JP2011173124A - Welding method of ferritic stainless steel - Google Patents

Welding method of ferritic stainless steel Download PDF

Info

Publication number
JP2011173124A
JP2011173124A JP2010036754A JP2010036754A JP2011173124A JP 2011173124 A JP2011173124 A JP 2011173124A JP 2010036754 A JP2010036754 A JP 2010036754A JP 2010036754 A JP2010036754 A JP 2010036754A JP 2011173124 A JP2011173124 A JP 2011173124A
Authority
JP
Japan
Prior art keywords
gas
welding
stainless steel
corrosion resistance
weld
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010036754A
Other languages
Japanese (ja)
Inventor
Osamu Yamamoto
修 山本
Toshiro Adachi
俊郎 足立
Hiroki Tomimura
宏紀 冨村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2010036754A priority Critical patent/JP2011173124A/en
Publication of JP2011173124A publication Critical patent/JP2011173124A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the following problem: when welding stainless steel by using shield gas, Ar gas is generally used for back-shield gas for a back side of a weld by the TIG welding, whereas it is also difficult to use gas other than Ar back-shield gas for reducing the manufacturing cost. <P>SOLUTION: In the welding method of ferritic stainless steel, degradation in corrosion resistance of a back side of a weld is suppressed by using an inert gas containing nitrogen gas in Ar gas for the back-shield gas for the back side of the weld when welding stainless steel by using a shield gas. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、耐食性が要求されるフェライト系ステンレス鋼板のTIG溶接施工機器の溶接方法に関するものである。   The present invention relates to a welding method for TIG welding equipment for ferritic stainless steel sheets that require corrosion resistance.

電気温水器や貯湯槽などの温水容器の材料としてフェライト系ステンレス鋼のSUS444(低C、低N、18〜19Cr−2Mo−Nb、Ti系鋼)が広く用いられている。SUS444は温水環境での耐食性向上を主目的に開発された鋼種である。 Ferritic stainless steel SUS444 (low C, low N, 18-19Cr-2Mo-Nb, Ti steel) is widely used as a material for hot water containers such as electric water heaters and hot water storage tanks. SUS444 is a steel type developed mainly for the purpose of improving the corrosion resistance in a hot water environment.

温水容器は、構成部材の胴と鏡をTIG溶接により接合する溶接構造が主流である。溶接構造の温水容器を上水の温水環境で使用すると、溶接トーチ面の裏面で腐食が生じやすい。SUS444の素材では腐食形態が孔食であるときには再不動態化しやすく、孔食が成長するケースは稀である。しかし、溶接部で酸化スケール(溶接スケール)が存在すると再不動態化しにくく、とくに溶接裏面では腐食が成長し板厚を貫通して漏水に至ることもある。このため、温水容器では容器内面の溶接部が溶接表面となるように施工されるが、缶体の構造上、一部の溶接部位で腐食しやすい溶接裏面部が容器内面となるため、酸化スケールの形成をできるだけ避ける目的でバックガスシールが採用されている。   As for the hot water container, the welding structure which joins the trunk | drum and mirror of a structural member by TIG welding is mainstream. When a hot water container having a welded structure is used in a warm water environment, corrosion tends to occur on the back surface of the welding torch surface. In the material of SUS444, when the corrosion form is pitting corrosion, it is easy to repassivate, and the case where pitting corrosion grows is rare. However, if an oxide scale (weld scale) is present at the weld, it is difficult to passivate, and corrosion may grow on the back of the weld, leading to leakage through the plate thickness. For this reason, in a hot water container, it is constructed so that the welded part on the inner surface of the container becomes the welding surface. The back gas seal is employed for the purpose of avoiding the formation of as much as possible.

上記のように、温水容器をTIG溶接により製造する際には、溶接部の耐食性低下を小さくするため、Arバックシールドガスを行って溶接部裏面の酸化を抑制する対策が採られている。一方、温水缶体の需要が増すにつれ、缶体の製造コスト低減は温水器メーカーの重要な課題であり、Arガス費低減は大きな課題の一つとなってきた。   As mentioned above, when manufacturing a hot water container by TIG welding, in order to reduce the corrosion-resistance fall of a welding part, the countermeasure which suppresses oxidation of the welding part back surface by taking Ar back shield gas is taken. On the other hand, as the demand for hot water cans increases, reducing the manufacturing cost of cans is an important issue for manufacturers of hot water heaters, and reducing Ar gas costs has become one of the major issues.

特許文献1には鏡への胴の挿入深さを20mmまでとし、隙間腐食の発生を避けた構造の温水器用ステンレス鋼製缶体が記載され、鋼種としてはSUS444相当鋼が記述されている。しかし、発明者らの調査によれば溶接で耐食性が低下する熱影響部は溶接金属部から概ね10mm程度までの範囲であるため、上記構造にしてもArバックガスシールを省略すると耐食性向上効果は不十分である。   Patent Document 1 describes a stainless steel can body for a water heater having a structure in which the insertion depth of a barrel into a mirror is up to 20 mm and avoids the occurrence of crevice corrosion, and SUS444 equivalent steel is described as a steel type. However, according to the investigation by the inventors, the heat-affected zone where the corrosion resistance is reduced by welding is in the range of approximately 10 mm from the weld metal portion. It is insufficient.

特許文献2にはTiとAlを複合添加することにより溶接時のCrの酸化ロスを抑制し、溶接部での耐食性低下を改善したフェライト系ステンレス鋼が記載されている。この鋼を使用することにより温水容器の耐食性レベルを大きく向上させることが可能になった。しかし、この鋼の場合も、Arバックシールドガスを行わないTIG溶接ではCrの酸化ロスを十分に抑制することはできず、溶接部の耐食性の大幅な低下は避けられない。   Patent Document 2 describes a ferritic stainless steel in which the addition of Ti and Al is combined to suppress the oxidation loss of Cr at the time of welding, and the deterioration in corrosion resistance at the weld is improved. By using this steel, the corrosion resistance level of the hot water container can be greatly improved. However, even in the case of this steel, the oxidation loss of Cr cannot be sufficiently suppressed by TIG welding without performing Ar back shield gas, and a significant reduction in the corrosion resistance of the welded portion is inevitable.

特許文献3〜5には、アークシールドガスのArに窒素、もしくは窒素とヘリウムを加えた溶接方法が開示されている。
特許文献3は、フェライト・オーステナイトの2相ステンレス鋼の溶接が対象で、シールドガスに窒素ガスを含有させることで溶接金属のオーステナイト相を調整し溶接金属の耐食性向上を図ったもの。特許文献4も被溶接材はフェライト・オーステナイトの2相ステンレス鋼で、シールドガスに窒素ガス等を含有させて溶接性、溶接金属の耐食性および溶接棒の消耗抑制を図ったもの。特許文献5は、溶接材料とシールドガス組成を規制したMIG溶接方法に関するものである。被溶接材は、窒素を多く含有するフェライト・オーステナイトの2相ステンレス鋼およびオーステナイト系ステンレス鋼であり、溶接金属でのブローホール発生の抑制を図ったものである。
これら先行技術は、窒素を加えたシールドガスで溶接金属の組成制御を図ったものである。したがって、シールドガス組成の効果はトーチ側で用いた場合に発現し、必須である。
一方、本件発明の被溶接材はフェライト系ステンレス鋼であり、さらに溶接裏面の溶接熱影響部の耐食性改善を図るために溶接裏面のシールドガス組成を規定するものである。
Patent Documents 3 to 5 disclose welding methods in which nitrogen or nitrogen and helium are added to the arc shielding gas Ar.
Patent Document 3 is intended for welding of austenitic ferrite and austenitic duplex stainless steels, and is intended to improve the corrosion resistance of the weld metal by adjusting the austenite phase of the weld metal by adding nitrogen gas to the shield gas. In Patent Document 4, the material to be welded is a duplex stainless steel of ferrite and austenite, and nitrogen gas or the like is included in the shielding gas to achieve weldability, corrosion resistance of the weld metal, and suppression of wear of the welding rod. Patent Document 5 relates to a MIG welding method in which a welding material and a shielding gas composition are regulated. The materials to be welded are ferritic / austenitic duplex stainless steel and austenitic stainless steel containing a large amount of nitrogen, and are intended to suppress the occurrence of blowholes in the weld metal.
These prior arts attempt to control the composition of the weld metal with a shielding gas to which nitrogen is added. Therefore, the effect of the shielding gas composition is manifested and essential when used on the torch side.
On the other hand, the material to be welded according to the present invention is ferritic stainless steel, and further defines the shielding gas composition on the weld back surface in order to improve the corrosion resistance of the weld heat affected zone on the weld back surface.

特開昭54−72711号公報JP 54-72711 A 特開平5−70899号公報JP-A-5-70899 特開昭61−165277JP-A 61-165277 特開平10−216942JP-A-10-216942 特表平10−501468Special table 10-501468

上述のように、昨今の温水容器においては、TIG溶接で製造する際にArバックシールドガスを実施している。一方、製造コスト低減としてArガス以外のシールドガスを用いることも難しい状況にある。
本発明は、このような現状に鑑み、Arバックシールドを前提とした缶体の製造コスト低減ならびに溶接部裏面の熱影響部のFe系酸化皮膜を抑制し、耐食性を高めたフェライト系ステンレス鋼のTIG溶接方法を提供することを目的とする。
As described above, in recent hot water containers, Ar back shield gas is used when manufacturing by TIG welding. On the other hand, it is difficult to use a shielding gas other than Ar gas as a manufacturing cost reduction.
In view of such a current situation, the present invention is a ferritic stainless steel with improved corrosion resistance by reducing the manufacturing cost of a can body based on an Ar back shield and suppressing the Fe-based oxide film on the heat-affected zone on the back of the weld An object is to provide a TIG welding method.

発明者らは上記目的を達成すべく詳細な研究を行った結果、以下の知見を得た。
(i)溶接部の耐食性は、酸化スケール(溶接スケール)の性状に依存する。とくに溶接裏面の溶接ボンドから5mm程度離れた500〜600℃に加熱された位置の溶接熱影響部で腐食が厳しく問題となる。孔食は、スケール中のCr濃度が低下し、Fe濃度の高い部位で生じる。
(ii)バックシールドガスとしてArガスに窒素ガスを添加することで、該当部位の耐性が向上する理由は明らかではないが、窒素ガスを添加することでTIG溶接裏面の熱影響部のFe系酸化皮膜を抑制し、耐食性改善が図れたと推測される。これは、窒素添加では酸素ポテンシャルを上げてCrのみ酸化物として安定となる領域になっているためと考えられる。とくに18質量%を超えるCr含有量を確保して基本的耐食性レベルを向上させた鋼でその効果が大きい。
本発明はこのような知見に基づいたフェライト系ステンレス鋼板のTIG溶接方法を提供するものである。
As a result of detailed studies to achieve the above object, the inventors have obtained the following knowledge.
(I) The corrosion resistance of the welded portion depends on the properties of the oxide scale (welding scale). In particular, corrosion is a serious problem at the weld heat affected zone at a position heated to 500 to 600 ° C., which is about 5 mm away from the weld bond on the back of the weld. Pitting corrosion occurs at a site where the Cr concentration in the scale decreases and the Fe 2 O 3 concentration is high.
(Ii) Although it is not clear why the nitrogen gas is added to the Ar gas as the back shield gas, the reason why the resistance of the corresponding portion is improved is not clear. It is estimated that the coating was suppressed and the corrosion resistance was improved. This is presumably because the addition of nitrogen raises the oxygen potential and makes only Cr stable as an oxide. In particular, the effect is great in steels in which the Cr content exceeding 18% by mass is secured to improve the basic corrosion resistance level.
The present invention provides a TIG welding method for ferritic stainless steel sheets based on such knowledge.

本発明の具体的な構成は、以下の通りである。
(1)シールドガスを用いてステンレス鋼を溶接する際に、溶接部裏面のバックシールドガスにArガスに窒素ガスを混合させた不活性ガスを用いることを特徴とする溶接部裏面の耐食性低下を抑制したフェライト系ステンレス鋼の溶接方法。
(2)混合ガス中の窒素濃度が20〜80体積%であることを特徴とする、上記(1)に記載のフェライト系ステンレス鋼の溶接方法。
(3)Cr量が質量%で16〜26%のフェライト系ステンレス鋼の溶接に適用することを特徴とする、上記(1)または(2)に記載の溶接方法。
(4)質量%で
C:0.02%以下、
Si:3%以下、
Mn:1%以下、
P:0.04%以下、
S:0.03%以下、
Ni:4%以下、
Cr:16〜26%、
Mo:2%以下、
N:0.025%以下、
さらに、Nb:0.05〜0.6%、Ti:0.05〜0.4%、Al:0.02〜0.3%の1種もしくは1種以上を含み、残部Feおよび他の不可避的不純物からなるフェライト系ステンレス鋼の溶接に適用することを特徴とする、(1)乃至(3)に記載の溶接方法。
The specific configuration of the present invention is as follows.
(1) When welding stainless steel using a shielding gas, the corrosion resistance of the back surface of the welded portion is reduced by using an inert gas in which nitrogen gas is mixed with Ar gas in the back shield gas on the back surface of the welded portion. Suppressed ferritic stainless steel welding method.
(2) The method for welding ferritic stainless steel according to (1) above, wherein the nitrogen concentration in the mixed gas is 20 to 80% by volume.
(3) The welding method according to (1) or (2) above, which is applied to welding of ferritic stainless steel having a Cr content of 16 to 26% by mass.
(4) C: 0.02% or less by mass%,
Si: 3% or less,
Mn: 1% or less,
P: 0.04% or less,
S: 0.03% or less,
Ni: 4% or less,
Cr: 16 to 26%,
Mo: 2% or less,
N: 0.025% or less,
Further, it contains one or more of Nb: 0.05-0.6%, Ti: 0.05-0.4%, Al: 0.02-0.3%, the balance being Fe and other inevitable The welding method according to any one of (1) to (3), wherein the welding method is applied to welding of ferritic stainless steel made of mechanical impurities.

本発明のフェライト系ステンレス鋼の溶接方法を使用することで、溶接施工機器の温水環境における溶接裏面の熱影響部の耐食性改善が製造コストの低減とともに図れる。特に、TIG溶接によって形成された溶接部を無手入れのまま高温の上水に曝して使用した場合でも、長期間優れた耐食性が維持される。また、溶接施工性を損なうことなく機器の溶接が行える。 By using the ferritic stainless steel welding method of the present invention, it is possible to improve the corrosion resistance of the heat-affected zone on the back of the weld in the hot water environment of the welding equipment as well as reduce the manufacturing cost. In particular, even when a welded part formed by TIG welding is used after being exposed to high temperature clean water without maintenance, excellent corrosion resistance is maintained for a long time. In addition, equipment can be welded without impairing the weldability.

TIG突き合せ溶接方法を示した図Diagram showing TIG butt welding method TIG溶接試験片を示した図Diagram showing TIG welding specimen 浸漬試験方法を示した図Diagram showing immersion test method

1 TIGトーチ
2 押さえボルト
3 押さえ治具
4 拘束治具
5 バックシールドガス挿入管
6 試験片
11 試験液槽
12 ホルダー
13 試験片
DESCRIPTION OF SYMBOLS 1 TIG torch 2 Holding bolt 3 Holding jig 4 Restraint jig 5 Back shield gas insertion tube 6 Test piece 11 Test liquid tank 12 Holder 13 Test piece

本発明の特徴は、前述の通りバックシールドガスとしてArガスに窒素ガスを添加することにある。TIG溶接裏面の熱影響部のFe系酸化皮膜を抑制し、耐食性を改善するためには、混合ガス中の窒素濃度は20〜80体積%であることが望ましい。20%より低濃度では窒素の効果が十分に発揮されず、Fe系酸化物の発生が抑制できない。また、窒素濃度100%では窒化が懸念されるため、好ましくは80%を上限とする。   As described above, the present invention is characterized in that nitrogen gas is added to Ar gas as a back shield gas. In order to suppress the Fe-based oxide film on the heat-affected zone on the back side of the TIG weld and improve the corrosion resistance, the nitrogen concentration in the mixed gas is desirably 20 to 80% by volume. If the concentration is lower than 20%, the effect of nitrogen is not sufficiently exhibited, and the generation of Fe-based oxides cannot be suppressed. Further, since there is concern about nitriding at a nitrogen concentration of 100%, the upper limit is preferably 80%.

本発明のフェライト系ステンレス鋼を構成する成分元素について説明する。
C、Nは、鋼中に不可避的に含まれる元素である。C、Nの含有量を低減すると鋼は軟質になり加工性が向上するとともに炭化物、窒化物の生成が少なくなり、溶接性および溶接部の耐食性が向上する。このため本発明ではC、Nとも含有量は少ない方が良く、Cは0.02質量%まで、Nは0.025質量%まで含有が許容される。
The component elements constituting the ferritic stainless steel of the present invention will be described.
C and N are elements inevitably contained in the steel. When the content of C and N is reduced, the steel becomes soft and the workability is improved, and the formation of carbides and nitrides is reduced, and the weldability and the corrosion resistance of the welded portion are improved. For this reason, in the present invention, it is better that the contents of both C and N are small, and C is allowed to be contained up to 0.02 mass% and N is contained up to 0.025 mass%.

Siは、Arガスシールを行ってTIG溶接する場合、溶接部の耐食性改善に有効に作用する。また、Siはフェライト系鋼の硬質化に寄与するので、例えば水道に直結して使用する高圧タイプの温水容器をはじめとして継手の強度が要求されるような用途などでは、Siの添加は有利となる。種々検討の結果、Siによる強度向上作用を十分に享受するには、0.01質量%以上のSi含有量を確保することが望まれる。したがって本発明ではSi含有量を3質量%以下にコントロールする。   Si effectively acts to improve the corrosion resistance of the weld when performing Ar gas sealing and TIG welding. In addition, Si contributes to the hardening of ferritic steel, so it is advantageous to add Si in applications where the strength of joints is required, including high-pressure hot water containers that are directly connected to water. Become. As a result of various studies, it is desired to secure a Si content of 0.01% by mass or more in order to fully enjoy the strength improvement effect of Si. Therefore, in the present invention, the Si content is controlled to 3% by mass or less.

Mnは、ステンレス鋼の脱酸剤として使用される。しかしMnは不動態皮膜中のCr濃度を低下させ、耐食性低下を招く要因となるので、本発明ではMn含有量の低い方が好ましく、1質量%以下の含有量に規定される。スクラップを原料とするステンレス鋼ではある程度のMn混入は避けられないので、過剰に含有されないよう管理が必要である。   Mn is used as a deoxidizer for stainless steel. However, since Mn lowers the Cr concentration in the passive film and causes a decrease in corrosion resistance, the Mn content is preferably lower in the present invention, and the content is defined as 1% by mass or less. Since some amount of Mn is unavoidable in the stainless steel made from scrap, it is necessary to manage it so that it is not excessively contained.

Pは、母材および溶接部の靭性を損なうので低い方が望ましい。ただし、含Cr鋼の溶製において精錬による脱りんは困難であることから、P含有量を極低化するには原料の厳選などに過剰なコスト増を伴う。したがって本発明では一般的なフェライト系ステンレス鋼と同様に、0.04質量%までのP含有を許容する。   P is desirable to be low because it impairs the toughness of the base metal and the weld. However, since dephosphorization by refining is difficult in the production of Cr-containing steel, excessively increasing the cost, such as careful selection of raw materials, is required to minimize the P content. Therefore, in the present invention, the P content up to 0.04% by mass is allowed as in the general ferritic stainless steel.

Sは、孔食の起点となりやすいMnSを形成して耐食性を阻害することが知られているが、溶接熱影響部の耐食性に関してはSを特に厳しく規制する必要はない。しかし、あまり多量にSが含まれると溶接部の高温割れが生じやすくなるので、S含有量は0.03質量%以下に規定される。   It is known that S forms MnS that tends to be a starting point of pitting corrosion and inhibits corrosion resistance. However, it is not necessary to strictly restrict S with respect to the corrosion resistance of the weld heat affected zone. However, if too much S is contained, hot cracking of the welded portion tends to occur, so the S content is specified to be 0.03 mass% or less.

Crは、不動態皮膜の主要構成元素であり、耐孔食性や耐隙間腐食性などの局部腐食性の向上をもたらす。TIG溶接熱影響部の耐食性はCr含有量に強く依存することから、Crは本発明において重要な元素である。発明者らの検討の結果、バックガスシールにArと窒素ガスを用いて溶接した溶接部に温水環境で要求される耐食性を付与するには16質量%を超えるCr含有量を確保すべきであることがわかった。耐食性向上効果はCr含有量が多くなるに伴って向上する。しかし、Cr含有量が多くなるとC、Nの低減が難しくなり、機械的性質や靭性を損ねかつコストを増大させる要因となる。
なお、Cr含有量が22質量%以上の鋼ではArと窒素のバックシールドガスによる耐食性改善効果が大きくなること、厳しい環境への適用においてもCr含有量のさらなる増加に頼ることなく、上述の問題を最小限に抑え、十分な耐食性を得ることができる。したがって、好ましくはCr含有量を22〜26質量%とする。
Cr is a main constituent element of the passive film, and improves local corrosion properties such as pitting corrosion resistance and crevice corrosion resistance. Since the corrosion resistance of the TIG heat-affected zone strongly depends on the Cr content, Cr is an important element in the present invention. As a result of the study by the inventors, a Cr content exceeding 16% by mass should be secured in order to give the corrosion resistance required in a hot water environment to a welded portion welded with Ar and nitrogen gas to the back gas seal. I understood it. The corrosion resistance improving effect is improved as the Cr content is increased. However, when the Cr content is increased, it is difficult to reduce C and N, which causes a deterioration in mechanical properties and toughness and an increase in cost.
In addition, the steel with Cr content of 22% by mass or more has the effect of improving the corrosion resistance by the back shield gas of Ar and nitrogen, and does not depend on further increase of the Cr content even in harsh environment applications. Can be minimized and sufficient corrosion resistance can be obtained. Therefore, Preferably Cr content shall be 22-26 mass%.

Moは、Crとともに耐食性レベルを向上させるための有効な元素であり、その耐食性向上作用は高Crになるほど大きくなることが知られている。ところが、発明者らの詳細な検討によれば、TIG溶接した溶接裏面の熱影響部については、Moによってもたらされる耐食性向上作用はあまり大きくないことがわかった。本発明の主な用途である上水の温水環境に対しては2質量%以下のMoを含有させることで達成される。2質量%を超えて増量しても溶接熱影響部腐食性の改善効果は小さく、徒にコスト上昇を招くのみで得策ではない。したがってMo含有量は2質量%以下とする。   Mo is an effective element for improving the corrosion resistance level together with Cr, and it is known that the effect of improving the corrosion resistance increases as the Cr content increases. However, according to detailed examinations by the inventors, it has been found that the corrosion resistance improving effect brought about by Mo is not so great for the heat-affected zone on the back surface of the weld welded by TIG welding. It is achieved by containing 2% by mass or less of Mo with respect to the warm water environment of clean water, which is the main application of the present invention. Even if the amount exceeds 2% by mass, the effect of improving the corrosivity of the weld heat affected zone is small. Therefore, the Mo content is 2% by mass or less.

Nbは、Tiと同様にC、Nとの親和力が強く、フェライト系ステンレス鋼で問題となる粒界腐食を防止するのに有効な元素である。その効果を十分発揮させるには0.05質量%以上のNb含有量を確保することが望ましい。しかし、過剰に添加すると溶接高温割れが生じるようになり、溶接部靭性も低下するので、Nb含有量の上限は0.6質量%とする。   Nb has a strong affinity for C and N like Ti, and is an effective element for preventing intergranular corrosion, which is a problem in ferritic stainless steel. In order to sufficiently exhibit the effect, it is desirable to secure an Nb content of 0.05% by mass or more. However, if added in excess, welding hot cracking occurs, and the weld zone toughness also decreases, so the upper limit of the Nb content is set to 0.6 mass%.

Tiは、Arバックガスシールを行う従来のTIG溶接において溶接部の耐食性向上に寄与する元素であるが、Arバックガスシールを行うTIG溶接の場合は、Alとの複合添加により溶接時に鋼表面にAl、Ti主体の化学的に安定な酸化皮膜を形成することで酸化スケールの耐食性を高めると考えられる。
このようなTiの作用を十分に享受するには0.05質量%以上のTi含有量を確保することが望ましい。しかし、Ti含有量が多くなると素材の表面品質が低下したり、溶接ビードに酸化物が生成して溶接性が低下したりしやすいので、Ti含有量の上限は0.4質量%とする。
Ti is an element that contributes to improving the corrosion resistance of the welded part in conventional TIG welding that performs Ar back gas sealing, but in the case of TIG welding that performs Ar back gas sealing, it is added to the steel surface during welding by combined addition with Al. It is considered that the corrosion resistance of the oxide scale is enhanced by forming a chemically stable oxide film mainly composed of Al and Ti.
In order to fully enjoy the effect of such Ti, it is desirable to secure a Ti content of 0.05% by mass or more. However, if the Ti content is increased, the surface quality of the material is deteriorated or oxides are generated in the weld bead and the weldability is likely to be lowered. Therefore, the upper limit of the Ti content is set to 0.4% by mass.

Alは、Tiとの複合添加によってTIG溶接熱影響部でTiとともに優先酸化することでFeの生成を抑え、Crの濃化を促進し、酸化スケールの耐食性を高める。その作用を十分に得るためには0.02質量%以上のAl含有量を確保する必要がある。
一方、過剰のAl含有は素材の表面品質の低下や溶接性の低下を招くので、Al含有量は0.3質量%以下とする。
Al is preferentially oxidized together with Ti in the TIG welding heat-affected zone by complex addition with Ti, thereby suppressing the formation of Fe 2 O 3 , promoting the concentration of Cr 2 O 3 and enhancing the corrosion resistance of the oxide scale. In order to obtain the effect sufficiently, it is necessary to secure an Al content of 0.02% by mass or more.
On the other hand, excessive Al content causes deterioration of the surface quality and weldability of the material, so the Al content is set to 0.3% by mass or less.

Niは、腐食が進行している食孔内でのメタルの活性溶解速度をおさえ、腐食の成長を抑制する作用がある。Niの効果は添加量が多いほど大きいが、多量のNi含有は鋼を硬質にし、加工性を阻害する。また、フェライト相を維持できる量として2質量%以下の範囲で行う。 Ni has an effect of suppressing the growth of corrosion by suppressing the active dissolution rate of the metal in the corrosion hole where corrosion is progressing. The effect of Ni increases as the amount added increases, but a large amount of Ni contained hardens the steel and impairs workability. Moreover, it carries out in the range of 2 mass% or less as a quantity which can maintain a ferrite phase.

表1に示す化学組成を有するフェライト系ステンレス鋼を供試材として用いた。板厚は1.0mm材とした。A鋼は22質量%CrのSUS445J1相当鋼、BおよびC鋼はSUS444相当鋼である。   Ferritic stainless steel having the chemical composition shown in Table 1 was used as a test material. The plate thickness was 1.0 mm. Steel A is 22 mass% Cr SUS445J1 equivalent steel, and B and C steels are SUS444 equivalent steel.

Figure 2011173124
Figure 2011173124

図1はTIG突き合せ溶接方法を示す。試験片の下側からバックシールドガスを吹き付けて酸化スケール(溶接スケール)の付着を防止した。バックシールドガスはArガスに窒素ガスを含有させた不活性ガスを用いた。Arガスと窒素ガスの混合比はArガスが100%から0%と窒素ガスが0%から100%の6条件とし、比較としてバックシールドガスを用いない溶接も行った。   FIG. 1 shows a TIG butt welding method. Back shield gas was sprayed from the lower side of the test piece to prevent the oxide scale (welding scale) from sticking. As the back shield gas, an inert gas containing nitrogen gas in Ar gas was used. The mixing ratio of Ar gas and nitrogen gas was 6 conditions of Ar gas from 100% to 0% and nitrogen gas from 0% to 100%. For comparison, welding without using the back shield gas was also performed.

図2は浸漬試験前の試験形状である。溶接金属部が試験片長手方向中央位置を横切るように試験片を採取した。この浸漬試験片には溶接金属部、熱影響部および母材部が含まれる。溶接トーチ側(表面)は酸化スケールを除去した30×40mmの試験片である。   FIG. 2 shows a test shape before the immersion test. The test piece was sampled so that the weld metal part crossed the central position in the longitudinal direction of the test piece. This immersion test piece includes a weld metal part, a heat-affected part, and a base material part. The welding torch side (surface) is a 30 × 40 mm test piece from which the oxide scale has been removed.

図3は浸漬試験方法を示す。試験は80℃の1000ppmCl+10ppmCu2+の水溶液に24時間浸漬して行った。浸漬試験後の試験片を顕微鏡で観察し、溶接裏面熱影響部に生じた孔食深さを焦点深度法にて測定した。 FIG. 3 shows the immersion test method. The test was performed by immersing in an aqueous solution of 1000 ppm Cl +10 ppm Cu 2+ at 80 ° C. for 24 hours. The specimen after the immersion test was observed with a microscope, and the pitting corrosion depth generated in the heat-affected zone on the back surface of the weld was measured by the depth of focus method.

表2に測定結果をまとめた。表2中に表示した侵食深さの値はn=3全ての試験片における最大侵食深さである。いずれ鋼においてもArガス100%に比べ窒素ガスを含有すると最大侵食深さは浅くなり、窒素ガスが有効であることが顕著である。特に最大侵食深さはAr20%+窒素80%で最も浅く、効果が大きい。Arガス+窒素ガスの混合比により孔食による腐食性に差異があることが判明した。A鋼とB鋼とでは最大侵食深さはA鋼の方が浅く、Cr量による効果が大きく、Crは有効である。B鋼とC鋼とでは最大侵食深さはB鋼の方が浅く、Tiは有効である。   Table 2 summarizes the measurement results. The erosion depth values shown in Table 2 are the maximum erosion depths for all n = 3 specimens. In any steel, when nitrogen gas is contained as compared with 100% Ar gas, the maximum erosion depth becomes shallow, and it is remarkable that nitrogen gas is effective. In particular, the maximum erosion depth is 20% Ar + 80% nitrogen, which is the shallowest and has a great effect. It was found that there was a difference in corrosivity due to pitting corrosion depending on the mixing ratio of Ar gas + nitrogen gas. In steel A and steel B, the maximum erosion depth is shallower in steel A, and the effect of Cr content is large, and Cr is effective. In steel B and steel C, the maximum erosion depth is shallower in steel B, and Ti is effective.

Figure 2011173124
Figure 2011173124

本発明によれば、TIG突き合せ溶接ではバックシールドガスにはArガスを用いるのが一般的ではあるが、窒素ガスを混合した不活性ガスを用いることで孔食による耐食性抑制効果に有効であることが得られる。   According to the present invention, in TIG butt welding, it is common to use Ar gas as the back shield gas, but using an inert gas mixed with nitrogen gas is effective in suppressing corrosion resistance due to pitting corrosion. Can be obtained.

Claims (4)

シールドガスを用いてステンレス鋼を溶接する際に、溶接部裏面のバックシールドガスにArガスに窒素ガスを混合させた不活性ガスを用いることを特徴とする溶接部裏面の耐食性低下を抑制したフェライト系ステンレス鋼の溶接方法。   A ferrite that suppresses deterioration of corrosion resistance on the back of the welded portion using an inert gas in which nitrogen gas is mixed with Ar gas in the back shield gas on the back of the welded portion when welding stainless steel using a shield gas To weld stainless steel. 混合ガス中の窒素濃度が20〜80体積%であることを特徴とする、請求項1に記載のフェライト系ステンレス鋼の溶接方法。   The method for welding ferritic stainless steel according to claim 1, wherein the nitrogen concentration in the mixed gas is 20 to 80% by volume. Cr量が質量%で16〜26%のフェライト系ステンレス鋼の溶接に適用することを特徴とする、請求項1または2に記載の溶接方法。   The welding method according to claim 1, wherein the welding method is applied to welding of ferritic stainless steel having a Cr content of 16 to 26% by mass. 質量%で
C:0.02%以下、
Si:3%以下、
Mn:1%以下、
P:0.04%以下、
S:0.03%以下、
Ni:4%以下、
Cr:16〜26%、
Mo:2%以下、
N:0.025%以下、
さらに、Nb:0.05〜0.6%、Ti:0.05〜0.4%、Al:0.02〜0.3%の1種もしくは1種以上を含み、残部Feおよび他の不可避的不純物からなるフェライト系ステンレス鋼の溶接に適用することを特徴とする、請求項1乃至3に記載の溶接方法。
C: 0.02% or less in mass%,
Si: 3% or less,
Mn: 1% or less,
P: 0.04% or less,
S: 0.03% or less,
Ni: 4% or less,
Cr: 16 to 26%,
Mo: 2% or less,
N: 0.025% or less,
Further, it contains one or more of Nb: 0.05-0.6%, Ti: 0.05-0.4%, Al: 0.02-0.3%, the balance being Fe and other inevitable The welding method according to claim 1, wherein the welding method is applied to welding of ferritic stainless steel made of mechanical impurities.
JP2010036754A 2010-02-23 2010-02-23 Welding method of ferritic stainless steel Pending JP2011173124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010036754A JP2011173124A (en) 2010-02-23 2010-02-23 Welding method of ferritic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010036754A JP2011173124A (en) 2010-02-23 2010-02-23 Welding method of ferritic stainless steel

Publications (1)

Publication Number Publication Date
JP2011173124A true JP2011173124A (en) 2011-09-08

Family

ID=44686505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010036754A Pending JP2011173124A (en) 2010-02-23 2010-02-23 Welding method of ferritic stainless steel

Country Status (1)

Country Link
JP (1) JP2011173124A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013080518A1 (en) * 2011-11-30 2013-06-06 Jfeスチール株式会社 Ferritic stainless steel
EP2799577A4 (en) * 2011-12-27 2015-07-15 Jfe Steel Corp Ferritic stainless steel
CN104785902A (en) * 2015-03-31 2015-07-22 浙江博凡动力装备股份有限公司 Austenitic stainless steel welding technology
JP2015196894A (en) * 2014-04-03 2015-11-09 新日鐵住金株式会社 Two-phase stainless steel
JP2019042800A (en) * 2017-08-31 2019-03-22 木村化工機株式会社 Method for plasma welding of two-phase stainless steel
KR20190124585A (en) * 2018-04-26 2019-11-05 한국조선해양 주식회사 TIG welding method for two-phase stainless steel
JPWO2021201122A1 (en) * 2020-03-31 2021-10-07
WO2024009904A1 (en) * 2022-07-04 2024-01-11 日本製鉄株式会社 Welded joint, method for producing welded joint, automotive component, and building material component

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193771A (en) * 1983-04-18 1984-11-02 Hitachi Plant Eng & Constr Co Ltd Welding method of stainless steel piping
JPS61162271A (en) * 1985-01-08 1986-07-22 Sumitomo Metal Ind Ltd Penetration welding method
JPH0570899A (en) * 1991-09-17 1993-03-23 Nisshin Steel Co Ltd Ferritic stainless steel excellent in corrosion resistance in weld zone
JPH0871790A (en) * 1994-09-05 1996-03-19 Takasago Thermal Eng Co Ltd Tube welding method and welding jig

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193771A (en) * 1983-04-18 1984-11-02 Hitachi Plant Eng & Constr Co Ltd Welding method of stainless steel piping
JPS61162271A (en) * 1985-01-08 1986-07-22 Sumitomo Metal Ind Ltd Penetration welding method
JPH0570899A (en) * 1991-09-17 1993-03-23 Nisshin Steel Co Ltd Ferritic stainless steel excellent in corrosion resistance in weld zone
JPH0871790A (en) * 1994-09-05 1996-03-19 Takasago Thermal Eng Co Ltd Tube welding method and welding jig

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103975086A (en) * 2011-11-30 2014-08-06 杰富意钢铁株式会社 Ferritic stainless steel
JPWO2013080518A1 (en) * 2011-11-30 2015-04-27 Jfeスチール株式会社 Ferritic stainless steel
EP2787096A4 (en) * 2011-11-30 2015-07-15 Jfe Steel Corp Ferritic stainless steel
WO2013080518A1 (en) * 2011-11-30 2013-06-06 Jfeスチール株式会社 Ferritic stainless steel
EP2799577A4 (en) * 2011-12-27 2015-07-15 Jfe Steel Corp Ferritic stainless steel
JP2015196894A (en) * 2014-04-03 2015-11-09 新日鐵住金株式会社 Two-phase stainless steel
CN104785902A (en) * 2015-03-31 2015-07-22 浙江博凡动力装备股份有限公司 Austenitic stainless steel welding technology
JP7158859B2 (en) 2017-08-31 2022-10-24 木村化工機株式会社 Plasma welding method for duplex stainless steel
JP2019042800A (en) * 2017-08-31 2019-03-22 木村化工機株式会社 Method for plasma welding of two-phase stainless steel
KR20190124585A (en) * 2018-04-26 2019-11-05 한국조선해양 주식회사 TIG welding method for two-phase stainless steel
KR102075451B1 (en) * 2018-04-26 2020-02-11 한국조선해양 주식회사 TIG welding method for two-phase stainless steel
JPWO2021201122A1 (en) * 2020-03-31 2021-10-07
WO2021201122A1 (en) * 2020-03-31 2021-10-07 日鉄ステンレス株式会社 Welded structure and storage tank
KR20220090560A (en) * 2020-03-31 2022-06-29 닛테츠 스테인레스 가부시키가이샤 Welded structures and storage tanks
CN114829653A (en) * 2020-03-31 2022-07-29 日铁不锈钢株式会社 Welded structure and storage tank
JP7246568B2 (en) 2020-03-31 2023-03-27 日鉄ステンレス株式会社 Welded structures and storage tanks
KR102592758B1 (en) 2020-03-31 2023-10-25 닛테츠 스테인레스 가부시키가이샤 Welded structures and storage tanks
US11946126B2 (en) 2020-03-31 2024-04-02 Nippon Steel Stainless Steel Corporation Welded structure and storage tank
WO2024009904A1 (en) * 2022-07-04 2024-01-11 日本製鉄株式会社 Welded joint, method for producing welded joint, automotive component, and building material component

Similar Documents

Publication Publication Date Title
JP2011173124A (en) Welding method of ferritic stainless steel
JP5010323B2 (en) Ferritic stainless steel for hot water container with welded structure, hot water container and manufacturing method thereof
JP2009161836A (en) Ferritic stainless steel sheet excellent in corrosion resistance in welding crevice part
JP2010202916A (en) Ferritic stainless steel excellent in corrosion resistance of welded part with austenite stainless steel
JP4784239B2 (en) Ferritic stainless steel filler rod for TIG welding
KR101869423B1 (en) Flux cored arc welding material for high manganese steel
JP7135649B2 (en) Welding consumables for austenitic stainless steel
JP2009185382A (en) Ferritic stainless steel sheet having excellent corrosion resistance in welding gap oxide film
JP3576472B2 (en) Welding material for low carbon martensitic stainless steel and arc welding method for low carbon martensitic stainless steel
KR20180123592A (en) Welded metal having excellent strength, toughness and sr cracking resistance
JP4584002B2 (en) Flux-cored wire for ferritic stainless steel welding
JP2010065279A (en) Stainless steel sheet for warm-water vessel, method for producing the same, and warm-water vessel
JPH06279951A (en) Ferritic stainless steel for water heater
JP6477181B2 (en) Austenitic stainless steel
JP6782660B2 (en) Duplex Stainless Steel Welded Structure for Oxidizing Fluid Environment
JP2008194724A (en) Flux cored wire for gas-shielded arc welding, and welding method of galvanized steel sheet and stainless steel sheet
JP7343691B2 (en) Welded structures, stainless steel welded structures, stainless steel welded vessels and stainless steel
JP2006097908A (en) Hot water storage tank of welded structure and its construction method
JP2011068967A (en) Water storage tank constructed by welding panel made from stainless steel
JP2009167439A (en) Ferritic stainless steel for welding gap structural warm-water vessel
JP6580757B1 (en) Stainless steel for fuel rail
JP2010155276A (en) Method for welding high chromium ferritic stainless steel material
JP2004261858A (en) Wire for welding martensitic stainless steel pipe
JP2004230392A (en) Welding material for martensitic stainless steel pipe and welding method therefor
JP2011202254A (en) Ferritic stainless steel having excellent corrosion resistance in weld zone

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20130225

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20140115

Free format text: JAPANESE INTERMEDIATE CODE: A131

A977 Report on retrieval

Effective date: 20140116

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140520