナイト系ステンレス鋼板であって、
前記オーステナイト系ステンレス鋼板の化学組成が、質量%で、
C:0.01%以上0.10%以下、
Si:0.2%以上2.0%以下、
Mn:1.5%以下、
Mo:1.0%以下、
Cr:15.0%以上22.0%以下、
Ni:4.5%以上10.0%以下、
Cu:1.0%以下、
Nb:0.30%以下、
N:0.01%以上0.15%以下、
残部がFe及び不可避不純物であり、
前記皮膜が、その表層から10nmまでの範囲の最大Si量が10.0%以上で、かつ最大Fe量が8.5%以下であるSi濃化層を備え、
前記Si濃化層の厚さが5nm以上である、拡散接合し難いオーステナイト系ステンレス鋼板。
(1) An austenitic stainless steel sheet having a film formed on at least a part of its surface,
The chemical composition of the austenitic stainless steel sheet is mass%,
C: 0.01% or more and 0.10% or less,
Si: 0.2% or more and 2.0% or less,
Mn: 1.5% or less,
Mo: 1.0% or less,
Cr: 15.0% to 22.0%,
Ni: 4.5% or more and 10.0% or less,
Cu: 1.0% or less,
Nb: 0.30% or less,
N: 0.01% or more and 0.15% or less,
The balance is Fe and inevitable impurities,
The film includes a Si-concentrated layer having a maximum Si amount in a range from the surface layer to 10 nm of 10.0% or more and a maximum Fe amount of 8.5% or less,
An austenitic stainless steel sheet in which the thickness of the Si-concentrated layer is 5 nm or more and is difficult to be diffusion bonded.
 本発明によれば、高温でも拡散接合し難いオーステナイト系ステンレス鋼を、工業的に安定して提供することができる。 According to the present invention, it is possible to provide industrially stable austenitic stainless steel that is difficult to be diffusion bonded even at high temperatures.
熱処理温度(℃)と、熱処理後のステンレス鋼表面の皮膜中の最大Si量(質量%)及びSi濃化層厚さ(nm)の関係を示す図である。It is a figure which shows the relationship between heat processing temperature (degreeC), the maximum amount of Si (mass%) in the film | membrane of the stainless steel surface after heat processing, and Si concentrated layer thickness (nm). 電解処理時の電流密度(mA/cm2)と、熱処理後のステンレス鋼表面の皮膜中の最大Si量(質量%)の関係を示す図である。It is a figure which shows the relationship between the current density (mA / cm < 2 >) at the time of electrolytic treatment, and the maximum amount of Si (mass%) in the film | membrane of the stainless steel surface after heat processing. 表面からの距離(nm)とSi量(質量%)の関係に基づく、最大Si量(質量%)とSi濃化層厚さ(nm)の定義を示す図である。It is a figure which shows the definition of the maximum Si amount (mass%) and Si concentration layer thickness (nm) based on the relationship between the distance (nm) from the surface, and Si quantity (mass%). 接合界面を跨ぐ粒界の割合(%)とSi濃化層中の最大Si量(mass%)との関係を示す図である。It is a figure which shows the relationship between the ratio (%) of the grain boundary over a joining interface, and the maximum Si amount (mass%) in Si concentration layer. 接合界面を跨ぐ粒界の割合(%)とSi濃化層中の最大Fe量(mass%)との関係を示す図である。It is a figure which shows the relationship between the ratio (%) of the grain boundary over a joining interface, and the maximum amount of Fe (mass%) in Si concentration layer. 接合界面を跨ぐ粒界の割合(%)とSi濃化層厚さ(nm)との関係を示す図である。It is a figure which shows the relationship between the ratio (%) of the grain boundary over a joining interface, and Si concentration layer thickness (nm).
 1.オーステナイト系ステンレス鋼板の化学組成
 本発明鋼板の化学組成は、オーステナイト系ステンレス鋼板を得るのに必要な化学組成に、高温強度などの耐熱性、更に、高Si皮膜を得るのに必要な化学組成を加えて規定されている。具体的には、以下の通りである。ただし、%は、質量%を意味する。
1. Chemical composition of austenitic stainless steel sheet The chemical composition of the steel sheet of the present invention is the chemical composition necessary for obtaining an austenitic stainless steel sheet, heat resistance such as high-temperature strength, and chemical composition necessary for obtaining a high Si film. In addition, it is stipulated. Specifically, it is as follows. However,% means the mass%.
 C:0.01%以上0.10%以下
 Cは、固溶強化や析出強化によって高温での高強度化に寄与する元素である。従って、Cは0.01%以上含有させる。好ましくは0.03%以上である。多量に含有すると、熱処理時に粗大なCr炭化物が結晶粒界に析出し、高温での耐酸化性が低下するので、その含有量は0.10%以下とする。好ましくは0.08%以下である。
C: 0.01% or more and 0.10% or less C is an element that contributes to high strength at high temperatures by solid solution strengthening or precipitation strengthening. Therefore, C is contained in an amount of 0.01% or more. Preferably it is 0.03% or more. If it is contained in a large amount, coarse Cr carbide precipitates at the grain boundaries during heat treatment, and the oxidation resistance at high temperature is lowered, so the content is made 0.10% or less. Preferably it is 0.08% or less.
 Si:0.2%以上2.0%以下
 Siは、本発明鋼板において最も重要な元素の一つである。Siは、鋼板表面にSiOから構成されるSi量の高い皮膜を形成し、拡散接合をし難くする作用をなす元素である。従って、Siは0.2%以上含有させる。好ましくは、0.31%以上であり、より好ましくは、0.5%以上である。多量に含有すると、靭性が低下し、板の製造性が劣化するので、その含有量は2.0%以下とする。好ましくは1.8%以下であり、より好ましくは1.20%である。
Si: 0.2% or more and 2.0% or less Si is one of the most important elements in the steel sheet of the present invention. Si is an element that forms a high Si amount film composed of SiO 2 on the surface of the steel sheet and makes diffusion bonding difficult. Therefore, Si is contained by 0.2% or more. Preferably, it is 0.31% or more, more preferably 0.5% or more. If contained in a large amount, the toughness is reduced and the manufacturability of the plate is deteriorated, so the content is made 2.0% or less. Preferably it is 1.8% or less, More preferably, it is 1.20%.
 Mn:1.5%以下
 Mnは、熱間加工時の脆性破壊防止と鋼の強化に寄与する元素である。しかし、多量に含有すると、耐食性が劣化するので、その含有量は1.5%以下とする。好ましくは1.35%以下であり、より好ましくは1.2%以下である。下限は0%を含むが、鉄原料から不可避的に0.001%程度混入し、通常は鋼板中に残留する。よって、0.001%が実質的な下限である。上記の効果を確実に得るためには、0.21%以上が好ましく、0.5%以上がより好ましい。
Mn: 1.5% or less Mn is an element that contributes to preventing brittle fracture during hot working and strengthening steel. However, if contained in a large amount, the corrosion resistance deteriorates, so the content is made 1.5% or less. Preferably it is 1.35% or less, More preferably, it is 1.2% or less. The lower limit includes 0%, but unavoidably about 0.001% is mixed from the iron raw material and usually remains in the steel sheet. Therefore, 0.001% is a practical lower limit. In order to surely obtain the above effect, 0.21% or more is preferable, and 0.5% or more is more preferable.
 Mo:1.0%以下
 Moは、耐食性の向上に寄与する元素である。しかし、多量に含有させても、コストの大幅な上昇を招くので、その含有量は1.0%以下とする。好ましくは、0.80%以下、より好ましくは0.7%以下である。下限は0%を含むが、鉄原料から不可避的に0.001%程度混入し、鋼板中に残留する。よって、0.001%が実質的な下限である。上記の効果を確実に得るためには、0.02%以上が好ましく、0.5%以上がより好ましい。
Mo: 1.0% or less Mo is an element contributing to the improvement of corrosion resistance. However, even if contained in a large amount, the cost is significantly increased, so the content is made 1.0% or less. Preferably, it is 0.80% or less, more preferably 0.7% or less. The lower limit includes 0%, but it is unavoidably mixed from the iron raw material and about 0.001% and remains in the steel sheet. Therefore, 0.001% is a practical lower limit. In order to surely obtain the above effect, 0.02% or more is preferable, and 0.5% or more is more preferable.
 Cr:15.0%以上22.0%以下
 Crは、ステンレス鋼の基本元素であり、鋼板表面に金属酸化物層Crを形成し、耐食性を高める作用をなす元素である。よって、Crは15.0%以上含有させる。好ましくは16.1%以上であり、より好ましくは17.0%以上である。しかし、Crは、強力なフェライト安定化元素でもあり、多量に含有すると、素材の熱間加工性を阻害するδフェライトが生成するので、その含有量は22.0%以下とする。好ましくは21.0%であり、より好ましくは20.0%以下である。
Cr: 15.0% or more and 22.0% or less Cr is a basic element of stainless steel, and is an element that forms a metal oxide layer Cr 2 O 3 on the surface of the steel sheet and enhances corrosion resistance. Therefore, Cr is contained 15.0% or more. Preferably it is 16.1% or more, more preferably 17.0% or more. However, Cr is also a strong ferrite stabilizing element, and if it is contained in a large amount, δ ferrite that inhibits the hot workability of the material is generated, so its content is made 22.0% or less. Preferably it is 21.0%, More preferably, it is 20.0% or less.
 Ni:4.5%以上10.0%以下
 Niは、オーステナイト生成元素であり、室温でオーステナイト相を安定化するのに必要な元素である。また、Niは、高温強度の向上にも有効な元素でもある。よって、Niは4.5%以上含有させる。好ましくは4.9%以上であり、より好ましくは5.0%以上である。しかし、多量に含有すると、冷間圧延時の加工誘起マルテンサイト変態が抑制される。さらに、Niは高価な元素であり、多量の添加は、コストの大幅な上昇を招く。それ故、Ni含有量は10.0%以下とする。好ましくは9.5%以下であり、より好ましくは8.0%以下である。
Ni: 4.5% or more and 10.0% or less Ni is an austenite-generating element and is an element necessary for stabilizing the austenite phase at room temperature. Ni is also an element effective for improving high-temperature strength. Therefore, Ni is contained 4.5% or more. Preferably it is 4.9% or more, more preferably 5.0% or more. However, if contained in a large amount, the processing-induced martensitic transformation during cold rolling is suppressed. Furthermore, Ni is an expensive element, and a large amount of addition causes a significant increase in cost. Therefore, the Ni content is 10.0% or less. Preferably it is 9.5% or less, More preferably, it is 8.0% or less.
 Cu:1.0%以下
 Cuは、オーステナイト生成元素であり、オーステナイト相の安定度を調整することが可能な元素である。しかし、多量に含有すると、製造過程で粒界に偏析し、熱間加工性を顕著に阻害し、製造が困難になる場合があるので、1.0%以下とする。好ましくは0.8%以下であり、より好ましくは0.70%以下である。下限は0%を含むが、鉄原料から不可避的に0.001%程度混入し、鋼板中に残留する。よって、0.001%が実質的な下限である。上記の効果を確実に得るためには、0.02%以上が好ましく、0.5%以上がより好ましい。
Cu: 1.0% or less Cu is an austenite-forming element and is an element capable of adjusting the stability of the austenite phase. However, if it is contained in a large amount, it segregates at the grain boundary during the production process, remarkably hinders hot workability and makes production difficult. Preferably it is 0.8% or less, More preferably, it is 0.70% or less. The lower limit includes 0%, but it is unavoidably mixed from the iron raw material and about 0.001% and remains in the steel sheet. Therefore, 0.001% is a practical lower limit. In order to surely obtain the above effect, 0.02% or more is preferable, and 0.5% or more is more preferable.
 Nb:0.30%以下
 Nbは、微細な炭化物又は窒化物を形成して、高強度化に寄与し、高温での再結晶による軟化を抑制する作用をなす元素である。しかし、多量に含有させても、コストの上昇を招くので、0.30%以下とする。好ましくは0.20%以下であり、より好ましくは0.079%以下である。下限は0%を含むが、鉄原料から不可避的に0.001%程度混入し、鋼板中に残留する。よって、0.001%が実質的な下限である。上記効果を確実に得るためには、0.01%以上が好ましい。
Nb: 0.30% or less Nb is an element that forms fine carbides or nitrides, contributes to high strength, and suppresses softening due to recrystallization at high temperatures. However, even if contained in a large amount, the cost is increased, so the content is made 0.30% or less. Preferably it is 0.20% or less, More preferably, it is 0.079% or less. The lower limit includes 0%, but it is unavoidably mixed from the iron raw material and about 0.001% and remains in the steel sheet. Therefore, 0.001% is a practical lower limit. In order to surely obtain the above effect, 0.01% or more is preferable.
 N:0.01%以上0.15%以下
 Nは、Cと同様に固溶強化元素であり、高温強度の向上に寄与する元素である。よって、Nは0.01%以上含有させる。好ましくは0.03%以上であり、より好ましくは0.04%以上である。一方、多量に含有すると、鋼板の製造過程で、破壊の起点となる粗大な窒化物が多数生成して、熱間加工性が劣化し、製造が困難となる場合があるので、0.15%以下とする。好ましくは0.13%以下であり、より好ましくは0.12%以下である。
N: 0.01% or more and 0.15% or less N, like C, is a solid solution strengthening element, and is an element contributing to the improvement of high temperature strength. Therefore, N is contained by 0.01% or more. Preferably it is 0.03% or more, More preferably, it is 0.04% or more. On the other hand, if it is contained in a large amount, a large number of coarse nitrides that become the starting point of fracture are produced in the production process of the steel sheet, hot workability is deteriorated, and production may be difficult. The following. Preferably it is 0.13% or less, More preferably, it is 0.12% or less.
 本発明に係るオーステナイト系ステンレス鋼板の化学組成において、残部は、Feと不可避不純物である。 In the chemical composition of the austenitic stainless steel sheet according to the present invention, the balance is Fe and inevitable impurities.
 2.Si濃化層
 本発明のオーステナイト系ステンレス鋼板は、表面の少なくとも一部に皮膜が形成されており、皮膜中のFeを低減した上で、その表層から10nmまでの範囲の最大Si量が10%以上で、かつ最大Fe量が8.5%以下であるSi濃化層を備える。皮膜は、主として酸化物で構成される、酸化皮膜である。
2. Si Concentrated Layer The austenitic stainless steel sheet of the present invention has a film formed on at least a part of the surface, and after reducing Fe in the film, the maximum Si content in the range from the surface layer to 10 nm is 10%. The Si-enriched layer having the maximum Fe content of 8.5% or less is provided. The film is an oxide film mainly composed of an oxide.
 表層から10nmまでの範囲の最大Si量:10.0%以上
 高温での拡散接合を抑制するためには、拡散を抑制する鋼板表面の皮膜を高温でも維持することが有効である。本発明における皮膜中のSiは、主としてSi酸化物(SiO)として存在する。Si酸化物は、ステンレス鋼の一般的な皮膜組成であるCr酸化物と比較して、高温で安定して存在する。
Maximum amount of Si in the range from the surface layer to 10 nm: 10.0% or more In order to suppress diffusion bonding at high temperatures, it is effective to maintain a coating on the surface of the steel sheet that suppresses diffusion even at high temperatures. Si in the film in the present invention exists mainly as Si oxide (SiO 2 ). Si oxide exists stably at high temperature compared with Cr oxide which is a general film composition of stainless steel.
 したがって、表層から10nmの範囲(皮膜最表面)のSi量を多くすることで、高温でも、ステンレス鋼部品同士の拡散接合を抑制することができる。この効果を得るため、皮膜最表面のSi量を10.0%以上とする。好ましくは12.5%以上であり、より好ましくは14.0%以上である。 Therefore, by increasing the amount of Si in the range of 10 nm from the surface layer (the outermost surface of the coating), diffusion bonding between stainless steel parts can be suppressed even at high temperatures. In order to obtain this effect, the Si content on the outermost surface of the coating is set to 10.0% or more. Preferably it is 12.5% or more, More preferably, it is 14.0% or more.
 鋼板のSi量と皮膜改質熱処理条件で、皮膜最表面のSi量は変動するので、上限は、特に定めないが、実用鋼板上、30.0%が上限となる。 Since the Si amount on the outermost surface of the coating fluctuates depending on the Si content of the steel plate and the film reforming heat treatment conditions, the upper limit is not particularly defined, but is 30.0% on the practical steel plate.
 表層から10nmまでの範囲の最大Fe量:8.5%以下
 Feは、オーステナイト系ステンレス鋼の母材に多量に存在するため、Fe酸化物として接合界面近傍に存在し得る。しかし、Fe酸化物は、SiOおよびCrに比べて拡散接合工程において容易に消失する。このため、接合界面近傍にFeが多量に存在する場合は、表面皮膜中のSiOを濃化させたとしても、Feの拡散を抑制することが困難であり、接合を抑制する効果は不十分となる。よって、表層から10nmまでの範囲の最大Fe量を8.5%以下とする。
Maximum Fe content in the range from the surface layer to 10 nm: 8.5% or less Since Fe is present in a large amount in the base material of austenitic stainless steel, it can be present in the vicinity of the bonding interface as Fe oxide. However, Fe oxide disappears more easily in the diffusion bonding process than SiO 2 and Cr 2 O 3 . For this reason, when a large amount of Fe is present in the vicinity of the bonding interface, even if SiO 2 in the surface film is concentrated, it is difficult to suppress the diffusion of Fe, and the effect of suppressing the bonding is insufficient. It becomes. Therefore, the maximum Fe content in the range from the surface layer to 10 nm is set to 8.5% or less.
 Si濃化層の厚:5nm以上
 前述のとおり、皮膜中のSi量が多いと拡散接合が抑制されるが、Si濃化層が薄いと、長時間、高温に曝された際、皮膜が、徐々に金属と酸素ガスに分解され、ステンレス鋼部品同士が接合してしまう。それ故、Si濃化層の厚さを5nm以上とする。好ましくは8nm以上である。
Si-enriched layer thickness: 5 nm or more As described above, diffusion bonding is suppressed when the amount of Si in the film is large. However, when the Si-enriched layer is thin, the film is exposed to high temperatures for a long time. It is gradually decomposed into metal and oxygen gas, and the stainless steel parts are joined together. Therefore, the thickness of the Si concentrated layer is set to 5 nm or more. Preferably it is 8 nm or more.
 ここで、Si濃化層の厚さの定義について説明する。図3に、表面からの距離(nm)とSi量(質量%)の関係に基づく、最大Si量(質量%)とSi濃化層厚さ(nm)の定義を示す。Si濃化層の厚さは、図3に示すように、Si量が、最大Si量の1/2の量(図中、1/2Si量)となるまでの厚さである。 Here, the definition of the thickness of the Si concentrated layer will be described. FIG. 3 shows the definition of the maximum Si amount (% by mass) and the Si concentrated layer thickness (nm) based on the relationship between the distance from the surface (nm) and the Si amount (% by mass). As shown in FIG. 3, the thickness of the Si concentrated layer is a thickness until the Si amount becomes 1/2 of the maximum Si amount (1/2 Si amount in the figure).
 3.製造方法
 次に、本発明のオーステナイト系ステンレス鋼板を製造するのに適した方法について説明する。溶製、熱間圧延などは、従来と同様の方法で行ってもよい。以下、最終仕上げ処理としての皮膜改質熱処理と皮膜改質電解処理の条件を示すが、これら処理以外の処理には特段の条件はない。
3. Manufacturing Method Next, a method suitable for manufacturing the austenitic stainless steel sheet of the present invention will be described. Melting, hot rolling and the like may be performed by the same method as in the past. In the following, conditions for the film modification heat treatment and the film modification electrolytic treatment as the final finishing treatment are shown, but there are no special conditions for treatments other than these treatments.
 3-1.皮膜改質熱処理
 前述の通り、拡散接合し難い表面状態として、皮膜最表面(表層から10nmの範囲)のSi量を10%以上とすることが重要である。一般に、オーステナイト系ステンレス鋼の仕上げ焼鈍は、表面の光沢を維持するため、H2とN2の混合雰囲気で実施され、その温度は、1100~1150℃程度である。
3-1. Film Modification Heat Treatment As described above, it is important that the Si amount on the outermost surface of the film (in the range of 10 nm from the surface layer) is 10% or more as a surface state in which diffusion bonding is difficult. In general, finish annealing of austenitic stainless steel is performed in a mixed atmosphere of H 2 and N 2 in order to maintain surface gloss, and the temperature is about 1100 to 1150 ° C.
 しかし、上記温度では、本発明鋼板で規定するような、Si量の多い皮膜を得ることは難しい(図1、参照)。また、仕上げ焼鈍後に冷間圧延などを施した場合、皮膜が部分的に破壊、分割し、新生面に、新たなCr酸化物皮膜が生成して、皮膜中のSi量が減少する場合がある。 However, at the above temperature, it is difficult to obtain a film with a large amount of Si as defined by the steel sheet of the present invention (see FIG. 1). In addition, when cold rolling or the like is performed after finish annealing, the coating may be partially broken or divided, and a new Cr oxide coating may be generated on the new surface, thereby reducing the amount of Si in the coating.
 仕上げ焼鈍(皮膜改質熱処理)は、H2とN2の混合雰囲気で、750~1000℃に保持することによって行うのがよい。皮膜の表層に所定のSi濃化層を形成するためである(図1、参照)。処理温度の好ましい下限は800℃であり、好ましい上限は950℃である。また、在炉時間は、鋼板を上記の処理温度で均熱できれば、特に定めないが、その時間が短すぎると、皮膜中のSi濃化が不充分となる場合があるため、在炉時間は、10秒以上が望ましい。 The finish annealing (film reforming heat treatment) is preferably carried out by maintaining at 750 to 1000 ° C. in a mixed atmosphere of H 2 and N 2 . This is because a predetermined Si-enriched layer is formed on the surface layer of the film (see FIG. 1). A preferable lower limit of the treatment temperature is 800 ° C, and a preferable upper limit is 950 ° C. Further, the in-furnace time is not particularly defined as long as the steel plate can be soaked at the above processing temperature, but if the time is too short, Si concentration in the film may be insufficient, so the in-furnace time is 10 seconds or more is desirable.
 H2とN2の混合雰囲気の露点が高いと、熱処理時に生成する皮膜が、Cr酸化物主体の皮膜になるので、露点は-45℃以下とするのがよい。好ましくは-60℃以下である。一方、過剰に低い露点を得るには、大きなコストを必要とするので、実用上、露点は-70℃以上とする。好ましくは-65℃以上である。 If the dew point of the mixed atmosphere of H 2 and N 2 is high, the film formed during the heat treatment becomes a film mainly composed of Cr oxide, so the dew point is preferably −45 ° C. or lower. Preferably, it is −60 ° C. or lower. On the other hand, in order to obtain an excessively low dew point, a large cost is required. Therefore, in practice, the dew point is set to −70 ° C. or higher. Preferably, it is −65 ° C. or higher.
 H2とN2の混合比(H2/N2)については、特に制約がないが、混合比は、充分な還元性を示す雰囲気とするために1/19以上とするのが好ましい。一方、高価な水素ガス割合を増加させることは経済性に問題があるために1/2以下とするのが好ましい。 The mixing ratio of H 2 and N 2 (H 2 / N 2 ) is not particularly limited, but the mixing ratio is preferably 1/19 or more in order to obtain an atmosphere exhibiting sufficient reducing properties. On the other hand, increasing the proportion of expensive hydrogen gas has a problem in economy, so it is preferable to set it to 1/2 or less.
 3-2.皮膜改質電解処理
 通常、熱処理後の鋼板を所定の液中で電解処理を行うことにより、熱処理で生成した皮膜を除去する、電解洗浄処理が行われている。皮膜改質電解処理は、所定の液中で電解処理を行う点で従来の電解洗浄処理と共通する部分があるが、皮膜改質電解処理は、皮膜中のFeを低減した上で皮膜中のSiを濃化するために実施するものである点で大きく異なる。具体的には、液温が30~50℃で、濃度が5~10%程度の硝酸水溶液中で、鋼板が正になるように電圧を印加しながら、鋼板を通板させるのがよい。液温または濃度が低すぎると、十分な改質効果が得られず、液温や濃度が高すぎると、鋼板の表面粗さを増加させたり、電解槽を痛めたりする可能性がある。
3-2. Film Modification Electrolytic Treatment Usually, an electrolytic cleaning process is performed in which the steel sheet after heat treatment is subjected to electrolytic treatment in a predetermined liquid to remove the film generated by the heat treatment. The film-modified electrolytic treatment has a part in common with the conventional electrolytic cleaning treatment in that the electrolytic treatment is performed in a predetermined solution. However, the film-modified electrolytic treatment is performed after reducing Fe in the film and then in the film. This is greatly different in that it is performed to enrich Si. Specifically, the steel sheet is preferably passed through a nitric acid aqueous solution having a liquid temperature of 30 to 50 ° C. and a concentration of about 5 to 10% while applying a voltage so that the steel sheet becomes positive. If the liquid temperature or concentration is too low, a sufficient reforming effect cannot be obtained, and if the liquid temperature or concentration is too high, the surface roughness of the steel sheet may be increased or the electrolytic cell may be damaged.
 この電解処理を、電流密度が板面積に対し100mA/cm2以上なるように実施するのがよい。これにより、鋼板表面において皮膜中のFeを低減した上でSiが濃化する(図2、参照)。好ましくは150mA/cm2以上である。電解によるSiの表面濃化は、電解過程において、FeやCrなどは酸化反応により溶出し表面から除去されるが、SiOとして存在するSiは、これ以上酸化されることはなく、表面に残存するためである。 This electrolytic treatment is preferably performed so that the current density is 100 mA / cm 2 or more with respect to the plate area. Thereby, Si is concentrated after reducing Fe in the film on the surface of the steel sheet (see FIG. 2). Preferably it is 150 mA / cm 2 or more. In the surface concentration of Si by electrolysis, in the electrolysis process, Fe, Cr, etc. are eluted and removed from the surface by oxidation reaction, but Si present as SiO 2 is not oxidized any more and remains on the surface. It is to do.
 電流密度が100mA/cm2未満の場合、鋼板表面においてSiが濃化せず、特に、電流密度が、一般的な電解洗浄処理時の電流密度の20mA/cm2程度の場合、Si量が低減するおそれがある(図2、参照)。 When the current density is less than 100 mA / cm 2 , Si does not concentrate on the steel sheet surface, and particularly when the current density is about 20 mA / cm 2, which is the current density during general electrolytic cleaning treatment, the amount of Si is reduced. (See FIG. 2).
 一方、電流密度を過大にすると、鋼板を過度に削ってしまい、歩留りが落ち、また、鋼板表面が粗くなるので、電流密度は300mA/cm2以下とするのがよい(図2、参照)。好ましくは250mA/cm2以下である。 On the other hand, if the current density is excessive, the steel plate is excessively shaved, yield decreases, and the surface of the steel plate becomes rough. Therefore, the current density is preferably 300 mA / cm 2 or less (see FIG. 2). Preferably it is 250 mA / cm 2 or less.
 通電時間が短いと、Siの濃化程度が小さいので、通電時間は10秒以上とするのがよい。好ましくは15秒以上である。通電時間の上限は特に定めないが、実用上、60秒程度が上限である。 If the energization time is short, the concentration of Si is small, so the energization time should be 10 seconds or more. Preferably it is 15 seconds or more. The upper limit of the energization time is not particularly defined, but is practically about 60 seconds.
 電解処理槽において、鋼板を正極又は負極として電圧を印加したり、正負を交互に繰り返して電圧を印加してもよいが、鋼板を正極として通電する時間を負極として通電する時間の2倍以上とする。この場合も、鋼板を正として通電する時間を10秒以上とする。 In an electrolytic treatment tank, a voltage may be applied by using a steel plate as a positive electrode or a negative electrode, or a voltage may be applied by alternately repeating positive and negative, but the time for energization using the steel plate as a positive electrode is more than twice the time for energization as a negative electrode. To do. Also in this case, the time for energizing the steel plate as positive is set to 10 seconds or more.
 次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。 Next, examples of the present invention will be described. The conditions in the examples are one example of conditions used for confirming the feasibility and effects of the present invention, and the present invention is based on this one example of conditions. It is not limited. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
 (実施例1)
 表1に、供試材の鋼の化学組成を表1に示す。
(Example 1)
Table 1 shows the chemical composition of the test steel.
 表1に示すA~Gの化学組成を有する小型鋳塊を溶製し、切削加工、熱間圧延、焼鈍、脱スケール後、冷間圧延と焼鈍を3回繰り返した。その後、仕上げ圧延で板厚を0.2mmとし、次いで、表2に示す条件で皮膜改質熱処理と皮膜改質電解処理を実施した。得られた鋼板より試験片を採取し、以下の要領で特性を調査した。結果を表2に併せて示す。 Small ingots having chemical compositions A to G shown in Table 1 were melted, and after cutting, hot rolling, annealing, descaling, cold rolling and annealing were repeated three times. Thereafter, the plate thickness was set to 0.2 mm by finish rolling, and film reforming heat treatment and film reforming electrolytic treatment were then performed under the conditions shown in Table 2. A test piece was collected from the obtained steel plate, and the characteristics were investigated in the following manner. The results are also shown in Table 2.
 最大Si量、最大Fe量およびSi濃化層厚さ
 鋼板表面に形成された皮膜を、Arイオンでスパッタリングしながら、GD-OESを用いて、皮膜の最表面から100nm程度以下の深さまでのSi量およびFe量を測定した(図3、参照)。最大Si量は、Si量が最大となるSi量(質量%)であり、最大Fe量は、Fe量が最大となるFe量(質量%)であり、Si濃化層厚さは、最表面から、Si量が最大Si量の1/2のSi量となる位置までの厚さである。
Maximum Si amount, maximum Fe amount, and Si concentrated layer thickness While sputtering the film formed on the steel sheet surface with Ar ions, GD-OES is used to form Si up to a depth of about 100 nm or less from the outermost surface of the film. The amount and the amount of Fe were measured (see FIG. 3). The maximum Si amount is the Si amount (% by mass) at which the Si amount is maximum, the maximum Fe amount is the Fe amount (% by mass) at which the Fe amount is maximum, and the Si concentrated layer thickness is the outermost surface To a position where the Si amount is a half of the maximum Si amount.
 表面酸化物の主要構成物質の同定
 鋼板から、FIB加工により表面酸化物を含むように切り出し、TEM―EDSを用いて、表面酸化物の結晶構造と組成分析を行い、表面酸化物の主要構成物質を同定した。
Identification of the main constituents of surface oxides Cut out from steel plates to include the surface oxides by FIB processing, and use TEM-EDS to analyze the crystal structure and composition of the surface oxides. Was identified.
 接合性
 鋼板を2枚のφ8mmの円盤状試験片に加工した。2枚の試験片を重ね、750℃の真空チャンバー内で、荷重を20MPa負荷して、30秒間加圧した。
Bondability The steel plate was processed into two φ8 mm disk-shaped test pieces. Two test pieces were overlapped, and a load of 20 MPa was applied in a vacuum chamber at 750 ° C., followed by pressurization for 30 seconds.
 加圧後、重ねた試験片をチャンバーから取り出し、2枚の試験片が接合していない場合を○とし、接合しているように見えるが、樹脂埋めした試験片を研磨した後、接合面の断面を光学顕微鏡で観察して、接合界面を跨ぐ結晶粒の割合が10%未満の場合を△とし、接合界面を跨ぐ結晶粒の割合が10%以上の場合を×として評価した。これらの結果を表2に示し、また、図4~6にプロットした。 After pressurization, the stacked specimens are taken out of the chamber, and the case where the two specimens are not joined is marked as ◯. It appears that they are joined, but after polishing the resin-filled specimen, The cross section was observed with an optical microscope, and the case where the ratio of crystal grains across the bonding interface was less than 10% was evaluated as Δ, and the case where the ratio of crystal grains across the bonding interface was 10% or more was evaluated as x. These results are shown in Table 2 and plotted in FIGS. 4-6.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示す鋼板1~7(発明例)は、本発明の規定を満たし、拡散接合され難い鋼板である。比較例の鋼板8~13は、拡散接合し易い鋼板である。鋼板8は、皮膜中の最大Si量が極めて低い。これは、皮膜改質熱処理の温度が低いことに起因する。鋼板9は、皮膜改質熱処理時の露点が高く、Cr酸化物が主体の皮膜であるため、拡散接合され易い鋼板である。 Steel plates 1 to 7 (invention examples) shown in Table 2 are steel plates that satisfy the provisions of the present invention and are difficult to be diffusion bonded. The steel plates 8 to 13 of the comparative examples are steel plates that are easy to be diffusion bonded. The steel sheet 8 has a very low maximum Si content in the film. This is due to the low temperature of the film modification heat treatment. The steel sheet 9 is a steel sheet that has a high dew point at the time of film reforming heat treatment and is easy to be diffusion bonded because it is a film mainly composed of Cr oxide.
 鋼板10は、比較的、一般的な製造条件で試作したSUS304である。熱処理温度や電解処理時の電流密度は一般的な条件あるが、皮膜中の最大Si量が低く、Si濃化層深さも小さいので、鋼板10は接合され易い鋼板である。鋼板11は、最大Si量が極めて低いため、適正条件の皮膜改質熱処理によっても、鋼板表面にSiが濃化せず、拡散接合され易い鋼板である。 The steel plate 10 is SUS304, which was prototyped under relatively general manufacturing conditions. Although the heat treatment temperature and the current density during the electrolytic treatment have general conditions, the maximum amount of Si in the film is low and the Si concentrated layer depth is also small, so that the steel plate 10 is a steel plate that is easily joined. Since the maximum amount of Si is extremely low, the steel plate 11 is a steel plate that does not concentrate Si on the surface of the steel plate even by a film reforming heat treatment under appropriate conditions and is easily diffusion bonded.
 鋼板12も、皮膜中の最大Si量が低く、Si濃化層深さも小さいため、拡散接合され易い鋼板である。これは、皮膜改質熱処理や皮膜改質電解処理を施していないことによる。鋼板13は、皮膜中の最大Si量は本発明で規定される範囲にあるが、最大Fe量が過剰であるため、拡散接合され易い鋼板である。これは、負極としての通電時間が長いことによる。 The steel plate 12 is also a steel plate that is easy to be diffusion bonded because the maximum amount of Si in the film is low and the Si concentrated layer depth is also small. This is because the film modification heat treatment and the film modification electrolytic treatment are not performed. The steel plate 13 is a steel plate that is easily diffusion-bonded because the maximum amount of Si in the film is in the range defined by the present invention, but the maximum Fe amount is excessive. This is because the energization time as a negative electrode is long.
 図4~5に示すように、Si濃化層中の最大Si量を10質量%以上、Si濃化層厚さが5nm以上、Si濃化層中の最大Fe量を8.5%以下とすることで、急激に接合界面を跨ぐ粒界の割合が低下し、拡散接合の抑制効果が発揮される。なお、図中の「▲」は、比較例13の点である。この例では、皮膜中の最大Si量は本発明で規定される範囲にあるが、最大Fe量が過剰であるため、接合界面を跨ぐ粒界の割合が高くなっていた。 As shown in FIGS. 4 to 5, the maximum Si amount in the Si concentrated layer is 10% by mass or more, the Si concentrated layer thickness is 5 nm or more, and the maximum Fe amount in the Si concentrated layer is 8.5% or less. By doing so, the ratio of the grain boundary straddling the bonding interface is rapidly reduced, and the effect of suppressing diffusion bonding is exhibited. Note that “▲” in the figure is the point of Comparative Example 13. In this example, the maximum amount of Si in the film is in the range specified by the present invention, but the maximum Fe amount is excessive, so that the ratio of grain boundaries straddling the bonding interface was high.
 前述したように、本発明によれば、高温でも拡散接合し難いオーステナイト系ステンレス鋼を工業的に安定して提供することができる。よって、本発明は、ステンレス鋼製造・利用産業において利用可能性が高いものである。

 
As described above, according to the present invention, it is possible to provide industrially stable austenitic stainless steel that is difficult to be diffusion bonded even at high temperatures. Therefore, the present invention has high applicability in the stainless steel manufacturing / utilizing industry.

Claims (1)

  1.  表面の少なくとも一部に皮膜が形成されたオーステナイト系ステンレス鋼板であって、
    前記オーステナイト系ステンレス鋼板の化学組成が、質量%で、
    C:0.01%以上0.10%以下、
    Si:0.2%以上2.0%以下、
    Mn:1.5%以下、
    Mo:1.0%以下、
    Cr:15.0%以上22.0%以下、
    Ni:4.5%以上10.0%以下、
    Cu:1.0%以下、
    Nb:0.30%以下、
    N:0.01%以上0.15%以下、
    残部がFe及び不可避不純物であり、
    前記皮膜が、その表層から10nmまでの範囲の最大Si量が10.0%以上で、かつ最大Fe量が8.5%以下であるSi濃化層を備え、
    前記Si濃化層の厚さが5nm以上である、拡散接合し難いオーステナイト系ステンレス鋼板。

     
    An austenitic stainless steel sheet having a film formed on at least a part of the surface,
    The chemical composition of the austenitic stainless steel sheet is mass%,
    C: 0.01% or more and 0.10% or less,
    Si: 0.2% or more and 2.0% or less,
    Mn: 1.5% or less,
    Mo: 1.0% or less,
    Cr: 15.0% to 22.0%,
    Ni: 4.5% or more and 10.0% or less,
    Cu: 1.0% or less,
    Nb: 0.30% or less,
    N: 0.01% or more and 0.15% or less,
    The balance is Fe and inevitable impurities,
    The film includes a Si-concentrated layer having a maximum Si amount in a range from the surface layer to 10 nm of 10.0% or more and a maximum Fe amount of 8.5% or less,
    An austenitic stainless steel sheet in which the thickness of the Si-concentrated layer is 5 nm or more and is difficult to be diffusion bonded.

PCT/JP2015/075766 2014-09-10 2015-09-10 Austenitic stainless steel sheet which is not susceptible to diffusion bonding WO2016039429A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020177009165A KR101939510B1 (en) 2014-09-10 2015-09-10 Austenitic stainless steel sheet which is not susceptible to diffusion bonding
JP2016547507A JP6376218B2 (en) 2014-09-10 2015-09-10 Austenitic stainless steel sheet that is difficult to diffuse and bond
CN201580048499.6A CN106687622B (en) 2014-09-10 2015-09-10 It is not easy the austenite stainless steel steel plate of diffusion bonding

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-184543 2014-09-10
JP2014184543 2014-09-10

Publications (1)

Publication Number Publication Date
WO2016039429A1 true WO2016039429A1 (en) 2016-03-17

Family

ID=55459173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075766 WO2016039429A1 (en) 2014-09-10 2015-09-10 Austenitic stainless steel sheet which is not susceptible to diffusion bonding

Country Status (4)

Country Link
JP (1) JP6376218B2 (en)
KR (1) KR101939510B1 (en)
CN (1) CN106687622B (en)
WO (1) WO2016039429A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018094620A (en) * 2016-12-16 2018-06-21 日新製鋼株式会社 Stainless steel material for diffusion joining jig
WO2019176073A1 (en) * 2018-03-15 2019-09-19 日新製鋼株式会社 Stainless steel material for use in diffusion bonding jigs
JP2020037123A (en) * 2018-09-05 2020-03-12 日本製鉄株式会社 Diffusion-joined product and method for manufacturing the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112789362B (en) * 2018-10-04 2022-08-16 日本制铁株式会社 Austenitic stainless steel sheet and method for producing same
JP7210780B2 (en) * 2020-09-01 2023-01-23 株式会社特殊金属エクセル Austenitic stainless steel sheet and manufacturing method thereof
CN112609126A (en) * 2020-11-13 2021-04-06 宁波宝新不锈钢有限公司 Austenitic stainless steel for nuclear power equipment and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1099912A (en) * 1996-09-30 1998-04-21 Kawasaki Steel Corp Hot rolled stainless steel plate and its manufacture
JP2006063427A (en) * 2004-08-30 2006-03-09 Takasago Tekko Kk Stainless steel excellent in temper coloring resistance

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6141747A (en) * 1984-08-01 1986-02-28 Nippon Steel Corp Roll material for stainless steel rolling
US4714632A (en) * 1985-12-11 1987-12-22 Air Products And Chemicals, Inc. Method of producing silicon diffusion coatings on metal articles
JPH07109028B2 (en) * 1988-10-18 1995-11-22 川崎製鉄株式会社 Transparent coating colored stainless steel sheet with excellent coating adhesion
JP3480091B2 (en) * 1994-11-29 2003-12-15 住友金属工業株式会社 Stainless steel plate for coloring
JP4264755B2 (en) * 2003-05-13 2009-05-20 住友金属工業株式会社 Hot working tool steel, hot working tool and plug for seamless pipe manufacturing
JP4226487B2 (en) * 2004-02-17 2009-02-18 新日鐵住金ステンレス株式会社 Martensitic stainless steel plate for springs for electronic device parts having excellent mold wear resistance and method for producing the same
JP4606929B2 (en) * 2005-04-15 2011-01-05 新日鐵住金ステンレス株式会社 Clear coated stainless steel sheet with excellent design and method for producing the material
JP2008300054A (en) * 2007-05-29 2008-12-11 Nissan Motor Co Ltd Transition metal nitride, fuel cell separator, fuel cell stack, fuel cell vehicle, manufacturing method of transition metal nitride, and manufacturing method of fuel cell separator
JP5487783B2 (en) 2009-07-31 2014-05-07 Jfeスチール株式会社 Stainless steel foil and manufacturing method thereof
KR101921783B1 (en) * 2012-03-28 2018-11-23 신닛테츠스미킨 카부시키카이샤 Cr-CONTAINING AUSTENITIC ALLOY AND METHOD FOR PRODUCING SAME
JP5868242B2 (en) * 2012-03-29 2016-02-24 日新製鋼株式会社 Austenitic stainless steel for diffusion bonding and method for manufacturing diffusion bonding products
ES2784303T3 (en) * 2013-03-29 2020-09-24 Nippon Steel Stainless Steel Corp Ferritic stainless steel sheet having excellent weldability, heat exchanger, ferritic stainless steel sheet for heat exchangers, ferritic stainless steel, ferritic stainless steel for elements of fuel supply systems and element of fuel supply system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1099912A (en) * 1996-09-30 1998-04-21 Kawasaki Steel Corp Hot rolled stainless steel plate and its manufacture
JP2006063427A (en) * 2004-08-30 2006-03-09 Takasago Tekko Kk Stainless steel excellent in temper coloring resistance

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018094620A (en) * 2016-12-16 2018-06-21 日新製鋼株式会社 Stainless steel material for diffusion joining jig
JP7033847B2 (en) 2016-12-16 2022-03-11 日鉄ステンレス株式会社 Release member
WO2019176073A1 (en) * 2018-03-15 2019-09-19 日新製鋼株式会社 Stainless steel material for use in diffusion bonding jigs
KR20190109225A (en) * 2018-03-15 2019-09-25 닛테츠 닛신 세이코 가부시키가이샤 Stainless Steel for Diffusion Bonding Jig
EP3567127A4 (en) * 2018-03-15 2019-11-13 Nisshin Steel Co., Ltd. Stainless steel material for use in diffusion bonding jigs
US10695874B2 (en) 2018-03-15 2020-06-30 Nisshin Steel Co., Ltd. Stainless steel material for diffusion bonding jig
KR102220875B1 (en) 2018-03-15 2021-02-25 닛테츠 닛신 세이코 가부시키가이샤 Release member composed of stainless steel for diffusion bonding jig with excellent deformation suppression and releasability
JP2020037123A (en) * 2018-09-05 2020-03-12 日本製鉄株式会社 Diffusion-joined product and method for manufacturing the same
JP7274837B2 (en) 2018-09-05 2023-05-17 日鉄ステンレス株式会社 Diffusion bonded product and its manufacturing method

Also Published As

Publication number Publication date
KR20170044756A (en) 2017-04-25
JP6376218B2 (en) 2018-08-22
JPWO2016039429A1 (en) 2017-07-06
CN106687622A (en) 2017-05-17
CN106687622B (en) 2019-05-03
KR101939510B1 (en) 2019-01-16

Similar Documents

Publication Publication Date Title
JP6376218B2 (en) Austenitic stainless steel sheet that is difficult to diffuse and bond
JP5398574B2 (en) Duplex stainless steel material for vacuum vessel and manufacturing method thereof
JP6792951B2 (en) Duplex stainless steel for ozone-containing water
JP6196453B2 (en) Ferritic stainless steel sheet with excellent scale peel resistance and method for producing the same
JP6037882B2 (en) Ferritic stainless steel sheet with excellent scale peel resistance and method for producing the same
JP6241485B2 (en) Clad steel manufacturing method
JP5907320B1 (en) Material for stainless cold-rolled steel sheet and manufacturing method thereof
JP2009161836A (en) Ferritic stainless steel sheet excellent in corrosion resistance in welding crevice part
JP5018863B2 (en) Duplex stainless steel with excellent alkali resistance
JP7339255B2 (en) Ferritic stainless steel with excellent high-temperature oxidation resistance and method for producing the same
JP2019052349A (en) Nickel-based alloy
JP2016204709A (en) Ferritic stainless steel sheet having excellent carburization resistance and oxidation resistance, and method of manufacturing the same
JP4998719B2 (en) Ferritic stainless steel sheet for water heaters excellent in punching processability and method for producing the same
JP2009185382A (en) Ferritic stainless steel sheet having excellent corrosion resistance in welding gap oxide film
JP2011515571A (en) Austenitic stainless steel for high vacuum and high purity gas piping
JP2017206735A (en) Multi phase-based stainless steel excellent in steam oxidation resistance
WO2019131099A1 (en) Hot-rolled steel sheet and method for manufacturing same
JP2023085560A (en) Two-phase stainless steel and manufacturing method therefor
JP5867308B2 (en) Steel material with excellent end face properties
JP2022041426A (en) Austenitic stainless steel sheet, and method for producing the same
JP2011190523A (en) Ferrite single phase stainless steel sheet having excellent corrosion resistance in weld heat affected zone
JP2016089213A (en) SURFACE TREATMENT METHOD OF Fe-Cr-Ni-BASED ALLOY MATERIAL EXCELLENT IN PROCESSABILITY AND CORROSION RESISTANCE
JP2019173072A (en) Ferritic stainless steel and manufacturing method therefor, and fuel battery member
JP7054079B2 (en) Duplex stainless clad steel and its manufacturing method
JP7054078B2 (en) Duplex stainless clad steel and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15839538

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2016547507

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177009165

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15839538

Country of ref document: EP

Kind code of ref document: A1