JP2019173072A - Ferritic stainless steel and manufacturing method therefor, and fuel battery member - Google Patents

Ferritic stainless steel and manufacturing method therefor, and fuel battery member Download PDF

Info

Publication number
JP2019173072A
JP2019173072A JP2018060883A JP2018060883A JP2019173072A JP 2019173072 A JP2019173072 A JP 2019173072A JP 2018060883 A JP2018060883 A JP 2018060883A JP 2018060883 A JP2018060883 A JP 2018060883A JP 2019173072 A JP2019173072 A JP 2019173072A
Authority
JP
Japan
Prior art keywords
less
stainless steel
ferritic stainless
mass
oxidation resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018060883A
Other languages
Japanese (ja)
Other versions
JP6971184B2 (en
Inventor
秦野 正治
Masaharu Hatano
正治 秦野
三月 菅生
Mitsuki Sugeoi
三月 菅生
工 西本
Takumi Nishimoto
工 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Stainless Steel Corp filed Critical Nippon Steel Stainless Steel Corp
Priority to JP2018060883A priority Critical patent/JP6971184B2/en
Priority to TW108110280A priority patent/TWI801538B/en
Priority to KR1020207028261A priority patent/KR102444640B1/en
Priority to EP19775851.9A priority patent/EP3778959A4/en
Priority to EP22154962.9A priority patent/EP4036255A1/en
Priority to CN201980020968.1A priority patent/CN111902557B/en
Priority to EP23165488.0A priority patent/EP4223888A3/en
Priority to PCT/JP2019/012843 priority patent/WO2019189174A1/en
Priority to US17/040,870 priority patent/US11667986B2/en
Publication of JP2019173072A publication Critical patent/JP2019173072A/en
Application granted granted Critical
Publication of JP6971184B2 publication Critical patent/JP6971184B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a ferritic stainless steel having high oxidation resistance and excellent high temperature strength, and excellent structure stability capable of suppressing σ phase deposition or 475°C brittleness even under reduction/carburization/sulfidation environment.SOLUTION: There is provided a ferritic stainless steel containing, by mass%, Cr:12.0 to 16.0%, C:0.020% or less, Si:2.50% or less, Mn:1.00% or less, P:0.050% or less, S:0.0030% or less, Al:2.50% or less, N:0.030% or less, Nb:0.001 to 1.00%, and further one or more kinds of B:0.0200% or less, Sn:0.20% or less, Ga:0.0200% or less, Mg:0.0200% or less, Ca:0.0100% or less, with satisfying the following formula (1), and the balance Fe with impurities. 10(B+Ga)+Sn+Mg+Ca>0.020 (1)SELECTED DRAWING: None

Description

本発明は、フェライト系ステンレス鋼およびその製造方法、ならびに燃料電池用部材に関する。   The present invention relates to a ferritic stainless steel, a method for producing the same, and a fuel cell member.

最近、石油を代表とする化石燃料の枯渇化、CO2排出による地球温暖化現象等の問題から、従来の発電システムに替わる新しいシステムの普及が加速している。その1つとして、分散電源,自動車の動力源としても実用的価値が高い「燃料電池」が注目されている。燃料電池にはいくつかの種類があるが、その中でも固体高分子型燃料電池(PEFC)や固体酸化物型燃料電池(SOFC)はエネルギー効率が高く、将来の普及拡大が有望視されている。 Recently, the spread of new systems replacing conventional power generation systems is accelerating due to problems such as depletion of fossil fuels such as petroleum and global warming due to CO 2 emissions. As one of them, “fuel cell”, which has high practical value as a distributed power source and a power source for automobiles, is attracting attention. There are several types of fuel cells. Among them, polymer electrolyte fuel cells (PEFC) and solid oxide fuel cells (SOFC) have high energy efficiency, and are expected to expand in the future.

燃料電池は、水の電気分解と逆の反応過程を経て電力を発生する装置であり、燃料となる水素(燃料水素)を必要とする。燃料水素は、都市ガス(LNG)、メタン、天然ガス、プロパン、灯油、ガソリン等の炭化水素系燃料を触媒の存在下で改質反応させることにより製造される。中でも都市ガスを原燃料とする燃料電池は、都市ガス配管が整備された地区において水素を製造できる利点がある。   A fuel cell is a device that generates electric power through a reaction process opposite to that of water electrolysis, and requires hydrogen as a fuel (fuel hydrogen). Fuel hydrogen is produced by reforming a hydrocarbon fuel such as city gas (LNG), methane, natural gas, propane, kerosene, gasoline, etc. in the presence of a catalyst. Above all, a fuel cell using city gas as a raw fuel has an advantage that hydrogen can be produced in an area where city gas piping is provided.

燃料改質器は、水素の改質反応に必要な熱量を確保するため、通常、200〜900℃の高温で運転される。また、燃料改質器以外でも、改質器を加熱する燃焼器や、熱交換器、電池本体部等も運転温度が非常に高温となる。
更に、このような高温運転下の燃料電池においては、多量の水蒸気、二酸化炭素、一酸化炭素に加え、多量の水素や、炭化水素系燃料由来の硫化水素を微量含んだ雰囲気(以下、浸炭性/還元性/硫化性環境、という。)の下に曝されることとなる。このような雰囲気中に、例えば鋼材料が曝されると、材料表面の浸炭、硫化による腐食が進行する状況になり、動作環境としては過酷な状況となる。
The fuel reformer is usually operated at a high temperature of 200 to 900 ° C. in order to ensure the amount of heat necessary for the hydrogen reforming reaction. In addition to the fuel reformer, the operating temperature of the combustor, the heat exchanger, the battery body, and the like that heat the reformer is very high.
Further, in such a fuel cell under high temperature operation, an atmosphere containing a large amount of hydrogen and a small amount of hydrogen sulfide derived from a hydrocarbon fuel (hereinafter referred to as carburizing property) in addition to a large amount of water vapor, carbon dioxide, and carbon monoxide. / Reducing / sulfiding environment). When a steel material is exposed to such an atmosphere, for example, the surface of the material is corroded by carburization and sulfidation, and the operating environment is severe.

これまで、このような過酷な環境下において十分な耐久性を有する燃料電池の実用材料として、SUS310S(25Cr−20Ni)に代表されるオーステナイト系ステンレス鋼が使用されてきた。しかし、将来、燃料電池システムの普及拡大に向けて、コスト低減は必要不可欠であり、使用材料の最適化による合金コストの低減は重要な課題である。さらに、燃料電池システムでは、比較的高いCr量を含有するステンレス鋼を適用した場合、運転温度が非常に高いことから、Crの蒸発による電極の被毒を防止する課題もある。   Until now, austenitic stainless steel represented by SUS310S (25Cr-20Ni) has been used as a practical material for a fuel cell having sufficient durability under such a severe environment. However, in the future, cost reduction is indispensable for the spread of fuel cell systems, and reduction of alloy cost by optimizing the materials used is an important issue. Furthermore, in the fuel cell system, when stainless steel containing a relatively high amount of Cr is applied, the operating temperature is very high, so there is also a problem of preventing electrode poisoning due to Cr evaporation.

上述した背景から、燃料電池を構成する鋼材として、過酷な改質ガス環境下においても良好な耐久性を発揮させるべく、Al系酸化物層(Al系酸化皮膜)の高い耐酸化性を利用したAl含有フェライト系ステンレス鋼が種々検討されている。   From the background described above, the high oxidation resistance of the Al-based oxide layer (Al-based oxide film) was utilized as a steel material constituting the fuel cell in order to exhibit good durability even under severe reformed gas environments. Various Al-containing ferritic stainless steels have been studied.

特許文献1には、Cr:13〜20%、C:0.02%未満、N:0.02%以下、Si:0.15超〜0.7%、Mn:0.3%以下、Al:1.5〜6%、Ti:0.03〜0.5%、Nb:0.6%以下を含み、固溶Ti量と固溶Nb量を調整することにより耐酸化性とクリープ破断寿命に良好な燃料電池用Al含有フェライト系ステンレス鋼が開示されている。これらステンレス鋼は、1050℃、大気中の加速酸化試験により良好な耐酸化性が得られることを示している。   In Patent Document 1, Cr: 13 to 20%, C: less than 0.02%, N: 0.02% or less, Si: more than 0.15 to 0.7%, Mn: 0.3% or less, Al : 1.5-6%, Ti: 0.03-0.5%, Nb: 0.6% or less, oxidation resistance and creep rupture life by adjusting the amount of solid solution Ti and the amount of solid solution Nb Discloses a good Al-containing ferritic stainless steel for fuel cells. These stainless steels show that good oxidation resistance is obtained by an accelerated oxidation test in air at 1050 ° C.

特許文献2には、Cr:11〜25%、C:0.03%以下、Si:2%以下、Mn:2%以下、Al:0.5〜4.0%、P:0.05%以下、S:0.01%以下、N:0.03%以下、Ti:1%以下を含み、水素ガスを50体積%以上含み、酸化皮膜中および酸化皮膜直下の鋼表面へTiやAlを濃縮させるとともに、Mg、Ga、Sn、Sbを微量添加することにより、改質ガス環境下の耐酸化性を向上させた燃料電池用フェライト系ステンレス鋼が開示されている。   In Patent Document 2, Cr: 11 to 25%, C: 0.03% or less, Si: 2% or less, Mn: 2% or less, Al: 0.5 to 4.0%, P: 0.05% Hereinafter, S: 0.01% or less, N: 0.03% or less, Ti: 1% or less, hydrogen gas is contained by 50% by volume or more, and Ti or Al is added to the steel surface in the oxide film and immediately below the oxide film. There is disclosed a ferritic stainless steel for fuel cells that is enriched and added with a slight amount of Mg, Ga, Sn, and Sb to improve oxidation resistance in a reformed gas environment.

特許文献3には、Cr:11.0〜25.0%、C:0.030%以下、Si:2.00%以下、Mn:2.00%以下、Al:0.90〜4.00%、P:0.050%以下、S:0.0100%以下、N:0.030%以下、Ti:0.500%以下を含み、B、Mg、Caの微量添加ならびにSnとの複合添加により、改質ガス環境下の耐酸化性および耐クリープ強さを向上させた燃料電池用フェライト系ステンレス鋼が開示されている。   In Patent Document 3, Cr: 11.0 to 25.0%, C: 0.030% or less, Si: 2.00% or less, Mn: 2.00% or less, Al: 0.90 to 4.00 %, P: 0.050% or less, S: 0.0100% or less, N: 0.030% or less, Ti: 0.500% or less, and a small amount of B, Mg, Ca and combined addition with Sn Discloses a ferritic stainless steel for a fuel cell with improved oxidation resistance and creep resistance in a reformed gas environment.

特許文献4には、Cr:11〜25%、C:0.03%以下、Si:2%以下、Mn:2%以下、Al:0.5〜4.0%、P:0.05%以下、S:0.01%以下、N:0.03%以下、Ti:0.5%以下を含み、更にGa:0.1%以下、Mg:0.01%以下、Zn:0.05%以下の1種または2種以上を含み、Mg、Ga、Zn、更にはSn、Sbの微量添加によってTi及び/又はAlを濃縮させた表面皮膜を形成することで、耐酸化性を向上させたフェライト系ステンレス鋼が開示されている。   In Patent Document 4, Cr: 11 to 25%, C: 0.03% or less, Si: 2% or less, Mn: 2% or less, Al: 0.5 to 4.0%, P: 0.05% Hereinafter, S: 0.01% or less, N: 0.03% or less, Ti: 0.5% or less, Ga: 0.1% or less, Mg: 0.01% or less, Zn: 0.05 % Or less, Mg, Ga, Zn, and also by adding a trace amount of Sn, Sb to form a surface film enriched Ti and / or Al, to improve the oxidation resistance Ferritic stainless steel is disclosed.

特開2010−222638号公報JP 2010-222638 A 特許第6006893号公報Japanese Patent No. 6006893 特許第6053994号公報Japanese Patent No. 6053994 特開2016−211076号公報JP 2016-211076 A

前記した都市ガス等を原燃料とした燃料電池の改質ガスは、水蒸気、二酸化炭素、一酸化炭素に加えて、多量の水素、ならびに不純物もしくは付臭剤として添加された硫化成分を含む場合がある。しかし従来では、フェライト系ステンレス鋼の耐酸化性について、水蒸気と二酸化炭素を主成分とする雰囲気、あるいは水蒸気と酸素を主成分とする雰囲気、または大気中といった環境下でしか評価・検討されていない。すなわち、二酸化炭素、一酸化炭素、多量の水素、ならびに硫化成分を含む過酷な環境(浸炭性/還元性/硫化性環境)の下でのフェライト系ステンレス鋼の酸化特性については不明である。
更に、SOFCシステムやPEFCシステムの場合、燃料電池の運転温度が高温となるため、前記の酸化特性に加え、高温強度のさらなる向上も求められる。
The reformed gas of the fuel cell using the above-mentioned city gas as a raw fuel may contain a large amount of hydrogen and a sulfur component added as an impurity or odorant in addition to water vapor, carbon dioxide and carbon monoxide. is there. However, conventionally, the oxidation resistance of ferritic stainless steel has been evaluated and studied only in an atmosphere such as an atmosphere mainly composed of water vapor and carbon dioxide, an atmosphere mainly composed of water vapor and oxygen, or the atmosphere. . That is, the oxidation characteristics of ferritic stainless steel under a harsh environment (carburizing / reducing / sulfiding environment) containing carbon dioxide, carbon monoxide, a large amount of hydrogen, and sulfur components are unclear.
Furthermore, in the case of SOFC system and PEFC system, since the operating temperature of the fuel cell becomes high, in addition to the above oxidation characteristics, further improvement in high temperature strength is also required.

特許文献1〜4のフェライト系ステンレス鋼は、酸化性環境下の耐久性について検討されているものの、多量の水素、硫化水素を含む浸炭性/還元性/硫化性環境といったさらに厳しい環境下における耐久性については何ら言及されていない。   Although the ferritic stainless steels of Patent Documents 1 to 4 have been studied for durability in an oxidizing environment, they are durable in more severe environments such as carburizing / reducing / sulfiding environments containing a large amount of hydrogen and hydrogen sulfide. There is no mention of sex.

本発明は、上述した課題を解消すべく案出されたものであり、二酸化炭素、一酸化炭素、多量の水素、ならびに硫化成分を含む環境(浸炭性/還元性/硫化性環境)下であっても、高い耐酸化性と優れた高温強度を兼備したフェライト系ステンレス鋼およびその製造方法を提供するものである。   The present invention has been devised to solve the above-described problems, and is under an environment (carburizing / reducing / sulfiding environment) containing carbon dioxide, carbon monoxide, a large amount of hydrogen, and a sulfur component. However, the present invention provides a ferritic stainless steel having both high oxidation resistance and excellent high-temperature strength and a method for producing the same.

本発明の要旨は、以下のとおりである。
[1]質量%にて、
Cr:12.0〜16.0%、
C:0.020%以下、
Si:2.50%以下、
Mn:1.00%以下、
P:0.050%以下、
S:0.0030%以下、
Al:2.50%以下、
N:0.030%以下、
Nb:0.001〜1.00%、
Ni:0〜1.0%、
Cu:0〜1.0%、
Mo:0〜1.0%、
Sb:0〜0.5%、
W:0〜1.0%、
Co:0〜0.5%、
V:0〜0.5%、
Ti:0〜0.5%、
Zr:0〜0.5%、
La:0〜0.1%、
Y:0〜0.1%、
Hf:0〜0.1%、
REM:0〜0.1%
を含み、さらに、
B:0.0200%以下、
Sn:0.20%以下、
Ga:0.0200%以下、
Mg:0.0200%以下、
Ca:0.0100%以下
の1種または2種以上を含み、かつ下記式(1)を満たし、残部がFeおよび不純物からなることを特徴とするフェライト系ステンレス鋼。
10(B+Ga)+Sn+Mg+Ca>0.020 ・・・(1)
なお、式(1)中の各元素記号は、鋼中の各元素の含有量(質量%)を示す。
[2]質量%にて、前記B:0.0002%以上であることを特徴とする上記[1]に記載のフェライト系ステンレス鋼。
[3]質量%にて、結晶粒界のNb濃度が3.0〜10%の範囲であることを特徴とする上記[1]又は[2]に記載のフェライト系ステンレス鋼。
[4]質量%にて、前記Sn:0.005%以上であり、結晶粒界のSn濃度が1.0〜5.0%であることを特徴とする上記[1]〜[3]の何れか一項に記載のフェライト系ステンレス鋼。
[5]質量%にて、前記Si:0.5%以上、前記Al:1%以上、前記Nb:0.15%以上であることを特徴とする上記[1]〜[4]の何れか一項に記載のフェライト系ステンレス鋼。
[6]質量%にて、更に、Ni:0.10〜1.0%、Cu:0.10〜1.0%、Mo:0.10〜1.0%、Sb:0.01〜0.5%、W:0.10〜1.0%、Co:0.10〜0.5%、V:0.10〜0.5%、Ti:0.01〜0.5%、Zr:0.01〜0.5%、La:0.001〜0.1%以下、Y:0.001〜0.1%、Hf:0.001〜0.1%、REM:0.001〜0.1%の1種または2種以上含有していることを特徴とする上記[1]〜[5]の何れか一項に記載のフェライト系ステンレス鋼。
[7]燃料改質器、熱交換器あるいは燃料電池部材に適用されることを特徴とする上記[1]〜[6]の何れか一項に記載のフェライト系ステンレス鋼。
[8]燃焼器、あるいはバーナーの部材に適用されることを特徴とする上記[1]〜[7]の何れか一項に記載のフェライト系ステンレス鋼。
The gist of the present invention is as follows.
[1] By mass%
Cr: 12.0 to 16.0%,
C: 0.020% or less,
Si: 2.50% or less,
Mn: 1.00% or less,
P: 0.050% or less,
S: 0.0030% or less,
Al: 2.50% or less,
N: 0.030% or less,
Nb: 0.001 to 1.00%,
Ni: 0 to 1.0%,
Cu: 0 to 1.0%
Mo: 0 to 1.0%,
Sb: 0 to 0.5%,
W: 0 to 1.0%
Co: 0 to 0.5%,
V: 0 to 0.5%
Ti: 0 to 0.5%,
Zr: 0 to 0.5%,
La: 0 to 0.1%
Y: 0 to 0.1%
Hf: 0 to 0.1%,
REM: 0 to 0.1%
Including,
B: 0.0200% or less,
Sn: 0.20% or less,
Ga: 0.0200% or less,
Mg: 0.0200% or less,
Ca: Ferritic stainless steel containing one or more of 0.0100% or less, satisfying the following formula (1), and the balance consisting of Fe and impurities.
10 (B + Ga) + Sn + Mg + Ca> 0.020 (1)
In addition, each element symbol in Formula (1) shows content (mass%) of each element in steel.
[2] Ferritic stainless steel according to the above [1], wherein the B is 0.0002% or more in mass%.
[3] The ferritic stainless steel as described in [1] or [2] above, wherein the Nb concentration at the grain boundaries is in the range of 3.0 to 10% by mass.
[4] In the above [1] to [3], the Sn is 0.005% or more by mass%, and the Sn concentration of the crystal grain boundary is 1.0 to 5.0%. The ferritic stainless steel according to any one of the above.
[5] Any one of [1] to [4] above, wherein, in mass%, the Si: 0.5% or more, the Al: 1% or more, and the Nb: 0.15% or more. The ferritic stainless steel according to one item.
[6] In mass%, Ni: 0.10 to 1.0%, Cu: 0.10 to 1.0%, Mo: 0.10 to 1.0%, Sb: 0.01 to 0 0.5%, W: 0.10 to 1.0%, Co: 0.10 to 0.5%, V: 0.10 to 0.5%, Ti: 0.01 to 0.5%, Zr: 0.01-0.5%, La: 0.001-0.1% or less, Y: 0.001-0.1%, Hf: 0.001-0.1%, REM: 0.001-0 The ferritic stainless steel according to any one of the above [1] to [5], wherein the ferritic stainless steel contains 1% or two or more of 1%.
[7] The ferritic stainless steel according to any one of [1] to [6], which is applied to a fuel reformer, a heat exchanger, or a fuel cell member.
[8] The ferritic stainless steel according to any one of [1] to [7], which is applied to a combustor or a burner member.

[9]上記[1]、[2]、[5]、または[6]のいずれか一項に記載の組成を有するステンレス鋼材を熱間加工した後、熱処理を省略もしくは700℃超で熱処理し、次いで冷間加工を行い、700℃超の仕上げ焼鈍を行うことを特徴とする上記[1]〜[6]のいずれか一項に記載のフェライト系ステンレス鋼の製造方法。
[10]前記仕上げ焼鈍の後に、600〜700℃の温度範囲内で1分超、3時間以下保持する熱処理を施すことを特徴とする上記[9]に記載のフェライト系ステンレス鋼の製造方法。
[11]前記仕上げ焼鈍において、700℃超に加熱し冷却する際、600〜700℃の温度域での保持時間を1分超とすることを特徴とする上記[9]に記載のフェライト系ステンレス鋼の製造方法。
[9] After hot working the stainless steel material having the composition according to any one of [1], [2], [5], or [6], heat treatment is omitted or heat treatment is performed at a temperature higher than 700 ° C. Then, the method for producing a ferritic stainless steel according to any one of [1] to [6] above, wherein cold working is performed and finish annealing at over 700 ° C. is performed.
[10] The method for producing a ferritic stainless steel according to the above [9], wherein after the finish annealing, a heat treatment is performed in a temperature range of 600 to 700 ° C. for 1 minute or more and 3 hours or less.
[11] The ferritic stainless steel as described in [9] above, wherein in the finish annealing, when heated to over 700 ° C. and cooled, the holding time in the temperature range of 600 to 700 ° C. is over 1 minute. Steel manufacturing method.

[12]上記[1]〜[6]のいずれか一項に記載のフェライト系ステンレス鋼を用いた燃料電池用部材。 [12] A fuel cell member using the ferritic stainless steel according to any one of [1] to [6].

本発明によれば、二酸化炭素、一酸化炭素、多量の水素、ならびに硫化成分を含む環境(浸炭性/還元性/硫化性環境)下であっても、高い耐酸化性と優れた高温強度を兼備したフェライト系ステンレス鋼およびその製造方法、ならびに燃料電池用部材を提供することができる。   According to the present invention, high oxidation resistance and excellent high-temperature strength can be obtained even in an environment containing carbon dioxide, carbon monoxide, a large amount of hydrogen, and a sulfur component (carburizing / reducing / sulfiding environment). A ferritic stainless steel, a manufacturing method thereof, and a fuel cell member can be provided.

本発明者らは、前記した課題を解決するために、高温強度、耐酸化性を兼備するAl含有フェライト系ステンレス鋼について鋭意実験と検討を重ね、本発明を完成させた。なお、本実施形態でいう「高温強度」とは、750〜800℃付近の高温域においても優れた0.2%耐力を発揮できる特性であり、「耐酸化性」とは二酸化炭素、一酸化炭素、多量の水素、ならびに硫化成分を含む改質ガス環境(以下、浸炭性/還元性/硫化性環境、ともいう)下における酸化特性を意味する。
以下に本発明で得られた知見について説明する。
In order to solve the above-mentioned problems, the present inventors have conducted intensive experiments and studies on Al-containing ferritic stainless steel having both high-temperature strength and oxidation resistance, and completed the present invention. The “high temperature strength” in the present embodiment is a characteristic that can exhibit excellent 0.2% proof stress even in a high temperature region around 750 to 800 ° C., and “oxidation resistance” means carbon dioxide, monoxide It means oxidation characteristics under a reformed gas environment (hereinafter also referred to as carburizing / reducing / sulfiding environment) containing carbon, a large amount of hydrogen, and a sulfur component.
The knowledge obtained by the present invention will be described below.

(a)通常、750〜800℃付近の高温域で運転中の構造体で課題となる変形を抑止するには、材料であるフェライト系ステンレス鋼の高温強度、特に750℃付近における0.2%耐力を高め、かつ800℃付近における0.2%耐力の低下を抑制することが有効である。 (A) Usually, in order to suppress deformation which becomes a problem in a structure operating in a high temperature range near 750 to 800 ° C., the high temperature strength of the ferritic stainless steel as a material, particularly 0.2% at around 750 ° C. It is effective to increase the proof stress and suppress the decrease in 0.2% proof stress in the vicinity of 800 ° C.

(b)上述した高温域での0.2%耐力の向上および低下の抑制は、Alの過度な添加や、固溶・析出強化に寄与するMo、Cu等の添加によらず、B、Nb、Sn、Mg、Ca、Gaの微量添加およびその添加量の調整により著しく向上することを見出した。すなわち、フェライト系ステンレス鋼において、750℃付近における0.2%耐力を高め、かつ800℃付近における0.2%耐力の低下を抑制するという特性は、これら微量元素の添加により達成できるという新たな知見が得られた。このような高温強度の向上作用については未だ不明な点も多いが、実験事実に基づいて以下に述べるような作用機構を推察している。 (B) Improvement of 0.2% proof stress and suppression of decrease in the above-described high temperature range are not caused by excessive addition of Al, addition of Mo, Cu, etc. contributing to solid solution / precipitation strengthening, B, Nb , Sn, Mg, Ca, Ga was found to be remarkably improved by adding a small amount and adjusting the amount of addition. That is, in the ferritic stainless steel, a new property that the 0.2% proof stress near 750 ° C. and the reduction of the 0.2% proof strength near 800 ° C. can be achieved by adding these trace elements. Knowledge was obtained. Although there are still many unclear points regarding the action of improving the high-temperature strength, the action mechanism described below is inferred based on experimental facts.

(c)Bの微量添加は、750〜800℃での耐力や引張強度の上昇に対して少なからず寄与し、特に0.2%耐力を大幅に向上させる作用効果を持つ。Bの微量添加は、Bが粒界偏析することによって、結晶粒界を起点に発生するキャビティ(ナノサイズの隙間)の生成を抑制して粒界すべりを遅延させるとともに、結晶粒内において転位密度の上昇に伴う内部応力を高める作用効果がある。またこれらBの作用効果は、Nb添加鋼で顕著となる新規な知見を見出した。 (C) The addition of a small amount of B contributes to the increase in yield strength and tensile strength at 750 to 800 ° C., and has the effect of significantly improving the 0.2% yield strength. The addition of a small amount of B suppresses the formation of cavities (nano-sized gaps) generated from the grain boundaries as a result of B segregating at the grain boundaries, delaying the grain boundary sliding, and dislocation density within the crystal grains. This has the effect of increasing the internal stress associated with the rise of. Moreover, the novel effect which the effect of these B becomes remarkable with Nb addition steel was discovered.

(d)Nbの添加は、固溶強化により750℃までの温度域における強度上昇に有効であることはよく知られている。Nbの析出は750〜800℃においてラーベス相(FeNb)と呼ばれる金属間化合物などを形成して開始するが、NbとBは結晶粒界において共偏析することで前記(c)のBの作用効果を顕在化させることができる。 (D) It is well known that the addition of Nb is effective for increasing the strength in the temperature range up to 750 ° C. by solid solution strengthening. Precipitation of Nb starts at 750 to 800 ° C. by forming an intermetallic compound called a Laves phase (Fe 2 Nb), and Nb and B co-segregate at the grain boundary to cause B of (c) above. The effect can be made obvious.

(e)また、上述した、Nb添加鋼で顕著となるBの作用効果は、Mg、Ca、Gaの複合添加により重畳する。 (E) Moreover, the effect of B which becomes remarkable with Nb addition steel mentioned above is superimposed by composite addition of Mg, Ca, and Ga.

(f)更に、前記(c)で述べた、粒内の転位密度の上昇に伴う内部応力を高める作用効果をより発揮させるためには、Snとの複合添加が効果的である。Snは粒界偏析元素ではあるものの、B及びNbとの複合添加において、結晶粒内の固溶強化元素としての作用も大きくなり、内部応力の上昇に伴う高温強度を高めることに効果的である。 (F) Furthermore, in order to exert the effect of increasing the internal stress accompanying the increase in the dislocation density in the grains described in (c) above, the combined addition with Sn is effective. Sn is a grain boundary segregation element, but in the combined addition with B and Nb, the action as a solid solution strengthening element in the crystal grains is increased, and it is effective in increasing the high temperature strength accompanying the increase in internal stress. .

(g)また、前述した水素および硫化成分を含む改質ガス環境下の耐酸化性を高めるにはSi、Al、Nb、Mnの含有量を所定の範囲内に調整することで、高温かつ改質ガス環境下におけるAl系酸化皮膜の形成の促進と、当該皮膜の保護性を高めることが効果的である。さらに、フェライト系ステンレス鋼におけるB、Nb、Sn、Mg、Ca、Gaの添加は、改質ガス環境下の耐酸化性を損なわせるおそれはなく、むしろMg、Snの微量添加はAl系酸化皮膜の保護性をより高め耐酸化性の効果も奏する。なお本実施形態において、高温の改質ガス環境下に曝される前の表面皮膜を「不働態皮膜」、高温の改質ガス環境下に曝され不働態皮膜が種々の反応によって組成が変化したものを「Al系酸化皮膜」と区別し説明する。 (G) Further, in order to improve the oxidation resistance in the reformed gas environment containing hydrogen and sulfide components as described above, the content of Si, Al, Nb, and Mn is adjusted within a predetermined range, so that the temperature is improved. It is effective to promote the formation of an Al-based oxide film in a gas environment and to enhance the protection of the film. Furthermore, the addition of B, Nb, Sn, Mg, Ca, and Ga in ferritic stainless steel does not impair the oxidation resistance under the reformed gas environment. Rather, the addition of a small amount of Mg and Sn is an Al-based oxide film. The protective property is further increased and the effect of oxidation resistance is also exhibited. In this embodiment, the surface film before being exposed to a high-temperature reformed gas environment is a “passive film”, and the composition of the passive film exposed to a high-temperature reformed gas environment is changed by various reactions. This is distinguished from “Al-based oxide film”.

(h)前記した改質ガス環境(浸炭性/還元性/硫化性環境)は、大気や水素を含まない水蒸気酸化環境と比較して、フェライト系ステンレス鋼におけるAl系酸化皮膜の欠陥を生成し易い。改質ガス環境が酸化皮膜の欠陥生成を容易とする原因は明らかではないが、硫化成分を含む改質ガス下で生成される硫化物が、酸化皮膜に何らかの悪影響を及ぼしていると推測される。改質ガス環境下でAl系酸化皮膜に欠陥が生じると、露出された母材ではCrやFeの酸化が進行するおそれがある。このような改質ガス中における酸化促進に対して、MgはAl系酸化皮膜への固溶、Snは母材表面への偏析作用によりCrやFeの外方拡散を遅延させることにより、Al系酸化皮膜の保護性をより高めることができる。その結果、フェライト系ステンレス鋼の耐酸化性を向上させることができる。 (H) The above-described reformed gas environment (carburizing / reducing / sulfiding environment) produces defects in the Al-based oxide film in ferritic stainless steel compared to the steam oxidation environment that does not contain air or hydrogen. easy. The reason why the reformed gas environment facilitates the generation of defects in the oxide film is not clear, but it is speculated that sulfides generated under the reformed gas containing sulfide components have some adverse effects on the oxide film. . If a defect occurs in the Al-based oxide film in the reformed gas environment, oxidation of Cr and Fe may proceed in the exposed base material. For such oxidation promotion in the reformed gas, Mg is dissolved in the Al-based oxide film, and Sn is segregated on the surface of the base material to delay the outward diffusion of Cr and Fe, so that the Al-based The protective property of the oxide film can be further increased. As a result, the oxidation resistance of the ferritic stainless steel can be improved.

(i)さらに、従来のAl、Si含有ステンレス鋼の欠点であった、高温での金属間化合物σ相の析出(σ脆性)と475℃脆性については、成分組成において、Cr、Nb、Si、Alの含有量を調整することが効果的であることが分かった。σ脆性と475℃脆性は、Crを主体としてSiやAlを含む金属間化合物の生成に由来し、その生成サイトは結晶粒界であることが多い。すなわち、σ脆性と475℃脆性を抑制するには、金属間化合物自体の生成を抑制するとともに、その生成サイトを低減することが効果的といえる。これらについて本発明者らがさらに検討したところ、Cr量の制限によって金属間化合物の生成自体を抑制するとともに、Nbの結晶粒界への偏析によって生成サイトを抑制することで組織を安定化させることができ、その結果、σ脆性と475℃脆性が抑制可能であることを見出した。さらに、Cr量の制限とNbの添加により、SiやAlを含む金属間化合物の生成を抑制できることから、前記(h)で述べた耐酸化性に寄与するSiとAl量を確保できるため、耐酸化性と組織安定性を両立することもできる。 (I) Furthermore, regarding the precipitation of the intermetallic compound σ phase at high temperatures (σ brittleness) and 475 ° C. brittleness, which were disadvantages of conventional Al and Si-containing stainless steels, in the component composition, Cr, Nb, Si, It has been found that adjusting the Al content is effective. σ brittleness and 475 ° C. brittleness are derived from the formation of intermetallic compounds mainly containing Cr and containing Si and Al, and the production sites are often grain boundaries. That is, in order to suppress the σ brittleness and the 475 ° C. brittleness, it can be said that it is effective to suppress the generation of the intermetallic compound itself and to reduce the generation site. As a result of further investigation by the present inventors, the formation of intermetallic compounds is suppressed by limiting the amount of Cr, and the structure is stabilized by suppressing generation sites by segregation to the crystal grain boundaries of Nb. As a result, it was found that σ brittleness and 475 ° C brittleness can be suppressed. Furthermore, since the production of intermetallic compounds containing Si and Al can be suppressed by limiting the Cr amount and adding Nb, the amount of Si and Al contributing to the oxidation resistance described in the above (h) can be ensured. It is also possible to achieve both chemical properties and tissue stability.

上述したように、フェライト系ステンレス鋼において、B、Nb、Sn、Mg、Ca、Gaの複合添加により、浸炭性/還元性/硫化性環境下の耐久性として重要な高温強度と改質ガス中の耐酸化性を兼備できる、という新たな知見が得られた。さらにフェライト系ステンレス鋼において、Cr、Nb、Si、Alの含有量の適正化によって、組織安定性の向上によるσ脆性と475℃脆性の抑制が可能となる上、耐酸化性の両立も達成できる、という知見も新たに得られた。   As described above, in ferritic stainless steel, the combined addition of B, Nb, Sn, Mg, Ca, and Ga increases the high-temperature strength and the reformed gas important as durability in a carburizing / reducing / sulfiding environment. The new knowledge that it can combine the oxidation resistance of was obtained. Furthermore, in ferritic stainless steel, by optimizing the contents of Cr, Nb, Si, and Al, it is possible to suppress σ brittleness and 475 ° C brittleness by improving the structural stability, and also achieve both oxidation resistance. The new knowledge was also obtained.

以下、本発明のフェライト系ステンレス鋼の一実施形態について説明する。   Hereinafter, an embodiment of the ferritic stainless steel of the present invention will be described.

<成分組成>
まず、成分の限定理由を以下に説明する。なお、各元素の含有量の「%」表示は「質量%」を意味する。
<Ingredient composition>
First, the reasons for limiting the components will be described below. In addition, "%" display of the content of each element means "mass%".

Crは、耐食性に加えて、高温強度を確保する上で基本となる構成元素である。本実施形態においては、12.0%未満では目標とする高温強度と耐酸化性が十分に確保されない。従って、Cr含有量の下限は12.0%以上とする。好ましくは13.0%以上である。しかし、過度にCrを含有することは高温雰囲気に曝された際、脆化相であるσ相(Fe−Crの金属間化合物)の生成を促進して製造時の割れを助長する場合がある。したがってCr含有量の上限は、基本特性や製造性の視点から16.0%以下とする。好ましくは15.0%以下である。   Cr is a constituent element that is fundamental in securing high-temperature strength in addition to corrosion resistance. In this embodiment, if it is less than 12.0%, the target high-temperature strength and oxidation resistance are not sufficiently ensured. Therefore, the lower limit of the Cr content is 12.0% or more. Preferably it is 13.0% or more. However, excessively containing Cr sometimes promotes the formation of σ phase (an intermetallic compound of Fe—Cr), which is an embrittlement phase, and promotes cracking during production when exposed to a high temperature atmosphere. . Therefore, the upper limit of the Cr content is 16.0% or less from the viewpoint of basic characteristics and manufacturability. Preferably it is 15.0% or less.

Cは、フェライト相に固溶あるいはCr炭化物を形成して耐酸化性を阻害する。このため、C量の上限が0.020%以下とする。好ましくは0.015%以下である。但し、C量の過度な低減は精錬コストの上昇に繋がるため、下限は0.001%以上とすることが好ましい。耐酸化性と製造性の点から、さらに好ましくは0.005%以上である。   C inhibits oxidation resistance by forming a solid solution or Cr carbide in the ferrite phase. For this reason, the upper limit of the C amount is set to 0.020% or less. Preferably it is 0.015% or less. However, excessive reduction of the amount of C leads to an increase in refining costs, so the lower limit is preferably made 0.001% or more. From the viewpoint of oxidation resistance and manufacturability, it is more preferably 0.005% or more.

Siは、耐酸化性を確保する上で重要な元素である。Siは、Al系酸化皮膜中へ僅かに固溶するとともに、Al系酸化皮膜直下/鋼界面にも濃化し、改質ガス環境下の耐酸化性を向上させる。これら効果を得るために下限は0.50%以上とすることが好ましい。より好ましくは0.70%以上である。一方、Siを過度に含有させることは、鋼の靭性や加工性の低下ならびにAl系酸化皮膜の形成を阻害する場合もあるため、上限は2.50%以下%とする。耐酸化性と基本特性の点から、1.70%以下が好ましい。   Si is an important element in securing oxidation resistance. Si slightly dissolves in the Al-based oxide film, and also concentrates directly under the Al-based oxide film / steel interface to improve the oxidation resistance under the reformed gas environment. In order to obtain these effects, the lower limit is preferably 0.50% or more. More preferably, it is 0.70% or more. On the other hand, excessive inclusion of Si may hinder the toughness and workability of steel and the formation of an Al-based oxide film, so the upper limit is made 2.50% or less. From the viewpoint of oxidation resistance and basic characteristics, 1.70% or less is preferable.

Mnは、改質ガス環境下でSiとともにAl系酸化皮膜中またはその直下に固溶して当該皮膜の保護性を高め耐酸化性の向上に寄与しうる。これら効果を得るために下限は0.10%以上とすることが好ましい。より好ましくは0.20%以上である。一方、Mnを過度に含有させることは、鋼の耐食性やTiやAl系酸化皮膜の形成を阻害するため、上限は1.00%以下とする。耐酸化性と基本特性の点から、0.90%以下が好ましい。   Mn can form a solid solution in or directly under the Al-based oxide film together with Si in the reformed gas environment, thereby increasing the protection of the film and contributing to the improvement of oxidation resistance. In order to obtain these effects, the lower limit is preferably set to 0.10% or more. More preferably, it is 0.20% or more. On the other hand, when Mn is excessively contained, the corrosion resistance of steel and the formation of Ti and Al-based oxide films are inhibited, so the upper limit is made 1.00% or less. From the viewpoint of oxidation resistance and basic characteristics, 0.90% or less is preferable.

Alは、脱酸元素であることに加えて、本実施形態においては、改質ガス中でAl系酸化皮膜を形成して耐酸化性の向上に寄与する必須の元素である。本実施形態において、良好な耐酸化性を得るには1.00%以上とすることが好ましく、より好ましくは1.50%以上である。しかし、過度にAlを含有させることは、鋼の靭性や溶接性の低下を招き生産性を阻害するため、合金コストの上昇とともに経済性にも課題がある。そのためAl量の上限は、基本特性と経済性の視点から2.50%以下とする。より好ましくは、2.30%以下である。   In addition to being a deoxidizing element, Al is an essential element that contributes to improving oxidation resistance by forming an Al-based oxide film in the reformed gas in the present embodiment. In this embodiment, in order to obtain good oxidation resistance, the content is preferably 1.00% or more, more preferably 1.50% or more. However, excessively containing Al causes a decrease in the toughness and weldability of the steel and hinders productivity, so that there is a problem in economic efficiency along with an increase in alloy cost. Therefore, the upper limit of the Al amount is 2.50% or less from the viewpoint of basic characteristics and economy. More preferably, it is 2.30% or less.

Pは、製造性や溶接性を阻害する元素であり、その含有量は少ないほどよいため上限は0.050%以下とする。但し、Pの過度な低減は精錬コストの上昇に繋がるため、下限は0.003%とすることが好ましい。製造性と溶接性の点から、好ましい範囲は0.005〜0.040%、より好ましくは0.010〜0.030%である。   P is an element that hinders manufacturability and weldability, and the lower the content, the better. Therefore, the upper limit is made 0.050% or less. However, since excessive reduction of P leads to an increase in refining costs, the lower limit is preferably set to 0.003%. From the viewpoint of manufacturability and weldability, the preferred range is 0.005 to 0.040%, more preferably 0.010 to 0.030%.

Sは、鋼中に不可避に含まれる不純物元素であり、高温強度および耐酸化性を低下させる。特に、Sの粒界偏析やMn系介在物や固溶Sの存在は、高温強度と耐酸化性を低下させる作用を持つ。従って、S量は低いほどよいため、上限は0.0030%以下とする。但し、Sの過度の低減は原料や精錬コストの上昇に繋がるため、下限は0.0001%以上とすることが好ましい。製造性と耐酸化性の点から、好ましい範囲は0.0001〜0.0020%、より好ましくは0.0002〜0.0010%である。   S is an impurity element inevitably contained in steel, and lowers the high temperature strength and oxidation resistance. In particular, the segregation of S grain boundaries, the presence of Mn inclusions and solute S has the effect of reducing the high temperature strength and oxidation resistance. Therefore, the lower the amount of S, the better. Therefore, the upper limit is made 0.0030% or less. However, since excessive reduction of S leads to an increase in raw materials and refining costs, the lower limit is preferably set to 0.0001% or more. From the viewpoint of manufacturability and oxidation resistance, the preferred range is 0.0001 to 0.0020%, more preferably 0.0002 to 0.0010%.

Nは、Cと同様に耐酸化性を阻害する元素である。このため、N量は少ないほどよく、上限を0.030%以下とする。但し、Nの過度な低減は精錬コストの上昇に繋がるため、下限は0.002%以上とすることが好ましい。耐酸化性と製造性の点から、N量の好ましい範囲は0.005〜0.020%である。   N, like C, is an element that inhibits oxidation resistance. For this reason, the smaller the amount of N, the better. The upper limit is made 0.030% or less. However, since excessive reduction of N leads to an increase in refining costs, the lower limit is preferably set to 0.002% or more. From the viewpoint of oxidation resistance and manufacturability, the preferable range of the N amount is 0.005 to 0.020%.

Nbは、C,Nを固定する安定化元素であって、この作用による鋼の高純度化を通じて耐酸化性や耐食性を向上させることができる。また本実施形態においては、Bとの粒界における共偏析の作用効果により高温強度の向上にも有効に作用する元素である。さらに、σ脆性と475℃脆性の要因となる金属間化合物は、主に結晶粒界を生成サイトとして析出が進行するが、Nbが結晶粒界へ偏析することによってこの生成サイトが低減されるため、組織の安定性が増し、結果、σ脆性と475℃脆性を抑制することができる。これら効果を得るためにNb量の下限は0.001%以上とし、好ましくは0.15%以上とする。一方、Nbを過度に含有させることは合金コストの上昇や製造性を阻害することに繋がるため、Nb量の上限は1.00%以下とする。好ましくは0.60%以下とする。   Nb is a stabilizing element that fixes C and N, and can improve oxidation resistance and corrosion resistance through high purity of steel by this action. Moreover, in this embodiment, it is an element which acts effectively also at the improvement of high temperature strength by the effect of the co-segregation in the grain boundary with B. Further, intermetallic compounds that cause σ brittleness and 475 ° C. brittleness mainly precipitate with the grain boundary as a production site, but this production site is reduced by the segregation of Nb to the crystal grain boundary. The stability of the structure is increased, and as a result, σ brittleness and 475 ° C brittleness can be suppressed. In order to obtain these effects, the lower limit of the Nb content is 0.001% or more, preferably 0.15% or more. On the other hand, excessively containing Nb leads to an increase in alloy costs and obstructs manufacturability, so the upper limit of the Nb amount is 1.00% or less. Preferably it is 0.60% or less.

B、Sn、Ga、Mg、Caは、上記の知見(e)および(f)でも述べたように、高温強度を高める効果をより発現させることができる元素である。さらにこれらの元素は、Al系酸化皮膜の形成を促進して耐酸化性の向上に寄与する元素でもある。そのため、上記成分組成に加え、B、Sn、Ga、Mg、Caのうちの1種または2種以上を含有する。
Bは、粒界偏析することによって粒界すべりを遅延させるとともに、結晶粒内において転位密度の上昇に伴う内部応力を高め0.2%耐力を向上させることができる。Sn、Ga、Mg、Caは、表面近傍に濃化してAlの選択酸化を促進する作用がある。このような効果を得るために、B、Ga、Mg、Caそれぞれの含有量の下限は0.0002%以上、Snの下限は0.005%以上とすることが好ましい。一方、これら元素を過度に含有させることは、鋼の精錬コスト上昇を招くほか、製造性と鋼の耐食性を低下させる。このため、Caの含有量の上限は0.0100%以下、Snの上限は0.20%以下、B、Ga、Mgの上限はいずれも0.0200%以下とする。
B, Sn, Ga, Mg, and Ca are elements that can further exhibit the effect of increasing the high-temperature strength, as described in the above findings (e) and (f). Furthermore, these elements are elements that contribute to the improvement of oxidation resistance by promoting the formation of an Al-based oxide film. Therefore, in addition to the above component composition, one or more of B, Sn, Ga, Mg, and Ca are contained.
B segregates at the grain boundary due to segregation at the grain boundary, and can increase the internal stress accompanying the increase in the dislocation density in the crystal grains and improve the 0.2% yield strength. Sn, Ga, Mg, and Ca have an action of concentrating near the surface and promoting selective oxidation of Al. In order to obtain such effects, it is preferable that the lower limit of each content of B, Ga, Mg, and Ca is 0.0002% or more, and the lower limit of Sn is 0.005% or more. On the other hand, containing these elements excessively increases the refining cost of the steel and decreases the productivity and the corrosion resistance of the steel. For this reason, the upper limit of the Ca content is 0.0100% or less, the upper limit of Sn is 0.20% or less, and the upper limits of B, Ga, and Mg are all 0.0200% or less.

さらに、本実施形態の成分組成では、以下の式(1)を満たすものとする。
10(B+Ga)+Sn+Mg+Ca>0.020% ・・・式(1)
なお、式(1)中の各元素記号は、鋼中の各元素の含有量(質量%)を示す。
Furthermore, the component composition of this embodiment shall satisfy the following formula (1).
10 (B + Ga) + Sn + Mg + Ca> 0.020% Formula (1)
In addition, each element symbol in Formula (1) shows content (mass%) of each element in steel.

高温強度および耐酸化性を向上させる視点から、式(1)は、0.025%以上が好ましく、より好ましくは0.035%以上とする。なお、式(1)の上限は、B、Sn、Ga、Mg、Caの上限値で特に規定するものでないが、高温強度と製造性の視点から0.2%とすることが好ましい。   From the viewpoint of improving the high temperature strength and oxidation resistance, the formula (1) is preferably 0.025% or more, more preferably 0.035% or more. In addition, although the upper limit of Formula (1) is not specifically prescribed | regulated by the upper limit of B, Sn, Ga, Mg, Ca, it is preferable to set it as 0.2% from a viewpoint of high temperature strength and manufacturability.

次に、結晶粒界における偏析元素の濃度(質量%)について説明する。
上記の知見(c)および(d)でも述べたように、本実施形態においては、NbとBが結晶粒界において共偏析することによって高温強度の向上を図ることができる。また、Snも同様に、粒界へ偏析することによって、粒界すべりを抑制し高温強度の向上を図ることができる。これらの観点から、本実施形態に係るフェライト系ステンレス鋼において、Nbの結晶粒界における濃度(粒界濃度)は、3.0%以上とすることが好ましい。Snを含有する場合には、Snの粒界濃度は1.0%以上とすることが好ましい。一方、NbとSnの過度な粒界偏析は結晶粒界が破壊起点となって製造性を阻害することに加え、高温強度の低下をもたらす場合もある。そのため、Nbの粒界濃度は10.0%以下であることが好ましく、Snの粒界濃度は5.0%以下であることが好ましい。
なお、結晶粒界におけるNb濃度とSn濃度の調整は、仕上げ焼鈍後さらに、所定の条件下で熱処理を行うことで可能である。詳細については後述する。
Next, the density | concentration (mass%) of the segregation element in a crystal grain boundary is demonstrated.
As described in the above findings (c) and (d), in this embodiment, the high temperature strength can be improved by co-segregating Nb and B at the grain boundaries. Similarly, Sn segregates to the grain boundary, thereby suppressing the grain boundary sliding and improving the high temperature strength. From these viewpoints, in the ferritic stainless steel according to the present embodiment, the concentration of Nb at the grain boundaries (grain boundary concentration) is preferably 3.0% or more. When Sn is contained, the grain boundary concentration of Sn is preferably 1.0% or more. On the other hand, excessive grain boundary segregation of Nb and Sn may cause a decrease in high-temperature strength in addition to inhibiting the manufacturability in addition to the grain boundary becoming a starting point of fracture. Therefore, the grain boundary concentration of Nb is preferably 10.0% or less, and the grain boundary concentration of Sn is preferably 5.0% or less.
The Nb concentration and the Sn concentration at the crystal grain boundary can be adjusted by performing a heat treatment under predetermined conditions after the finish annealing. Details will be described later.

結晶粒界におけるNb濃度、Sn濃度は、オージェ電子分光法(Auger Electron Spectrometry,AES)によって測定することができる。
まず、酸化皮膜以外の母相の任意箇所から、ノッチ付き試験片(0.8t×4w×20L(mm))を採取する。次に、ノッチ付き試験片を、真空中(真空度:10−6MPa)において液体窒素で冷却したのちに、その場でノッチ部から試験片を破断して破面をを露出させる。露出させた破面における結晶粒界についてAES分析を行い、0〜1000eVのエネルギー範囲でオージェ電子スペクトルを測定し、検出される元素を同定(定性分析)する。さらに、得られたピーク強度比を用いて(相対感度係数法)、検出元素を定量(定量分析)する。以上の方法によって、結晶粒界に偏析した元素(Nb、Sn)の濃度を求めることができる。
The Nb concentration and Sn concentration at the crystal grain boundary can be measured by Auger Electron Spectrometry (AES).
First, a test piece with a notch (0.8 t × 4 w × 20 L (mm)) is collected from an arbitrary portion of the matrix other than the oxide film. Next, after cooling the notched test piece with liquid nitrogen in a vacuum (vacuum degree: 10 −6 MPa), the test piece is broken from the notch portion on the spot to expose the fracture surface. AES analysis is performed on the grain boundary at the exposed fracture surface, the Auger electron spectrum is measured in the energy range of 0 to 1000 eV, and the detected element is identified (qualitative analysis). Furthermore, the detected element is quantified (quantitative analysis) using the obtained peak intensity ratio (relative sensitivity coefficient method). By the above method, the concentration of the elements (Nb, Sn) segregated at the crystal grain boundaries can be obtained.

本実施形態に係るフェライト系ステンレス鋼は、上述してきた元素以外(残部)は、Fe及び不純物からなるが、後述する任意元素についても含有させることができる。よって、Ni、Cu、Mo、Sb、W、Co、V、Ti、Zr、La、Y、Hf、REMの含有量の下限は0%以上である。
なお、本実施形態における「不純物」とは、鋼を工業的に製造する際に鉱石やスクラップ等のような原料をはじめとして製造工程の種々の要因によって混入する成分であり、不可避的に混入する成分も含む。
The ferritic stainless steel according to the present embodiment is composed of Fe and impurities other than the above-described elements (remainder), but can also contain any element described later. Therefore, the lower limit of the content of Ni, Cu, Mo, Sb, W, Co, V, Ti, Zr, La, Y, Hf, and REM is 0% or more.
The “impurities” in the present embodiment are components that are mixed due to various factors in the manufacturing process including raw materials such as ores and scraps when industrially manufacturing steel, and are inevitably mixed. Including ingredients.

本実施形態のフェライト系ステンレス鋼は、必要に応じて、Ni:1.0%以下、Cu:1.0%以下、Mo:1.0%以下、Sb:0.5%以下、W:1.0%以下、Co:0.5%以下、V:0.5%以下、Ti:0.5%以下、Zr:0.5%以下、La:0.1%以下、Y:0.1%以下、Hf:0.1%以下、REM:0.1%以下の1種または2種以上を含有しているものであってもよい。   The ferritic stainless steel according to the present embodiment, if necessary, Ni: 1.0% or less, Cu: 1.0% or less, Mo: 1.0% or less, Sb: 0.5% or less, W: 1 0.0% or less, Co: 0.5% or less, V: 0.5% or less, Ti: 0.5% or less, Zr: 0.5% or less, La: 0.1% or less, Y: 0.1 % Or less, Hf: 0.1% or less, and REM: 0.1% or less may be contained.

Ni、Cu、Mo、Sb、W、Co、V、Tiは、鋼の高温強度と耐食性を高めるのに有効な元素であり、必要に応じて含有してよい。但し、過度に含有させると合金コストの上昇や製造性を阻害することに繋がるため、Ni、Cu、Wの上限は1.0%以下とする。Moは熱膨張係数の低下による高温変形の抑制にも有効な元素であることから、上限は1.0%以下とした上で含有することが好ましい。Sbは、鋼表面近傍に濃化してAlの選択酸化を促進し耐食性の向上効果を持つ元素であるため、上限は0.5%以下とした上で含有することが好ましい。Co、Ti、Vの上限は0.5%以下とする。Ni、Cu、Mo、W、Co、Vのいずれの元素も好ましい含有量の下限は0.10%以上とする。Sb、Tiの好ましい含有量の下限は0.01%以上とする。   Ni, Cu, Mo, Sb, W, Co, V, and Ti are elements effective for increasing the high-temperature strength and corrosion resistance of steel, and may be contained as necessary. However, if excessively contained, it will lead to an increase in alloy costs and obstruct manufacturability, so the upper limit of Ni, Cu, W is 1.0% or less. Since Mo is an element effective for suppressing high-temperature deformation due to a decrease in the thermal expansion coefficient, it is preferable to contain Mo after setting the upper limit to 1.0% or less. Since Sb is an element that concentrates in the vicinity of the steel surface to promote selective oxidation of Al and has an effect of improving corrosion resistance, the upper limit is preferably set to 0.5% or less. The upper limit of Co, Ti, and V is 0.5% or less. The lower limit of the preferable content of any element of Ni, Cu, Mo, W, Co, and V is 0.10% or more. The minimum of preferable content of Sb and Ti shall be 0.01% or more.

Zr、La、Y、Hf、REMは、熱間加工性や鋼の清浄度を向上ならびに耐酸化性改善に対しても、従来から有効な元素であり、必要に応じて含有させてよい。但し、本発明の技術思想と合金コストの低減から、これら元素の添加効果に頼るものではい。Zr、La、Y、Hf、REMを含有させる場合、Zrの上限は0.5%、La、Y、Hf、REMの上限はそれぞれ0.1%とする。Zrのより好ましい下限は0.01%、La、Y、Hf、REMの好ましい下限は0.001%とする。ここで、REMはLa、Yを除く原子番号58〜71に帰属する元素およびSc(スカンジウム)とし、例えば、Ce、Pr、Nd等である。また本実施形態でいうREMとは、原子番号58〜71に帰属する元素およびScから選択される1種以上で構成されるものであり、REM量とは、これらの合計量である。   Zr, La, Y, Hf, and REM are elements that have been conventionally effective for improving hot workability and steel cleanliness and improving oxidation resistance, and may be contained as necessary. However, from the technical idea of the present invention and the reduction of alloy costs, it does not depend on the effect of addition of these elements. When Zr, La, Y, Hf, and REM are contained, the upper limit of Zr is 0.5%, and the upper limit of La, Y, Hf, and REM is 0.1%. A more preferable lower limit of Zr is 0.01%, and a preferable lower limit of La, Y, Hf, and REM is 0.001%. Here, REM is an element belonging to atomic numbers 58 to 71 excluding La and Y and Sc (scandium), and is, for example, Ce, Pr, Nd, or the like. Moreover, REM as used in this embodiment is comprised by 1 or more types selected from the element which belongs to atomic number 58-71, and Sc, and REM amount is these total amounts.

本実施形態に係るフェライト系ステンレス鋼は、上述してきた元素以外は、Fe及び不純物(不可避的不純物を含む)からなるが、以上説明した各元素の他にも、本発明の効果を損なわない範囲で含有させることができる。一般的な不純物元素である前述のP、Sを始め、Bi、Se等は可能な限り低減することが好ましい。一方、これらの元素は、本発明の課題を解決する限度において、その含有割合が制御され、必要に応じて、Bi≦100ppm、Se≦100ppmの1種以上を含有してもよい。   The ferritic stainless steel according to the present embodiment is composed of Fe and impurities (including inevitable impurities) other than the elements described above. However, in addition to the elements described above, the effects of the present invention are not impaired. It can be made to contain. It is preferable to reduce as much as possible Bi, Se, etc. as well as the aforementioned P and S, which are general impurity elements. On the other hand, the content ratio of these elements is controlled to the extent that the problem of the present invention is solved, and may include one or more of Bi ≦ 100 ppm and Se ≦ 100 ppm as necessary.

本実施形態のフェライト系ステンレス鋼の金属組織はフェライト単相組織よりなる。これはオーステナイト相やマルテンサイト組織を含まないことを意味している。オーステナイト相やマルテンサイト組織を含む場合は、原料コストが高くなることに加えて、製造時に耳割れ等の歩留まり低下が起こりやすくなるため、金属組織はフェライト単相組織とする。なお鋼中に炭窒化物等の析出物が存在するが、本発明の効果を大きく左右するものではないためこれらは考慮せず、上記は主相の組織について述べている。   The metal structure of the ferritic stainless steel of the present embodiment is a ferrite single phase structure. This means that an austenite phase and a martensite structure are not included. When an austenite phase or a martensite structure is included, in addition to an increase in raw material cost, a yield reduction such as an ear crack is likely to occur at the time of manufacture, so the metal structure is a ferrite single phase structure. Although precipitates such as carbonitrides are present in the steel, they do not take account of the effects of the present invention, so these are not considered, and the above describes the structure of the main phase.

なお、本実施形態のフェライト系ステンレス鋼の形状は特に限定せず、板状、管状、棒状等であってよく、適用する部材のサイズや形態、形状に合わせて適宜決定してよい。   The shape of the ferritic stainless steel of the present embodiment is not particularly limited, and may be a plate shape, a tubular shape, a rod shape, or the like, and may be appropriately determined according to the size, shape, and shape of the member to be applied.

<製造方法>
次に、上述してきた本実施形態のフェライト系ステンレス鋼の製造方法であるが、熱間加工、冷間加工及び各熱処理(焼鈍)を組み合わせることで製造でき、必要に応じて、適宜、酸洗やデスケーリングを行ってよい。製造方法の一例として、製鋼−熱間圧延−焼鈍−冷間圧延−焼鈍(仕上げ焼鈍)の各工程を有する製法を採用でき、熱間圧延後の熱処理は700℃超とすることが好ましい。
例えば、熱間圧延後の熱処理を700℃超で行い、デスケ−リングの後に冷間圧延し、続いて700℃超の仕上げ焼鈍とデスケ−リングを施して冷延焼鈍板としてもよい。また、冷間圧延の圧延率は特に規定するものでないが、30〜80%の範囲内が好ましい。
さらに、フェライト系ステンレス鋼をガス配管の用途に適用する場合は、鋼板から製造した溶接菅も含まれるが、配管は、溶接菅に限定するものでなく,熱間加工により製造した継ぎ目無し菅でもよい。
<Manufacturing method>
Next, although it is the manufacturing method of the ferritic stainless steel of this embodiment mentioned above, it can manufacture by combining hot processing, cold processing, and each heat processing (annealing), and it pickles suitably as needed. Or descaling. As an example of a manufacturing method, the manufacturing method which has each process of steelmaking-hot rolling-annealing-cold rolling-annealing (finish annealing) can be employ | adopted, and it is preferable that the heat processing after hot rolling shall be over 700 degreeC.
For example, the heat treatment after hot rolling may be performed at a temperature exceeding 700 ° C., cold rolling after descaling, and then finish annealing and descaling exceeding 700 ° C. may be performed to form a cold-rolled annealed plate. Further, the rolling rate of cold rolling is not particularly specified, but is preferably in the range of 30 to 80%.
In addition, when ferritic stainless steel is applied to gas piping applications, it includes welded rods manufactured from steel plates, but the piping is not limited to welded rods and even seamless rods manufactured by hot working. Good.

熱間加工後の熱処理(熱延板焼鈍)や冷間圧延後の仕上げ焼鈍の温度を700℃超とするのは、鋼を再結晶させて高温強度の上昇に有効なNbやSnを固溶させるためである。しかし、熱間加工後の熱処理や冷間圧延後の仕上げ焼鈍の各処理温度の過度な温度上昇は、結晶粒径が粗大化し、肌荒れなど表面品位の低下に繋がる。したがって、熱間加工後の熱処理や冷間圧延後の仕上げ焼鈍の各処理温度について、好ましくは上限を1050℃以下とする。   The temperature of heat treatment after hot working (hot rolled sheet annealing) and finish annealing after cold rolling exceeds 700 ° C. is a solution of Nb and Sn effective for increasing the high-temperature strength by recrystallizing the steel. This is to make it happen. However, an excessive increase in the processing temperature of the heat treatment after hot working or the finish annealing after cold rolling causes the crystal grain size to become coarse, leading to deterioration of the surface quality such as rough skin. Accordingly, the upper limit is preferably set to 1050 ° C. or less for each processing temperature of heat treatment after hot working and finish annealing after cold rolling.

仕上げ焼鈍をした後、NbとSnの結晶粒界における濃度を上述した範囲内に調整して高温強度を上昇させるために、さらに熱処理(仕上げ焼鈍後熱処理)を行うことが望ましい。具体的には、仕上げ焼鈍後に、600〜700℃へ再加熱して1分超、3h以下保持する熱処理を施しても構わない。なお、本実施形態でいう「保持」とは、600〜700℃の範囲内であれば、一定の温度を保った状態でもよいし、当該範囲内を変動していても構わない。すなわち、鋼板が600〜700℃間に存在している時間が1分超、3時間以下であれば、その間の鋼板温度の変動の有無は問わない。また本実施形態でいう鋼板の温度とは、鋼板表面の温度を指す。   After finish annealing, it is desirable to further perform heat treatment (heat treatment after finish annealing) in order to increase the high-temperature strength by adjusting the concentration of Nb and Sn at the grain boundaries within the above-mentioned range. Specifically, after finish annealing, a heat treatment may be performed by reheating to 600 to 700 ° C. and holding for more than 1 minute and 3 hours or less. In addition, as long as it is in the range of 600 to 700 ° C., “holding” in the present embodiment may be a state in which a constant temperature is maintained, or may be fluctuated within the range. That is, if the time for which the steel sheet exists between 600 and 700 ° C. is more than 1 minute and 3 hours or less, the presence or absence of fluctuations in the steel sheet temperature during that time does not matter. Moreover, the temperature of the steel plate as used in this embodiment refers to the temperature of the steel plate surface.

仕上げ焼鈍後の熱処理温度が700℃を超える、もしくは仕上げ焼鈍後の熱処理の保持時間が3時間を超えると、長辺1μmを超える粗大なラーベス相(FeNb)が析出しやすく、高温強度の低下を招く場合がある。そのため、仕上げ焼鈍後の熱処理温度の上限は700℃以下、保持時間は3時間以下とする。一方、仕上げ焼鈍後の熱処理温度が600℃未満、もしくは仕上げ焼鈍後の熱処理の保持時間が1分以下では、NbとSnの粒界偏析が進行せずに、十分な高温強度を得られないほか、粒界強度の低下、組織の不安定化によるσ相析出や475℃脆性を生じる場合もある。そのため、仕上げ焼鈍後の熱処理温度の下限は600℃以上、保持時間は1分超とする。 When the heat treatment temperature after finish annealing exceeds 700 ° C. or the holding time of the heat treatment after finish annealing exceeds 3 hours, a coarse Laves phase (Fe 2 Nb) having a long side exceeding 1 μm is likely to precipitate, It may cause a decrease. Therefore, the upper limit of the heat treatment temperature after finish annealing is 700 ° C. or less, and the holding time is 3 hours or less. On the other hand, if the heat treatment temperature after finish annealing is less than 600 ° C., or if the heat treatment holding time after finish annealing is 1 minute or less, the segregation of grain boundaries of Nb and Sn does not proceed and sufficient high-temperature strength cannot be obtained. In some cases, sigma phase precipitation and 475 ° C. brittleness may occur due to a decrease in grain boundary strength, structural instability. Therefore, the lower limit of the heat treatment temperature after finish annealing is 600 ° C. or more, and the holding time is more than 1 minute.

なお、NbとSnの粒界濃度の制御は、仕上げ焼鈍後の熱処理は行わずに仕上げ焼鈍の工程内で調整することも可能である。その際は、仕上げ焼鈍の冷却の際、すなわち700℃超に加熱した後に冷却する際、600〜700℃の温度域の通過時間(冷却所要時間)が1分超となるよう制御する。具体的には、600〜700℃の温度間における冷却速度を調整することで当該温度間の通過時間を制御することができる。   Note that the control of the grain boundary concentration of Nb and Sn can be adjusted in the final annealing step without performing the heat treatment after the final annealing. In that case, when finishing annealing is cooled, that is, when cooling is performed after heating to over 700 ° C., control is performed so that the passing time (required cooling time) in the temperature range of 600 to 700 ° C. exceeds 1 minute. Specifically, the passage time between the temperatures can be controlled by adjusting the cooling rate between the temperatures of 600 to 700 ° C.

熱間加工後の熱処理や仕上げ焼鈍、仕上げ焼鈍後熱処理時の雰囲気は特に規定するものではないが、大気中、LNG燃料雰囲気、水素や窒素、アルゴン等を用いた無酸化性雰囲気(光輝焼鈍)であることが好ましい。   The atmosphere during heat treatment after hot working, finish annealing, and heat treatment after finish annealing is not particularly specified, but in the air, LNG fuel atmosphere, non-oxidizing atmosphere using hydrogen, nitrogen, argon, etc. (bright annealing) It is preferable that

以上説明した製造方法により、本実施形態に係るフェライト系ステンレス鋼を得ることができる。   The ferritic stainless steel according to the present embodiment can be obtained by the manufacturing method described above.

本実施形態によれば、二酸化炭素、一酸化炭素、多量の水素、ならびに硫化成分を含む環境(浸炭性/還元性/硫化性環境)下であっても、高い耐酸化性と優れた高温強度を兼備したフェライト系ステンレス鋼を提供することができる。
またさらに、本実施形態によれば、成分組成の適正化を図ることで、σ相析出や475℃脆性を抑制可能とする優れた組織安定性をも享受することが可能となる。
そのため、都市ガス、メタン、天然ガス、プロパン、灯油、ガソリン等の炭化水素系燃料を水素に改質する際に使用される燃料改質器、熱交換器などの燃料電池部材に好適であり、特に、運転温度が高温となる固体酸化物型燃料電池(SOFC)や固体高分子型燃料電池(PEFC)の高温部材に好適である。さらに、燃料電池の周辺部材、例えばバーナーや当該バーナーを格納する燃焼器等、改質ガスに接しかつ高温の環境下で使用される部材全般において好適に用いることができる。
According to the present embodiment, high oxidation resistance and excellent high-temperature strength even in an environment containing carbon dioxide, carbon monoxide, a large amount of hydrogen, and a sulfur component (carburizing / reducing / sulfiding environment). Can be provided.
Furthermore, according to the present embodiment, by optimizing the component composition, it is possible to enjoy excellent structure stability that can suppress σ phase precipitation and 475 ° C. brittleness.
Therefore, it is suitable for fuel cell members such as city gas, methane, natural gas, propane, kerosene, gasoline and other fuels such as fuel reformers and heat exchangers used when reforming hydrocarbon fuels to hydrogen, In particular, it is suitable for a high temperature member of a solid oxide fuel cell (SOFC) or a polymer electrolyte fuel cell (PEFC) in which the operating temperature is high. Furthermore, it can be suitably used for all members that are in contact with the reformed gas and used in a high-temperature environment, such as fuel cell peripheral members such as a burner and a combustor that stores the burner.

次に本発明の実施例を示すが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、以下の実施例で用いた条件に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
なお、下記にて示す表中の下線は、本発明の範囲から外れているものを示す。
Next, examples of the present invention will be described. The conditions in the examples are one example of conditions used to confirm the feasibility and effects of the present invention, and the present invention was used in the following examples. It is not limited to the conditions. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
In addition, the underline in the table | surface shown below shows what has remove | deviated from the scope of the present invention.

表1に成分を示す各種フェライト系ステンレス鋼を溶製し(鋼A〜O)、熱間圧延によって4mm厚の熱延板とした後、熱処理(熱延板焼鈍)、酸洗、冷間圧延を行い板厚0.8mmの冷延鋼板を製造した。なお、熱延板焼鈍は、900〜1000℃の範囲において行った。
冷間圧延後、900〜1000℃で仕上げ焼鈍を行った。なお一部の鋼板(鋼B、E、F及びI)に対しては、仕上げ焼鈍後、さらに表2に示す条件にて熱処理(仕上げ焼鈍後熱処理)を施した。
得られた冷延鋼板(No.1〜19)について、粒界濃度の測定、ならびに各種特性について評価した。
Various ferritic stainless steels having the components shown in Table 1 are melted (steel A to O) and hot rolled into a hot rolled sheet having a thickness of 4 mm, followed by heat treatment (hot rolled sheet annealing), pickling, and cold rolling. A cold-rolled steel sheet having a thickness of 0.8 mm was manufactured. In addition, hot-rolled sheet annealing was performed in the range of 900-1000 degreeC.
After cold rolling, finish annealing was performed at 900 to 1000 ° C. Some steel plates (steel B, E, F and I) were subjected to heat treatment (heat treatment after finish annealing) under the conditions shown in Table 2 after finish annealing.
About the obtained cold-rolled steel plate (No. 1-19), the measurement of the grain boundary concentration and various characteristics were evaluated.

[粒界濃度の測定]
結晶粒系におけるNb濃度、Sn濃度は、オージェ電子分光法によって測定した。
まず冷延鋼板から、ノッチ付き試験片(0.8t×4w×20L(mm))を採取した。次に、ノッチ付き試験片を、真空中(真空度:10−6MPa)において液体窒素で冷却したのちに、破断面が大気に暴露されないようその場でノッチ部を破断し結晶粒界を露出させた。露出させた結晶粒界についてAES分析を行い、0〜1000eVのエネルギー範囲でオージェ電子スペクトルを測定し、Nb元素および、Sn元素を同定(定性分析)した。さらに、得られたピーク強度比を用いて(相対感度係数法)、Nb量、Sn量を定量分析し、結晶粒界に偏析したNb濃度、Sn濃度(ともに質量%)を求めた。表2に求めたNb濃度、Sn濃度を示すが、表中の「<3.0」、「<1.0」は、検出値が3.0%未満、1.0%未満であったことを意味する。
[Measurement of grain boundary concentration]
The Nb concentration and Sn concentration in the crystal grain system were measured by Auger electron spectroscopy.
First, a test piece with a notch (0.8 t × 4 w × 20 L (mm)) was collected from the cold rolled steel sheet. Next, after the notched specimen was cooled with liquid nitrogen in a vacuum (vacuum degree: 10 −6 MPa), the notched portion was broken in situ so that the fracture surface was not exposed to the atmosphere, and the grain boundaries were exposed. I let you. The exposed grain boundary was subjected to AES analysis, an Auger electron spectrum was measured in an energy range of 0 to 1000 eV, and Nb element and Sn element were identified (qualitative analysis). Furthermore, using the obtained peak intensity ratio (relative sensitivity coefficient method), the Nb amount and the Sn amount were quantitatively analyzed, and the Nb concentration and the Sn concentration (both mass%) segregated at the crystal grain boundaries were obtained. The Nb concentration and Sn concentration obtained in Table 2 are shown. In the table, “<3.0” and “<1.0” indicate that the detected values were less than 3.0% and less than 1.0%. Means.

[耐酸化性]
まず冷延鋼板から幅20mm、長さ25mmの酸化試験片を切り出し酸化試験に供した。酸化試験の雰囲気は、都市ガスを燃料とした改質ガスを想定し、28体積%HO−10%体積%CO−8体積%CO−0.01%HS−bal.Hの雰囲気とした。当該雰囲気において、酸化試験片を650℃に加熱し、1000時間保持した後に室温まで冷却し、酸化増量ΔW(mg/cm)を測定した。
耐酸化性の評価は以下の通りとした。
◎:重量増加ΔWが0.2mg/cm未満。
〇:重量増加ΔWが0.2〜0.3mg/cm
×:重量増加ΔWが0.3mg/cm超。
なお、耐酸化性は「◎」および「〇」の場合を合格とした。
[Oxidation resistance]
First, an oxidation test piece having a width of 20 mm and a length of 25 mm was cut out from the cold-rolled steel sheet and subjected to an oxidation test. The atmosphere of the oxidation test is assumed to be a reformed gas using city gas as a fuel, and 28 volume% H 2 O—10% volume% CO—8 volume% CO 2 —0.01% H 2 S-bal. Was an atmosphere of H 2. In this atmosphere, the oxidation test piece was heated to 650 ° C., held for 1000 hours, then cooled to room temperature, and the oxidation increase ΔW (mg / cm 2 ) was measured.
The evaluation of oxidation resistance was as follows.
A: Weight increase ΔW is less than 0.2 mg / cm 2 .
A: Weight increase ΔW is 0.2 to 0.3 mg / cm 2 .
X: Weight increase ΔW exceeds 0.3 mg / cm 2 .
In addition, as for oxidation resistance, the case of "(double-circle)" and "(circle)" was set as the pass.

[高温強度]
冷延鋼板から、圧延方向を長手方向とする板状の高温引張試験片(板厚:0.8mm、平行部幅:10.5mm、平行部長さ:35mm)を作製し、750℃、および800℃それぞれにて、ひずみ速度は、0.2%耐力まで0.3%/min、以降3mm/minとして高温引張試験を行い、各温度における0.2%耐力(750℃耐力、800℃耐力)を測定した(JIS G 0567に準拠)。
高温強度の評価は、750℃耐力が120MPa超、かつ800℃耐力が40MPa超の場合を合格(「〇」)として評価し、いずか一方でも満たさない場合は不合格(「×」)として評価した。なお、750℃耐力が150MPa超、かつ800℃耐力が60MPa超の場合は高温強度が特に優れているものとして評価した(表2中で「◎」表記)。
[High temperature strength]
A plate-shaped high-temperature tensile test piece (plate thickness: 0.8 mm, parallel part width: 10.5 mm, parallel part length: 35 mm) with the rolling direction as the longitudinal direction is produced from the cold-rolled steel sheet, and is 750 ° C. and 800 At each temperature, the strain rate is 0.3% / min up to 0.2% proof stress, and then a high temperature tensile test is performed at 3 mm / min, and 0.2% proof stress at each temperature (750 ° C proof strength, 800 ° C proof strength). Was measured (according to JIS G 0567).
Evaluation of high-temperature strength is evaluated as a pass (“◯”) when the 750 ° C. yield strength is over 120 MPa and the 800 ° C. yield strength is over 40 MPa, and is rejected (“×”) when neither is satisfied. evaluated. When the 750 ° C. yield strength exceeded 150 MPa and the 800 ° C. yield strength exceeded 60 MPa, the high-temperature strength was evaluated as being particularly excellent (indicated by “◎” in Table 2).

[組織安定性(σ脆性/475℃脆性)]
冷延鋼板から、板面と垂直な断面上の中心(板厚中心部:t/2付近)を観察できるよう試料を2つ採取して、一方は、500℃×1000時間の熱処理(500℃熱処理)、もう一方は650℃×1000時間の熱処理(600℃熱処理)を行った。これら熱処理の雰囲気はともに大気中とした。次に、熱処理後の各試料を樹脂に埋め研磨した後、500℃熱処理後のビッカース硬さHv500℃、650℃熱処理後のビッカース硬さHv650℃それぞれをJIS Z 2244に準拠して荷重9.8Nで測定し、熱処理前に予め測定しておいた熱処理前ビッカース硬さからの硬さ上昇量ΔHv500℃、ΔHv650℃を算出した。
組織安定性(σ脆性/475℃脆性)の評価は、ΔHv500℃、ΔHv650℃ともに20未満のものを合格(「〇」)として評価し、いずか一方でも20以上であった場合は熱処理後の硬さ上昇が大きく組織が不安定であるとして不合格(「×」)とした。
[Structure stability (σ brittleness / 475 ° C brittleness)]
Two samples were taken from the cold-rolled steel plate so that the center on the cross section perpendicular to the plate surface (plate thickness center: around t / 2) could be observed, one of which was heat-treated at 500 ° C. for 1000 hours (500 ° C. Heat treatment), and the other was heat treated at 650 ° C. for 1000 hours (heat treatment at 600 ° C.). The atmosphere for these heat treatments was in the air. Next, after each heat-treated sample was buried in a resin and polished, the Vickers hardness Hv after 500 ° C. heat treatment was 500 ° C. , and the Vickers hardness after heat treatment at 650 ° C. was Hv 650 ° C. according to JIS Z 2244. Measured at .8N, the amount of increase in hardness ΔHv 500 ° C. and ΔHv 650 ° C. from pre-heat-treatment Vickers hardness measured in advance before heat treatment was calculated.
The evaluation of the structural stability (σ brittleness / 475 ° C brittleness) was evaluated as a pass (“◯”) when both ΔHv 500 ° C and ΔHv 650 ° C were less than 20, and when either was 20 or more It was rejected ("x") because the hardness increase after heat treatment was large and the structure was unstable.

得られた評価結果(粒界濃度の測定、各種特性)は表2の通りである。
No.1〜13は、本発明で規定する成分を満たし、すべての特性の評価は「○」あるいは「◎」となったものである。中でも、No.3、7、9、13は、本発明の好適な粒界濃度を満たしている場合であり、顕著な高温強度の向上効果を発現し、その評価は「◎」となった。また、No.2、3、8、9、11は、本発明の好適な成分組成(特に、Cr、Si、Al)を満たしている場合であり、顕著な耐酸化性の向上効果を発現し、その評価は「◎」となった。
The obtained evaluation results (measurement of grain boundary concentration, various characteristics) are as shown in Table 2.
No. 1-13 satisfy | fill the component prescribed | regulated by this invention, and evaluation of all the characteristics became "(circle)" or "(double-circle)". Among these, No. Nos. 3, 7, 9, and 13 are cases where the preferred grain boundary concentration of the present invention was satisfied, and a significant high-temperature strength improvement effect was exhibited. The evaluation was “◎”. No. 2, 3, 8, 9, and 11 are cases where the preferred component composition of the present invention (particularly Cr, Si, Al) is satisfied, and a significant effect of improving oxidation resistance is exhibited. “◎”.

鋼No.14〜19は、本発明で規定する鋼成分から外れるものであり、本発明の目標とする各特性を両立することができず、いずれかの評価が「×」となった。   Steel No. Nos. 14 to 19 deviate from the steel components defined in the present invention, and the respective characteristics targeted by the present invention could not be achieved, and either evaluation was “x”.

Figure 2019173072
Figure 2019173072

Figure 2019173072
Figure 2019173072

Claims (12)

質量%にて、
Cr:12.0〜16.0%、
C:0.020%以下、
Si:2.50%以下、
Mn:1.00%以下、
P:0.050%以下、
S:0.0030%以下、
Al:2.50%以下、
N:0.030%以下、
Nb:0.001〜1.00%、
Ni:0〜1.0%、
Cu:0〜1.0%、
Mo:0〜1.0%、
Sb:0〜0.5%、
W:0〜1.0%、
Co:0〜0.5%、
V:0〜0.5%、
Ti:0〜0.5%、
Zr:0〜0.5%、
La:0〜0.1%、
Y:0〜0.1%、
Hf:0〜0.1%、
REM:0〜0.1%
を含み、さらに、
B:0.0200%以下、
Sn:0.20%以下、
Ga:0.0200%以下、
Mg:0.0200%以下、
Ca:0.0100%以下
の1種または2種以上を含み、かつ下記式(1)を満たし、残部がFeおよび不純物からなることを特徴とするフェライト系ステンレス鋼。
10(B+Ga)+Sn+Mg+Ca>0.020 ・・・(1)
なお、式(1)中の各元素記号は、鋼中の各元素の含有量(質量%)を示す。
In mass%
Cr: 12.0 to 16.0%,
C: 0.020% or less,
Si: 2.50% or less,
Mn: 1.00% or less,
P: 0.050% or less,
S: 0.0030% or less,
Al: 2.50% or less,
N: 0.030% or less,
Nb: 0.001 to 1.00%,
Ni: 0 to 1.0%,
Cu: 0 to 1.0%
Mo: 0 to 1.0%,
Sb: 0 to 0.5%,
W: 0 to 1.0%
Co: 0 to 0.5%,
V: 0 to 0.5%
Ti: 0 to 0.5%,
Zr: 0 to 0.5%,
La: 0 to 0.1%
Y: 0 to 0.1%
Hf: 0 to 0.1%,
REM: 0 to 0.1%
Including,
B: 0.0200% or less,
Sn: 0.20% or less,
Ga: 0.0200% or less,
Mg: 0.0200% or less,
Ca: Ferritic stainless steel containing one or more of 0.0100% or less, satisfying the following formula (1), and the balance consisting of Fe and impurities.
10 (B + Ga) + Sn + Mg + Ca> 0.020 (1)
In addition, each element symbol in Formula (1) shows content (mass%) of each element in steel.
質量%にて、前記B:0.0002%以上であることを特徴とする請求項1に記載のフェライト系ステンレス鋼。   2. The ferritic stainless steel according to claim 1, wherein the B is 0.0002% or more in mass%. 質量%にて、結晶粒界のNb濃度が3.0〜10%の範囲であることを特徴とする請求項1又は2に記載のフェライト系ステンレス鋼。   The ferritic stainless steel according to claim 1 or 2, wherein the Nb concentration at a grain boundary is in a range of 3.0 to 10% by mass%. 質量%にて、前記Sn:0.005%以上であり、結晶粒界のSn濃度が1.0〜5.0%であることを特徴とする請求項1〜3の何れか一項に記載のフェライト系ステンレス鋼。   The Sn is 0.005% or more in mass%, and the Sn concentration at the crystal grain boundary is 1.0 to 5.0%. Ferritic stainless steel. 質量%にて、前記Si:0.5%以上、前記Al:1%以上、前記Nb:0.15%以上であることを特徴とする請求項1〜4の何れか一項に記載のフェライト系ステンレス鋼。   5. The ferrite according to claim 1, wherein the Si content is 0.5% or more, the Al content is 1% or more, and the Nb content is 0.15% or more. Stainless steel. 質量%にて、更に、Ni:0.10〜1.0%、Cu:0.10〜1.0%、Mo:0.10〜1.0%、Sb:0.01〜0.5%、W:0.10〜1.0%、Co:0.10〜0.5%、V:0.10〜0.5%、Ti:0.01〜0.5%、Zr:0.01〜0.5%、La:0.001〜0.1%以下、Y:0.001〜0.1%、Hf:0.001〜0.1%、REM:0.001〜0.1%の1種または2種以上含有していることを特徴とする請求項1〜5の何れか一項に記載のフェライト系ステンレス鋼。   In mass%, Ni: 0.10 to 1.0%, Cu: 0.10 to 1.0%, Mo: 0.10 to 1.0%, Sb: 0.01 to 0.5% , W: 0.10 to 1.0%, Co: 0.10 to 0.5%, V: 0.10 to 0.5%, Ti: 0.01 to 0.5%, Zr: 0.01 -0.5%, La: 0.001-0.1% or less, Y: 0.001-0.1%, Hf: 0.001-0.1%, REM: 0.001-0.1% The ferritic stainless steel according to any one of claims 1 to 5, wherein one or more of these are contained. 燃料改質器、熱交換器あるいは燃料電池部材に適用されることを特徴とする請求項1〜6の何れか一項に記載のフェライト系ステンレス鋼。   The ferritic stainless steel according to any one of claims 1 to 6, which is applied to a fuel reformer, a heat exchanger, or a fuel cell member. 燃焼器、あるいはバーナーの部材に適用されることを特徴とする請求項1〜7の何れか一項に記載のフェライト系ステンレス鋼。   The ferritic stainless steel according to any one of claims 1 to 7, wherein the ferritic stainless steel is applied to a combustor or a burner member. 請求項1、2、5、または6のいずれか一項に記載の組成を有するステンレス鋼材を熱間加工した後、700℃超で熱処理し、次いで冷間加工を行い、700℃超の仕上げ焼鈍を行うことを特徴とする請求項1〜6のいずれか一項に記載のフェライト系ステンレス鋼の製造方法。   A stainless steel material having the composition according to any one of claims 1, 2, 5, or 6 is hot-worked, then heat-treated at a temperature exceeding 700 ° C, then cold-worked, and finish annealing at a temperature exceeding 700 ° C. The method for producing a ferritic stainless steel according to any one of claims 1 to 6, wherein: 前記仕上げ焼鈍の後に、600〜700℃の温度範囲内で1分超、3時間以下保持する熱処理を施すことを特徴とする請求項9に記載のフェライト系ステンレス鋼の製造方法。   The method for producing a ferritic stainless steel according to claim 9, wherein after the finish annealing, a heat treatment is performed in a temperature range of 600 to 700 ° C for more than 1 minute and for 3 hours or less. 前記仕上げ焼鈍において、700℃超に加熱し冷却する際、600〜700℃の温度域での保持時間を1分超とすることを特徴とする請求項9に記載のフェライト系ステンレス鋼の製造方法。   10. The method for producing a ferritic stainless steel according to claim 9, wherein, in the finish annealing, when heating to 700 ° C. and cooling, a holding time in a temperature range of 600 to 700 ° C. is set to more than 1 minute. . 請求項1〜6のいずれか一項に記載のフェライト系ステンレス鋼を用いた燃料電池用部材。   The member for fuel cells using the ferritic stainless steel as described in any one of Claims 1-6.
JP2018060883A 2018-03-27 2018-03-27 Ferritic stainless steel, its manufacturing method, and fuel cell components Active JP6971184B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2018060883A JP6971184B2 (en) 2018-03-27 2018-03-27 Ferritic stainless steel, its manufacturing method, and fuel cell components
TW108110280A TWI801538B (en) 2018-03-27 2019-03-25 Ferritic stainless steel, method for producing the same, ferritic stainless steel sheet, method for producing the same, and members for fuel cell
EP19775851.9A EP3778959A4 (en) 2018-03-27 2019-03-26 Ferritic stainless steel and method for manufacturing same, ferritic stainless steel plate and method for manufacturing same, and fuel cell member
EP22154962.9A EP4036255A1 (en) 2018-03-27 2019-03-26 Ferritic stainless steel and method for manufacturing same, ferritic stainless steel sheet and method for manufacturing same, and fuel cell member
KR1020207028261A KR102444640B1 (en) 2018-03-27 2019-03-26 Ferritic stainless steel and manufacturing method thereof, ferritic stainless steel sheet and manufacturing method thereof, and member for fuel cell
CN201980020968.1A CN111902557B (en) 2018-03-27 2019-03-26 Ferritic stainless steel and method for producing same, ferritic stainless steel sheet and method for producing same, and fuel cell member
EP23165488.0A EP4223888A3 (en) 2018-03-27 2019-03-26 Ferritic stainless steel and method for manufacturing same, ferritic stainless steel sheet and method for manufacturing same, and fuel cell member
PCT/JP2019/012843 WO2019189174A1 (en) 2018-03-27 2019-03-26 Ferritic stainless steel and method for manufacturing same, ferritic stainless steel plate and method for manufacturing same, and fuel cell member
US17/040,870 US11667986B2 (en) 2018-03-27 2019-03-26 Ferritic stainless steel and method for manufacturing same, ferritic stainless steel sheet and method for manufacturing same, and fuel cell member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018060883A JP6971184B2 (en) 2018-03-27 2018-03-27 Ferritic stainless steel, its manufacturing method, and fuel cell components

Publications (2)

Publication Number Publication Date
JP2019173072A true JP2019173072A (en) 2019-10-10
JP6971184B2 JP6971184B2 (en) 2021-11-24

Family

ID=68166537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018060883A Active JP6971184B2 (en) 2018-03-27 2018-03-27 Ferritic stainless steel, its manufacturing method, and fuel cell components

Country Status (1)

Country Link
JP (1) JP6971184B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112020004500T5 (en) 2019-09-24 2022-06-09 Isuzu Motors Limited VEHICLE CONTROL DEVICE

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011174152A (en) * 2010-02-25 2011-09-08 Nisshin Steel Co Ltd Rare earth metal non-added ferritic stainless steel having excellent oxidation resistance at high temperature
JP2011202838A (en) * 2010-03-25 2011-10-13 Nisshin Steel Co Ltd Stainless steel refrigerant piping for heat exchanger
WO2013114833A1 (en) * 2012-01-30 2013-08-08 Jfeスチール株式会社 Ferritic stainless steel foil
WO2014157578A1 (en) * 2013-03-27 2014-10-02 新日鐵住金ステンレス株式会社 Ferritic stainless steel with excellent surface corrosion resistance after polishing, and process for producing same
JP2015145531A (en) * 2014-02-04 2015-08-13 新日鐵住金ステンレス株式会社 Ferritic stainless steel excellent in anticorrosiveness of after-polishing
WO2015147211A1 (en) * 2014-03-26 2015-10-01 新日鐵住金ステンレス株式会社 Rolled ferritic stainless-steel plate, process for producing same, and flange component
WO2016068139A1 (en) * 2014-10-31 2016-05-06 新日鐵住金ステンレス株式会社 Ferrite-based stainless steel plate, steel pipe, and production method therefor
WO2017073093A1 (en) * 2015-10-29 2017-05-04 新日鐵住金ステンレス株式会社 Ferritic stainless steel for fuel cell with excellent anti-creep strength and manufacturing method therefor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011174152A (en) * 2010-02-25 2011-09-08 Nisshin Steel Co Ltd Rare earth metal non-added ferritic stainless steel having excellent oxidation resistance at high temperature
JP2011202838A (en) * 2010-03-25 2011-10-13 Nisshin Steel Co Ltd Stainless steel refrigerant piping for heat exchanger
WO2013114833A1 (en) * 2012-01-30 2013-08-08 Jfeスチール株式会社 Ferritic stainless steel foil
WO2014157578A1 (en) * 2013-03-27 2014-10-02 新日鐵住金ステンレス株式会社 Ferritic stainless steel with excellent surface corrosion resistance after polishing, and process for producing same
JP2015145531A (en) * 2014-02-04 2015-08-13 新日鐵住金ステンレス株式会社 Ferritic stainless steel excellent in anticorrosiveness of after-polishing
WO2015147211A1 (en) * 2014-03-26 2015-10-01 新日鐵住金ステンレス株式会社 Rolled ferritic stainless-steel plate, process for producing same, and flange component
WO2016068139A1 (en) * 2014-10-31 2016-05-06 新日鐵住金ステンレス株式会社 Ferrite-based stainless steel plate, steel pipe, and production method therefor
WO2017073093A1 (en) * 2015-10-29 2017-05-04 新日鐵住金ステンレス株式会社 Ferritic stainless steel for fuel cell with excellent anti-creep strength and manufacturing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112020004500T5 (en) 2019-09-24 2022-06-09 Isuzu Motors Limited VEHICLE CONTROL DEVICE

Also Published As

Publication number Publication date
JP6971184B2 (en) 2021-11-24

Similar Documents

Publication Publication Date Title
US11667986B2 (en) Ferritic stainless steel and method for manufacturing same, ferritic stainless steel sheet and method for manufacturing same, and fuel cell member
JP5902253B2 (en) Ferritic stainless steel for fuel cells and method for producing the same
JP6190498B2 (en) Ferritic stainless steel and manufacturing method thereof
WO2017073093A1 (en) Ferritic stainless steel for fuel cell with excellent anti-creep strength and manufacturing method therefor
JP6006759B2 (en) Ferritic stainless steel for fuel reformer of fuel cell or heat exchanger of fuel cell and method for producing the same
JP2016204709A (en) Ferritic stainless steel sheet having excellent carburization resistance and oxidation resistance, and method of manufacturing the same
JP6765287B2 (en) Ferritic stainless steel, its manufacturing method, and fuel cell components
JP6423138B2 (en) Austenitic stainless steel for fuel reformer with excellent adhesion of oxide film and method for producing the same
JP7224141B2 (en) Ferritic stainless steel sheet, manufacturing method thereof, and fuel cell member
JP2017125248A (en) Ferritic stainless steel for solid oxide type fuel cell excellent in heat resistance and production method therefor
JP6006893B2 (en) Ferritic stainless steel for fuel cells
JP6971184B2 (en) Ferritic stainless steel, its manufacturing method, and fuel cell components
JP6498263B2 (en) Austenitic stainless steel for fuel reformer with excellent adhesion of oxide film and method for producing the same
JP6937717B2 (en) Ferritic stainless steel sheets and their manufacturing methods, as well as fuel cell components
JP7076258B2 (en) Ferritic stainless steel sheets and their manufacturing methods, as well as fuel cell components
JP7233195B2 (en) Ferritic stainless steel, manufacturing method thereof, and fuel cell member
JP6937716B2 (en) Ferritic stainless steel sheets and their manufacturing methods, as well as fuel cell components
JP6971185B2 (en) Ferritic stainless steel welded joints and fuel cell components
JP6053994B1 (en) Ferritic stainless steel for fuel cells with excellent creep resistance and method for producing the same
JP6655962B2 (en) Al-containing ferritic stainless steel welded joint with excellent 475 ° C brittle resistance
JP6873020B2 (en) Ferritic stainless steel sheets and their manufacturing methods, as well as fuel reformers and combustor components
JP7055050B2 (en) Ferritic stainless steel welding filler material
KR20240007212A (en) Ferritic stainless steel pipe and manufacturing method thereof, and fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211101

R150 Certificate of patent or registration of utility model

Ref document number: 6971184

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150