JP2011105976A - Drain pipe - Google Patents
Drain pipe Download PDFInfo
- Publication number
- JP2011105976A JP2011105976A JP2009260307A JP2009260307A JP2011105976A JP 2011105976 A JP2011105976 A JP 2011105976A JP 2009260307 A JP2009260307 A JP 2009260307A JP 2009260307 A JP2009260307 A JP 2009260307A JP 2011105976 A JP2011105976 A JP 2011105976A
- Authority
- JP
- Japan
- Prior art keywords
- corrosion resistance
- less
- stainless steel
- steel
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Arc Welding In General (AREA)
Abstract
Description
本発明はフェライト系ステンレス鋼を素材とした排水管に関する。 The present invention relates to a drain pipe made of ferritic stainless steel.
排水管は雨水、トイレ、厨房芥屑、洗濯排水など排水の種類は多種多用であり、流れも不定流で、水、堆積物および空気が混在する環境にあるため、管や継手の材質を選定する上で必要な腐食環境条件、必要な耐食性レベルが特定できない。
さらに、堆積物の下は酸素の拡散が遮断され、条件によっては嫌気性の硫酸塩還元菌が繁殖し、腐食性の強い硫化水素の発生により金属製排水管に腐食あるいは割れが進行する問題がある。管種としては30〜100Aの鋳鉄管、樹脂被覆管、樹脂管などが用いられているが、良好な耐硫化水素性が期待されるステンレス鋼鋼管の使用は極めて少ない。
There are many types of drainage pipes such as rainwater, toilets, kitchen waste, and laundry wastewater, and the flow is indefinite, and the environment is a mixture of water, sediment, and air. The necessary corrosive environmental conditions and the necessary corrosion resistance level cannot be specified.
In addition, the diffusion of oxygen is blocked under the sediment, and anaerobic sulfate-reducing bacteria can grow depending on the conditions, and corrosion or cracking of metal drainage pipes may occur due to the generation of highly corrosive hydrogen sulfide. is there. As the pipe type, cast iron pipes of 30 to 100 A, resin-coated pipes, resin pipes and the like are used, but the use of stainless steel pipes that are expected to have good hydrogen sulfide resistance is extremely small.
現在多用されている鋳鉄管や樹脂被覆管は板厚3mm以上の厚肉管であるため重量物であり、しかも排水管の施工は限られた狭いスペースで行われるので施工性に劣る問題がある。また、鋳鉄管や樹脂被覆管では使用年月とともに鉄さびの生成、付着により有効内径が細くなるため、これを見越したサイズの管径で施工される。したがって、施工性の問題に加えて管を設置する空間も大きくなり、集合住宅などでは有効床面積が小さくなる問題もある。 Cast iron pipes and resin-coated pipes that are widely used at present are heavy because they are thick-walled pipes with a thickness of 3 mm or more, and the construction of drain pipes is performed in a limited narrow space, so there is a problem of poor workability. . In cast iron pipes and resin-coated pipes, the effective inner diameter becomes narrow due to the generation and adhesion of iron rust with the years of use. Therefore, in addition to the problem of workability, the space for installing the pipe also becomes large, and there is a problem that the effective floor area becomes small in an apartment house or the like.
JIS G 3448「一般配管用ステンレス鋼鋼管」に、給水、給湯、排水、冷温水の配管に用いるステンレス鋼鋼管が規定されている。管の種類はSUS304TPD、SUS316TPD、SUS315JlTPDおよびSUS315J2TPDのオーステナイト系ステンレス鋼である。一般配管用ステンレス鋼鋼管は上記管種に比べて耐食性に優れ、同じ径であれば管の板厚はほぼ1/2であるため軽量で施工性にすぐれ、しかも鉄さびの付着がないため設計管径が小さくでき、素材費の観点からも有利であり、また、設置に要する空間がより少なくて済むため集合住宅では床面積が有効に活用できるなどの利点がある。 JIS G 3448 “Stainless steel pipe for general piping” defines a stainless steel pipe used for piping for water supply, hot water supply, drainage, and cold / hot water. The tube types are SUS304TPD, SUS316TPD, SUS315JlTPD and SUS315J2TPD austenitic stainless steel. Stainless steel pipes for general piping are superior in corrosion resistance compared to the above pipe types. If the diameter is the same, the pipe thickness is almost ½, so it is lightweight and has excellent workability, and there is no iron rust adhesion. The diameter can be reduced, which is advantageous from the viewpoint of material cost, and because it requires less space for installation, there is an advantage that the floor area can be effectively used in an apartment house.
しかし、ステンレス鋼鋼管の適用においても問題点はある。すなわち、ステンレス鋼鋼管では継手に溶接継手が多用される。ステンレス鋼の溶接は一定水準以上の溶接技能を必 要とし、しかも施工現場での溶接は限られた狭い空間での溶接となることから溶接品質の低下が懸念される。また、溶接施工のまま腐食環境で使用すると、溶接部で孔食や隙間腐食が生じやすくなり不具合に至ることがある。溶接による耐食性低下は溶接スケールの生成に起因しているため、溶接の加熱で生じた酸化スケールの除去は必須となっている。
したがって、ステンレス鋼鋼管を用いる場合、施工現場での溶接施工は行わず、予め部材加工メーカーでの溶接とスケールの除去が必須となっている。
スケールの除去は研磨や酸を用いるため、作業環境の悪化に加えて使用した酸の除去や無害化のための作業が派生するなど環境上、施工上の課題もある。
However, there are also problems in the application of stainless steel pipes. That is, welded joints are frequently used as joints in stainless steel pipes. Welding of stainless steel requires a certain level of welding skills, and welding at the construction site involves welding in a limited and confined space. Moreover, if it uses it in a corrosive environment with welding construction, it will become easy to produce pitting corrosion and crevice corrosion in a welding part, and it may lead to a malfunction. Since the deterioration in corrosion resistance due to welding is caused by the generation of a weld scale, it is essential to remove the oxide scale generated by heating the weld.
Therefore, when a stainless steel pipe is used, welding is not performed at the construction site, and welding and scale removal at the member processing manufacturer are essential.
Since removal of scale uses polishing and acid, there are environmental and construction problems such as work for removing acid and detoxification used in addition to deterioration of working environment.
特許文献1にはステンレス鋼鋼管で溶接施工を必要としないフレア継手が開示されている。溶接施工しないことで溶接による耐食性低下がない利点はあるが、管端をつば出し加工するため、オーステナイト系ステンレス鋼鋼管の場合、つば出しによる残留応力がフランジ面に残るため、フランジ面におけるすき間腐食を起点とした応力腐食割れ発生が懸念される。そのため、応力腐食割れに優れた耐食性を有するステンレスの使用が余儀なくされコスト面で不利となる。また、応力腐食割れを回避する目的でフェライト系ステンレス鋼鋼管を用いた場合、つば出し加工性に問題が残る。
上述のように、排水管にステンレス鋼鋼管を用いれば、現行の管種に比べて軽量であり、しかも耐食性に優れ、鉄さびの付着による管の有効内径の減少も考慮する必要がないため、耐久性および施工性が圧倒的に優れる利点がある。
一方、溶接継手の施工を工場でのプレハブ施工で行った場合、溶接後に酸もしくは研磨にて溶接酸化スケールを除去する必要があるため、廃液処理などの環境対策、工程増に伴う施工コストの上昇を招く。さらに、配管施工の現場で溶接できないとなると、施工での自由度が損なわれる問題が生じ、結局施工が阻害される恐れがある。
本発明は、このような現状に鑑み、TIG溶接による耐食性低下の小さいステンレス鋼素材を排水管に用い、溶接ままの状態で排水管環境において要求される塩化物イオン、硫化水素に対する耐食性を満足し、溶接後の酸化スケール除去作業の省略による作業環境の改善とこれに要するコスト低減が可能となる溶接部耐食性に優れたステンレス鋼鋼管排水管を開発し提供することを目的とする。
As described above, if a stainless steel pipe is used for the drain pipe, it is lighter than the current pipe type, and also has excellent corrosion resistance, and it is not necessary to consider the decrease in the effective inner diameter of the pipe due to the adhesion of iron rust. There is an advantage that the workability and workability are overwhelmingly superior.
On the other hand, when welded joints are prefabricated at the factory, it is necessary to remove the weld oxide scale by acid or polishing after welding. Invite. Furthermore, if welding cannot be performed at the site of piping construction, there is a problem that the degree of freedom in construction is impaired, and there is a risk that construction will be hindered.
In view of such a current situation, the present invention uses a stainless steel material having a small deterioration in corrosion resistance due to TIG welding as a drain pipe, and satisfies the corrosion resistance to chloride ions and hydrogen sulfide required in the drain pipe environment in a welded state. It is an object of the present invention to develop and provide a stainless steel pipe drain pipe excellent in corrosion resistance of a welded portion that can improve the working environment by omitting the oxide scale removal work after welding and reduce the cost required for this.
発明者らは上記目的を達成すべく詳細な研究を行った結果、以下のようなことを新たに知見した。
(i)ステンレス鋼鋼管の排水管の溶接施工では、管の外面が溶接トーチ面で、耐食性が要求される部位は管内面となる。管内面をArガス雰囲気にし、溶接スケールの生成を抑制する必要があるが、配管施工現場で管内面をArガスシールすることは困難である。溶接部の耐食性低下は溶接スケールの発生に起因する。溶接部は溶着金属から熱影響部までを含み、溶接スケールの組成、厚みは溶接ボンドからの位置で異なる。溶接部での孔食は400〜600℃に加熱された部位で発生し成長する。
溶接部の孔食発生はスケール自身の耐食性と密接に関連し、Cr酸化物を一定量以上含む酸化スケールは耐食性がすぐれ、Fe酸化物を主体とする酸化スケールは溶解しやすく、素材に孔食が発生しやすい。
As a result of detailed studies to achieve the above object, the inventors have newly found the following.
(I) In welding construction of a drain pipe of a stainless steel pipe, the outer surface of the tube is a welding torch surface, and the portion requiring corrosion resistance is the inner surface of the tube. Although it is necessary to make the pipe inner surface into an Ar gas atmosphere and suppress the generation of the welding scale, it is difficult to seal the pipe inner surface with Ar gas at the piping construction site. The decrease in the corrosion resistance of the weld is caused by the occurrence of a weld scale. The welded portion includes from the deposited metal to the heat affected zone, and the composition and thickness of the weld scale differ depending on the position from the weld bond. Pitting corrosion at the weld occurs and grows at a site heated to 400 to 600 ° C.
The occurrence of pitting corrosion in the weld is closely related to the corrosion resistance of the scale itself. Oxide scale containing a certain amount or more of Cr oxide is excellent in corrosion resistance, and the oxide scale mainly composed of Fe oxide is easy to dissolve. Is likely to occur.
(ii)Tiを添加したフェライト系ステンレス鋼のCr含有量を21質量%以上確保するとともにNiを適量添加することにより、TIG溶接熱影響部で孔食が生じやすい400〜600℃に加熱される部位の酸化スケール中のCr酸化物濃度を増加させ、酸化スケールの耐食性が改善され、塩化物環境におけるTIG溶接熟影響部の耐孔食性向上に極めて有効である。その結果、溶接造管部ならびに溶接継手の耐食性改善としてこれまで行われてきた溶接後の溶接スケール除去作業の省略が可能となる。 (Ii) By ensuring the Cr content of the ferritic stainless steel to which Ti is added is 21% by mass or more and adding an appropriate amount of Ni, it is heated to 400 to 600 ° C. where pitting corrosion is likely to occur in the TIG welding heat affected zone. By increasing the Cr oxide concentration in the oxide scale at the site, the corrosion resistance of the oxide scale is improved, and it is extremely effective in improving the pitting corrosion resistance of the TIG weld-affected zone in a chloride environment. As a result, it is possible to omit the welding scale removal work after welding, which has been performed so far in order to improve the corrosion resistance of the welded pipe portion and the welded joint.
(iii)排水管では硫酸塩還元菌によりH2S環境が形成され、濃度は最大10ppmに達する。ステンレス鋼の耐H2S腐食性に対しては、Ti、Al、MoおよびNiの添加が有効である。これら元素の耐食性改善効果はCr量が高いほど大きくなる。ステンレス鋼の耐H2S腐食性の指標として、Cr量によって、下式に示すS値が設定でき、H2S濃度10ppmの場合、以下に定義するS値を28.0以上とすることで耐食性が達成される。ここで、式中の各項は合金元素の含有量(質量%)である。
17%≦Cr<21%の場合
S値=Cr+6Mo+9(Ti−0.1)+5(Al−0.03)+0.2Ni (1)
21%≦Cr<26%の場合
S値=Cr+7Mo+9(Ti−0.1)+5(Al−0.03)+0.2Ni (2)
これら2式の各元素の係数はH2Sガス腐食試験から求めたもので、Crの効果を1とした単位質量あたりの効果の比率で示したものである。なお、MoとTiの耐食性改善効果はCr含有量で決まり、Cr量が多いほど大きくなる。
(Iii) In the drain pipe, an H 2 S environment is formed by sulfate-reducing bacteria, and the concentration reaches a maximum of 10 ppm. Addition of Ti, Al, Mo and Ni is effective for the H 2 S corrosion resistance of stainless steel. The effect of improving the corrosion resistance of these elements increases as the Cr content increases. As an index of H 2 S corrosion resistance of stainless steel, the S value shown in the following formula can be set depending on the Cr amount. When the H 2 S concentration is 10 ppm, the S value defined below is set to 28.0 or more. Corrosion resistance is achieved. Here, each term in the formula is the content (mass%) of the alloy element.
When 17% ≦ Cr <21% S value = Cr + 6Mo + 9 (Ti−0.1) +5 (Al−0.03) + 0.2Ni (1)
When 21% ≦ Cr <26% S value = Cr + 7Mo + 9 (Ti−0.1) +5 (Al−0.03) + 0.2Ni (2)
The coefficient of each element of these two formulas was obtained from the H 2 S gas corrosion test, and is represented by the ratio of the effect per unit mass, where the effect of Cr is 1. The effect of improving the corrosion resistance of Mo and Ti is determined by the Cr content, and increases as the Cr content increases.
(iv)排水管は固形物を水とともに排水するため排水性が必要である。管に詰まりが生じた場合はブラシなどを用いた機械的な清掃が行われる。したがって、排水管には排水性ならびに機械的洗浄による不動態皮膜の破壊に対する再不動態化能が要求される。
排水性はステンレス鋼鋼管の表面粗さをRzで2μm以下にすること、再不動態化はCr量の増加が有効であることを知見した。本発明はこのような知見に基づいて成分設計されたフェライト系ステンレス鋼を用いた排水管を提供するものである。
(Iv) The drainage pipe needs to be drainable to drain solids together with water. When the tube is clogged, mechanical cleaning using a brush or the like is performed. Therefore, drainage pipes are required to have drainability and repassivation ability against the destruction of the passive film by mechanical cleaning.
It was found that drainage is effective when the surface roughness of the stainless steel pipe is 2 μm or less in terms of Rz, and repassivation is effective by increasing the Cr content. The present invention provides a drain pipe using ferritic stainless steel whose components are designed based on such knowledge.
すなわち、排水管の素材に質量%で、C:0.02%以下、Si:0・2〜1%、Mn:0.4%以下、P:0.04%以下、S:0.005%以下、Cr:17〜26%、Mo:0.4〜2%未満、Nb:0.1〜0.5%、Ti:0.2〜0.4%、N:0.025%以下、Al:0.04〜0.3%、場合によってはさらにNi:0.4〜2%を含むとともに、下式に示すS値が25.0以上であり、残部Feおよび他の不可避的不純物からなるフェライト系ステンレス鋼を用いることを特長とする排水管である。
17%≦C r<21%の場合
S値=Cr+6Mo+7(Ti−0.1)+5(Al−0.03)+0.2Ni
21%≦C r<26%の場合
S値=Cr+7Mo+9(Ti−0.1)+5(A1−0.03)+0.2Ni
ここで、式中の各項は合金元素の含有量(質量%)であり、その元素を含有しない場合はゼロを代入する。
また、鋼管の表面粗さがRzで2μm以下とすることにより、水との接触角が60度以下となる親水性の鋼管が得られる。更に、伸び率1%以下のウェットスキンパスを行うことにより、冷延工程での研磨や酸洗で荒れた表面のスムージングが図れるとともに、スキンパスオイル中の界面活性剤などの作用により親水性の表面が安定して得られる。
That is, the mass of the material of the drain pipe is C: 0.02% or less, Si: 0.2 to 1%, Mn: 0.4% or less, P: 0.04% or less, S: 0.005% Hereinafter, Cr: 17 to 26%, Mo: 0.4 to less than 2%, Nb: 0.1 to 0.5%, Ti: 0.2 to 0.4%, N: 0.025% or less, Al : 0.04 to 0.3%, and in some cases, Ni: 0.4 to 2% is included, and the S value shown in the following formula is 25.0 or more, and the balance is Fe and other inevitable impurities. A drainage pipe characterized by using ferritic stainless steel.
17% ≦ C r <21% S value = Cr + 6Mo + 7 (Ti−0.1) +5 (Al−0.03) + 0.2Ni
When 21% ≦ C r <26% S value = Cr + 7Mo + 9 (Ti−0.1) +5 (A1−0.03) + 0.2Ni
Here, each term in a formula is content (mass%) of an alloy element, and substitutes zero when not containing the element.
Moreover, when the surface roughness of the steel pipe is 2 μm or less in terms of Rz, a hydrophilic steel pipe having a contact angle with water of 60 degrees or less is obtained. Furthermore, by performing a wet skin pass with an elongation of 1% or less, smoothing of the rough surface by polishing and pickling in the cold rolling process can be achieved, and a hydrophilic surface can be obtained by the action of a surfactant in the skin pass oil. Obtained stably.
本発明の排水管は、硫化水素環境における溶接部の耐食性が顕著に改善され、溶接裏面の酸化スケール生成面を無手入れのままで排水に曝して使用した場合でも、長期間優れた耐孔食性が維持される。すなわち溶接管や溶接継ぎ手を溶接により製造する際に、溶接スケールの除去作業を省略しても高い信頼性が得られ、溶接継ぎ手施工でのコスト低減が可能になる。さらに現行管のサイズダウンが可能で、軽量化による配管施工コストの低減も合わせて図れる。 The drainage pipe of the present invention has significantly improved corrosion resistance of the welded part in a hydrogen sulfide environment, and has excellent pitting corrosion resistance for a long period of time even when it is used by exposing it to drainage without maintaining the oxidized scale generation surface on the backside of the weld. Is maintained. That is, when manufacturing a welded pipe or a welded joint by welding, high reliability can be obtained even if the welding scale removal operation is omitted, and the cost for welding joint construction can be reduced. In addition, the size of the existing pipe can be reduced, and the construction cost can be reduced by reducing the weight.
本発明のフェライト系ステンレス鋼を構成する成分元素について説明する。
C、Nは、鋼中に不可避的に含まれる元素である。C、Nの含有量を低減すると鋼は軟質になり加工性が向上するとともに炭化物、窒化物の生成が少なくなり、溶接性および溶接部の耐食性が向上する。このため本発明ではC、Nとも含有量は少ない方が良く、Cは0.02質量%まで、Nは0.025質量%まで含有が許容される。
The component elements constituting the ferritic stainless steel of the present invention will be described.
C and N are elements inevitably contained in the steel. When the content of C and N is reduced, the steel becomes soft and the workability is improved, and the formation of carbides and nitrides is reduced, and the weldability and the corrosion resistance of the welded portion are improved. Therefore, in the present invention, it is better that the contents of both C and N are small, and C is allowed to be contained up to 0.02% by mass and N is allowed to be contained up to 0.025% by mass.
Siは、Arガスをシールガスとして用いるTIG溶接では、溶接トーチ面の酸化スケールの耐食性を改善し溶接部耐孔食性改善に有効に作用する。また、Siはフェライト系鋼の母材および溶接部の硬質化に寄与するので、本発明の排水管素材として使用する場合、Siの添加は有利となる。種々検討の結果、Siによる強度向上作用を十分に享受するには、0.2質量%以上Si含有量を確保することが望まれる。しかし、1%を超えて多量に添加すると逆に孔食の成長を促進するため、本発明ではSi含有量を0.2〜1.0質量%の範囲にコントロールする。 In TIG welding using Ar gas as a sealing gas, Si effectively improves the corrosion resistance of the oxide scale on the welding torch surface and effectively improves the pitting corrosion resistance of the weld. Further, since Si contributes to the hardening of the base material of the ferritic steel and the welded portion, the addition of Si is advantageous when used as the drainage pipe material of the present invention. As a result of various studies, it is desired to secure a Si content of 0.2% by mass or more in order to fully enjoy the strength improvement effect of Si. However, if it is added in a large amount exceeding 1%, the growth of pitting corrosion is promoted conversely. Therefore, in the present invention, the Si content is controlled in the range of 0.2 to 1.0 mass%.
Mnは、ステンレス鋼の脱酸剤として使用される。しかしMnは不動態皮膜中のCr濃度を低下させ、耐食性低下を招く要因となるので、Mn含有量は低い方が好ましく、0.4質量%以下の含有量に規定される。スクラップを原料とするステンレス鋼ではある程度のMn混入は避けられないので、過剰に含有されないよう管理が必要である。 Mn is used as a deoxidizer for stainless steel. However, since Mn lowers the Cr concentration in the passive film and causes a decrease in corrosion resistance, the Mn content is preferably low, and is defined as a content of 0.4% by mass or less. Since some amount of Mn is unavoidable in the stainless steel made from scrap, it is necessary to manage it so that it is not excessively contained.
Pは、母材および溶接部の靭性を損なうので低い方が望ましい。ただし、含Cr鋼の溶製において精錬による脱りんは困難であることから、P含有量を極低化するには原料の厳選などに過剰なコスト増を伴う。したがって本発明では一般的なフェライト系ステンレス鋼と同様に、0.04質量%までのP含有を許容する。 P is desirable to be low because it impairs the toughness of the base metal and the weld. However, since dephosphorization by refining is difficult in the production of Cr-containing steel, excessively increasing the cost, such as careful selection of raw materials, is required to minimize the P content. Therefore, in the present invention, the P content up to 0.04% by mass is allowed as in the case of general ferritic stainless steel.
Sは、孔食の起点となりやすいMnSやCaSなどの硫化物を形成して孔食の起点となることが知られている。本発明の排水管素材には適量のTiを必須添加するのでMnSの形成は回避できる。すなわち、TiはSとの親和力が強く、化学的に安定な硫化物を形成するので、耐食性低下の原因になるMnSの生成が十分に抑止される。しかし、脱酸材としてAlを用いるためCaSの形成は回避できない場合がある。排水管の耐孔食性を損なわないためにS量の上限は0.005質量%以下に規定される。 It is known that S becomes a starting point of pitting corrosion by forming sulfides such as MnS and CaS that are likely to start pitting corrosion. Since an appropriate amount of Ti is added to the drainage pipe material of the present invention, formation of MnS can be avoided. That is, since Ti has a strong affinity for S and forms a chemically stable sulfide, the generation of MnS that causes a decrease in corrosion resistance is sufficiently suppressed. However, since Al is used as a deoxidizing material, formation of CaS may not be avoided. In order not to impair the pitting corrosion resistance of the drain pipe, the upper limit of the S amount is specified to be 0.005 mass% or less.
Crは、不動態皮膜の主要構成元素であり、耐孔食性や耐隙間腐食性などの局部腐食性の向上をもたらす。また、排水管で要求される耐硫化水素腐食性や溶接部の耐食性はCr含有量に大きく依存することから、Crは本発明においても重要な元素である。
本発明者らの検討の結果、耐硫化水素腐食性や溶接部の耐食性で要求される耐食性を得るためには、MoやTi等の添加を必要とするがこれら元素の耐食性改善効果を有効に発揮させるためには17質量%を超えるCr含有量を確保すべきである。
耐食性向上効果はCr含有量が多くなるに伴って向上するが、26質量%を超えて添加するとC、Nの低減が難しくなり機械的性質や靭性を損ね、冷延焼鈍板の表面庇が増加し製造コストを増大させる要因となる。したがって本発明ではCr含有量を17〜26質量%、望ましくは21〜26%とする。
Cr is a main constituent element of the passive film, and improves local corrosion properties such as pitting corrosion resistance and crevice corrosion resistance. In addition, since the resistance to hydrogen sulfide corrosion and the corrosion resistance of the welded portion required for the drain pipe depend greatly on the Cr content, Cr is an important element also in the present invention.
As a result of the examination by the present inventors, in order to obtain the corrosion resistance required for the corrosion resistance of hydrogen sulfide and the corrosion resistance of the welded portion, it is necessary to add Mo, Ti, etc., but the effect of improving the corrosion resistance of these elements is effective. In order to exert it, a Cr content exceeding 17% by mass should be secured.
The effect of improving corrosion resistance increases as the Cr content increases, but if added over 26% by mass, the reduction of C and N becomes difficult and the mechanical properties and toughness are impaired, and the surface flaw of the cold-rolled annealed plate increases. This increases the manufacturing cost. Therefore, in the present invention, the Cr content is 17 to 26% by mass, preferably 21 to 26%.
Moは、Crとともに耐食性レベルを向上させるための有効な元素であり、その耐食性向上作用は高Crになるほど大きくなる。発明者らの詳細な検討によれば、還元性の硫化水素環境おいて強力な耐食性改善効果を発揮する。一方、TIG溶接したままの酸化スケールが形成された溶接部についてはMoによってもたらされる耐食性向上作用はあまり大きくない。本発明の主な用途である排水管では、硫化水素雰囲気における溶接部耐食性が要求されるが、徒にMo添加量を増加するのは省資源の観点から望ましくない。本発明では、耐硫化水素腐食性は、Ti、Al、Niで補完するため、0.4質量%以上のMoを含有させる。上限は、排水管環境での使用で必要十分な2質量%未満とする。 Mo is an effective element for improving the corrosion resistance level together with Cr, and the effect of improving the corrosion resistance increases as the Cr content increases. According to detailed examinations by the inventors, a strong corrosion resistance improving effect is exhibited in a reducing hydrogen sulfide environment. On the other hand, the corrosion resistance improving effect brought about by Mo is not so great for the welded portion in which the oxide scale as formed by TIG welding is formed. The drain pipe, which is the main application of the present invention, requires weld corrosion resistance in a hydrogen sulfide atmosphere. However, it is not desirable from the viewpoint of resource saving to increase the amount of Mo addition. In the present invention, since the hydrogen sulfide corrosion resistance is supplemented by Ti, Al, and Ni, 0.4 mass% or more of Mo is contained. The upper limit is less than 2% by mass, which is necessary and sufficient for use in a drainage pipe environment.
Nbは、Tiと同様にC、Nとの親和力が強く、フェライト系ステンレス鋼で問題となる粒界腐食を防止するのに有効な元素である。その効果を十分発揮させるには0.1質量%以上のNb含有量を確保することが望ましい。しかし、過剰に添加すると溶接高温割れが生じるようになり溶接部靭性も低下する。排水管は1.5〜2mmの板厚で用いられることが多く一定レベル以上の溶接部靭性が要求される。Nb含有量の上限は0.5質量%とする。 Nb has a strong affinity for C and N like Ti, and is an effective element for preventing intergranular corrosion, which is a problem in ferritic stainless steel. In order to sufficiently exhibit the effect, it is desirable to secure an Nb content of 0.1% by mass or more. However, when it adds excessively, a hot cracking will arise and a weld part toughness will also fall. The drain pipe is often used with a plate thickness of 1.5 to 2 mm, and a welded portion toughness of a certain level or more is required. The upper limit of the Nb content is 0.5% by mass.
TiはTIG溶接において溶接部の耐食性向上に寄与する元素である。とくに溶接隙間部では大気から遮断されるためCrの酸化が進まず、スケールの耐食性が阻害されるが、Alとの複合添加により隙間を形成する熱影響部の鋼表面にAl、Ti主体の化学的に安定な酸化皮膜を形成すること、ならぴに、Fe2O3の生成を抑えることで酸化スケールの耐食性を向上する。また、Tiは耐硫化水素腐食性を改善する。これはTiの酸化物は還元を受けにくいため、還元性環境においても不動態皮膜が維持できるためと考えられる。
Tiの耐硫化水素腐食性改善効果はCr皐が高いほど大きくなる。その効果を十分に享受するには0.2質量%以上のTi含有量を確保することが望ましい。しかし、Ti含有量が多くなると素材の表面品質が低下したり、溶接ビードでの酸化物生成(スラグスポット)が多くなり溶接ビードの耐食性が低下するので、Ti含有量の上限は0.4質量%とする。
Ti is an element that contributes to improving the corrosion resistance of the weld in TIG welding. In particular, the weld gap is shielded from the atmosphere because Cr is not oxidized, and the corrosion resistance of the scale is hindered. In addition, the corrosion resistance of the oxide scale is improved by forming a stable oxide film and, in addition, suppressing the formation of Fe 2 O 3 . Ti also improves the resistance to hydrogen sulfide corrosion. This is thought to be because the oxide of Ti is less susceptible to reduction and the passive film can be maintained even in a reducing environment.
The effect of improving the hydrogen sulfide corrosion resistance of Ti increases as the Cr content increases. In order to fully enjoy the effect, it is desirable to secure a Ti content of 0.2% by mass or more. However, as the Ti content increases, the surface quality of the material deteriorates, and oxide formation (slag spots) in the weld bead increases and the corrosion resistance of the weld bead decreases, so the upper limit of the Ti content is 0.4 mass. %.
Alは、Tiとの複合添加によってTIG溶接における溶接金属郡、溶接熱影響部の鋼表面でTiとともに優先酸化し、Fe2O3の生成を抑え酸化スケールの耐食性を高める。
また、Tiと同様に耐硫化水素腐食性を改善する。Alは酸素との親和力が強いためその 酸化物は還元を受けにくいため、還元性環境においても不動態皮膜が維持できるためと考えられる。これら、溶接部耐食性、耐硫化水素腐食性の改善作用を十分に得るためには0.04質量%以上のAl含有量を確保する必要がある。一方、過剰のAl含有は素材の表面品質の低下や溶接性の低下を招くので、Al含有量は0.3質量%以下とする。
Al is preferentially oxidized together with Ti on the steel surface of the weld metal group and the heat affected zone in TIG welding by composite addition with Ti, thereby suppressing the formation of Fe 2 O 3 and enhancing the corrosion resistance of the oxide scale.
Moreover, the hydrogen sulfide corrosion resistance is improved similarly to Ti. This is probably because Al has a strong affinity for oxygen and its oxides are less susceptible to reduction, so that a passive film can be maintained even in a reducing environment. In order to sufficiently obtain the effects of improving the corrosion resistance of welds and the corrosion resistance of hydrogen sulfide, it is necessary to secure an Al content of 0.04% by mass or more. On the other hand, excessive Al content causes deterioration of the surface quality and weldability of the material, so the Al content is set to 0.3% by mass or less.
Niは、Arガスシールを省略したTIG溶接において溶接スケール中のCr濃度を高め、化学的に安定なCr2O3の生成量を増加しスケールの耐食性を向上させる。さらに、溶接金属部(ビード部)および熟影響部の孔食の進行を抑えることでTIG溶接部の耐食性を向上させる。この作用はCr含有量が高いほど大きい。なお、酸化スケール中の金属元素比率でCr比率を向上させる手段としてはFe系の酸化物を出させないようにすることが有効である。Niの効果はTi、Alのそれとは異なり、母相中のFeの酸化を抑制し結果的に酸化スケール中のCr比率を上昇させるのに有効である。
また、その効果は小さいが、耐硫化水素腐食性を改善する作用を有している。上記耐食性改善効果を出すためには予備検討の結果、Niが0.4質量%以上必要である。ただし多量のNi含有は鋼を硬質にし加工性を阻害するので2質量%以下の範囲で行う。
Ni increases the Cr concentration in the weld scale in TIG welding in which the Ar gas seal is omitted, and increases the amount of chemically stable Cr 2 O 3 to improve the corrosion resistance of the scale. Furthermore, the corrosion resistance of the TIG welded part is improved by suppressing the progress of pitting corrosion at the weld metal part (bead part) and the ripening affected part. This effect is greater as the Cr content is higher. As a means for improving the Cr ratio by the metal element ratio in the oxide scale, it is effective not to produce an Fe-based oxide. The effect of Ni is different from that of Ti and Al, and is effective in suppressing the oxidation of Fe in the matrix and consequently increasing the Cr ratio in the oxide scale.
Moreover, although the effect is small, it has the effect | action which improves hydrogen sulfide corrosion resistance. As a result of preliminary studies, Ni needs to be 0.4% by mass or more in order to obtain the above-mentioned corrosion resistance improvement effect. However, a large amount of Ni is contained in a range of 2% by mass or less because it makes the steel hard and impairs workability.
排水管はその用途から汚れが付着しやすく、付着した汚れを水洗で簡単に除去できるようにステンレス鋼管の表面は親水性であることが望ましい。親水性は、表面の凹凸の調整、表面皮膜組成の調整およびステンレス鋼の表面に親水性皮膜を塗布するなどが考えられるが、不動態皮膜はFe、Crの酸化物が主体でありこれを変えることは難しい。また、親水性皮膜の塗布は長期間にわたってその効果を維持することが要求されること、排水物によるエロージョンを考慮し、本件発明では表面粗さを調整することで排水性をコントロールする。鋼管の表面粗さがRzで2μm以下とすることにより、水との接触角が60度以下となる、親水性の鋼管が得られる。
また、伸び率1%以下のウェットスキンパスを行うことにより、冷延工程での研磨や酸洗で荒れた表面のスムージングが図れるとともに、スキンパスオイル中の界面活性剤などの作用により親水性の表面が安定して得られる。
It is desirable that the surface of the stainless steel pipe is hydrophilic so that dirt can easily adhere to the drainage pipe from its use and the attached dirt can be easily removed by washing with water. As for hydrophilicity, adjustment of surface irregularities, adjustment of the surface film composition, and application of a hydrophilic film to the surface of stainless steel, etc. can be considered, but the passive film is mainly composed of oxides of Fe and Cr and changes this. It ’s difficult. In addition, in consideration of erosion due to wastewater, it is required to maintain the effect over a long period of time in applying the hydrophilic film, and in the present invention, drainage is controlled by adjusting the surface roughness. By setting the surface roughness of the steel pipe to 2 μm or less in terms of Rz, a hydrophilic steel pipe having a contact angle with water of 60 degrees or less is obtained.
In addition, by performing wet skin pass with an elongation rate of 1% or less, smoothing of the rough surface by polishing and pickling in the cold rolling process can be achieved, and a hydrophilic surface is obtained by the action of a surfactant in the skin pass oil. Obtained stably.
表1に示す化学組成を有するステンレス鋼を溶製し、熱間圧延にて板厚4mmの熱延板を作製した。その後、冷間圧延にて板厚2.0mmとし、1000〜1070℃での仕上げ焼鈍、酸洗、研磨、酸洗を行い供試材とした。
No.1〜10鋼は本発明排水管の素材鋼で、No.1〜5鋼は17〜21質量%Cr鋼、No.6〜10鋼は22〜26質量%Crである。No.11〜17鋼は比較鋼で、No.16鋼はSUS304、No.17鋼はSUS316である。
Stainless steel having the chemical composition shown in Table 1 was melted, and a hot-rolled sheet having a thickness of 4 mm was produced by hot rolling. Thereafter, the plate thickness was 2.0 mm by cold rolling, and finish annealing at 1000 to 1070 ° C., pickling, polishing, and pickling were performed to obtain test materials.
No. Steel Nos. 1 to 10 are steel materials for the drainage pipe of the present invention. 1-5 steel is 17-21 mass% Cr steel, No.1. 6-10 steel is 22-26 mass% Cr. No. Steel Nos. 11 to 17 are comparative steels. No. 16 steel is SUS304, no. 17 steel is SUS316.
各供試材の冷延焼鈍板から、20mm×15mm×2mmtの短冊片を切り出し、板の端部に導線を接続し、1mm角の測定面を残してシリコン樹脂にて被覆し、孔食電位測定用の試験片を作製した。 Cut out a 20 mm x 15 mm x 2 mmt strip from the cold rolled annealed plate of each test material, connect the lead wire to the end of the plate, cover it with silicon resin leaving a 1 mm square measurement surface, and pitting potential A test specimen for measurement was prepared.
供試鋼の耐H2S腐食性評価は、30℃の1000ppmCl−+10ppmH2S水溶液における孔食電位を測定して行った。H2S濃度の10ppmは排水管で生成される濃度の上限値である。測定方法はJISG577「ステンレス鋼の孔食電位測定方法」に準じて行った。排水管環境で問題となる腐食は、管内の堆積物の下で硫酸塩還元菌によりH2Sが発生し、管の気相部で再度結露水に吸収されることによるものであり、母材部が腐食の対象である。孔食電位の基準値は、結露水の乾燥過程でステンレス鋼母材が到達する自然電位以上とした。すなわち鋼の孔食電位が0.4V,SCE以上であれば本環境条件では孔食は発生しない。 The H 2 S corrosion resistance of the test steel was evaluated by measuring the pitting potential in a 1000 ppm Cl − +10 ppm H 2 S aqueous solution at 30 ° C. The H 2 S concentration of 10 ppm is the upper limit value of the concentration generated in the drain pipe. The measuring method was performed according to JISG577 “Method for measuring pitting corrosion potential of stainless steel”. Corrosion, which is a problem in the drainage pipe environment, is caused by H 2 S generated by sulfate-reducing bacteria under the sediment in the pipe, and is absorbed again in the condensed gas in the gas phase of the pipe. The part is subject to corrosion. The reference value of the pitting potential was set to be equal to or higher than the natural potential reached by the stainless steel base material in the drying process of the condensed water. That is, when the pitting corrosion potential of steel is 0.4 V or more than SCE, pitting corrosion does not occur under this environmental condition.
表1からわかるように、本発明で規定する化学組成ならびにS値を示す本発明例のものは、いずれも上記孔食電位における耐食性評価が合格判定であった。すなわち、排水管で想定されるH2S環境での優れた耐食性を有することが確認された。基本的に、耐H2S腐食性に対してはCr量の増加とMoの添加が有効である。たとえば、比較鋼のNo.16はSUS304であるがMoを含まないため排水管環境での耐食性が得られない。また、No.13鋼のCr量は23質量%と高Crであるが、304と同様にMoを添加していないためH2S環境での耐食性は不十分である。
No.1鋼(18Cr−1.2Mo−0.1Ni−0.3Ti−0.2Al、S値28.1)とNo.11鋼(18Cr−1.2Mo−0.1Ni−0.01Ti−0.2Al、S値25.7)およびNo.12鋼(18Cr−1.2Mo−0.4Ni−0.3Ti−0.02Al、S値27.7)の対比から、0.2質量%以上のTi、0.04質量%以上のAlを添加することで塩化物イオンを含むH2S環境での耐孔食性が向上することが明らかである。
また、No.1鋼に対して、No.2鋼(18Cr−1.5Mo−1.1Ni−0.3Ti−0.2Al、S値29.7)およびNo.4鋼(19Cr−1.2Mo−1.8Ni−0.3Ti−0.1Al、S値28.7)の対比からNiの添加は有効であることがわかる。
Moの効果は大きく、No.5鋼(18Cr−1.9Mo−0.1Ni−0.2Ti−0.05Al、S値30.6)は30を超えるS値を示し孔食電位が高い。しかし、Moの添加は管素材のコスト増に繋がるため、添加量はできるだけ少なくすべきである。
No.1鋼に対して、No,3鋼(21Cr−1Mo−0.1−Ni−0.2Ti−0.2Al、S値28.7)、No.6鋼(22Cr−0.7Mo−0.1Ni−0.2Ti−0.1Al、S値28.7)、No.8鋼(24Cr−0.5Mo−0.1Ni−0.2Ti−0.1Al、S値28.9)、No.10鋼(26Cr−0.4Mo−0.1Ni−0.2Ti−0.1Al、S値30.3)の対比から、Cr量の増加によりMo量の低減が図れており、いずれも排水管で要求される良好な耐H2S腐食性を有している。
As can be seen from Table 1, all of the examples of the present invention showing the chemical composition and S value specified in the present invention were judged to be acceptable in the corrosion resistance evaluation at the above pitting potential. That is, it was confirmed that it has excellent corrosion resistance in the H 2 S environment assumed for the drain pipe. Basically, an increase in Cr content and addition of Mo are effective for H 2 S corrosion resistance. For example, comparative steel No. Although 16 is SUS304, since it does not contain Mo, corrosion resistance in a drainage pipe environment cannot be obtained. No. The amount of Cr in Steel No. 13 is as high as 23% by mass, but Mo is not added as in 304, so that the corrosion resistance in an H 2 S environment is insufficient.
No. No. 1 steel (18Cr-1.2Mo-0.1Ni-0.3Ti-0.2Al, S value 28.1) and No. 1 steel. No. 11 steel (18Cr-1.2Mo-0.1Ni-0.01Ti-0.2Al, S value 25.7) and No. 11 steel. From the comparison of 12 steel (18Cr-1.2Mo-0.4Ni-0.3Ti-0.02Al, S value 27.7), 0.2 mass% or more of Ti and 0.04 mass% or more of Al are added. It is apparent that the pitting corrosion resistance in an H 2 S environment containing chloride ions is improved.
No. No. 1 steel No. No. 2 steel (18Cr-1.5Mo-1.1Ni-0.3Ti-0.2Al, S value 29.7) and No. 2 steel. From the comparison of 4 steels (19Cr-1.2Mo-1.8Ni-0.3Ti-0.1Al, S value 28.7), it can be seen that the addition of Ni is effective.
The effect of Mo is great. Steel No. 5 (18Cr-1.9Mo-0.1Ni-0.2Ti-0.05Al, S value 30.6) shows an S value exceeding 30 and a high pitting corrosion potential. However, the addition of Mo leads to an increase in the cost of the tube material, so the addition amount should be as small as possible.
No. No. 1 steel, No. 3 steel (21Cr-1Mo-0.1-Ni-0.2Ti-0.2Al, S value 28.7), No. 1 steel. No. 6 steel (22Cr-0.7Mo-0.1Ni-0.2Ti-0.1Al, S value 28.7), No. 6 No. 8 steel (24Cr-0.5Mo-0.1Ni-0.2Ti-0.1Al, S value 28.9), No. 8 From the comparison of 10 steel (26Cr-0.4Mo-0.1Ni-0.2Ti-0.1Al, S value 30.3), the amount of Mo can be reduced by increasing the amount of Cr. It has the required good H 2 S corrosion resistance.
溶接部の耐食性評価のための溶接試験片として、各供試材の鋼板について、図1に示すTIG溶接試験片を作製した。溶接条件は、溶け込み(溶接金属部)が裏面まで到達し、裏面に約4mm幅の「裏ビード」が形成される条件とした。溶接裏面のArバックシールガスは省略した。この条件の場合、溶接熟影響部(HAZ)は板厚中央部でビード中心からの距離が約10mmの範囲となる。試験片の形状は40mm×60mm×2.0mmとし、溶接部が試験片の中央にくるように溶接材から切出した。試験片の端部にはスポット溶接にてリード線を取り付けた。スポット溶接部はシリコン樹脂にて被覆した。
試験は図2に示すPt補助カソードを用いた浸漬試験を行った。試験液は試薬NaClで調整した6000ppmCl−水溶液とし、試験温度60℃、試験期間30日とした。容量500mLの円筒型ガラス容器(試験容器)に試験液を400mL注ぎ、TIG溶接試験片を浸せきし、無抵抗電流計を介してPt補助カソードと接続した。試験期間中、腐食電流をモニターした。試験後、腐食生成物を除去し、光学顕微鏡を用いた焦点深度法にて孔食深さを測定した。耐食性評価面はTIG溶接裏面とした。
耐食性の判定は、30日の試験期間で腐食電流が1μA以下になり再不動態化が認められ、最大孔食深さが0.1mm以下のものを合格とした。
As a welding test piece for evaluating the corrosion resistance of the welded portion, a TIG welding test piece shown in FIG. The welding conditions were such that the penetration (welded metal part) reached the back surface and a “back bead” having a width of about 4 mm was formed on the back surface. The Ar back seal gas on the back of the weld was omitted. In the case of this condition, the weld maturation-affected zone (HAZ) is in the range of about 10 mm from the bead center at the center of the plate thickness. The shape of the test piece was 40 mm × 60 mm × 2.0 mm, and the test piece was cut out from the welded material so that the welded portion was at the center of the test piece. A lead wire was attached to the end of the test piece by spot welding. The spot weld was covered with silicon resin.
In the test, an immersion test using a Pt auxiliary cathode shown in FIG. 2 was performed. The test solution was a 6000 ppm Cl-water solution adjusted with the reagent NaCl, the test temperature was 60 ° C., and the test period was 30 days. 400 mL of test liquid was poured into a cylindrical glass container (test container) having a capacity of 500 mL, a TIG welding test piece was immersed, and connected to a Pt auxiliary cathode via a non-resistance ammeter. During the test, the corrosion current was monitored. After the test, the corrosion products were removed, and the pitting depth was measured by a depth of focus method using an optical microscope. The corrosion resistance evaluation surface was the TIG welding back surface.
Corrosion resistance was judged to be acceptable when the corrosion current was 1 μA or less and repassivation was observed in the test period of 30 days, and the maximum pitting depth was 0.1 mm or less.
浸漬試験結果を表1に示す。表からわかるように、No.17鋼(SUS316)を除き、本発明で規定する化学組成を有する本発明例のものは、いずれも上記浸漬試験における耐食性評価が合格判定であった。すなわち、ArバックガスシールなしのTIG溶接を行って酸化スケールが形成されている溶接部において、比較的高濃度の塩化物イオン環境での優れた耐食性を有することが確認された。本試験に於いて、比較鋼のNo.16鋼(SUS304)とNo.17鋼(SUS316)は溶接ビードに対して直交する方向に応力腐食割れが生じた。
No.1鋼(18Cr−1.2Mo−0.1Ti−0.3Ti−0.2Al、S値28.1)と比較鋼のNo.11鋼(18Cr−1.2Mo−0.1N−0.01Ti−0.2Al、S値25.7)およびNo.12鋼(18Cr−1.2Mo−04Ni−0.31Ti−0.02Al、S値27.7)の対比から、0.2質量%以上のTi、0.04質量%以上のAlを添加することで、塩化物イオン環境でのArバックガスシールを省略した溶接部の耐食性が著しく改善されることが明らかである。
No.8鋼(24Cr−0.5Mo−0.1Ni−0.2Ti−0.1Al、S値28.9)とNo.9鋼(24Cr−0.5Mo−1Ni−0.2Ti−0.1Al、S値29.1)の比較から、Niの添加で溶接部での再不動態化能が向上している。また、No.10鋼(26Cr−0.4Mo−0.1Ni−0.2Ti−0.1Al、S値30.3)も試験開始後7日以内で腐食電流は1μA以下となり、Cr量の増加は溶接部での再不動態化能の向上に効果的である。
ただし、比較鋼のNo.14鋼(24Cr−0.5Mo−0.1Ni−0.2Ti−0.02Al、S値 28.6)とNo.15鋼(24Cr−1Mo−0.02Ni−0.1Ti−0.1Al、S値31.7)は24質量%Cr鋼でS値も28質量%以上の条件を満たしているが、Al、Tiの添加量が本発明鋼の条件を満たしておらず、酸化スケールが生成したままでの溶接部耐食性が劣っている。
The immersion test results are shown in Table 1. As can be seen from the table, no. Except for 17 steel (SUS316), all of the examples of the present invention having the chemical composition defined in the present invention passed the corrosion resistance evaluation in the above immersion test. That is, it was confirmed that the welded portion where the oxide scale was formed by performing TIG welding without an Ar back gas seal had excellent corrosion resistance in a relatively high concentration chloride ion environment. In this test, the comparative steel No. No. 16 steel (SUS304) and no. In No. 17 steel (SUS316), stress corrosion cracking occurred in a direction perpendicular to the weld bead.
No. No. 1 steel (18Cr-1.2Mo-0.1Ti-0.3Ti-0.2Al, S value 28.1) and No. of comparative steel. No. 11 steel (18Cr-1.2Mo-0.1N-0.01Ti-0.2Al, S value 25.7) and No. 11 steel. From the comparison of 12 steels (18Cr-1.2Mo-04Ni-0.31Ti-0.02Al, S value 27.7), 0.2 mass% or more of Ti and 0.04 mass% or more of Al should be added. Thus, it is clear that the corrosion resistance of the welded portion in which the Ar back gas seal in the chloride ion environment is omitted is remarkably improved.
No. No. 8 steel (24Cr-0.5Mo-0.1Ni-0.2Ti-0.1Al, S value 28.9) and No. 8 steel. From the comparison of 9 steels (24Cr-0.5Mo-1Ni-0.2Ti-0.1Al, S value 29.1), the addition of Ni improves the repassivation ability in the weld zone. No. Ten steels (26Cr-0.4Mo-0.1Ni-0.2Ti-0.1Al, S value 30.3) also had a corrosion current of 1 μA or less within 7 days after the start of the test. It is effective in improving the ability of repassivation.
However, the comparative steel No. 14 steel (24Cr-0.5Mo-0.1Ni-0.2Ti-0.02Al, S value 28.6) and No. 14 steel. 15 steel (24Cr-1Mo-0.02Ni-0.1Ti-0.1Al, S value 31.7) is 24 mass% Cr steel and S value also satisfies the condition of 28 mass% or more. The amount of addition does not satisfy the conditions of the steel of the present invention, and the corrosion resistance of the welded portion is inferior while the oxide scale is generated.
[排水性]
静滴法により脱イオン水0.1mlの液滴との接触角を測定し、接触角が60度以下のものを親水性ありとして評価した。
[Drainage]
The contact angle with a 0.1 ml droplet of deionized water was measured by the sessile drop method, and those having a contact angle of 60 degrees or less were evaluated as having hydrophilicity.
表2に鋼No.8および鋳鉄管を用いた結果と示す。試験No.1および2は比較礼であり、試験No.3、4は比較例である。表から明らかなように混酸酸洗、もしくは混酸酸洗後、伸び率0.8%のスキンパスを施すことにより、表面粗さはそれぞれ0.8、1.2μmで、接触角60度以下の表面が得られており、現行の鋳鉄管に比べて良好な排水性が得られた。 In Table 2, steel No. 8 and the results using cast iron pipe. Test No. Nos. 1 and 2 are comparative rituals. 3 and 4 are comparative examples. As can be seen from the table, after surface pickling or mixed pickling, the surface roughness is 0.8 and 1.2 μm and the contact angle is 60 degrees or less by applying skin pass with elongation of 0.8%. As a result, better drainage was obtained compared to the current cast iron pipe.
1 Pt補助カソード
2 溶接試験片
3 試験液
4 エアレーションノズル
5 飽和かんこう照合電極
1 Pt auxiliary cathode 2 Welding specimen 3 Test solution 4 Aeration nozzle 5 Saturated permeation reference electrode
Claims (5)
C:0.02%以下、
Si:0.2〜1%、
Mn:0.4%以下、
P:0.04%以下、
S:0.005%以下、
Cr:17〜25%、
Mo:0.4〜2%未満、
Nb:0.1〜0.5%、
Ti:0.2〜0.4%、
N:0.025%以下、
Al:0.04〜0.3%、および下記(1)もしくは(2)式に定義するS値が28.0以上であり、残部Feおよび他の不可避的不純物からなるフェライト系ステンレス鋼を用いることを特徴とする排水管。
・16%≦Cr<21%の場合
S値=Cr+6Mo+9(Ti−0.1)+5(Al−0.03) (1)
・21%≦C r≦26%の場合
S値=Cr+7Mo+9(Ti−0.1)+5(Al−0.03) (2)
ただし、式中の各項は合金元素の含有量(質量%)である。 The mass of the tube material
C: 0.02% or less,
Si: 0.2-1%,
Mn: 0.4% or less,
P: 0.04% or less,
S: 0.005% or less,
Cr: 17 to 25%,
Mo: 0.4 to less than 2%,
Nb: 0.1 to 0.5%
Ti: 0.2 to 0.4%,
N: 0.025% or less,
Al: 0.04 to 0.3%, and S value defined in the following formula (1) or (2) is 28.0 or more, and ferritic stainless steel made of remaining Fe and other inevitable impurities is used. A drainage pipe characterized by that.
When 16% ≦ Cr <21% S value = Cr + 6Mo + 9 (Ti−0.1) +5 (Al−0.03) (1)
When 21% ≦ Cr ≦ 26% S value = Cr + 7Mo + 9 (Ti−0.1) +5 (Al−0.03) (2)
However, each term in a formula is content (mass%) of an alloy element.
C:0.02%以下、
Si:0.2〜1%、
Mn:0.4%以下、
P:0.04%以下、
S:0.005%以下、
Cr:17〜26%、
Mo:0.4〜2%未満、
Nb:0.1〜0.5%、
Ti:0.2〜0.4%、
N:0.025%以下、
Al:0.04〜0.3%、さらに、
Ni:0.4〜2%、および下記(3)もしくは(4)式に定義するS値が28.0以上であり、残部Feおよび他の不可避的不純物からなるフェライト系ステンレス鋼を用いることを特徴とする排水管。
・17%≦Cr<21%の場合
S値=Cr+6Mo+9(Ti−0.1)+5(Al−0.03)+0.2Ni(3)
・21%≦Cr≦26%の場合
S値=Cr+7Mo+9(Ti−0.1)+5(Al−0.03)+0.2Ni(4)
ただし、式中の各項は合金元素の含有量(質量%)である。 The mass of the tube material
C: 0.02% or less,
Si: 0.2-1%,
Mn: 0.4% or less,
P: 0.04% or less,
S: 0.005% or less,
Cr: 17 to 26%,
Mo: 0.4 to less than 2%,
Nb: 0.1 to 0.5%
Ti: 0.2 to 0.4%,
N: 0.025% or less,
Al: 0.04 to 0.3%, and
Ni: 0.4-2%, and the S value defined in the following formula (3) or (4) is 28.0 or more, and ferritic stainless steel made of the remaining Fe and other inevitable impurities is used. Characteristic drain pipe.
When 17% ≦ Cr <21% S value = Cr + 6Mo + 9 (Ti−0.1) +5 (Al−0.03) + 0.2Ni (3)
When 21% ≦ Cr ≦ 26%, S value = Cr + 7Mo + 9 (Ti−0.1) +5 (Al−0.03) + 0.2Ni (4)
However, each term in a formula is content (mass%) of an alloy element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009260307A JP2011105976A (en) | 2009-11-13 | 2009-11-13 | Drain pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009260307A JP2011105976A (en) | 2009-11-13 | 2009-11-13 | Drain pipe |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011105976A true JP2011105976A (en) | 2011-06-02 |
Family
ID=44229786
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009260307A Withdrawn JP2011105976A (en) | 2009-11-13 | 2009-11-13 | Drain pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011105976A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3171580U (en) * | 2011-06-14 | 2011-11-10 | 弘保 磯部 | Ferritic stainless steel piping |
JP2012146084A (en) * | 2011-01-11 | 2012-08-02 | Fuji Electric Retail Systems Co Ltd | Coin processing apparatus |
WO2012133681A1 (en) * | 2011-03-29 | 2012-10-04 | 新日鐵住金ステンレス株式会社 | Ferrite stainless steel exhibiting excellent corrosion resistance and strength in weld zones, and tig-welded structure |
WO2014033372A1 (en) * | 2012-09-03 | 2014-03-06 | Aperam Stainless France | Ferritic stainless steel sheet, method for the production thereof, and use of same, especially in exhaust lines |
JP2015137375A (en) * | 2014-01-21 | 2015-07-30 | Jfeスチール株式会社 | Ferritic stainless cold rolled steel sheet and manufacturing method therefor |
JP2017071814A (en) * | 2015-10-05 | 2017-04-13 | 日新製鋼株式会社 | Stainless steel pipe having excellent corrosion resistance and method for producing the same |
US10236517B2 (en) * | 2017-08-16 | 2019-03-19 | GM Global Technology Operations LLC | Method for manufacturing and cleaning a stainless steel fuel cell bipolar plate |
JP2020204090A (en) * | 2019-06-14 | 2020-12-24 | Jfeスチール株式会社 | Ferritic stainless steel |
-
2009
- 2009-11-13 JP JP2009260307A patent/JP2011105976A/en not_active Withdrawn
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012146084A (en) * | 2011-01-11 | 2012-08-02 | Fuji Electric Retail Systems Co Ltd | Coin processing apparatus |
WO2012133681A1 (en) * | 2011-03-29 | 2012-10-04 | 新日鐵住金ステンレス株式会社 | Ferrite stainless steel exhibiting excellent corrosion resistance and strength in weld zones, and tig-welded structure |
JP3171580U (en) * | 2011-06-14 | 2011-11-10 | 弘保 磯部 | Ferritic stainless steel piping |
JP2015532681A (en) * | 2012-09-03 | 2015-11-12 | アペラム・ステンレス・フランス | Ferritic stainless steel sheet, manufacturing method thereof, and particularly for use in exhaust pipes |
CN104903482A (en) * | 2012-09-03 | 2015-09-09 | 法国艾普伦不锈钢公司 | Ferritic stainless steel sheet, method for the production thereof, and use of same, especially in exhaust lines |
WO2014033372A1 (en) * | 2012-09-03 | 2014-03-06 | Aperam Stainless France | Ferritic stainless steel sheet, method for the production thereof, and use of same, especially in exhaust lines |
US9873924B2 (en) | 2012-09-03 | 2018-01-23 | Aperam Stainless France | Ferritic stainless steel sheet, method for the production thereof, and use of the same, especially in exhaust lines |
JP2015137375A (en) * | 2014-01-21 | 2015-07-30 | Jfeスチール株式会社 | Ferritic stainless cold rolled steel sheet and manufacturing method therefor |
JP2017071814A (en) * | 2015-10-05 | 2017-04-13 | 日新製鋼株式会社 | Stainless steel pipe having excellent corrosion resistance and method for producing the same |
WO2017061217A1 (en) * | 2015-10-05 | 2017-04-13 | 日新製鋼株式会社 | Stainless steel pipe with excellent corrosion resistance and manufacturing method thereof |
US10236517B2 (en) * | 2017-08-16 | 2019-03-19 | GM Global Technology Operations LLC | Method for manufacturing and cleaning a stainless steel fuel cell bipolar plate |
JP2020204090A (en) * | 2019-06-14 | 2020-12-24 | Jfeスチール株式会社 | Ferritic stainless steel |
JP7067582B2 (en) | 2019-06-14 | 2022-05-16 | Jfeスチール株式会社 | Ferritic stainless steel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4727601B2 (en) | Ferritic stainless steel with excellent crevice corrosion resistance | |
JP5010323B2 (en) | Ferritic stainless steel for hot water container with welded structure, hot water container and manufacturing method thereof | |
JP2011105976A (en) | Drain pipe | |
JP3271262B2 (en) | Duplex stainless steel with excellent corrosion resistance | |
KR101339484B1 (en) | High-strength stainless steel pipe | |
JP2009161836A (en) | Ferritic stainless steel sheet excellent in corrosion resistance in welding crevice part | |
JP2010202916A (en) | Ferritic stainless steel excellent in corrosion resistance of welded part with austenite stainless steel | |
JP2009185382A (en) | Ferritic stainless steel sheet having excellent corrosion resistance in welding gap oxide film | |
JP2011173124A (en) | Welding method of ferritic stainless steel | |
US20120193328A1 (en) | Method for making a hot water tank of ferritic stainless steel with a tig welded structure | |
JP6782660B2 (en) | Duplex Stainless Steel Welded Structure for Oxidizing Fluid Environment | |
JP5676896B2 (en) | Ferritic stainless steel with excellent local corrosion resistance | |
JP2015140442A (en) | Steel material excellent in hydrogen induced cracking resistance and production method therefor | |
JP5109233B2 (en) | Ferritic / austenitic stainless steel with excellent corrosion resistance at welds | |
JP2008132515A (en) | Ferritic stainless steel weld metal with excellent corrosion resistance, and welding wire | |
JP2006137963A (en) | Welded joint for crude oil tank, and crude oil tank | |
JP2008038183A (en) | Ferritic stainless steel having excellent crevice corrosion resistance and excellent formability | |
JP5937867B2 (en) | Ferritic stainless steel with excellent corrosion resistance of welds | |
JP4784239B2 (en) | Ferritic stainless steel filler rod for TIG welding | |
JP2009114471A (en) | High strength stainless steel pipe | |
JP2009167439A (en) | Ferritic stainless steel for welding gap structural warm-water vessel | |
JP4732208B2 (en) | Steel pipe for sheathed heater and sheathed heater | |
JP2006097908A (en) | Hot water storage tank of welded structure and its construction method | |
JP2011068967A (en) | Water storage tank constructed by welding panel made from stainless steel | |
JP4083391B2 (en) | Ferritic stainless steel for structural members |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20130205 |