JP2009161836A - Ferritic stainless steel sheet excellent in corrosion resistance in welding crevice part - Google Patents

Ferritic stainless steel sheet excellent in corrosion resistance in welding crevice part Download PDF

Info

Publication number
JP2009161836A
JP2009161836A JP2008002364A JP2008002364A JP2009161836A JP 2009161836 A JP2009161836 A JP 2009161836A JP 2008002364 A JP2008002364 A JP 2008002364A JP 2008002364 A JP2008002364 A JP 2008002364A JP 2009161836 A JP2009161836 A JP 2009161836A
Authority
JP
Japan
Prior art keywords
corrosion resistance
welding
gap
weld
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008002364A
Other languages
Japanese (ja)
Inventor
Hiroki Tomimura
宏紀 冨村
Toshiro Adachi
俊郎 足立
Osamu Yamamoto
修 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2008002364A priority Critical patent/JP2009161836A/en
Publication of JP2009161836A publication Critical patent/JP2009161836A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ferritic stainless steel having excellent corrosion-resistance in a warm water environment using city water under state as welding in even any crevice structure, when a warm water vessel having the crevice structure is constituted with a TIG (tungsten-inserting gas) welding without performing Ar back gas sealing. <P>SOLUTION: The ferritic stainless steel is composed, by mass, of ≤0.02% C, 0.01-0.3% Si, ≤1% Mn, ≤0.04% P, ≤0.03% S, 0.2-2% Ni, 22-26% Cr, ≤0.8% Mo, 0.05-0.6% Nb, 0.05-0.4% Ti, ≤0.025% N, 0.02-0.3% Al and further, limited to <0.2% Cu as impurity and the balance Fe with the other inevitable impurities. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、TIG溶接により施工され溶接隙間構造を有する溶接部耐食性に優れるフェライト系ステンレス鋼板に関する。   The present invention relates to a ferritic stainless steel sheet that is constructed by TIG welding and has a weld gap structure and excellent weld corrosion resistance.

電気温水器や貯湯槽などの温水容器の材料としてフェライト系ステンレス鋼のSUS444(低C、低N、18〜19Cr−2Mo−Nb、Ti系鋼)が広く用いられている。
SUS444は温水環境での耐食性向上を主目的に開発された鋼種である。
Ferritic stainless steel SUS444 (low C, low N, 18-19Cr-2Mo-Nb, Ti steel) is widely used as a material for hot water containers such as electric water heaters and hot water storage tanks.
SUS444 is a steel type developed mainly for the purpose of improving the corrosion resistance in a hot water environment.

温水容器は、構成部材(例えば鏡と胴)をTIG溶接により接合した「溶接隙間構造」を有するものが主流である。溶接隙間構造の温水容器を上水の温水環境で使用すると、溶接隙間部で腐食が生じやすい。SUS444の場合、腐食形態が孔食であるときには再不動態化しやすく、孔食が成長するケースは稀である。しかし、隙間腐食であるときには再不動態化しにくいので腐食が成長し、板厚を貫通して漏水に至ることもある。このため、温水容器では腐食しやすい隙間構造の形成をできるだけ避ける構造とすることが望ましい。しかし、鏡と胴の溶接接合部など、施工上、隙間の形成を回避することが難しい部位もある。   The mainstream hot water containers have a “weld gap structure” in which constituent members (for example, a mirror and a barrel) are joined by TIG welding. When a hot water container having a weld gap structure is used in a warm water environment, corrosion tends to occur in the weld gap portion. In the case of SUS444, re-passivation tends to occur when the corrosion form is pitting corrosion, and pitting corrosion grows rarely. However, since crevice corrosion is difficult to repassivate, corrosion grows and may penetrate the plate thickness and lead to water leakage. For this reason, it is desirable to make it the structure which avoids formation of the crevice structure which is easy to corrode with a hot water container as much as possible. However, there are some parts where it is difficult to avoid the formation of a gap in construction, such as a welded joint between the mirror and the body.

温水容器をTIG溶接により製造する際には、溶接部の耐食性低下を小さくするため、一般にArバックガスシールを行って裏ビード側の酸化を抑制する対策が採られている。ところが、電気温水器では追い焚き機能のニーズが高まり、蛇管を内部に装入した構造の缶体が増えてきた。この場合、溶接時にArバックガスシールを行うためのノズルを缶体内部に挿入することが難しくなり、バックガスシールなしのTIG溶接を採用せざるを得ないケースが増え、耐食性低下に対する不安要因となっている。   When manufacturing a hot water container by TIG welding, in order to reduce the corrosion-resistance fall of a welding part, generally the countermeasure which suppresses the oxidation by the back bead side by performing an Ar back gas seal is taken. However, with electric water heaters, the need for a reheating function has increased, and the number of cans with a structure in which a serpentine tube is inserted has increased. In this case, it becomes difficult to insert a nozzle for performing Ar back gas sealing during welding into the inside of the can body, increasing the number of cases in which TIG welding without back gas sealing has to be adopted, which is a cause of anxiety about a decrease in corrosion resistance. It has become.

また、地球環境問題から、電気温水器に比べ消費電力の少ないCO冷媒ヒートポンプ給湯器(エコキュート(登録商標))の需要が高まってきた。この方式でヒーター加熱を行わないので、ヒーター挿入のためのフランジは本来不要であるが、TIG溶接時のバックガスシール用ノズルを挿入するためにはフランジが省略できないなど、コストアップに繋がる問題が生じる。 In addition, due to global environmental problems, demand for a CO 2 refrigerant heat pump water heater (EcoCute (registered trademark)) that consumes less power than an electric water heater has increased. Since the heater is not heated by this method, the flange for inserting the heater is originally unnecessary, but the flange cannot be omitted to insert the back gas sealing nozzle at the time of TIG welding. Arise.

特許文献1には鏡への胴の挿入深さを20mmまでとし、隙間腐食の発生を避けた構造の温水器用ステンレス鋼製缶体が記載されている。鋼種としてはSUS444相当鋼が採用されている。しかし、発明者らの調査によれば溶接で耐食性が低下する熱影響部は溶接ビードから概ね10mm程度の範囲であり、上記構造では安定した耐食性向上効果が十分に得られない場合がある。また、このSUS444相当鋼をArバックガスシールを行わないTIG溶接に供すると、裏ビード部での酸化スケールの生成部分では著しい耐食性低下が生じることが予想される。   Patent Document 1 describes a stainless steel can for a water heater having a structure in which the depth of insertion of a barrel into a mirror is up to 20 mm and the occurrence of crevice corrosion is avoided. SUS444 equivalent steel is adopted as the steel type. However, according to the investigation by the inventors, the heat affected zone where the corrosion resistance is reduced by welding is in the range of about 10 mm from the weld bead, and the above structure may not provide a sufficient effect of improving the corrosion resistance. In addition, when this SUS444 equivalent steel is subjected to TIG welding without performing Ar back gas sealing, it is expected that a significant reduction in corrosion resistance will occur in the portion where the oxide scale is formed in the back bead portion.

特許文献2にはTiとAlを複合添加することにより溶接時のCr酸化ロスを抑制し、溶接部での耐食性低下を改善したフェライト系ステンレス鋼が記載されている。この鋼を使用することにより温水容器の耐食性レベルを大きく向上させることが可能になった。しかし、この鋼の場合も、Arバックガスシールを行わないTIG溶接ではCrの酸化ロスを十分に抑制することはできず、溶接隙間部の耐食性の大幅な低下は避けられない。   Patent Document 2 describes a ferritic stainless steel in which Cr and oxidization loss during welding are suppressed by adding Ti and Al in a composite manner, and deterioration in corrosion resistance at the welded portion is improved. By using this steel, the corrosion resistance level of the hot water container can be greatly improved. However, even in the case of this steel, the oxidation loss of Cr cannot be sufficiently suppressed by TIG welding without performing Ar back gas sealing, and a significant reduction in the corrosion resistance of the weld gap is inevitable.

特開昭54−72711号公報JP 54-72711 A 特開平5−70899号公報JP-A-5-70899

特許文献3には、バックガスシールを行わないTIG溶接により形成された裏ビード側溶接部の耐食性向上として21質量%を超えるCr含有量を確保し、Ni,Cuの添加でTIG溶接裏面熱影響部の耐食性を大きく改善する鋼を提案されている。この鋼を使用することにより温水容器の耐食性レベルを大きく向上させることが可能になった。しかし、隙間構造やCu量によっては十分なTIG溶接隙間部の耐食性改善効果が得られないことがあった。   In Patent Document 3, a Cr content exceeding 21% by mass is secured as an improvement in the corrosion resistance of the back bead side weld formed by TIG welding without back gas sealing, and the addition of Ni and Cu affects the thermal effect on the back surface of the TIG weld. Steels that greatly improve the corrosion resistance of the parts have been proposed. By using this steel, the corrosion resistance level of the hot water container can be greatly improved. However, depending on the gap structure and the amount of Cu, a sufficient effect of improving the corrosion resistance of the TIG weld gap may not be obtained.

特願2007−088124Japanese Patent Application No. 2007-088124

上述のように、昨今の温水容器においては、TIG溶接で製造する際にArバックガスシールを実施しにくい構造のものが増えている。一方で、製造コスト低減等の要請から溶接部に隙間を形成しないような構造の温水容器を設計することも難しい状況にある。本発明は、このような現状に鑑み、Arバックガスシールを行わないTIG溶接により隙間構造をもった温水容器を構築したときに、どのような隙間構造であっても溶接ままの状態で上水を使用した温水環境において優れた耐食性を呈するフェライト系ステンレス鋼を開発し提供することを目的とする。 As described above, in recent hot water containers, there are an increasing number of structures that are difficult to carry out Ar back gas sealing when manufactured by TIG welding. On the other hand, it is also difficult to design a hot water container having a structure that does not form a gap in the weld due to a demand for manufacturing cost reduction or the like. In view of such a current situation, the present invention, when constructing a hot water container having a gap structure by TIG welding without performing Ar back gas seal, does not cause any gap structure to be in the state of welding. The purpose is to develop and provide ferritic stainless steel exhibiting excellent corrosion resistance in a hot water environment.

発明者らは上記目的を達成すべく詳細な研究を行った結果、以下のようなことを見出した。
(i)溶接隙間部の耐食性は、溶接スケールのほか、隙間のクリアランスと隙間深さなどの隙間構造に依存する。とくに隙間開口部から溶着部(溶接ボンド)までの隙間深さは重要である。隙間腐食は一定の範囲の隙間深さの構造で成長する。すなわち、隙間深さが浅いと腐食は成長せず、隙間深さが深すぎても同様である。
(ii)22質量%を超えるCr含有量を確保して基本的耐食性レベルを向上させることが、バックガスシールを行わないTIG溶接により形成された裏ビード側溶接隙間部の耐食性向上に極めて有効である。
(iii)Ni、Cuの溶接隙間部の耐食性改善効果は異なる。Niは溶接隙間部で発生した隙間腐食の板厚方向の成長を抑制する効果が大きい。一方、Cuは隙間腐食の横広がりの成長を抑制するが、板厚方向への成長を抑制する効果は小さく、場合によっては逆に侵食が深くなることを突き止めた。したがって、溶接隙間構造での耐食性が要求される用途ではCu量を規制する必要がある。
(iv)溶接部の耐食性向上に有効であるとされてきたSiは、一定量以上添加するとバックガスシールを行わないTIG溶接においては、溶接ままの裏ビード側溶接部において、
むしろ耐食性を低下させる。
(v)耐食性改善元素として知られるMoは、ステンレス鋼表面での酸化の抑制、すなわち溶接部の耐食性改善には有効に作用しない。
本発明はこのような知見に基づいて成分設計された新たなフェライト系ステンレス鋼を
提供するものである。
As a result of detailed studies to achieve the above object, the inventors have found the following.
(I) The corrosion resistance of the weld gap depends on the gap structure such as the gap clearance and gap depth as well as the weld scale. In particular, the depth of the gap from the gap opening to the welded portion (weld bond) is important. Crevice corrosion grows in structures with a range of gap depths. That is, if the gap depth is shallow, corrosion does not grow, and the same is true if the gap depth is too deep.
(Ii) It is extremely effective to improve the corrosion resistance of the back bead side weld gap formed by TIG welding without back gas sealing to ensure the Cr content exceeding 22% by mass and improve the basic corrosion resistance level. is there.
(Iii) The effect of improving the corrosion resistance of the weld gaps of Ni and Cu is different. Ni has a great effect of suppressing the growth in the thickness direction of crevice corrosion occurring in the weld gap. On the other hand, Cu suppressed lateral growth of crevice corrosion, but the effect of suppressing growth in the plate thickness direction was small, and it was found that erosion deepened in some cases. Therefore, it is necessary to regulate the amount of Cu in applications that require corrosion resistance in the weld gap structure.
(Iv) Si, which has been said to be effective for improving the corrosion resistance of the welded portion, in TIG welding that does not perform back gas sealing when added over a certain amount, in the back bead side welded portion as-welded,
Rather, it reduces the corrosion resistance.
(V) Mo, which is known as an element for improving corrosion resistance, does not effectively act to suppress oxidation on the surface of stainless steel, that is, to improve the corrosion resistance of welds.
The present invention provides a new ferritic stainless steel whose components are designed based on such knowledge.

すなわち本発明では、質量%で、C:0.02%以下、Si:0.01〜0.3%、Mn:1%以下、P:0.04%以下、S:0.03%以下、Ni:0.3〜2%以下、Cr:22〜26%、Mo:1.0%以下、Nb:0.05〜0.6%、Ti:0.05〜0.4%、N:0.025%以下、Al:0.02〜0.3%であり、不純物としてのCuを0.3%未満に制限し、残部Feおよび他の不可避的不純物からなる、溶接隙間部の耐食性に優れることを特長とする溶フェライト系ステンレス鋼板を提供する。   That is, in the present invention, in mass%, C: 0.02% or less, Si: 0.01 to 0.3%, Mn: 1% or less, P: 0.04% or less, S: 0.03% or less, Ni: 0.3-2% or less, Cr: 22-26%, Mo: 1.0% or less, Nb: 0.05-0.6%, Ti: 0.05-0.4%, N: 0 0.025% or less, Al: 0.02 to 0.3%, Cu as an impurity is limited to less than 0.3%, and the corrosion resistance of the weld gap is excellent, with the balance being Fe and other inevitable impurities. A molten ferritic stainless steel sheet is provided.

この鋼板は、冷延焼鈍酸洗した後、その鋼板を7mmの隙間深さと最大隙間間隔20μm以下でアルゴンバックガスシールなしでTIG溶接隙間構造を形成した試験片に対し、ボンド端部から1mm以内の溶接隙間部の酸化スケールの稠密度が80%以上を有するものである。   This steel sheet is cold-rolled annealed and pickled, and the steel sheet is within 1 mm from the bond end with respect to a test piece in which a TIG weld gap structure is formed with a gap depth of 7 mm and a maximum gap distance of 20 μm or less and without an argon back gas seal. The density of the oxide scale in the weld gap is 80% or more.

ここで、「無手入れのまま」とは、溶接部に生じた酸化スケールを除去する手段(研唐等の機械的除去手段および酸洗等の化学的除去手段)が施されておらず、溶接されたままの状態であることを意味する。
「溶接部」は溶接ビード部と熱影響部からなる領域である。上記浸漬試験に供するための溶接隙間を形成するには、2枚の鋼板を重ね、一方の鋼飯を水平から10°開き、TIG溶接のアークを一定速度で移動させながら裏ビード(アークを当てる面の裏面に現れる溶接金属部)が形成される条件で溶接ビードを形成していく手法が採用される。その際、溶接隙間となる部位と裏ビード側には一切バックガスシールを行わない。また、溶加材も使用しない。試験片には溶接隙間部とその両側の母材部が含まれるようにする。
Here, “uncleaned” means that no means for removing the oxide scale generated in the welded part (mechanical removal means such as sharpening and chemical removal means such as pickling) has been applied. It means that it has been done.
The “welded part” is an area composed of a weld bead part and a heat affected part. In order to form a welding gap for use in the immersion test, two steel plates are stacked, one steel rice is opened from the horizontal by 10 °, and the back bead (arc is applied while moving the TIG welding arc at a constant speed. A technique is adopted in which a weld bead is formed under the condition that a weld metal portion appearing on the back surface of the surface is formed. At that time, no back gas sealing is performed on the part that becomes the welding gap and the back bead side. Also, no filler material is used. The test piece should include the weld gap and the base metal parts on both sides.

ステンレス鋼にとって隙間構造と溶接熱影響部の酸化皮膜の存在が耐食性の劣化をもたらす主要因であるが、予備検討した結果、本組成の範囲で酸化スケール中の稠密度が80%以上、言い換えれば酸化スケール中に存在する空隙の比率を20%以下とすることにより、溶接隙間構造部の耐食性を向上させるのに有効であることを見出した。   For stainless steel, the gap structure and the presence of the oxide film in the weld heat affected zone are the main factors that cause deterioration in corrosion resistance. As a result of preliminary studies, the density in the oxide scale is 80% or more within the range of this composition, in other words, It has been found that by setting the ratio of voids present in the oxide scale to 20% or less, the corrosion resistance of the weld gap structure is effective.

本発明のフェライト系ステンレス鋼を使用すると、温水環境における溶接部の耐食性が顕著に改善される。特に、バックガスシールなしのTIG溶接によって形成された溶接隙間部を無手入れのまま高温の上水に曝して使用した場合でも、長期間優れた耐食性が維持される。すなわち温水容器をTIG溶接により製造する際に、Arバックガスシールを省略しても高い信頼性が得られる。したがって本発明によれば、高耐食性が要求される上水環境での温水容器において設計自由度の拡大が可能になる。また、今後需要増が見込まれるCO冷媒ヒートポンプ給湯器の温水缶体ではバックガスシールのためのフランジが不要になり、コスト低減が可能になる。 When the ferritic stainless steel of the present invention is used, the corrosion resistance of the weld in a warm water environment is significantly improved. In particular, even when a weld gap formed by TIG welding without a back gas seal is exposed to high temperature water without maintenance, excellent corrosion resistance is maintained for a long time. That is, when manufacturing the hot water container by TIG welding, high reliability can be obtained even if the Ar back gas seal is omitted. Therefore, according to the present invention, it is possible to expand the degree of design freedom in a hot water container in a water supply environment where high corrosion resistance is required. Further, in the hot water can body of the CO 2 refrigerant heat pump water heater that is expected to increase in demand in the future, the flange for the back gas seal becomes unnecessary, and the cost can be reduced.

本発明のフェライト系ステンレス鋼を構成する成分元素について説明する。
C、Nは、鋼中に不可避的に含まれる元素である。C、Nの含有量を低減すると鋼は軟質になり加工性が向上するとともに炭化物、窒化物の生成が少なくなり、溶接性および溶接部の耐食性が向上する。このため本発明ではC、Nとも含有量は少ない方が良く、Cは0.02質量%まで、Nは0.025質量%まで含有が許容される。
The component elements constituting the ferritic stainless steel of the present invention will be described.
C and N are elements inevitably contained in the steel. When the content of C and N is reduced, the steel becomes soft and the workability is improved, and the formation of carbides and nitrides is reduced, and the weldability and the corrosion resistance of the welded portion are improved. Therefore, in the present invention, it is better that the contents of both C and N are small, and C is allowed to be contained up to 0.02% by mass and N is allowed to be contained up to 0.025% by mass.

Siは、Arガスシールを行ってTIG溶接する場合、溶接部の耐食性改善に有効に作用する。しかしながら発明者らの詳細な検討によれば、ガスシールなしでTIG溶接する場合、Siは逆に溶接部の耐食性を阻害する要因になることがわかった。このため、耐食性の点ではSi含有量は低い方が好ましく、本発明では0.3質量%以下に規定する。ただし、Siはフエライト系鋼の硬質化に寄与するので、例えば水道に直結して使用する高圧タイブの温水容器をはじめとして継手の強度が要求されるような用途などでは、Siの添加は有利となる。種々検討の結果、Siによる強度向上作用を十分に享受するには、0.01質量%以上の含有量を確保することが望まれる。したがって本発明ではSi含有量を0.01〜0.3質量%に範囲にコントロールする。   Si effectively acts to improve the corrosion resistance of the weld when performing Ar gas sealing and TIG welding. However, according to detailed examinations by the inventors, it has been found that when TIG welding is performed without a gas seal, Si becomes a factor that inhibits corrosion resistance of the welded portion. For this reason, in terms of corrosion resistance, the Si content is preferably low. In the present invention, the Si content is specified to be 0.3% by mass or less. However, since Si contributes to the hardening of ferritic steel, the addition of Si is advantageous in applications where the strength of joints is required, such as high-pressure type hot water containers directly connected to waterworks. Become. As a result of various studies, it is desired to secure a content of 0.01% by mass or more in order to fully enjoy the effect of improving the strength of Si. Therefore, in the present invention, the Si content is controlled in the range of 0.01 to 0.3% by mass.

Mnは、ステンレス鋼の脱酸剤として使用される。しかしMnは不動態皮膜中のCr濃度を低下させ、耐食性低下を招く要因となるので、本発明ではMn含有量は低い方が好ましく、1質量%以下の含有量に規定される。スクラップを原料とするステンレス鋼ではある程度のMn混入は避けられないので、過剰に含有されないよう管理が必要である。   Mn is used as a deoxidizer for stainless steel. However, Mn lowers the Cr concentration in the passive film and causes a decrease in corrosion resistance. Therefore, in the present invention, the Mn content is preferably low, and is defined as a content of 1% by mass or less. Since some amount of Mn is unavoidable in the stainless steel made from scrap, it is necessary to manage it so that it is not excessively contained.

Pは、母材および溶接部の靭性を損なうので低い方が望ましい。ただし、含Cr鋼の溶製において精錬による脱りんは困難であることから、P含有量を極低化するには原料の厳選などに過剰なコスト増を伴う。したがって本発明では一般的なフェライト系ステンレス鋼と同様に、0.04質量%までのP含有を許容する。   P is desirable to be low because it impairs the toughness of the base metal and the weld. However, since dephosphorization by refining is difficult in the production of Cr-containing steel, excessively increasing the cost, such as careful selection of raw materials, is required to minimize the P content. Therefore, in the present invention, the P content up to 0.04% by mass is allowed as in the case of general ferritic stainless steel.

Sは、孔食の起点となりやすいMnSを形成して耐食性を阻害することが知られているが、本発明では適量のTiを必須添加するので、Sを特に厳しく規制する必要はない。すなわち、TiはSとの親和力が強く、化学的に安定な硫化物を形成するので、耐食性低下の原因になるMnSの生成が十分に抑止される。一方、あまり多量にSが含まれると溶接部の高温割れが生じやすくなるので、S含有量は0.03質量%以下に規定される。   It is known that S forms MnS that tends to be a starting point of pitting corrosion and inhibits corrosion resistance. However, since an appropriate amount of Ti is essentially added in the present invention, it is not necessary to regulate S particularly severely. That is, since Ti has a strong affinity for S and forms a chemically stable sulfide, the generation of MnS that causes a decrease in corrosion resistance is sufficiently suppressed. On the other hand, if too much S is contained, hot cracking of the welded portion is likely to occur, so the S content is specified to be 0.03% by mass or less.

Crは、不動態皮膜の主要構成元素であり、耐孔食性や耐隙間腐食性などの局部腐食性の向上をもたらす。バックガスシールなしでTIG溶接した溶接部の耐食性はCr含有量に大きく依存することから、Crは本発明において特に重要な元素である。発明者らの検討の結果、バックガスシールなしで溶接した溶接部に温水環境で要求される耐食性を付与するには21質量%を超えるCr含有量を確保すべきであることがわかった。耐食性向上効果はCr含有量が多くなるに伴って向上する。しかし、Cr含有量が多くなるとC、Nの低減が難しくなり、機械的性質や靭性を損ねかつコストを増大させる要因となる。
本発明では、Cr含有量が22質量%以上の鋼ではNiの溶接隙間部の耐食性改善効果が大きくなること、Cuは不純物レベルの混入であっても板厚方向に腐食が進行するため、Cuの上限を規制することで、厳しい環境への適用においてもCr含有量のさらなる増加に頼ることなく、上述の問題を最小限に抑え、十分な耐食性を得ることができる。したがって本発明ではCr含有量を22〜26質量%とする。
Cr is a main constituent element of the passive film, and improves local corrosion properties such as pitting corrosion resistance and crevice corrosion resistance. Cr is a particularly important element in the present invention because the corrosion resistance of a welded portion TIG welded without a back gas seal depends greatly on the Cr content. As a result of investigations by the inventors, it has been found that a Cr content exceeding 21% by mass should be ensured in order to impart corrosion resistance required in a hot water environment to a welded portion welded without a back gas seal. The corrosion resistance improving effect is improved as the Cr content is increased. However, when the Cr content increases, it becomes difficult to reduce C and N, which causes a deterioration in mechanical properties and toughness and an increase in cost.
In the present invention, the steel having a Cr content of 22% by mass or more has a large effect of improving the corrosion resistance of the Ni weld gap, and Cu progresses in the plate thickness direction even if it is mixed with an impurity level. By restricting the upper limit, the above-mentioned problems can be minimized and sufficient corrosion resistance can be obtained without depending on further increase in the Cr content even in severe environment applications. Therefore, in this invention, Cr content shall be 22-26 mass%.

Moは、Crとともに耐食性レベルを向上させるための有効な元素であり、その耐食性向上作用は高Crになるほど大きくなることが知られている。ところが、発明者らの詳細な検討によれば、バックガスシールなしでTIG溶接した溶接隙間部や裏ビード側の溶接部については、Moによってもたらされる耐食性向上作用はあまり大きくないことがわかった。本発明の主な用途である上水の温水環境に対しては0.2質量%以上のMoを含有させることが効果的であるが、0.8質量%を超えて増量しても耐隙間腐食性の改善効果は小さく、徒にコスト上昇を招くのみで得策ではない。したがってMo含有量は0.8質量%以下とする。   Mo is an effective element for improving the corrosion resistance level together with Cr, and it is known that the effect of improving the corrosion resistance increases as the Cr content increases. However, according to detailed investigations by the inventors, it has been found that the corrosion resistance improving effect brought about by Mo is not so great for the weld gap portion and the back bead side weld portion which are TIG welded without a back gas seal. Although it is effective to contain 0.2% by mass or more of Mo for the warm water environment of clean water, which is the main use of the present invention, even if the amount exceeds 0.8% by mass, it is resistant to gaps. The effect of improving corrosivity is small. Therefore, the Mo content is 0.8% by mass or less.

Nbは、Tiと同様にC、Nとの親和力が強く、フエライト系ステンレス鋼で問題となる粒界腐食を防止するのに有効な元素である。その効果を十分発揮させるには0.05質量%以上のNb含有量を確保することが望ましい。しかし、過剰に添加すると溶接高温割れが生じるようになり、溶接部靭性も低下するので、Nb含有量の上限は0.6質量%とする。   Nb has a strong affinity for C and N like Ti, and is an element effective in preventing intergranular corrosion, which is a problem in ferrite stainless steel. In order to sufficiently exhibit the effect, it is desirable to secure an Nb content of 0.05% by mass or more. However, if added in excess, weld hot cracking occurs and the weld zone toughness also decreases, so the upper limit of the Nb content is 0.6% by mass.

Tiは、Arバックガスシールを行う従来のTIG溶接において溶接部の耐食性向上に寄与する元素であるが、バックガスシールなしのTIG溶接においても隙間部やその裏ビード側溶接部の耐食性を顕著に改善する作用を有することがわかった。そのメカニズムについては必ずしも明確ではないが、Arバックガスシールを行うTIG溶接の場合は、Alとの複合添加により溶接時に鋼表面にAl主体の酸化皮膜が優先的に形成され、結果的にCrの酸化ロスが抑制されるものと考えられる。他方、バックガスシールなしのTIG溶接の場合は、その溶接部においてTiは腐食発生後の再不動態化を促進する作用を発揮し、それによって耐食性が向上するものと推察される。このようなTiの作用を十分に享受するには0.05質量%以上のTi含有量を確保することが望ましい。しかし、Ti含有量が多くなると素材の表面品質が低下したり、溶接ビードに酸化物が生成して溶接性が低下したりしやすいので、Ti含有量の上限は0.4質量%とする。   Ti is an element that contributes to improving the corrosion resistance of welds in conventional TIG welding that performs Ar back gas sealing. However, even in TIG welding without back gas sealing, the corrosion resistance of the gap and its back bead side welds is remarkable. It was found to have an improving effect. Although the mechanism is not necessarily clear, in the case of TIG welding with Ar back gas sealing, an oxide film mainly composed of Al is preferentially formed on the steel surface during the welding due to the combined addition with Al. It is thought that oxidation loss is suppressed. On the other hand, in the case of TIG welding without a back gas seal, it is presumed that Ti exhibits an action of promoting repassivation after the occurrence of corrosion, thereby improving corrosion resistance. In order to fully enjoy such an action of Ti, it is desirable to secure a Ti content of 0.05% by mass or more. However, if the Ti content is increased, the surface quality of the material is deteriorated, or oxide is generated in the weld bead and the weldability is likely to be lowered. Therefore, the upper limit of the Ti content is 0.4% by mass.

Alは、Tiとの複合添加によって溶接による耐食性低下を抑制する。その作用を十分に得るためには0.02質量%以上のAl含有量を確保することが望ましい。一方、過剰のAl含有は素材の表面品質の低下や、溶接性の低下を招くので、Al含有量は0.3質量%以下とする。   Al suppresses a decrease in corrosion resistance due to welding by the combined addition with Ti. In order to obtain the effect sufficiently, it is desirable to secure an Al content of 0.02% by mass or more. On the other hand, excessive Al content causes deterioration of the surface quality of the material and weldability, so the Al content is 0.3% by mass or less.

Niは、ArバックガスシールなしのTIG溶接において溶接スケール中のCr濃度を高め、化学的に安定なCrの生成量を増加しスケールの耐食性を向上させる。さらにNiはCrとFe両方のスケールの稠密度を上昇させる効果があることを見出した。その効果を出すためにはNiが0.2%以上必要である。ただし多量のNi含有は鋼を硬質にし加工性を阻害するので、2質量%以下の範囲で行う。 Ni increases the Cr concentration in the welding scale in TIG welding without Ar back gas sealing, it increased to improve the corrosion resistance of scale production of chemically stable Cr 2 0 3. Furthermore, it has been found that Ni is effective in increasing the density of both Cr 2 0 3 and Fe 2 0 3 scales. In order to obtain the effect, Ni needs to be 0.2% or more. However, if a large amount of Ni is contained, the steel is hardened and the workability is hindered.

Cuは、ArバックガスシールなしのTIG突合せ溶接部の耐食性において、溶接裏面熱影響部での孔食発生を抑制したが、TIG溶接隙間では隙間腐食面積を小さくするが、侵食深さについては、隙間条件にもよるが逆に侵食を深くすることがある。したがって、バックガスシールなしのTIG溶接で隙間を形成する用途ではCuは耐食性を阻害する恐れがある。このため、本発明ではCuを添加しない。さらにCuの耐隙間腐食性阻害の作用は不純物レベルであっても現れるため、Cuの上限を0.2%未満に規制する。   Cu suppressed the occurrence of pitting corrosion at the heat-affected zone on the back side of the weld in the corrosion resistance of the TIG butt weld without an Ar back gas seal, but reduces the crevice corrosion area in the TIG weld gap, but the erosion depth is Depending on the gap condition, erosion may be deepened. Therefore, Cu may interfere with corrosion resistance in applications where gaps are formed by TIG welding without a back gas seal. For this reason, Cu is not added in the present invention. Furthermore, since the effect of inhibiting crevice corrosion resistance of Cu appears even at the impurity level, the upper limit of Cu is restricted to less than 0.2%.

また、本発明にかかる鋼材の冷延焼鈍酸洗板を7mmの隙間深さと最大隙間間隔20μm以下、アルゴンバックガスシールなしで以下の溶接条件によりTIG溶接隙間構造を形成した場合、ボンド端部から1mm以内の溶接隙間部の酸化スケールの稠密度が80%以上となる。
(溶接条件)
溶接法:溶接芯線なしの突合せ溶接
溶接電流:60A 溶接速度:300mm/min
トーチシール側のArガス流量:12L/min
電極径:φ1.6mm
In addition, when a TIG welded gap structure is formed under the following welding conditions without using an argon back gas seal, a cold rolled annealed pickled steel sheet according to the present invention has a gap depth of 7 mm and a maximum gap distance of 20 μm or less. The density density of the oxide scale in the weld gap within 1 mm is 80% or more.
(Welding conditions)
Welding method: Butt welding without welding core wire Welding current: 60A Welding speed: 300mm / min
Ar gas flow rate on the torch seal side: 12 L / min
Electrode diameter: φ1.6mm

このときに生成される酸化スケールはコランダム型のCrもしくはFeである。
酸化スケールの生成過程で、溶接時の熱履歴により酸化スケール/母材界面もしくは酸化スケール内で剥離が生じることがあるが、この剥離が酸化スケールの稠密度を低下させ、すなわち空隙率を増大させることになる。その結果、酸化スケールを介しての腐食液の浸透が助長され、腐食が促進されてしまう。
Niはこの剥離を抑制する効果があるため、腐食の防止につながる。
The oxide scale generated at this time is corundum type Cr 2 O 3 or Fe 2 O 3 .
During the oxide scale generation process, peeling may occur at the oxide scale / base metal interface or within the oxide scale due to the thermal history during welding. This peeling lowers the density density of the oxide scale, that is, increases the porosity. It will be. As a result, penetration of the corrosive liquid through the oxide scale is promoted and corrosion is accelerated.
Since Ni has an effect of suppressing this peeling, it leads to prevention of corrosion.

表1に示す化学組成を有するステンレス鋼を溶製し、熱間圧延にて板厚3mmの熱延板を作製した。その後、冷間圧延にて板厚1.0mmとし、仕上焼鈍を1000〜1070℃で行い、酸洗を施すことによって供試材とした。   Stainless steel having the chemical composition shown in Table 1 was melted, and a hot-rolled sheet having a thickness of 3 mm was produced by hot rolling. Thereafter, the plate thickness was 1.0 mm by cold rolling, finish annealing was performed at 1000 to 1070 ° C., and pickling was performed to obtain a test material.

Figure 2009161836
Figure 2009161836

各供試材について、図1に示す方法にてTIG溶接隙間を形成した。溶接はArバックガスシールを施さずに行った。すなわち、2枚の鋼板を重ねてTIG溶接する際、隙間開口部を作るため、一方の鋼板に10°の角度で曲げを施した後・隙間となる面を大気に曝した状態で溶接を行った0溶接条件は、溶け込み(溶接金属部)が裏面まで到達し・裏面に約4mm幅の「裏ビード」が形成される条件とした。この条件の場合、溶接熱影響部(HAZ)は板厚中央部でビード中心からの距離が約10mmの範囲となる。   For each specimen, a TIG welding gap was formed by the method shown in FIG. Welding was performed without an Ar back gas seal. That is, when two steel plates are stacked and TIG welded, a gap opening is made. After bending one steel plate at an angle of 10 °, welding is performed with the surface that becomes the gap exposed to the atmosphere. The 0 welding conditions were such that the penetration (welded metal part) reached the back surface and a “back bead” having a width of about 4 mm was formed on the back surface. In the case of this condition, the welding heat affected zone (HAZ) is in the center of the plate thickness and the distance from the bead center is in the range of about 10 mm.

供試鋼の評価に先立ち、表1に記載の比較鋼No.7を用いて、隙間構造、特に隙間深さと隙間腐食による侵食深さの関係を調べた。図1に示すように、「隙間深さ」を溶接ビード中心から曲げ位置までの距離(mm)と定義し、隙間深さ7mmと固定して作製した。
溶接で生じた酸化スケールを除去していない試料(無手入れのままの試料)から15×40mmの試験片を切り出し、温水中での浸漬試験に供した。
図2に溶接隙間試験片の外観を模式的に示す。溶接ビードが試験片長手方向中央位置を横切るように試験片を採取した。この浸漬試験片には溶接ビード部、熟影響部および母材部が含まれる。母材部の端にリード線をスポット溶接にて接続し、リード線およびその接続部分のみを樹脂被覆した。
Prior to the evaluation of the test steel, the comparative steel No. 1 shown in Table 1 was used. 7 was used to investigate the gap structure, particularly the relationship between the gap depth and the erosion depth due to crevice corrosion. As shown in FIG. 1, the “gap depth” was defined as the distance (mm) from the center of the weld bead to the bending position, and the gap depth was fixed to 7 mm.
A 15 × 40 mm test piece was cut out from a sample from which the oxide scale generated by welding had not been removed (an uncleaned sample), and was subjected to an immersion test in warm water.
FIG. 2 schematically shows the appearance of the weld gap test piece. The specimen was collected so that the weld bead crossed the center position in the longitudinal direction of the specimen. This immersion test piece includes a weld bead portion, a maturation-affected portion, and a base material portion. A lead wire was connected to the end of the base material portion by spot welding, and only the lead wire and its connecting portion were coated with resin.

浸漬試験は80℃の0.5mol/L HSOに48時間浸漬し、腐食断面組織10箇所の観察で母材侵食の有無の結果を表2に示す。 The immersion test was immersed in 0.5 mol / L H 2 SO 4 at 80 ° C. for 48 hours, and Table 2 shows the results of the presence or absence of erosion of the base material by observing 10 corrosion cross-sectional structures.

また、0.5mol/L HSOに48時間浸漬試験したときの最大侵食位置であったボンド端部から1mm位置での酸化皮膜の密度分析を高分解能RBS(High Resolution Rutherford Backscattering Spectrometry)で行った。これは散乱されたHeイオンの強度で密度を測定する方法であり、試料電流25nA/照射量20μCで行いTEMで皮膜厚みを測定し、Heイオン強度をスケール厚みで除して密度を測定した。
稠密度の測定は以下の手順による。
酸化スケールの組成はコランダム型のCrもしくはFeであり、それぞれの密度は5.21g/cm、5.24g/cmとほぼ等しい。そこで、両組成の密度を同一とみなし、膜厚100nmで作成した空隙のないFeを標準試験片とした。この標準試験片に対して、密度測定を高分解能RBSで行い、単位厚みあたりのHeイオン強度を稠密度100%の値とした。各実験材の酸化物のRBSによるHe強度を求め、次式から稠密度を算出した。

稠密度(%)=(各試験材のRBSによるHeイオン強度)/(標準試験片のRBSによるHeイオン強度)×100
Also, high resolution RBS (High Resolution Rutherford Backscattering Spectrometry) is used to analyze the density of the oxide film at a position of 1 mm from the bond edge, which was the maximum erosion position when immersed in 0.5 mol / L H 2 SO 4 for 48 hours. went. This is a method of measuring the density with the intensity of scattered He + ions, measuring the film thickness with TEM at a sample current of 25 nA / irradiation amount of 20 μC, and measuring the density by dividing the He + ion intensity by the scale thickness. did.
The measurement of the density is according to the following procedure.
The composition of the oxide scale is Cr 2 O 3 or Fe 2 O 3 of corundum, each density of 5.21 g / cm 3, approximately equal to 5.24 g / cm 3. Therefore, the density of both compositions was regarded as the same, and Fe 2 O 3 having a thickness of 100 nm and having no voids was used as a standard test piece. Density measurement was performed on the standard test piece with high resolution RBS, and the He + ion intensity per unit thickness was set to a value of 100% dense density. The He + strength by RBS of the oxide of each experimental material was determined, and the dense density was calculated from the following equation.

Density (%) = (He + ionic strength by RBS of each test material) / (He + ionic strength by RBS of standard test piece) × 100

Figure 2009161836
Figure 2009161836

本明例のものは、いずれも上記漫漬試験において48時間後に母材侵食がなく、酸化皮膜の密度が高く腐食液が浸透する開孔がなかったのだと考えられる。なお、比較例7は母材侵食はないが、Pt補助浸漬カソード30日ではCu添加により最大侵食深さは本発明例をはるかに大きくなる。以上のように本発明鋼では、隙間部の溶接部耐食性向上が達成できる。   It is considered that none of the present examples had erosion of the base material after 48 hours in the above-mentioned pickled test, and there was no opening through which the corrosive solution penetrated due to the high density of the oxide film. In Comparative Example 7, there is no erosion of the base material, but the maximum erosion depth is much larger due to the addition of Cu on the 30th day of the Pt auxiliary immersed cathode. As described above, the steel according to the present invention can achieve improved corrosion resistance of the welded portion of the gap.

この材料は エコキュート、電気温水器、定置型燃料電池、エコウィルなどに使用される温水器缶体のみでなく、溶接隙間構造を有する給油管や燃料タンクの給油系部材や燃料噴射レールならびに熟交換機部材にも適用できる。   This material is not only used for water heater cans used in Eco Cute, electric water heaters, stationary fuel cells, Eco Will, etc., but also in oil pipes and fuel tanks with welding gap structures, fuel injection rails and fuel exchange rails It can also be applied to.

溶接サンプルの断面の模式図であるIt is a schematic diagram of the section of a welding sample. 腐食試験に用いた溶接サンプルの概観であるIt is an overview of the weld sample used in the corrosion test

Claims (1)

質量%で、
C:0.02%以下、
Si:0.01〜0.3%、
Mn:1%以下、
P:0.04%以下、
S:0.03%以下、
Ni:0.2〜2%、
Cr:22〜26%、
Mo:0.8%以下、
Nb:0.05〜0.6%、
Ti:0.05〜0.4%、
N:0.025%以下、
Al:0.02〜0.3%であり、
さらに不純物としてのCuを0.2%未満に制限し、残部Feおよび他の不可避的不純物からなるフェライト系ステンレス鋼からなる冷延焼鈍酸洗鋼板であって、7mmの隙間深さと最大隙間間隔20μm以下でアルゴンバックガスシールなしでTIG溶接隙間構造を形成した際に、ボンド端部から1mm以内の溶接隙間部の酸化スケールの稠密度が80%以上となることを特徴とする、溶接隙間部の耐食性に優れるフェライト系ステンレス鋼板。
% By mass
C: 0.02% or less,
Si: 0.01 to 0.3%
Mn: 1% or less,
P: 0.04% or less,
S: 0.03% or less,
Ni: 0.2-2%,
Cr: 22-26%
Mo: 0.8% or less,
Nb: 0.05 to 0.6%,
Ti: 0.05 to 0.4%,
N: 0.025% or less,
Al: 0.02 to 0.3%,
Further, Cu as an impurity is limited to less than 0.2%, and is a cold-rolled annealed pickled steel plate made of ferritic stainless steel made of the remaining Fe and other inevitable impurities, and has a gap depth of 7 mm and a maximum gap distance of 20 μm. In the following, when a TIG weld gap structure is formed without an argon back gas seal, the density of the oxide scale in the weld gap within 1 mm from the bond end is 80% or more. Ferritic stainless steel sheet with excellent corrosion resistance.
JP2008002364A 2008-01-09 2008-01-09 Ferritic stainless steel sheet excellent in corrosion resistance in welding crevice part Pending JP2009161836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008002364A JP2009161836A (en) 2008-01-09 2008-01-09 Ferritic stainless steel sheet excellent in corrosion resistance in welding crevice part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008002364A JP2009161836A (en) 2008-01-09 2008-01-09 Ferritic stainless steel sheet excellent in corrosion resistance in welding crevice part

Publications (1)

Publication Number Publication Date
JP2009161836A true JP2009161836A (en) 2009-07-23

Family

ID=40964773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008002364A Pending JP2009161836A (en) 2008-01-09 2008-01-09 Ferritic stainless steel sheet excellent in corrosion resistance in welding crevice part

Country Status (1)

Country Link
JP (1) JP2009161836A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248625A (en) * 2009-03-27 2010-11-04 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel having excellent local corrosion resistance
JP2011068967A (en) * 2009-09-28 2011-04-07 Nisshin Steel Co Ltd Water storage tank constructed by welding panel made from stainless steel
JP2011184731A (en) * 2010-03-08 2011-09-22 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel having excellent corrosion resistance in condensed water environment generated from hydrocarbon combustion exhaust gas
JP2011200927A (en) * 2010-03-26 2011-10-13 Nisshin Steel Co Ltd Welded structure
WO2013080526A1 (en) 2011-11-30 2013-06-06 Jfeスチール株式会社 Ferritic stainless steel
JP2013119643A (en) * 2011-12-06 2013-06-17 Nippon Steel & Sumitomo Metal Corp High-strength hot-rolled steel sheet having excellent corrosion resistance of coating and bending fatigue characteristic, and method for producing the same
CN103276307A (en) * 2013-04-16 2013-09-04 宝钢不锈钢有限公司 High-corrosion resistance high-toughness high-chromium ferrite stainless steel plate and manufacturing method thereof
JP2013199679A (en) * 2012-03-26 2013-10-03 Nippon Steel & Sumikin Stainless Steel Corp Stainless steel having excellent corrosion resistance to high temperature lactic acid and method for using the same
JP2013204128A (en) * 2012-03-29 2013-10-07 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel excellent in corrosion resistance in welded portion
JP2013209706A (en) * 2012-03-30 2013-10-10 Jfe Steel Corp Ferritic stainless steel having excellent corrosion resistance in weld zone
EP2692891A4 (en) * 2011-03-29 2015-11-11 Nippon Steel & Sumikin Sst Ferrite stainless steel exhibiting excellent corrosion resistance and strength in weld zones, and tig-welded structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570899A (en) * 1991-09-17 1993-03-23 Nisshin Steel Co Ltd Ferritic stainless steel excellent in corrosion resistance in weld zone
JP2007063638A (en) * 2005-09-01 2007-03-15 Nisshin Steel Co Ltd Ferritic stainless steel sheet for fuel tank
JP2007302995A (en) * 2006-04-10 2007-11-22 Nisshin Steel Co Ltd Ferritic stainless steel for warm water vessel with welded structure and warm water vessel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570899A (en) * 1991-09-17 1993-03-23 Nisshin Steel Co Ltd Ferritic stainless steel excellent in corrosion resistance in weld zone
JP2007063638A (en) * 2005-09-01 2007-03-15 Nisshin Steel Co Ltd Ferritic stainless steel sheet for fuel tank
JP2007302995A (en) * 2006-04-10 2007-11-22 Nisshin Steel Co Ltd Ferritic stainless steel for warm water vessel with welded structure and warm water vessel

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248625A (en) * 2009-03-27 2010-11-04 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel having excellent local corrosion resistance
JP2011068967A (en) * 2009-09-28 2011-04-07 Nisshin Steel Co Ltd Water storage tank constructed by welding panel made from stainless steel
JP2011184731A (en) * 2010-03-08 2011-09-22 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel having excellent corrosion resistance in condensed water environment generated from hydrocarbon combustion exhaust gas
JP2011200927A (en) * 2010-03-26 2011-10-13 Nisshin Steel Co Ltd Welded structure
EP2692891A4 (en) * 2011-03-29 2015-11-11 Nippon Steel & Sumikin Sst Ferrite stainless steel exhibiting excellent corrosion resistance and strength in weld zones, and tig-welded structure
WO2013080526A1 (en) 2011-11-30 2013-06-06 Jfeスチール株式会社 Ferritic stainless steel
US9487849B2 (en) 2011-11-30 2016-11-08 Jfe Steel Corporation Ferritic stainless steel
KR20140091744A (en) 2011-11-30 2014-07-22 제이에프이 스틸 가부시키가이샤 Ferritic stainless steel
EP2787097A4 (en) * 2011-11-30 2015-10-21 Jfe Steel Corp Ferritic stainless steel
JP2013119643A (en) * 2011-12-06 2013-06-17 Nippon Steel & Sumitomo Metal Corp High-strength hot-rolled steel sheet having excellent corrosion resistance of coating and bending fatigue characteristic, and method for producing the same
JP2013199679A (en) * 2012-03-26 2013-10-03 Nippon Steel & Sumikin Stainless Steel Corp Stainless steel having excellent corrosion resistance to high temperature lactic acid and method for using the same
JP2013204128A (en) * 2012-03-29 2013-10-07 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel excellent in corrosion resistance in welded portion
JP2013209706A (en) * 2012-03-30 2013-10-10 Jfe Steel Corp Ferritic stainless steel having excellent corrosion resistance in weld zone
CN103276307A (en) * 2013-04-16 2013-09-04 宝钢不锈钢有限公司 High-corrosion resistance high-toughness high-chromium ferrite stainless steel plate and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2009161836A (en) Ferritic stainless steel sheet excellent in corrosion resistance in welding crevice part
JP5010323B2 (en) Ferritic stainless steel for hot water container with welded structure, hot water container and manufacturing method thereof
KR100993407B1 (en) Steel sheet excellent in pit resistance and method for manufacturing the same
KR102220619B1 (en) Sulfuric acid dew point corrosion steel
JP6004700B2 (en) Clad steel plate made of duplex stainless steel and method for producing the same
JP5870665B2 (en) High-strength welded steel pipe with excellent tensile stress strength of 600 MPa or more with excellent resistance to sulfide stress corrosion cracking
WO2008084838A1 (en) Ferritic stainless steel sheet for water heater excellent in corrosion resistance at welded part and steel sheet toughness
JP4687531B2 (en) Steel for crude oil tank and method for producing the same
JP6298881B2 (en) Ferritic stainless steel and manufacturing method thereof
WO2014112445A1 (en) Duplex stainless steel material and duplex stainless steel pipe
JP2010202916A (en) Ferritic stainless steel excellent in corrosion resistance of welded part with austenite stainless steel
JP2009185382A (en) Ferritic stainless steel sheet having excellent corrosion resistance in welding gap oxide film
WO2015145825A1 (en) Ferritic stainless steel and method for producing same
JP2011173124A (en) Welding method of ferritic stainless steel
JP6782660B2 (en) Duplex Stainless Steel Welded Structure for Oxidizing Fluid Environment
JPH06279951A (en) Ferritic stainless steel for water heater
WO2008120409A1 (en) Ferritic stainless steel for warm-water vessel with welded structure, and warm-water vessel
JP2010065279A (en) Stainless steel sheet for warm-water vessel, method for producing the same, and warm-water vessel
JP2013204128A (en) Ferritic stainless steel excellent in corrosion resistance in welded portion
JP2006097908A (en) Hot water storage tank of welded structure and its construction method
JP2009167439A (en) Ferritic stainless steel for welding gap structural warm-water vessel
JP2015078429A (en) Duplex stainless steel material and duplex stainless steel tube
JP6247196B2 (en) Duplex stainless steel and duplex stainless steel pipe
JP2015110828A (en) Duplex stainless steel material and duplex stainless steel tube
JP6580757B1 (en) Stainless steel for fuel rail

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110107

A977 Report on retrieval

Effective date: 20120924

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121009

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130219