JP2009185382A - Ferritic stainless steel sheet having excellent corrosion resistance in welding gap oxide film - Google Patents

Ferritic stainless steel sheet having excellent corrosion resistance in welding gap oxide film Download PDF

Info

Publication number
JP2009185382A
JP2009185382A JP2008317152A JP2008317152A JP2009185382A JP 2009185382 A JP2009185382 A JP 2009185382A JP 2008317152 A JP2008317152 A JP 2008317152A JP 2008317152 A JP2008317152 A JP 2008317152A JP 2009185382 A JP2009185382 A JP 2009185382A
Authority
JP
Japan
Prior art keywords
gap
corrosion resistance
stainless steel
weld
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008317152A
Other languages
Japanese (ja)
Inventor
Hiroki Tomimura
宏紀 冨村
Toshiro Adachi
俊郎 足立
Akihiro Nonomura
明廣 野々村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2008317152A priority Critical patent/JP2009185382A/en
Publication of JP2009185382A publication Critical patent/JP2009185382A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ferritic stainless steel showing excellent corrosion resistance as-welded in warm water environment using clean water. <P>SOLUTION: The ferritic stainless steel having excellent corrosion resistance in a welding gap oxide film is provided which includes a composition comprising, by mass, ≤0.02% C, 0.01 to 0.3% Si, ≤1% Mn, ≤0.04% P, ≤0.03% S, 0.3 to 2% Ni, 22 to 26% Cr, ≤0.8% Mo, 0.10 to 0.6% Nb, 0.15 to 0.4% Ti, ≤0.025% N and 0.04 to 0.3% Al, wherein the content of Cu as impurities is limited to <0.2%, and the balance Fe with the other inevitable impurities, and the ferritic stainless steel is characterized in that a test piece is obtained by forming a TIG welding gap structure in the cold rolled-annealed-pickled sheet of the above ferritic stainless steel at a gap depth of ≥4 mm and a maximum gap spacing of ≤30 μm without using argon back gas seal and in the test piece, an average Cr ratio of oxide scale at the welding gap part within 2 mm from the bond edge part reaches ≥20 mass% at the ratio of all the metallic elements. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、TIG溶接により施工され溶接隙間構造を有する溶接部耐食性に優れるフェライト系ステンレス鋼板に関する。   The present invention relates to a ferritic stainless steel sheet that is constructed by TIG welding and has a weld gap structure and excellent weld corrosion resistance.

電気温水器や貯湯槽などの温水容器の材料としてフェライト系ステンレス鋼のSUS444(低C、低N、18〜19Cr−2Mo−Nb、Ti系鋼)が広く用いられている。
SUS444は温水環境での耐食性向上を主目的に開発された鋼種である。
Ferritic stainless steel SUS444 (low C, low N, 18-19Cr-2Mo-Nb, Ti steel) is widely used as a material for hot water containers such as electric water heaters and hot water storage tanks.
SUS444 is a steel type developed mainly for the purpose of improving the corrosion resistance in a hot water environment.

温水容器は、構成部材(例えば鏡と胴)をTIG溶接により接合した「溶接隙間構造」を有するものが主流である。溶接隙間構造の温水容器を上水の温水環境で使用すると、溶接隙間部で腐食が生じやすい。SUS444の場合、腐食形態が孔食であるときには再不動態化しやすく、孔食が成長するケースは稀である。しかし、隙間腐食であるときには再不動態化しにくいので腐食が成長し、板厚を貫通して漏水に至ることもある。このため、温水容器では腐食しやすい隙間構造の形成をできるだけ避ける構造とすることが望ましい。
しかし、鏡と胴の溶接接合部など、施工上、隙間の形成を回避することが難しい部位もある。
The mainstream hot water containers have a “weld gap structure” in which constituent members (for example, a mirror and a barrel) are joined by TIG welding. When a hot water container having a weld gap structure is used in a warm water environment, corrosion tends to occur in the weld gap portion. In the case of SUS444, re-passivation tends to occur when the corrosion form is pitting corrosion, and pitting corrosion grows rarely. However, since crevice corrosion is difficult to repassivate, corrosion grows and may penetrate the plate thickness and lead to water leakage. For this reason, it is desirable to make it the structure which avoids formation of the crevice structure which is easy to corrode with a hot water container as much as possible.
However, there are some parts where it is difficult to avoid the formation of a gap in construction, such as a welded joint between the mirror and the body.

温水容器をTIG溶接により製造する際には、溶接部の耐食性低下を小さくするため、一般にArバックガスシールを行って裏ビード側の酸化を抑制する対策が採られている。
ところが、電気温水器では追い焚き機能のニーズが高まり、蛇管を内部に装入した構造の缶体が増えてきた。この場合、溶接時にArバックガスシールを行うためのノズルを缶体内部に挿入することが難しくなり、バックガスシールなしのTIG溶接を採用せざるを得ないケースが増え、耐食性低下に対する不安要因となっている。
When manufacturing a hot water container by TIG welding, in order to reduce the corrosion-resistance fall of a welding part, generally the countermeasure which suppresses the oxidation by the back bead side by performing an Ar back gas seal is taken.
However, with electric water heaters, the need for a reheating function has increased, and the number of cans with a structure in which a serpentine tube is inserted has increased. In this case, it becomes difficult to insert a nozzle for performing Ar back gas sealing during welding into the inside of the can body, increasing the number of cases in which TIG welding without back gas sealing has to be adopted, which is a cause of anxiety about a decrease in corrosion resistance. It has become.

また、地球環境問題から、電気温水器に比べ消費電力の少ないCO冷媒ヒートポンプ給湯器(エコキュート(登録商標))の需要が高まってきた。この方式ではと−ター加熱を行わないので、ヒーター挿入のためのフランジは本来不要であるが、TIG溶接時のバックガスシール用ノズルを挿入するためにはフランジが省略できないなど、コストアップに繋がる問題が生じる。 In addition, due to global environmental problems, demand for a CO 2 refrigerant heat pump water heater (EcoCute (registered trademark)) that consumes less power than an electric water heater has increased. In this method, since no heating is performed, a flange for inserting a heater is not necessary. However, in order to insert a back gas seal nozzle at the time of TIG welding, the flange cannot be omitted, leading to an increase in cost. Problems arise.

特許文献1には鏡への胴の挿入深さを20mmまでとし、隙間腐食の発生を避けた構造の温水器用ステンレス鋼製缶体が記載されている。鋼種としてはSUS444相当鋼が採用されている。しかし、発明者らの調査によれば溶接で耐食性が低下する熱影響部は溶接ビードから概ね10mm程度の範囲であり、上記構造では安定した耐食性向上効果が十分に得られない場合がある。また、このSUS444相当鋼をArバックガスシールを行わないTIG溶接に供すると、裏ビード部での酸化スケールの生成部分では著しい耐食性低下が生じることが予想される。   Patent Document 1 describes a stainless steel can for a water heater having a structure in which the depth of insertion of a barrel into a mirror is up to 20 mm and the occurrence of crevice corrosion is avoided. SUS444 equivalent steel is adopted as the steel type. However, according to the investigation by the inventors, the heat affected zone where the corrosion resistance is reduced by welding is in the range of about 10 mm from the weld bead, and the above structure may not provide a sufficient effect of improving the corrosion resistance. In addition, when this SUS444 equivalent steel is subjected to TIG welding without performing Ar back gas sealing, it is expected that a significant reduction in corrosion resistance will occur in the portion where the oxide scale is formed in the back bead portion.

特許文献2にはTiとAlを複合添加することにより溶接時のCr酸化ロスを抑制し、溶接部での耐食性低下を改善したフェライト系ステンレス鋼が記載されている。この鋼を使用することにより温水容器の耐食性レベルを大きく向上させることが可能になった。しかし、この鋼の場合も、Arバックガスシールを行わないTIG溶接ではCrの酸化ロスを十分に抑制することはできず、溶接隙間部の耐食性の大幅な低下は避けられない。   Patent Document 2 describes a ferritic stainless steel in which Cr and oxidization loss during welding are suppressed by adding Ti and Al in a composite manner, and deterioration in corrosion resistance at the welded portion is improved. By using this steel, the corrosion resistance level of the hot water container can be greatly improved. However, even in the case of this steel, the oxidation loss of Cr cannot be sufficiently suppressed by TIG welding without performing Ar back gas sealing, and a significant reduction in the corrosion resistance of the weld gap is inevitable.

特開昭54−72711号公報JP 54-72711 A 特開平5−70899号公報JP-A-5-70899

特許文献3には、バックガスシールを行わないTIG溶接により形成された裏ビード側溶接部の耐食性向上として21質量%を超えるCr含有量を確保し、Ni,Cuの添加でTIG溶接裏面熱影響部の耐食性を大きく改善する鋼を提案されている。この鋼を使用することにより温水容器の耐食性レベルを大きく向上させることが可能になった。しかし、隙間構造やCu量によっては十分なTIG溶接隙間部の耐食性改善効果が得られないことがあった。   In Patent Document 3, a Cr content exceeding 21% by mass is secured as an improvement in the corrosion resistance of the back bead side weld formed by TIG welding without back gas sealing, and the addition of Ni and Cu affects the thermal effect on the back surface of the TIG weld. Steels that greatly improve the corrosion resistance of the parts have been proposed. By using this steel, the corrosion resistance level of the hot water container can be greatly improved. However, depending on the gap structure and the amount of Cu, a sufficient effect of improving the corrosion resistance of the TIG weld gap may not be obtained.

特願2007−088124Japanese Patent Application No. 2007-088124

上述のように、昨今の温水容器においては、TIG溶接で製造する際にArバックガスシールを実施しにくい構造のものが増えている。一方で、製造コスト低減等の要請から溶接部に隙間を形成しないような構造の温水容器を設計することも難しい状況にある。本発明は、このような現状に鑑み、Arバックガスシールを行わないTIG溶接により隙間構造をもった温水容器を構築したときに、どのような隙間構造であっても溶接ままの状態で上水を使用した温水環境において優れた耐食性を呈するフェライト系ステンレス鋼を開発し提供することを目的とする。   As described above, in recent hot water containers, there are an increasing number of structures that are difficult to carry out Ar back gas sealing when manufactured by TIG welding. On the other hand, it is also difficult to design a hot water container having a structure that does not form a gap in the weld due to a demand for manufacturing cost reduction or the like. In view of such a current situation, the present invention, when constructing a hot water container having a gap structure by TIG welding without performing Ar back gas seal, does not cause any gap structure to be in the state of welding. The purpose is to develop and provide ferritic stainless steel exhibiting excellent corrosion resistance in a hot water environment.

発明者らは上記目的を達成すべく詳細な研究を行った結果、以下のようなことを見出した。
(i)溶接隙間部の耐食性は、溶接スケールのほか、隙間のクリアランスと隙間深さなどの隙間構造に依存する。とくに隙間開口部から溶着部(溶接ボンド)までの隙間深さは重要である。隙間腐食は一定の範囲の隙間深さの構造で成長する。すなわち、隙間深さが浅いと腐食は成長せず、隙間深さが深すぎても同様である。
(ii)22質量%を超えるCr含有量を確保して基本的耐食性レベルを向上させることが、バックガスシールを行わないTIG溶接により形成された裏ビード側溶接隙間部の耐食性向上に極めて有効である。
(iii)Ni、Cuの溶接隙間部の耐食性改善効果は異なる。Niは溶接隙間部で発生した隙間腐食の板厚方向の成長を抑制する効果が大きい。一方、Cuは隙間腐食の横広がりの成長を抑制するが、板厚方向への成長を抑制する効果は小さく、場合によっては逆に侵食が深くなることを突き止めた。したがって、溶接隙間構造での耐食性が要求される用途ではCu量を規制する必要がある。
(iv)溶接部の耐食性向上に有効であるとされてきたSiは、一定量以上添加するとバックガスシールを行わないTIG溶接においては、溶接ままの裏ビード側溶接部において、むしろ耐食性を低下させる。
(v)耐食性改善元素として知られるMoは、ステンレス鋼表面での酸化の抑制、すなわち溶接部の耐食性改善には有効に作用しない。
(vi)TIG溶接隙間部の耐食性はスケール自身の耐食性に依存する。スケールの耐食性はスケール組成と強く関連し、Crを一定量以上含むスケールは耐食性がすぐれる。
(vii)TIG溶接隙間構造においてArバックガスシールを省略した場合の問題点として、Feを主体とするスケールが生成し隙間腐食を促進することが新たに判明した。隙間構造では溶接ボンド端部から2mmまでの位置で隙間腐食が発生し進行する。Feを主体とするスケールはボンド端部から2乃至4mmの位置に形成される。隙間腐食が発生すると隙間内の液性は酸性に変化するためFeはカソード還元され、溶接ボンド端部から2mmまでの位置で発生した隙間腐食の進行を促進する。
本発明はこのような知見に基づいて成分設計された新たなフェライト系ステンレス鋼を提供するものである。
As a result of detailed studies to achieve the above object, the inventors have found the following.
(I) The corrosion resistance of the weld gap depends on the gap structure such as the gap clearance and gap depth as well as the weld scale. In particular, the depth of the gap from the gap opening to the welded portion (weld bond) is important. Crevice corrosion grows in structures with a range of gap depths. That is, if the gap depth is shallow, corrosion does not grow, and the same is true if the gap depth is too deep.
(Ii) It is extremely effective to improve the corrosion resistance of the back bead side weld gap formed by TIG welding without back gas sealing to ensure the Cr content exceeding 22% by mass and improve the basic corrosion resistance level. is there.
(Iii) The effect of improving the corrosion resistance of the weld gaps of Ni and Cu is different. Ni has a great effect of suppressing the growth in the thickness direction of crevice corrosion occurring in the weld gap. On the other hand, Cu suppressed lateral growth of crevice corrosion, but the effect of suppressing growth in the plate thickness direction was small, and it was found that erosion deepened in some cases. Therefore, it is necessary to regulate the amount of Cu in applications that require corrosion resistance in the weld gap structure.
(Iv) Si, which has been said to be effective for improving the corrosion resistance of the welded part, lowers the corrosion resistance rather in the welded back bead side welded part in TIG welding that does not perform back gas sealing when added over a certain amount. .
(V) Mo, which is known as an element for improving corrosion resistance, does not effectively act to suppress oxidation on the surface of stainless steel, that is, to improve the corrosion resistance of welds.
(Vi) The corrosion resistance of the TIG weld gap depends on the corrosion resistance of the scale itself. The corrosion resistance of the scale is strongly related to the scale composition, and the scale containing a certain amount of Cr 2 O 3 or more has excellent corrosion resistance.
(Vii) As a problem when the Ar back gas seal is omitted in the TIG welding gap structure, it has been newly found that a scale mainly composed of Fe 2 O 3 is generated to promote crevice corrosion. In the gap structure, crevice corrosion occurs and proceeds at a position of 2 mm from the end of the weld bond. The scale mainly composed of Fe 2 O 3 is formed at a position of 2 to 4 mm from the bond end. When crevice corrosion occurs, the liquidity in the gap changes to acidic, so Fe 2 O 3 is cathodically reduced and promotes the progress of crevice corrosion occurring at a position of 2 mm from the weld bond end.
The present invention provides a new ferritic stainless steel whose components are designed based on such knowledge.

すなわち本発明では、質量%で、C:0.02%以下、Si:0.01〜0.3%、Mn:1%以下、P:0.04%以下、S:0.03%以下、Ni:0.3〜2%、Cr:22〜26%、Mo:0.8%以下、Nb:0.10〜0.6%、Ti:0.15〜0.4%、N:0.025%以下、Al:0.04〜0.3%であり、さらに不純物としてのCuを0.2%未満に制限し、残部Feおよび他の不可避的不純物からなるフェライト系ステンレス鋼であって、その冷延焼鈍酸洗板を4mm以上の隙間深さと最大隙間間隔30μm以下でアルゴンバックガスシールなしでTIG溶接隙間構造を形成した試験片に対し、ボンド端部から2mm以内の溶接隙間部の酸化スケールの最表層から20nmまでの領域における平均Cr比率が全金属元素の割合で20質量%以上とし、また、更にボンド端部から2〜4mmの位置の酸化スケールの最表層から20nmまでの領域における平均Fe比率が全金属元素の割合で70質量%以下とすることにより、溶接隙間酸化皮膜の耐食性を確保するものである。   That is, in the present invention, in mass%, C: 0.02% or less, Si: 0.01 to 0.3%, Mn: 1% or less, P: 0.04% or less, S: 0.03% or less, Ni: 0.3-2%, Cr: 22-26%, Mo: 0.8% or less, Nb: 0.10-0.6%, Ti: 0.15-0.4%, N: 0.00. 025% or less, Al: 0.04 to 0.3%, further limiting the Cu as an impurity to less than 0.2%, a ferritic stainless steel consisting of the remainder Fe and other inevitable impurities, Oxidation of the weld gap within 2 mm from the bond end of the cold-rolled annealed pickled plate with a gap depth of 4 mm or more and a maximum gap distance of 30 μm or less and a TIG weld gap structure formed without an argon back gas seal The average Cr ratio in the region from the outermost layer of the scale to 20 nm is all gold The ratio of the elements is 20% by mass or more, and the average Fe ratio in the region from the outermost layer of the oxide scale at a position of 2 to 4 mm from the bond end to 20 nm is 70% by mass or less in terms of the total metal elements. This ensures the corrosion resistance of the weld gap oxide film.

この鋼は、冷延焼鈍酸洗鋼板とした後、その鋼板を4mm以上の隙間深さと最大隙間間隔30μm以下でアルゴンバックガスシールなしでTIG溶接隙間構造を形成した試験片に対し、ボンド部から2mm以内の溶接隙間部の酸化スケールの平均Cr比率が全金属元素の割合で20質量%以上を有する。また、ボンド端部から2〜4mmの位置の酸化スケールの最表層から20nmまでの領域における平均Fe比率が全金属元素の割合で70質量%以下である。
平均Cr比率は、例えばボンド端部から2mm以内の領域における任意の10点を選択し、各点における酸化スケールの最表層から深さ5,10,15,20nmの位置における各金属元素量を求め、Cr比率をCr量/Σ(全金属元素量)として算出し、各測定点におけるCr比率の平均値を算出することで求めることができる。
This steel is a cold-rolled annealed pickled steel sheet, and from a bond part to a test piece in which the steel sheet was formed with a TIG welded gap structure without a back gap seal with a gap depth of 4 mm or more and a maximum gap distance of 30 μm or less. The average Cr ratio of the oxide scale in the weld gap within 2 mm has a ratio of all metal elements to 20% by mass or more. Moreover, the average Fe ratio in the area | region from the outermost layer of the oxide scale of the position of 2-4 mm from a bond edge part to 20 nm is 70 mass% or less in the ratio of all the metal elements.
For the average Cr ratio, for example, arbitrary 10 points in a region within 2 mm from the bond end are selected, and the amount of each metal element at a depth of 5, 10, 15, 20 nm from the outermost layer of the oxide scale at each point is obtained. The Cr ratio is calculated as Cr amount / Σ (total metal element amount), and the average value of the Cr ratio at each measurement point can be calculated.

ここで、「無手入れのまま」とは、溶接部に生じた酸化スケールを除去する手段(研磨等の機械的除去手段および酸洗等の化学的除去手段)が施されておらず、溶接されたままの状態であることを意味する。「溶接部」は溶接ビード部と熱影響部からなる領域である。
上記浸漬試験に供するための溶接隙間を形成するには、2枚の鋼板を重ね、一方の鋼板を水平から10°開き、TIG溶接のアークを一定速度で移動させながら裏ビード(アークを当てる面の裏面に現れる溶接金属部)が形成される条件で溶接ビードを形成していく手法が採用される。その際、溶接隙間となる部位と裏ビード側には一切バックガスシールを行わない。また、溶加材も使用しない。試験片には溶接隙間部とその両側の母材部が含まれるようにする。
Here, “as-maintained” means that no means (removal such as polishing and chemical removal such as pickling) that removes oxide scale from the welded part has been applied, and welding is performed. It means that it is in an untouched state. The “welded part” is an area composed of a weld bead part and a heat affected part.
In order to form a welding gap for use in the immersion test, two steel plates are stacked, one steel plate is opened 10 ° from the horizontal, and the TIG welding arc is moved at a constant speed while the back bead (the surface to which the arc is applied). A method of forming a weld bead under the condition that a weld metal part appearing on the back surface of the weld bead is formed is employed. At that time, no back gas sealing is performed on the part that becomes the welding gap and the back bead side. Also, no filler material is used. The test piece should include the weld gap and the base metal parts on both sides.

ステンレス鋼にとって隙間構造と溶接熟影響部の酸化皮膜の存在が耐食性の劣化をもたらす主要因であるが、鋭意予備検討した結果、本組成の範囲で酸化スケール中のCr比率が全金属元素の割合で20質量%以上を有することで、溶接隙間構造部の耐食性を向上させるのに有効であることを見出した。更に、ボンド端部から2〜4mm離れた隙間部位の酸化スケールは表層にFe2O3が多く生成し、これが隙間内でカソード還元を受けることで、ボンドから2mmの溶接隙間構造部の隙間腐食を促進させる。同位置の酸化スケール中の平均Fe濃度が全金属元素の割合で70質量%以下とすることでボンドから2mmの溶接隙間構造部の隙間腐食の進行を抑制するのに有効であることを新たに知見した。   For stainless steel, the existence of the gap structure and the presence of the oxide film at the weld-affected zone are the main factors that cause deterioration in corrosion resistance. As a result of extensive preliminary studies, the ratio of Cr in the oxide scale is the ratio of all metal elements within this composition. It has been found that having 20 mass% or more is effective in improving the corrosion resistance of the weld gap structure. Further, the oxide scale at the gap portion 2 to 4 mm away from the bond end portion generates a large amount of Fe2O3 in the surface layer, and this undergoes cathodic reduction in the gap, thereby promoting crevice corrosion of the weld gap structure portion of 2 mm from the bond. . It is newly effective that the average Fe concentration in the oxide scale at the same position is 70% by mass or less in terms of the ratio of all metal elements, and is effective in suppressing the progress of crevice corrosion of the weld gap structure 2 mm from the bond. I found out.

本発明のフェライト系ステンレス鋼を使用すると、温水環境における溶接部の耐食性が顕著に改善される。特に、バックガスシールなしのTIG溶接によって形成された溶接隙間部を無手入れのまま高温の上水に曝して使用した場合でも、長期間優れた耐食性が維持される。すなわち温水容器をTIG溶接により製造する際に、Arバックガスシールを省略しても高い信頼性が得られる。したがって本発明によれば、高耐食性が要求される上水環境での温水容器において設計自由度の拡大が可能になる。また、今後需要増が見込まれるCO冷媒ヒートポンプ給湯器の温水缶体ではバックガスシールのためのフランジが不要になり、コスト低減が可能になる。 When the ferritic stainless steel of the present invention is used, the corrosion resistance of the weld in a warm water environment is significantly improved. In particular, even when a weld gap formed by TIG welding without a back gas seal is exposed to high temperature water without maintenance, excellent corrosion resistance is maintained for a long time. That is, when manufacturing the hot water container by TIG welding, high reliability can be obtained even if the Ar back gas seal is omitted. Therefore, according to the present invention, it is possible to expand the degree of design freedom in a hot water container in a water supply environment where high corrosion resistance is required. Further, in the hot water can body of the CO 2 refrigerant heat pump water heater that is expected to increase in demand in the future, the flange for the back gas seal becomes unnecessary, and the cost can be reduced.

本発明のフェライト系ステンレス鋼を構成する成分元素について説明する。
C、Nは、鋼中に不可避的に含まれる元素である。C、Nの含有量を低減すると鋼は軟質になり加工性が向上するとともに炭化物、窒化物の生成が少なくなり、溶接性および溶接部の耐食性が向上する。このため本発明ではC、Nとも含有量は少ない方が良く、Cは0.02質量%まで、Nは0.025質量%まで含有が許容される。
The component elements constituting the ferritic stainless steel of the present invention will be described.
C and N are elements inevitably contained in the steel. When the content of C and N is reduced, the steel becomes soft and the workability is improved, and the formation of carbides and nitrides is reduced, and the weldability and the corrosion resistance of the welded portion are improved. Therefore, in the present invention, it is better that the contents of both C and N are small, and C is allowed to be contained up to 0.02% by mass and N is allowed to be contained up to 0.025% by mass.

Siは、Arガスシールを行ってTIG溶接する場合、溶接部の耐食性改善に有効に作用する。しかしながら発明者らの詳細な検討によれば、ガスシールなしでTIG溶接する場合、Siは逆に溶接部の耐食性を阻害する要因になることがわかった。このため、耐食性の点ではSi含有量は低い方が好ましく、本発明では0.3質量%以下に規定する。ただし、Siはフェライト系鋼の硬質化に寄与するので、例えば水道に直結して使用する高圧タイブの温水容器をはじめとして継手の強度が要求されるような用途などでは、Siの添加は有利となる。種々検討の結果、Siによる強度向上作用を十分に享受するには、0.01質量%以上のSi含有量を確保することが望まれる。したがって本発明ではSi含有量を0.01〜0.3質量%に範囲にコントロールする。   Si effectively acts to improve the corrosion resistance of the weld when performing Ar gas sealing and TIG welding. However, according to detailed examinations by the inventors, it has been found that when TIG welding is performed without a gas seal, Si becomes a factor that inhibits corrosion resistance of the welded portion. For this reason, in terms of corrosion resistance, the Si content is preferably low. In the present invention, the Si content is specified to be 0.3% by mass or less. However, since Si contributes to the hardening of ferritic steel, the addition of Si is advantageous in applications where the strength of the joint is required, including high-pressure type hot water containers that are directly connected to the water supply. Become. As a result of various studies, it is desirable to secure a Si content of 0.01% by mass or more in order to fully enjoy the strength improvement effect of Si. Therefore, in the present invention, the Si content is controlled in the range of 0.01 to 0.3% by mass.

Mnは、ステンレス鋼の脱酸剤として使用される。しかしMnは不動態皮膜中のCr濃度を低下させ、耐食性低下を招く要因となるので、本発明ではMn含有量は低い方が好ましく、1質量%以下の含有量に規定される。スクラップを原料とするステンレス鋼ではある程度のMn混入は避けられないので、過剰に含有されないよう管理が必要である。   Mn is used as a deoxidizer for stainless steel. However, Mn lowers the Cr concentration in the passive film and causes a decrease in corrosion resistance. Therefore, in the present invention, the Mn content is preferably low, and is defined as a content of 1% by mass or less. Since some amount of Mn is unavoidable in the stainless steel made from scrap, it is necessary to manage it so that it is not excessively contained.

Pは、母材および溶接部の靭性を損なうので低い方が望ましい。ただし、含Cr鋼の溶製において精錬による脱りんは困難であることから、P含有量を極低化するには原料の厳選などに過剰なコスト増を伴う。したがって本発明では一般的なフェライト系ステンレス鋼と同様に、0.04質量%までのP含有を許容する。   P is desirable to be low because it impairs the toughness of the base metal and the weld. However, since dephosphorization by refining is difficult in the production of Cr-containing steel, excessively increasing the cost, such as careful selection of raw materials, is required to minimize the P content. Therefore, in the present invention, the P content up to 0.04% by mass is allowed as in the case of general ferritic stainless steel.

Sは、孔食の起点となりやすいMnSを形成して耐食性を阻害することが知られているが、本発明では適量のTiを必須添加するので、Sを特に厳しく規制する必要はない。すなわち、TiはSとの親和力が強く、化学的に安定な掛ヒ物を形成するので、耐食性低下の原因になるMnSの生成が十分に抑止される。一方、あまり多量にSが含まれると溶接部の高温割れが生じやすくなるので、S含有量は0.03質量%以下に規定される。   It is known that S forms MnS that tends to be a starting point of pitting corrosion and inhibits corrosion resistance. However, since an appropriate amount of Ti is essentially added in the present invention, it is not necessary to regulate S particularly severely. That is, since Ti has a strong affinity with S and forms a chemically stable hanger, the production of MnS that causes a decrease in corrosion resistance is sufficiently suppressed. On the other hand, if too much S is contained, hot cracking of the welded portion is likely to occur, so the S content is specified to be 0.03% by mass or less.

Crは、不動態皮膜の主要構成元素であり、耐孔食性や耐隙間腐食性などの局部腐食性の向上をもたらす。バックガスシールなしでTIG溶接した溶接部の耐食性はCr含有量に大きく依存することから、Crは本発明において特に重要な元素である。発明者らの検討の結果、バックガスシールなしで溶接した溶接部に温水環境で要求される耐食性を付与するには21質量%を超えるCr含有量を確保すべきであることがわかった。耐食性向上効果はCr含有量が多くなるに伴って向上する。しかし、Cr含有量が多くなるとC、Nの低減が難しくなり、機械的性質や靭性を損ねかつコストを増大させる要因となる0本発明では、Cr含有量が22質量%以上の鋼ではNiの溶接隙間部の耐食性改善効果が大きくなること、Cuは不純物レベルの混入であっても板厚方向に腐食が進行するためCuの上限を規制することで、厳しい環境への適用においてもCr含有量のさらなる増加に頼ることなく、上述の問題を最小限に抑え、十分な耐食性を得ることができる。したがって本発明ではCr含有量を22〜26質量%とする。   Cr is a main constituent element of the passive film, and improves local corrosion properties such as pitting corrosion resistance and crevice corrosion resistance. Cr is a particularly important element in the present invention because the corrosion resistance of a welded portion TIG welded without a back gas seal depends greatly on the Cr content. As a result of investigations by the inventors, it has been found that a Cr content exceeding 21% by mass should be ensured in order to impart corrosion resistance required in a hot water environment to a welded portion welded without a back gas seal. The corrosion resistance improving effect is improved as the Cr content is increased. However, when the Cr content increases, it becomes difficult to reduce C and N, which is a factor that impairs mechanical properties and toughness and increases the cost. In the present invention, in the steel having a Cr content of 22% by mass or more, Ni is used. The effect of improving the corrosion resistance of the weld gap is increased, and even if Cu is mixed at an impurity level, corrosion progresses in the plate thickness direction. Therefore, by limiting the upper limit of Cu, the Cr content can be applied even in severe environments. Without relying on a further increase in the above, the above-mentioned problems can be minimized and sufficient corrosion resistance can be obtained. Therefore, in this invention, Cr content shall be 22-26 mass%.

Moは、Crとともに耐食性レベルを向上させるための有効な元素であり、その耐食性向上作用は高Crになるほど大きくなることが知られている。ところが、発明者らの詳細な検討によれば、バックガスシールなしでTIG溶接した溶接隙間部や裏ビード側の溶接部については、Moによってもたらされる耐食性向上作用はあまり大きくないことがわかった。本発明の主な用途である上水の温水環境に対しては0.2質量%以上のMoを含有させることが効果的であるが、0.8質量%を超えて増量しても耐隙間腐食性の改善効果は小さく、徒にコスト上昇を招くのみで得策ではない。したがってMo含有量は0.8質量%以下とする。   Mo is an effective element for improving the corrosion resistance level together with Cr, and it is known that the effect of improving the corrosion resistance increases as the Cr content increases. However, according to detailed investigations by the inventors, it has been found that the corrosion resistance improving effect brought about by Mo is not so great for the weld gap portion and the back bead side weld portion which are TIG welded without a back gas seal. Although it is effective to contain 0.2% by mass or more of Mo for the warm water environment of clean water, which is the main use of the present invention, even if the amount exceeds 0.8% by mass, it is resistant to gaps. The effect of improving corrosivity is small. Therefore, the Mo content is 0.8% by mass or less.

Nbは、Tiと同様にC、Nとの親和力が強く、フェライト系ステンレス鋼で問題となる粒界腐食を防止するのに有効な元素である。その効果を十分発揮させるには0.05質量%以上のNb含有量を確保することが望ましい。しかし、過剰に添加すると溶接高温割れが生じるようになり、溶接部靭性も低下するので、Nb含有量の上限は0.6質量%とする。   Nb has a strong affinity for C and N like Ti, and is an element effective in preventing intergranular corrosion, which is a problem in ferritic stainless steel. In order to sufficiently exhibit the effect, it is desirable to secure an Nb content of 0.05% by mass or more. However, if added in excess, weld hot cracking occurs and the weld zone toughness also decreases, so the upper limit of the Nb content is 0.6% by mass.

Tiは、Arバックガスシールを行う従来のTIG溶接において溶接部の耐食性向上に寄与する元素であるが、バックガスシールなしのTlG溶接においても隙間部やその裏ビード側溶接部の耐食性を顕著に改善する作用を有することがわかった。そのメカニズムにっいては必ずしも明確ではないが、Arバックガスシールを行うTIG溶接の場合は、Alとの複合添加により溶接時に鋼表面にAl主体の酸化皮膜が優先的に形成され、結果的にCrの酸化ロスが抑制されるものと考えられる。他方、バックガスシールなしのTIG溶接の場合は、その溶接部においてTiは腐食発生後の再不動態化を促進する作用を発揮することにに加え、後述のAlとともにTIG溶接隙間構造の隙間面においてボンド端部から2〜4mm離れた位置でのFeの生成を抑え、Feのカソード溶解よる隙間腐食の促進を抑制することで酸化スケールの耐食性が向上すると推察される。
このようなTiの作用を十分に享受するには0.15質量%以上のTi含有量を確保することが望ましい。しかし、Ti含有量が多くなると素材の表面品質が低下したり、溶接ビードに酸化物が生成して溶接性が低下したりしやすいので、Ti含有量の上限は0.4質量%とする。
Ti is an element that contributes to improving the corrosion resistance of welds in conventional TIG welding that performs Ar back gas sealing. However, even in TlG welding without back gas sealing, Ti significantly improves the corrosion resistance of the gap and its back bead side weld. It was found to have an improving effect. Although the mechanism is not necessarily clear, in the case of TIG welding with Ar back gas sealing, an oxide film mainly composed of Al is preferentially formed on the steel surface during the welding due to the combined addition with Al. It is thought that the oxidation loss of Cr is suppressed. On the other hand, in the case of TIG welding without a back gas seal, in addition to exerting the effect of promoting repassivation after the occurrence of corrosion in the welded portion, Ti in the gap surface of the TIG welding gap structure together with Al described later It is presumed that the corrosion resistance of the oxide scale is improved by suppressing the formation of Fe 2 O 3 at a position 2 to 4 mm away from the bond end and suppressing the promotion of crevice corrosion due to the cathode dissolution of Fe 2 O 3 .
In order to fully enjoy such an effect of Ti, it is desirable to secure a Ti content of 0.15% by mass or more. However, if the Ti content is increased, the surface quality of the material is deteriorated, or oxide is generated in the weld bead and the weldability is likely to be lowered. Therefore, the upper limit of the Ti content is 0.4% by mass.

Alは、Tiとの複合添加によってTIG溶接熱影響部や溶接隙間構造内面でTiとともに優先酸化することでFeの生成を抑え、Crの濃化を促進し、酸化スケールの耐食性を高める。その作用を十分に得るためには0.04質量%以上のAl含有量を確保することが望ましい。一方、過剰のAl含有は素材の表面品質の低下や、溶接性の低下を招くので、Al含有量は0.3質量%以下とする。 Al is preferentially oxidized with Ti at the TIG welding heat-affected zone and the inner surface of the weld gap structure by composite addition with Ti, thereby suppressing the formation of Fe 2 O 3 and promoting the concentration of Cr 2 O 3 , Increase corrosion resistance. In order to obtain the effect sufficiently, it is desirable to secure an Al content of 0.04% by mass or more. On the other hand, excessive Al content causes deterioration of the surface quality of the material and weldability, so the Al content is 0.3% by mass or less.

Niは、ArバックガスシールなしのTIG溶接において溶接スケール中のCr濃度を高め、化学的に安定なCrの生成量を増加しスケールの耐食性を向上させる。さらに、溶接金属部(ビード部)および熱影響部ともに腐食の進行を抑えることでバックガスシールなしのTIG溶接部の耐食性を向上させる。この作用はCr含有量が高いほど大きい。
また酸化皮膜中の金属元素比率でCr比率を向上させる手段としてはFe系の酸化物を出させないようにすることが有効である。Niの効果はTi、Alのそれとは異なり、母相中のFeの酸化を抑制し結果的に酸化スケール中のCr比率を上昇させる。その効果を出すためには予備検討の結果、Niが0.3質量%以上必要である。ただし多量のNi含有は鋼を硬質にし加工性を阻害するので、2質量%以下の範囲で行う。
板厚1mmの冷延鋼板2枚を重ね下記の条件でTIG溶接隙間構造を形成すると、Niを0.3質量%以上、Tiを0.15質量%以上、Alを0.04質量%以上それぞれ添加した鋼ではFeの酸化が抑制され、その結果酸化スケール中のCrが濃化し酸化スケールの耐食性が向上する。
溶接条件:溶接芯線なしTIGパルス、重ね溶接
溶接電流 ベース電流130〜145A、パルス電流120〜145A
溶接速度 300mm/min
トーチシール側のArガス流量 12L/min
電極径 φ2.4mm
アーク長 1mm
Ni increases the Cr concentration in the weld scale in TIG welding without an Ar back gas seal, increases the amount of chemically stable Cr 2 O 3 , and improves the corrosion resistance of the scale. Furthermore, the corrosion resistance of the TIG welded part without the back gas seal is improved by suppressing the progress of corrosion in both the weld metal part (bead part) and the heat-affected part. This effect is greater as the Cr content is higher.
Further, as a means for improving the Cr ratio by the metal element ratio in the oxide film, it is effective not to emit an Fe-based oxide. The effect of Ni is different from that of Ti and Al, and suppresses the oxidation of Fe in the matrix and consequently increases the Cr ratio in the oxide scale. As a result of preliminary studies, Ni is required to be 0.3% by mass or more in order to obtain the effect. However, if a large amount of Ni is contained, the steel is hardened and the workability is hindered.
When two cold-rolled steel sheets with a thickness of 1 mm are stacked to form a TIG welded gap structure under the following conditions, Ni is 0.3 mass% or more, Ti is 0.15 mass% or more, and Al is 0.04 mass% or more. In the added steel, the oxidation of Fe is suppressed, and as a result, Cr 2 O 3 in the oxide scale is concentrated and the corrosion resistance of the oxide scale is improved.
Welding conditions: TIG pulse without weld core, lap welding
Welding current Base current 130-145A, Pulse current 120-145A
Welding speed 300mm / min
Ar gas flow rate on the torch seal side 12L / min
Electrode diameter φ2.4mm
Arc length 1mm

Cuは、ArバックガスシールなしのTIG突合せ溶接部の耐食性において、溶接裏面熱影響部での孔食発生を抑制し、TIG溶接隙間では隙間腐食面積を小さくするが、侵食深さについては、隙間条件にもよるが逆に侵食を深くすることがある。したがって、バックガスシールなしのTIG溶接で隙間を形成する用途ではCuは耐食性を阻害する恐れがある。このため、本発明ではCuを添加しない。さらにCuの耐隙間腐食性阻害の作用は不純物レベルであっても現れるため、Cuの上限を0.2%未満、好ましくは0.1%未満に規制する。   Cu suppresses the occurrence of pitting corrosion at the heat-affected zone on the back of the weld in the corrosion resistance of the TIG butt weld without an Ar back gas seal, and reduces the crevice corrosion area in the TIG weld gap. Depending on conditions, erosion may be deepened. Therefore, Cu may interfere with corrosion resistance in applications where gaps are formed by TIG welding without a back gas seal. For this reason, Cu is not added in the present invention. Furthermore, since the action of inhibiting crevice corrosion resistance of Cu appears even at the impurity level, the upper limit of Cu is restricted to less than 0.2%, preferably less than 0.1%.

表1に示す化学組成を有するステンレス鋼を溶製し、熱間圧延にて板厚3mmの熱延板を作製した。その後、冷間圧延にて板厚1.0mmとし、仕上焼鈍を1000〜1070℃で行い、酸洗を施すことによって供試材とした。   Stainless steel having the chemical composition shown in Table 1 was melted, and a hot-rolled sheet having a thickness of 3 mm was produced by hot rolling. Thereafter, the plate thickness was 1.0 mm by cold rolling, finish annealing was performed at 1000 to 1070 ° C., and pickling was performed to obtain a test material.

Figure 2009185382
Figure 2009185382

各供試材の鋼板について、図1に示す方法にてTIG溶接隙間を形成した。溶接はArバックガスシールを施さずに行った。すなわち、2枚の鋼板を重ねてTIG溶接する際、隙間開口部を作るため、一方の鋼板に10°の角度で曲げを施した後、隙間となる面を大気に曝した状態で溶接を行った。溶接条件は、溶け込み(溶接金属部)が裏面まで到達し、裏面に約4mm幅の「裏ビード」が形成される条件とした。この条件の場合、溶接熱影響部(HAZ)は板厚中央部でビード中心からの距離が約10mmの範囲となる。   About the steel plate of each test material, the TIG welding clearance gap was formed by the method shown in FIG. Welding was performed without an Ar back gas seal. That is, when two steel plates are stacked and TIG welded, a gap opening is made, and after bending one steel plate at an angle of 10 °, welding is performed with the surface to be the gap exposed to the atmosphere. It was. The welding conditions were such that the penetration (welded metal part) reached the back surface and a “back bead” having a width of about 4 mm was formed on the back surface. In the case of this condition, the welding heat affected zone (HAZ) is in the center of the plate thickness and the distance from the bead center is in the range of about 10 mm.

供試鋼の評価に先立ち、表1に記載の比較鋼No.7を用いて、隙間構造、特に隙間深さと隙間腐食による侵食深さの関係を調べた。図1に示すように、「隙間深さ」を溶接ビード中心から曲げ位置までの距離(mm)と定義し、隙間深さが5mm、7mmおよび10mmとなる溶接隙間を有するものそれぞれ作製した。溶接で生じた酸化スケールを除去していない試料(無手入れのままの試料)から15×40mmの試験片を切り出し、温水中での潰漬試験に供した。
図2に溶接隙間試験片の外観を模式的に示す。溶接ビードが試験片長手方向中央位置を横切るように試験片を採取した。この潰漬試験片には溶接ビード部・熱影響部および母材部が含まれる。母材部の端にリード線をスポット溶接にて接続し、リード線およびその接続部分のみを樹脂被覆した。
Prior to the evaluation of the test steel, the comparative steel No. 1 shown in Table 1 was used. 7 was used to investigate the gap structure, particularly the relationship between the gap depth and the erosion depth due to crevice corrosion. As shown in FIG. 1, “gap depth” was defined as the distance (mm) from the center of the weld bead to the bending position, and each having a weld gap with gap depths of 5 mm, 7 mm, and 10 mm was produced. A 15 × 40 mm test piece was cut out from a sample from which the oxidized scale generated by welding was not removed (uncleaned sample), and was subjected to an immersing test in warm water.
FIG. 2 schematically shows the appearance of the weld gap test piece. The specimen was collected so that the weld bead crossed the center position in the longitudinal direction of the specimen. This immerse test piece includes a weld bead portion, a heat affected zone, and a base metal portion. A lead wire was connected to the end of the base material portion by spot welding, and only the lead wire and its connecting portion were coated with resin.

浸漬試験は80℃の2000ppmCl水溶液で24時間行った。図3に浸漬試験方法を模式的に示す。浸漬試験片2にはPt補助カソード1を接続した。
Pt補助カソード1は40×60mmのTi板の表面にPtめっきを施したものである。この補助カソードはここでの試験片に対し容量300L(リットル)の温水缶体に相当するカソード能力を有している。浸漬試験片2とPt補助カソード1を試験液3に浸漬し、試験中、エアレーションノズル4からエアーを試験液3中に送り込んだ。試験はn=3で行った。試験中、腐食電流をモニターした。腐食電流の経時変化によって腐食の進行状態がわかる。
Immersion test of 80 ℃ 2000ppmCl - was carried out for 24 hours in an aqueous solution. FIG. 3 schematically shows the immersion test method. A Pt auxiliary cathode 1 was connected to the immersion test piece 2.
The Pt auxiliary cathode 1 is obtained by performing Pt plating on the surface of a 40 × 60 mm Ti plate. This auxiliary cathode has a cathode capacity corresponding to a 300 L (liter) hot water can body with respect to the test piece here. The immersion test piece 2 and the Pt auxiliary cathode 1 were immersed in the test liquid 3, and air was fed into the test liquid 3 from the aeration nozzle 4 during the test. The test was performed at n = 3. During the test, the corrosion current was monitored. The progress of corrosion can be determined by the change in corrosion current over time.

浸漬試験後の溶接隙間試験片の溶接ビードを切断して隙間面を開き、隙間面表面を顕微鏡で観察し、最大侵食深さを測定した。結果を表2に示す。表2中に表示した侵食深さの値はn=3全ての試験片における最大侵食深さである。なお、いずれの試験片においても隙間腐食による最大侵食深さは図1に示す溶接隙間の酸化スケールが生じている箇所で溶接ボンド端部から2mm以内で観測された。   The weld bead of the weld gap test piece after the immersion test was cut to open the gap surface, the gap surface was observed with a microscope, and the maximum erosion depth was measured. The results are shown in Table 2. The erosion depth values shown in Table 2 are the maximum erosion depths for all n = 3 specimens. In any of the test pieces, the maximum erosion depth due to crevice corrosion was observed within 2 mm from the end of the weld bond at the place where the oxide scale of the weld gap shown in FIG. 1 occurred.

また、Pt補助カソード試験24時間浸漬試験で最大侵食位置であったボンド端部から2mm位置での酸化皮膜分析を微小部X線発光電子分析法(μ−XPS)で行った。ビーム径は50μmである。これにより酸化スケールの最表層から深さ5、10、15、20nmの位置における各金属元素量を求め、Cr比率をCr量/Σ(全金属元素量)で算出した。そして、各測定位置におけるCr比率の平均値を平均Cr率とした。その結果を表2に示す。   Further, an oxide film analysis at a position 2 mm from the bond end portion, which was the maximum erosion position in the Pt auxiliary cathode test 24-hour immersion test, was performed by a micro part X-ray emission electron analysis method (μ-XPS). The beam diameter is 50 μm. In this way, the amount of each metal element at a depth of 5, 10, 15, and 20 nm was determined from the outermost layer of the oxide scale, and the Cr ratio was calculated as Cr amount / Σ (total metal element amount). And the average value of Cr ratio in each measurement position was made into the average Cr rate. The results are shown in Table 2.

Figure 2009185382
Figure 2009185382

以上の知見に基づき、TIG溶接隙間試験片は隙間深さ7mmの条件で作製し、表1に示した各供試材の鋼板について浸漬試験を行なった。試験片、試験条件および試験方法は上記と同じである。試験結果を表3に示す。 Based on the above knowledge, the TIG welding gap test piece was produced under the condition of a gap depth of 7 mm, and the immersion test was performed on the steel sheets of the respective test materials shown in Table 1. The test piece, test conditions and test method are the same as above. The test results are shown in Table 3.

Figure 2009185382
Figure 2009185382

表2からわかるように、本発明で規定する化学組成を有する本発明例のものは、いずれも上記浸漬試験における耐食性評価が合格判定であった。すなわち、バックガスシールなしのTIG溶接を行って酸化スケールが形成されている溶接隙間において、温水環境での優れた耐食性を有することが確認された。No.1鋼(23Cr-0.3Ni-0.8Mo)、No.3鋼(24Cr-0.5Ni-0.5Mo)およびNo.4鋼(25Cr-0.3Ni-0.7Mo)の対比から、0.1質量%以上のNiを添加した鋼では、Cr含有量が多くなるほど腐食電流がより安定して早期に消滅し、かつ侵食深さも浅くなる傾向がある。特にNo.4鋼は腐食電流が7日以内で消滅し最大侵食深さも0.08mmと極めて浅く、溶接隙間部の耐食性が優れた。No.2鋼(23Cr-1Ni-0.3Mo)およびNo.1鋼(23Cr-0.3Ni-0.8Mo)の最大侵食深さはほぼ同じであり、バックガスシールなしのTIG溶接隙間部における耐食性に関し、Mo増量による耐食性向上効果は認められない。
No.1鋼(23Cr-0.3Ni-0.8Mo)とNo.5鋼(23Cr-0.07Ni-1Mo)に比較から、Ni添加によるTIG溶接隙間部の耐食性改善効果が著しい。
No.3鋼(24Cr-0.5Ni-0.5Mo-0.06Cu)とNo.6鋼(24Cr-0.5Ni-0.5Mo-0.28Cu)の比較から、Cuの添加により腐食電流が継続して流れるようになり、最大侵食深さも0.2mmを越える場合があることが明らかである。
As can be seen from Table 2, all of the examples of the present invention having the chemical composition defined in the present invention were judged to have passed the corrosion resistance evaluation in the immersion test. That is, it was confirmed that the weld gap in which the oxide scale is formed by performing TIG welding without a back gas seal has excellent corrosion resistance in a hot water environment. From the comparison of No. 1 steel (23Cr-0.3Ni-0.8Mo), No. 3 steel (24Cr-0.5Ni-0.5Mo) and No. 4 steel (25Cr-0.3Ni-0.7Mo) In steel added with 0.1 mass% or more of Ni, the corrosion current tends to disappear more stably and disappear earlier and the erosion depth becomes shallower as the Cr content increases. In particular, No. 4 steel lost its corrosion current within 7 days, the maximum erosion depth was extremely shallow at 0.08 mm, and the corrosion resistance of the weld gap was excellent. The maximum erosion depth of No. 2 steel (23Cr-1Ni-0.3Mo) and No. 1 steel (23Cr-0.3Ni-0.8Mo) is almost the same, and in the TIG weld gap without back gas seal Regarding the corrosion resistance, the effect of improving the corrosion resistance by increasing Mo is not recognized.
Compared with No. 1 steel (23Cr-0.3Ni-0.8Mo) and No. 5 steel (23Cr-0.07Ni-1Mo), the effect of improving the corrosion resistance of the TIG weld gap by adding Ni is remarkable.
From the comparison of No. 3 steel (24Cr-0.5Ni-0.5Mo-0.06Cu) and No. 6 steel (24Cr-0.5Ni-0.5Mo-0.28Cu), the corrosion current is increased by the addition of Cu. It is clear that it will continue to flow and the maximum erosion depth may exceed 0.2 mm.

この材料は温水器缶体のみでなく、溶接隙間構造を有する給油管や燃料タンクの給油系部材や燃料噴射レールならびに熱交換機部材にも適用できる。   This material can be applied not only to the water heater can body but also to an oil supply pipe having a weld gap structure, an oil supply system member of a fuel tank, a fuel injection rail, and a heat exchanger member.

溶接サンプルの断面の模式図であるIt is a schematic diagram of the section of a welding sample. 腐食試験に用いた溶接サンプルの概観であるIt is an overview of the weld sample used in the corrosion test 浸漬試験の構成の模式図であるIt is a schematic diagram of the structure of an immersion test.

符号の説明Explanation of symbols

1 補助カソード
2 サンプル
3 試験液
4 エアレーションノズル
5 飽和かんこう照合電極
1 Auxiliary cathode 2 Sample 3 Test solution 4 Aeration nozzle 5 Saturation reference electrode

Claims (2)

質量%で、
C:0.02%以下、
Si:0.01〜0.3%、
Mn:1%以下、
P:0.04%以下、
S:0.03%以下、
Ni:0.3〜2%、
Cr:22〜26%、
Mo:0.8%以下、
Nb:0.10〜0.6%、
Ti:0.15〜0.4%、
N:0.025%以下、
Al:0.04〜0.3%であり、
さらに不純物としてのCuを0.2%未満に制限し、残部Feおよび他の不可避的不純物からなるフェライト系ステンレス鋼板であって、その冷延焼鈍酸洗板を4mm以上の隙間深さと最大隙間間隔30μm以下でアルゴンバックガスシールなしでTIG溶接隙間構造を形成した試験片に対し、ボンド端部から2mm以内の溶接隙間部の酸化スケールの最表層から20nmまでの領域における平均Cr比率が全金属元素の割合で20質量%以上となることを特徴とする、溶接隙間酸化皮膜の耐食性に優れるフェライト系ステンレス鋼板。
% By mass
C: 0.02% or less,
Si: 0.01 to 0.3%
Mn: 1% or less,
P: 0.04% or less,
S: 0.03% or less,
Ni: 0.3-2%,
Cr: 22-26%
Mo: 0.8% or less,
Nb: 0.10 to 0.6%,
Ti: 0.15-0.4%,
N: 0.025% or less,
Al: 0.04 to 0.3%,
Further, it is a ferritic stainless steel plate that limits Cu as an impurity to less than 0.2%, and the balance Fe and other inevitable impurities, the cold-rolled annealed pickled plate having a gap depth of 4 mm or more and a maximum gap interval For a test piece having a TIG weld gap structure formed at 30 μm or less and without an argon back gas seal, the average Cr ratio in the region from the outermost layer of the oxide scale of the weld gap within 2 mm from the bond end to 20 nm is all metal elements A ferritic stainless steel sheet excellent in the corrosion resistance of the weld gap oxide film, wherein the ratio is 20% by mass or more.
請求項1に記載のフェライト系ステンレス鋼板であって、その冷延焼鈍酸洗板を4mm以上の隙間深さと最大隙間間隔30μm以下でアルゴンバックガスシールなしでTIG溶接隙間構造を形成した試験片に対し、ボンド端部から2mm以内の溶接隙間部の酸化スケールの最表層から20nmまでの領域における平均Cr比率が全金属元素の割合で20質量%以上であり、更に、ボンド端部から2〜4mmの位置の酸化スケールの最表層から20nmまでの領域における平均Fe比率が全金属元素の割合で70質量%以下となることを特徴とする、溶接隙間酸化皮膜の耐食性に優れるフェライト系ステンレス鋼板。   A ferritic stainless steel sheet according to claim 1, wherein the cold-rolled annealed pickled steel sheet has a gap depth of 4 mm or more and a maximum gap interval of 30 µm or less and a TIG welded gap structure formed without an argon back gas seal. On the other hand, the average Cr ratio in the region from the outermost layer of the oxide scale of the weld gap within 2 mm from the bond end to 20 nm is 20% by mass or more in terms of the total metal elements, and further 2 to 4 mm from the bond end. A ferritic stainless steel sheet excellent in the corrosion resistance of the weld gap oxide film, characterized in that the average Fe ratio in the region from the outermost layer of the oxide scale at the position of 20 to 20 nm is 70% by mass or less in terms of the ratio of all metal elements.
JP2008317152A 2008-01-09 2008-12-12 Ferritic stainless steel sheet having excellent corrosion resistance in welding gap oxide film Withdrawn JP2009185382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008317152A JP2009185382A (en) 2008-01-09 2008-12-12 Ferritic stainless steel sheet having excellent corrosion resistance in welding gap oxide film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008002363 2008-01-09
JP2008317152A JP2009185382A (en) 2008-01-09 2008-12-12 Ferritic stainless steel sheet having excellent corrosion resistance in welding gap oxide film

Publications (1)

Publication Number Publication Date
JP2009185382A true JP2009185382A (en) 2009-08-20

Family

ID=41068902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008317152A Withdrawn JP2009185382A (en) 2008-01-09 2008-12-12 Ferritic stainless steel sheet having excellent corrosion resistance in welding gap oxide film

Country Status (1)

Country Link
JP (1) JP2009185382A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248625A (en) * 2009-03-27 2010-11-04 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel having excellent local corrosion resistance
JP2011068967A (en) * 2009-09-28 2011-04-07 Nisshin Steel Co Ltd Water storage tank constructed by welding panel made from stainless steel
JP2011184731A (en) * 2010-03-08 2011-09-22 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel having excellent corrosion resistance in condensed water environment generated from hydrocarbon combustion exhaust gas
JP2011200927A (en) * 2010-03-26 2011-10-13 Nisshin Steel Co Ltd Welded structure
WO2012133681A1 (en) 2011-03-29 2012-10-04 新日鐵住金ステンレス株式会社 Ferrite stainless steel exhibiting excellent corrosion resistance and strength in weld zones, and tig-welded structure
CN103276307A (en) * 2013-04-16 2013-09-04 宝钢不锈钢有限公司 High-corrosion resistance high-toughness high-chromium ferrite stainless steel plate and manufacturing method thereof
CN109142793A (en) * 2018-09-25 2019-01-04 天津大学 A kind of lossless visible detection method of welding point interface microstructure
WO2021193479A1 (en) 2020-03-25 2021-09-30 日鉄ステンレス株式会社 Weld structure, stainless steel welded structure, stainless steel welded container and stainless steel

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248625A (en) * 2009-03-27 2010-11-04 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel having excellent local corrosion resistance
JP2011068967A (en) * 2009-09-28 2011-04-07 Nisshin Steel Co Ltd Water storage tank constructed by welding panel made from stainless steel
JP2011184731A (en) * 2010-03-08 2011-09-22 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel having excellent corrosion resistance in condensed water environment generated from hydrocarbon combustion exhaust gas
JP2011200927A (en) * 2010-03-26 2011-10-13 Nisshin Steel Co Ltd Welded structure
WO2012133681A1 (en) 2011-03-29 2012-10-04 新日鐵住金ステンレス株式会社 Ferrite stainless steel exhibiting excellent corrosion resistance and strength in weld zones, and tig-welded structure
CN103276307A (en) * 2013-04-16 2013-09-04 宝钢不锈钢有限公司 High-corrosion resistance high-toughness high-chromium ferrite stainless steel plate and manufacturing method thereof
CN109142793A (en) * 2018-09-25 2019-01-04 天津大学 A kind of lossless visible detection method of welding point interface microstructure
WO2021193479A1 (en) 2020-03-25 2021-09-30 日鉄ステンレス株式会社 Weld structure, stainless steel welded structure, stainless steel welded container and stainless steel
KR20220137123A (en) 2020-03-25 2022-10-11 닛테츠 스테인레스 가부시키가이샤 Welded Structures, Stainless Steel Welded Structures, Stainless Steel Welded Vessels and Stainless Steel

Similar Documents

Publication Publication Date Title
JP5010323B2 (en) Ferritic stainless steel for hot water container with welded structure, hot water container and manufacturing method thereof
JP4948998B2 (en) Ferritic stainless steel and welded steel pipe for automotive exhaust gas flow path members
KR102154579B1 (en) Ferrite-austenite two-phase stainless steel and manufacturing method thereof
JP2009161836A (en) Ferritic stainless steel sheet excellent in corrosion resistance in welding crevice part
JP2009185382A (en) Ferritic stainless steel sheet having excellent corrosion resistance in welding gap oxide film
JP5870665B2 (en) High-strength welded steel pipe with excellent tensile stress strength of 600 MPa or more with excellent resistance to sulfide stress corrosion cracking
JP2008274379A (en) Steel sheet having excellent pit resistance, and method for producing the same
JP4687531B2 (en) Steel for crude oil tank and method for producing the same
WO2008084838A1 (en) Ferritic stainless steel sheet for water heater excellent in corrosion resistance at welded part and steel sheet toughness
JP2010202916A (en) Ferritic stainless steel excellent in corrosion resistance of welded part with austenite stainless steel
KR20160136468A (en) Zinc based alloy coated steel having superior resistance to liquid metal embrittlement and cracking
JP2011173124A (en) Welding method of ferritic stainless steel
WO2008120409A1 (en) Ferritic stainless steel for warm-water vessel with welded structure, and warm-water vessel
JP2011105976A (en) Drain pipe
JP2010065279A (en) Stainless steel sheet for warm-water vessel, method for producing the same, and warm-water vessel
JP6782660B2 (en) Duplex Stainless Steel Welded Structure for Oxidizing Fluid Environment
JP2009167439A (en) Ferritic stainless steel for welding gap structural warm-water vessel
WO2018147149A1 (en) Ferritic stainless steel sheet
JP2011068967A (en) Water storage tank constructed by welding panel made from stainless steel
JP6580757B1 (en) Stainless steel for fuel rail
JP2006097908A (en) Hot water storage tank of welded structure and its construction method
JP4465066B2 (en) Welding materials for ferrite and austenitic duplex stainless steels
JP2011202254A (en) Ferritic stainless steel having excellent corrosion resistance in weld zone
JP3713833B2 (en) Ferritic stainless steel for engine exhaust members with excellent heat resistance, workability, and weld corrosion resistance
JPH0635615B2 (en) Manufacturing method of ferritic stainless steel with excellent corrosion resistance of welds

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120306