JP4465066B2 - Welding materials for ferrite and austenitic duplex stainless steels - Google Patents

Welding materials for ferrite and austenitic duplex stainless steels Download PDF

Info

Publication number
JP4465066B2
JP4465066B2 JP29550199A JP29550199A JP4465066B2 JP 4465066 B2 JP4465066 B2 JP 4465066B2 JP 29550199 A JP29550199 A JP 29550199A JP 29550199 A JP29550199 A JP 29550199A JP 4465066 B2 JP4465066 B2 JP 4465066B2
Authority
JP
Japan
Prior art keywords
corrosion resistance
duplex stainless
less
ferrite
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29550199A
Other languages
Japanese (ja)
Other versions
JP2001113388A (en
Inventor
純 渡辺
昆 王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP29550199A priority Critical patent/JP4465066B2/en
Publication of JP2001113388A publication Critical patent/JP2001113388A/en
Application granted granted Critical
Publication of JP4465066B2 publication Critical patent/JP4465066B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、受水槽、温水器等水環境で使用される機器、あるいは油井、海水用構造物の素材となるフェライト・オーステナイト二相系ステンレス鋼の溶接に使用される溶接材料および当該溶接材料を用いて溶接された耐食性に優れる機器または構造物に関する。
【0002】
【従来の技術】
フェライト・オーステナイト二相系ステンレス鋼はフェライト相、オーステナイト相のそれぞれの欠点を補完し特に耐食性に優れることからSUS329系として広く実用化されている。例えば、特開昭56―142855号公報によれば、熱間加工性および耐局部腐食性に優れる二相系ステンレス鋼が提案されており、その他にも各種特性に優れる二相ステンレス鋼に関して多くの提案がなされている。
【0003】
二相系ステンレス鋼の特徴は、▲1▼応力腐食割れ抵抗性 ▲2▼高強度 ▲3▼Cr、Mo量が多く優れた耐食性 ▲4▼Niが少なく省資源等であるが、一般的に二相系ステンレス鋼は熱間加工性や溶接性がフェライト系ステンレス鋼やオーステナイト系ステンレス鋼に比べ劣るという欠点があった。二相ステンレス鋼を溶接するときの溶接材料としては、母材と同成分の共金材料を使用するのが一般的であるが、この場合には溶接部のオーステナイト相の析出量が不十分となり、相バランスが崩れるために溶接部の耐食性が母材に比べて劣化するという欠点を有している。
【0004】
溶接部における耐食性劣化を防止する方策については、溶接材料の改良・開発による改善が図られており、例えば、特開平3−204196号公報では耐濃硫酸腐食性に優れた二相系ステンレス鋼溶接用ワイヤが提案されている。しかし、二相系ステンレスが広く使用される受水槽、温水器および海水用構造物等Clイオンを含む環境下での耐食性については言及されていない。また、特開平8−260101号公報では、厚板用二相系ステンレス鋼における多層溶接時の靭性および耐食性改善について提案がなされている。
【0005】
特開平8−260101号によれば、確かに溶接部における靭性及び耐食性が改善されるが、N含有量が0.24〜0.35%と高く、そのため線材への加工が極めて困難であるという問題がある。また、スーパー2相系ステンレス鋼を対象としているためWを含有しており、高価となる。本願発明の対象とする受水槽、温水槽等の薄板製品の溶接においては高価なWを含有させる必要がない。
【0006】
溶接部の耐食性、特にClイオンを含む環境下における局部的な腐食形態である耐孔食性を改善することは構造物の品質安定性・信頼性を向上させ、かつより苛酷な条件での使用に耐えうるため最も強い要望がある。溶接部の耐孔食性劣化という欠点を解決するための方策は、フェライト相とオーステナイト相との比率を最適にすることであり、本提案は緻密な成分設計を行うことによりこの問題を解決したものである。
【0007】
【発明が解決しようとする課題】
本発明の目的は、溶接材料中の合金元素を最適なものにすることにより、溶接金属においてフェライト相:オーステナイト相の比率を概ね1:1とし、かつ凝固時の成分組成分布を均一なものとし、溶接部においても耐食性に優れるフェライト・オーステナイト二相系ステンレス鋼用溶接材料を提供するとともに優れた耐食性を有する溶接構造機器および構造物を提供することにある。
【0008】
発明の第1の態様は、下記の成分組成(wt%)を有するフェライト・オーステナイト二相ステンレス鋼用溶接材料である。
C:0.05%以下、 Si:0.05〜2.0%、
Mn:2.0%以下、 P:0.03%以下、
S:0.03%以下、 Ni:5〜12%、
Cr:22〜28%、 Mo:3.0〜5.0%、
Cu:0.2%以下、 N:0.10〜0.22%、
Co:0〜3%以下、 B:0.0005〜0.01%、
Al:0.07%以下、O:0.01%以下、
及び残部がFeおよび不可避的不純物から成る。
【0009】
発明の第2の態様は、(a)下記の成分組成(wt%)を有するフェライト・オーステナイト二相系ステンレス鋼用溶接材料であって、C:0.05%以下、Si:0.05〜2.0%、Mn:2.0%以下、P:0.03%以下、S:0.03%以下、Ni:5〜12%、Cr:22〜28%、Mo:3.0〜5.0%、Cu:0.01〜0.2%、N:0.10〜0.22%、Co:0.1〜3%、B:0.0005〜0.01%、Al:0.07%以下、O:0.01%以下、並びに残部Feおよび不可避的不純物、(b)下記(1)式に示すPh値が0.25〜0.60、下記(2)式に示すγcalが80以下、下記(3)式に示すPRE値が35以上を満足し、TIG法またはMIG法に使用する線材である。Ph={Ni+0.5Mn+0.1Co+30(C+N)−0.4(Cr+1.5Si+Mo)+5.6}/{Cr+1.5Si+Mo−6}…(1) γcal = 151.9×C−6.15×Si−2.8×Mn+6.5×(Ni+Co)−5.7×Cr−3.8×Mo+209.3×N+129.8…(2) PRE=Cr+3.3Mo+20N…(3)
【0010】
発明の第3の態様は、フェライト・オーステナイト二相系ステンレス鋼を、前記溶接材料を用い、TIG法またはMIG法により溶接した機器または構造物である。
【0011】
【発明の実施の形態】
以下に、本発明の溶接材料の各成分について、その作用効果と含有量の限定理由を説明する。なお成分組成はwt%である。
C:オーステナイト生成元素であり、溶接材料の材質強化および耐孔食性に寄与する元素であるが、0.05%を超えると熱間加工性および靭性を劣化させるため、その上限を0.05%に規定する。
【0012】
Si:精錬に際しての脱酸材として使用される。ただし、2.0%を超えると熱間加工性が劣化し、さらには溶接金属の靭性を低下させるため上限を2.0%に規定した。また、0.05%未満であると溶湯の表面張力が低下し良好なビード形状を得ることができないため下限を0.05%とする。
【0013】
Mn:Siと同様に、精錬に際しての脱酸材として使用される。Mnの添加は、硫化物を生成することによる熱間加工性の改善にも有効であるが、2.0%を超えると耐酸化性を劣化させるため上限を2.0%に規定した。
【0014】
P:溶接性および熱間加工性の面より少ないほうが望ましいが、不可避的に混入する元素であり、製造技術と経済性の面から上限を0.03%とする。
S:不可避的に混入する元素であり、0.03%を超えると粒界に偏析して熱間加工性を低下させるため上限を0.03%とする。
【0015】
Ni:オーステナイト生成元素であり、溶接金属の相比を調整する基本元素である。さらには、靭性および耐食性の改善に極めて有効な元素でもある。上記効果を得るためには、5%以上の含有量が必要である。一方、12%を超えて含有させるとフェライト相、オーステナイト相のバランスを崩し、かつ経済的にも不利になるので上限を12%とする必要がある。
【0016】
Cr:フェライト生成元素であり、耐孔食性を改善するのに有効な元素である。この含有量が22.0%以下では上記効果を十分に得ることができず、また28.0%を超えると高温域でフェライト単相になりやすく、さらにはσ相の析出を促進し靭性および耐食性を劣化させるため上限を28.0%とする必要がある。
【0017】
Mo:Crと同様に耐孔食性を改善するのに有効な元素である。溶接金属での耐孔食性改善には少なくとも3.0%含有させる必要がある。しかし、5.0%を超えるとσ相の析出を促進し靭性および耐食性を劣化させるため上限を5.0%とする必要がある。
【0018】
Cu:オーステナイト生成元素であり、耐食性、耐候性を改善するのに有効な元素である。しかし、多量の添加は熱間加工性を劣化させるため、その上限を0.2%とした。
【0019】
N:強力なオーステナイト生成元素であり、靭性および耐孔食性の改善に極めて有効な元素でもある。溶接金属に適正量オーステナイトを析出させるためには少なくとも0.10%含有させる必要がある。しかし、0.22%を超えて含有させると、熱間加工性を阻害しさらには溶接金属にブローホールが発生しやすくなるため、その上限を0.22%とする。
【0020】
Co:高温域でオーステナイトの析出を促進させる元素であり、溶接金属に適正量オーステナイトを析出させるために含有させることが望ましい。ただし、3%を超えると窒化物が析出しやすくなり、耐食性および靭性を劣化させるので、0〜3%とする。
【0021】
B:Sの粒界偏析を抑制し、熱間加工性向上のために極めて有効な元素である。その含有量が0.0005%以下では上記の効果が少なく、0.01%を超えると多量の脆い化合物が生成し脆化が生じるので0.0005〜0.01%に限定する。
【0022】
Al:Alは精錬時の強力な脱酸元素であり、鋼の清浄度を高めるのに有効な元素あるが、0.07%を超えると溶接時の溶込み性が劣化するため、上限を0.07%に規定する。
O:Oは、熱間加工性を阻害する元素であり、0.01%(100ppm)を超えると線材加工が困難となるが、不可避的に混入元素であり0.01%までは許容できる。
【0023】
上記成分組成は既にフェライト・オーステナイト二相系ステンレス鋼の成分組成であり、溶接材料として使用できるものである。しかし、上記成分組成が下記のパラメタが所定の値を満足すると更に望ましい。即ち、Ph値(相バランスを示す値)、γcal値(加工性指標)およびPRE値(耐孔食性指標)を規定した理由について説明する。
【0024】
ここで、Ph値、γcal値、およびPRE値はそれぞれ下式により計算する。
Ph ={Ni+0.5Mn+0.1Co+30(C+N)―0.4(Cr+1.5Si+Mo)+5.6}/{Cr+1.5Si+Mo―6}…(1)
γcal = 151.9×C―6.15×Si―2.8×Mn+6.5×(Ni+Co)―5.7×Cr―3.8×Mo+209.3×N+129.8…(2)
PRE=Cr+3.3Mo+20N…(3)
【0025】
溶接金属における耐食性および強度特性の確保には、フェライト相とオーステナイト相の相比を最適なものにする必要がある。すなわち、溶接金属部においては、母材よりフェライト相が多くなる傾向があるため、オーステナイト生成元素を積極的に添加しなければならない。
【0026】
Ph値が0.25未満では耐食性および強度特性を確保するのに十分なオーステナイト相が生成せず、一方0.60を超えると、逆に溶接金属部でのフェライト相が少なくなり、その結果フェライト相中にCrとMoが過度に固溶しσ相の析出が促進されて耐食性および靭性を極端に劣化させる。したがって、Ph値を0.25〜0.60に調整することが望ましい。
【0027】
また、一方で溶接棒の製造に関しては線材への加工性も考慮する必要がある。γcal値が80を超えると熱間加工性が著しく劣化し、線材加工が困難になり製造歩留まりも著しく悪化させるため、γcal値は80以下であることが望ましい。
さらに、耐孔食性の良否を判断する指標である耐孔食性指数PREが一般的に提案されており、当該環境において十分な耐孔食性を示すにはPREを35以上にすることが望ましい。
【0028】
溶接部の耐食性および強度特性のみを確保する場合にはPh値を0.25〜0.60に調整することが望ましい。また、溶接棒を線材に加工性する場合には、γcalは80以下であることが望ましい。更に、使用環境において十分な耐孔食性を要求される示すにはPREを35以上にすることが望ましい。
【0029】
本発明の溶接材で、フェライト・オーステナイト二相系ステンレス鋼を溶接する場合には、溶接材の成分、例えばAl、Si、Cr等の酸化しやすい成分の変動を避ける必要がある。そのためTIG法またはMIG法が望ましい。これらの溶接法はいずれもガスシールド溶接法であり、上記酸化し易い成分の変動を避けることができるためである。そこで、上記溶接方法で溶接した機器または構造物は耐食性に優れている。なお、場合により大気ガスに対してシール性のあるプラズマ溶接方法、エレクトロンビーム溶接方法も適用できる。
【0030】
【実施例】
図1に表1として示す各種化学成分の供試鋼を溶製したのち、造塊し、鍛造により板厚12mmの板を作成した。この時、鍛造割れの有無を目視により調査し、熱間加工性を評価した。その後、1050℃での固溶化熱処理と冷間圧延を繰り返し、直径2mmの線材に加工しこれを溶接材料とした。
【0031】
母材には、JIS規格によるSUS329J4L相当の二相系ステンレス鋼(板厚1.5mm)を使用し、突合せTIG溶接により、溶接材料を適宜添加しながら図2に示す溶接継手を作成し、溶接部組織と孔食試験による耐食性を評価した。溶接部の顕微鏡写真を図3に示す。この写真は溶接部をしゅう酸とKOHからなる溶液でエッチング後組織観察したものである。また、フェライト相の比率は400倍の顕微鏡で20×20の格子を用いて点算法により定量した。孔食試験はJIS G 0577に準じて行った。但し、試験温度は70℃とした。その結果を図4に表2として示す。
【0032】
本発明で定める成分範囲をいずれも満足する溶接材料No.1〜5は、熱間加工性に優れ線材への加工が容易であり、かつ溶接部の相比がほぼフェライト相:オーステナイト相=1:1であり、耐孔食性にも優れる。一方、比較例であるNo.6〜10は本発明範囲を満足しない項目(表中下線で示す)があるため、熱間加工性もしくは耐食性が劣化する。No.6ではPh値が本発明範囲より小さいため、溶接金属でのオーステナイト相析出が十分でなく耐食性が劣化する。
【0033】
また、No.7においては、γcal値が本発明範囲より大きいため熱間鍛造時に割れが生じた。No.8はPREが35に満たないため、母材に比較し明らかに耐食性が劣っている。No.9ではMo量が高くσ相が生成したために、またNo.10では熱間加工性向上に有効なB量が少ないために熱間鍛造時割れが生じた。
図2は溶接部の光学顕微鏡組織で、(a)はNo.3材でありフェライト相:オーステナイト相が概ね1:1であり、一方(b)はNo.6材でありフェライト相が過剰に分布しオーステナイト相の析出が極めて少ないので望ましくない。
【0034】
【発明の効果】
本発明の溶接材料は、耐食性に優れた二相系ステンレス鋼であり、二相系ステンレス鋼用の溶接材として望ましい。更にPh値およびPRE値を所定の範囲とすることにより、溶接金属部の組織、元素分配を最適なものとし、特に耐孔食性を高めることができる。また、γcalを所定の範囲とすることにより線材への熱間加工性にも優れる。したがって、受水槽、温水器や油井用として、本溶接材料をフェライト・オーステナイト二相系ステンレス鋼の溶接に使用した場合、母材と同等の耐孔食性を付与することができ、該機器あるいは構造物の耐食性向上に伴う安全性、経済性をきわめて高いものにすることができる。
【図面の簡単な説明】
【図1】本発明の溶接材と比較材の成分組成を表として示す図である。
【図2】二相ステンレス鋼板をTIG溶接した際のビード形状で継手断面を示す図である。
【図3】本発明鋼および比較鋼の溶接部光学顕微鏡組織を示す図である。
(a)は本発明鋼
(b)は比較鋼
【図4】溶接金属の特性を比較材と対比して表として示す図である。
[0001]
[Industrial application fields]
The present invention relates to a welding material used for welding ferritic / austenitic duplex stainless steel used as a material for water tanks, water heaters and other water environments, or oil wells and seawater structures, and the welding material. The present invention relates to an apparatus or a structure excellent in corrosion resistance that has been welded.
[0002]
[Prior art]
Ferritic / austenitic duplex stainless steels are widely put into practical use as SUS329 series because they complement the respective defects of the ferrite phase and austenitic phase and are particularly excellent in corrosion resistance. For example, according to Japanese Patent Laid-Open No. 56-142855, a duplex stainless steel excellent in hot workability and local corrosion resistance has been proposed, and many other duplex stainless steels excellent in various properties have been proposed. Proposals have been made.
[0003]
The characteristics of duplex stainless steels are as follows: (1) Resistance to stress corrosion cracking (2) High strength (3) Excellent corrosion resistance with a large amount of Cr and Mo (4) Low Ni but resource saving etc. The duplex stainless steel has a drawback that hot workability and weldability are inferior to those of ferritic stainless steel and austenitic stainless steel. As a welding material when welding duplex stainless steel, it is common to use a co-metal material of the same component as the base material, but in this case the amount of precipitation of the austenite phase in the weld becomes insufficient. In addition, since the phase balance is lost, the corrosion resistance of the welded portion is deteriorated as compared with the base material.
[0004]
As a measure for preventing the corrosion resistance deterioration in the welded portion, improvement is made by improvement and development of the welding material. For example, in Japanese Patent Laid-Open No. 3-204196, duplex stainless steel welding having excellent resistance to concentrated sulfuric acid corrosion is performed. Wires have been proposed. However, there is no mention of corrosion resistance in an environment containing Cl ions, such as a water receiving tank, a water heater and a seawater structure in which duplex stainless steel is widely used. JP-A-8-260101 proposes to improve toughness and corrosion resistance during multilayer welding in duplex stainless steel for thick plates.
[0005]
According to Japanese Patent Laid-Open No. 8-260101, the toughness and corrosion resistance in the weld zone are certainly improved, but the N content is as high as 0.24 to 0.35%, so that it is extremely difficult to process the wire. There's a problem. Moreover, since it is intended for super duplex stainless steel, it contains W and is expensive. It is not necessary to contain expensive W in the welding of thin plate products such as a water receiving tank and a hot water tank which are the subject of the present invention.
[0006]
Improving the corrosion resistance of welds, particularly pitting corrosion resistance, which is a local corrosion form in an environment containing Cl ions, improves the structural stability and reliability of the structure, and can be used in more severe conditions. There is the strongest demand to endure. A measure to solve the defect of deterioration of pitting corrosion resistance of welds is to optimize the ratio of ferrite phase to austenite phase, and this proposal has solved this problem by carrying out precise component design. It is.
[0007]
[Problems to be solved by the invention]
The object of the present invention is to optimize the alloy elements in the welding material so that the ratio of ferrite phase to austenite phase in the weld metal is approximately 1: 1, and the component composition distribution during solidification is uniform. An object of the present invention is to provide a welded material for ferrite / austenite duplex stainless steel having excellent corrosion resistance even in the welded portion, and to provide a welded structure device and structure having excellent corrosion resistance.
[0008]
A first aspect of the invention is a welding material for ferrite-austenite duplex stainless steel having the following component composition (wt%).
C: 0.05% or less, Si: 0.05-2.0%,
Mn: 2.0% or less, P: 0.03% or less,
S: 0.03% or less, Ni: 5-12%,
Cr: 22-28%, Mo: 3.0-5.0%,
Cu: 0.2% or less, N: 0.10 to 0.22%,
Co: 0 to 3% or less, B: 0.0005 to 0.01%,
Al: 0.07% or less, O: 0.01% or less,
And the balance consists of Fe and inevitable impurities.
[0009]
A second aspect of the invention is (a) a welding material for ferrite-austenite duplex stainless steel having the following component composition (wt%) , wherein C: 0.05% or less, Si: 0.05 to 2.0%, Mn: 2.0% or less, P: 0.03% or less, S: 0.03% or less, Ni: 5-12%, Cr: 22-28%, Mo: 3.0-5 0.0%, Cu: 0.01 to 0.2 %, N: 0.10 to 0.22%, Co: 0.1 to 3 %, B: 0.0005 to 0.01%, Al: 0.0. 07% or less, O: 0.01% or less, and the balance Fe and unavoidable impurities was the Ph value shown in (b) below SL (1) from 0.25 to 0.60 are shown in the following equation (2) γcal is 80 or less, the PRE value shown in the following formula (3) satisfies 35 or more, and is a wire used for TIG method or MIG method . Ph = {Ni + 0.5Mn + 0.1Co + 30 (C + N) -0.4 (Cr + 1.5Si + Mo) +5.6} / {Cr + 1.5Si + Mo-6} (1) γcal = 151.9 × C-6.15 × Si− 2.8 × Mn + 6.5 × (Ni + Co) −5.7 × Cr−3.8 × Mo + 209.3 × N + 129.8 (2) PRE = Cr + 3.3Mo + 20N (3)
[0010]
A third aspect of the invention is an apparatus or a structure in which ferrite-austenitic duplex stainless steel is welded by the TIG method or the MIG method using the welding material.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Below, the effect of each component of the welding material of this invention and the reason for limitation of content are demonstrated. The component composition is wt%.
C: An austenite-forming element that contributes to the strengthening and pitting corrosion resistance of welding materials. However, if it exceeds 0.05%, the hot workability and toughness deteriorate, so the upper limit is 0.05%. Stipulate.
[0012]
Si: Used as a deoxidizer during refining. However, when it exceeds 2.0%, the hot workability deteriorates, and further, the upper limit is set to 2.0% in order to reduce the toughness of the weld metal. Moreover, since the surface tension of a molten metal falls that it is less than 0.05% and a favorable bead shape cannot be obtained, a minimum is made into 0.05%.
[0013]
Like Mn: Si, it is used as a deoxidizer during refining. The addition of Mn is effective for improving the hot workability by forming sulfides, but if it exceeds 2.0%, the oxidation resistance is deteriorated, so the upper limit is defined as 2.0%.
[0014]
P: It is desirable to have less than the aspects of weldability and hot workability, but it is an element inevitably mixed in, and the upper limit is set to 0.03% from the viewpoint of manufacturing technology and economy.
S: An element that is inevitably mixed, and if it exceeds 0.03%, it segregates at the grain boundary and decreases hot workability, so the upper limit is made 0.03%.
[0015]
Ni: an austenite generating element and a basic element for adjusting the phase ratio of the weld metal. Furthermore, it is also an extremely effective element for improving toughness and corrosion resistance. In order to acquire the said effect, content of 5% or more is required. On the other hand, if the content exceeds 12%, the balance between the ferrite phase and the austenite phase is lost, and this is disadvantageous economically, so the upper limit needs to be 12%.
[0016]
Cr: A ferrite-forming element and an element effective for improving pitting corrosion resistance. When the content is 22.0% or less, the above effects cannot be sufficiently obtained. When the content exceeds 28.0%, a ferrite single phase is likely to be formed at a high temperature range, and further, the precipitation of σ phase is promoted, and toughness and In order to deteriorate the corrosion resistance, the upper limit needs to be 28.0%.
[0017]
Mo: Like Cr, it is an effective element for improving pitting corrosion resistance. In order to improve the pitting corrosion resistance of the weld metal, it is necessary to contain at least 3.0%. However, if it exceeds 5.0%, precipitation of the σ phase is promoted and toughness and corrosion resistance are deteriorated, so the upper limit needs to be 5.0%.
[0018]
Cu: An austenite-forming element and an element effective for improving corrosion resistance and weather resistance. However, since a large amount of addition deteriorates hot workability, the upper limit was made 0.2%.
[0019]
N: It is a strong austenite forming element and is also an extremely effective element for improving toughness and pitting corrosion resistance. In order to precipitate an appropriate amount of austenite on the weld metal, it is necessary to contain at least 0.10%. However, if the content exceeds 0.22%, hot workability is hindered and blowholes are likely to be generated in the weld metal, so the upper limit is made 0.22%.
[0020]
Co: An element that promotes precipitation of austenite in a high temperature range, and is desirably contained in order to precipitate an appropriate amount of austenite in the weld metal. However, if it exceeds 3%, nitride is liable to precipitate, and the corrosion resistance and toughness are deteriorated.
[0021]
B: It is an extremely effective element for suppressing grain boundary segregation of S and improving hot workability. When the content is 0.0005% or less, the above effect is small. When the content exceeds 0.01%, a large amount of brittle compounds are formed and embrittlement occurs. Therefore, the content is limited to 0.0005 to 0.01%.
[0022]
Al: Al is a powerful deoxidizing element at the time of refining, and is an effective element for increasing the cleanliness of steel. However, if it exceeds 0.07%, the penetration property at the time of welding deteriorates, so the upper limit is 0. .07% is specified.
O: O is an element that hinders hot workability. If it exceeds 0.01% (100 ppm), wire processing becomes difficult, but it is inevitably an incorporated element and is acceptable up to 0.01%.
[0023]
The above component composition is already a component composition of ferrite-austenite duplex stainless steel and can be used as a welding material. However, it is more desirable that the above component composition satisfies the following parameters. That is, the reason why the Ph value (value indicating phase balance), γcal value (workability index) and PRE value (pitting corrosion resistance index) are specified will be described.
[0024]
Here, the Ph value, the γcal value, and the PRE value are calculated by the following equations, respectively.
Ph = {Ni + 0.5Mn + 0.1Co + 30 (C + N) −0.4 (Cr + 1.5Si + Mo) +5.6} / {Cr + 1.5Si + Mo−6} (1)
γcal = 151.9 × C−6.15 × Si−2.8 × Mn + 6.5 × (Ni + Co) −5.7 × Cr−3.8 × Mo + 209.3 × N + 129.8 (2)
PRE = Cr + 3.3Mo + 20N (3)
[0025]
In order to ensure the corrosion resistance and strength characteristics of the weld metal, it is necessary to optimize the phase ratio of the ferrite phase and the austenite phase. That is, in a weld metal part, since there exists a tendency for a ferrite phase to increase from a base material, you have to add an austenite production | generation element positively.
[0026]
If the Ph value is less than 0.25, an austenite phase sufficient to ensure corrosion resistance and strength characteristics is not generated. On the other hand, if it exceeds 0.60, the ferrite phase in the weld metal part is conversely reduced. Cr and Mo are excessively dissolved in the phase and the precipitation of the σ phase is promoted, and the corrosion resistance and toughness are extremely deteriorated. Therefore, it is desirable to adjust the Ph value to 0.25 to 0.60.
[0027]
On the other hand, it is necessary to consider the workability to the wire for manufacturing the welding rod. If the γcal value exceeds 80, the hot workability is remarkably deteriorated, the wire processing becomes difficult, and the production yield is also remarkably deteriorated. Therefore, the γcal value is desirably 80 or less.
Furthermore, a pitting corrosion resistance index PRE, which is an index for judging whether or not pitting corrosion resistance is good, is generally proposed, and it is desirable to set PRE to 35 or more in order to show sufficient pitting corrosion resistance in the environment.
[0028]
In order to ensure only the corrosion resistance and strength characteristics of the welded portion, it is desirable to adjust the Ph value to 0.25 to 0.60. In addition, when the welding rod is processed into a wire, γcal is desirably 80 or less. Furthermore, in order to indicate that sufficient pitting corrosion resistance is required in the use environment, it is desirable to set PRE to 35 or more.
[0029]
When welding a ferrite-austenite duplex stainless steel with the welding material of the present invention, it is necessary to avoid fluctuations in components of the welding material, such as Al, Si, Cr, and the like, which are easily oxidized. Therefore, the TIG method or the MIG method is desirable. This is because all of these welding methods are gas shield welding methods, and fluctuations in the components that are easily oxidized can be avoided. Then, the apparatus or structure welded with the said welding method is excellent in corrosion resistance. In some cases, a plasma welding method or an electron beam welding method having a sealing property against atmospheric gas can be applied.
[0030]
【Example】
Test steels having various chemical components shown in Table 1 in FIG. 1 were melted and then ingot-formed, and a plate having a thickness of 12 mm was prepared by forging. At this time, the presence or absence of forging cracks was visually examined to evaluate hot workability. Thereafter, solution heat treatment at 1050 ° C. and cold rolling were repeated to form a wire having a diameter of 2 mm, which was used as a welding material.
[0031]
As the base material, SUS329J4L equivalent duplex stainless steel (plate thickness 1.5mm) according to JIS standard is used, and the welded joint shown in Fig. 2 is created by butt TIG welding while adding welding material as appropriate. Corrosion resistance was evaluated by tissue and pitting corrosion tests. A photomicrograph of the weld is shown in FIG. This photograph is an observation of the structure of the weld after etching with a solution of oxalic acid and KOH. Further, the ratio of the ferrite phase was quantified by a point calculation method using a 20 × 20 lattice with a 400 × microscope. The pitting corrosion test was performed according to JIS G 0577. However, the test temperature was 70 ° C. The results are shown in Table 4 as Table 2.
[0032]
Welding material Nos. Satisfying all the component ranges defined in the present invention. Nos. 1 to 5 are excellent in hot workability and easy to be processed into a wire, and the phase ratio of the welded portion is approximately ferrite phase: austenite phase = 1: 1, and is excellent in pitting corrosion resistance. On the other hand, No. which is a comparative example. Since 6 to 10 have items that do not satisfy the scope of the present invention (indicated by the underline in the table), hot workability or corrosion resistance deteriorates. No. In No. 6, since the Ph value is smaller than the range of the present invention, the austenite phase precipitation in the weld metal is not sufficient, and the corrosion resistance deteriorates.
[0033]
No. In No. 7, cracks occurred during hot forging because the γcal value was larger than the range of the present invention. No. No. 8 has a PRE of less than 35, so it is clearly inferior in corrosion resistance compared to the base material. No. In No. 9, since the amount of Mo was high and the σ phase was generated, In No. 10, cracking during hot forging occurred because the amount of B effective for improving hot workability was small.
2 is an optical microscope structure of the welded portion. Three materials, ferrite phase: austenite phase is approximately 1: 1, while (b) is No. It is not desirable because it is a six material and the ferrite phase is excessively distributed and the precipitation of the austenite phase is extremely small.
[0034]
【The invention's effect】
The welding material of the present invention is a duplex stainless steel having excellent corrosion resistance, and is desirable as a welding material for the duplex stainless steel. Further, by setting the Ph value and the PRE value within a predetermined range, the structure and element distribution of the weld metal portion can be optimized, and particularly the pitting corrosion resistance can be enhanced. Moreover, it is excellent also in the hot workability to a wire by making (gamma) cal into a predetermined range. Therefore, when this welding material is used for welding ferritic / austenitic duplex stainless steels for water tanks, water heaters and oil wells, pitting corrosion resistance equivalent to that of the base metal can be imparted, and the equipment or structure The safety and economy associated with the improvement of the corrosion resistance of objects can be made extremely high.
[Brief description of the drawings]
FIG. 1 is a table showing component compositions of a welding material of the present invention and a comparative material.
FIG. 2 is a view showing a joint cross section in a bead shape when a duplex stainless steel sheet is TIG welded.
FIG. 3 is a diagram showing an optical microstructure of a welded part of the steel of the present invention and a comparative steel.
(A) Steel of the present invention (b) is a comparative steel. FIG. 4 is a table showing the characteristics of a weld metal as a table in comparison with a comparative material.

Claims (2)

(a)下記の成分組成(wt%)を有するフェライト・オーステナイト二相系ステンレス鋼用溶接材料であって、
C:0.05%以下、 Si:0.05〜2.0%、Mn:2.0%以下、P:0.03%以下、S:0.03%以下、 Ni:5〜12%、Cr:22〜28%、Mo:3.0〜5.0%、Cu:0.01〜0.2%、 N:0.10〜0.22%、Co:0.1〜3%、B:0.0005〜0.01%、Al:0.07%以下、O:0.01%以下、残部Feおよび不可避的不純物、
(b)下記の(1)式に示すPh値が0.25〜0.60、下記(2)式に示すγcalが80以下、下記(3)式に示すPRE値が35以上を満足し、TIG法またはMIG法に使用する線材であることを特徴とするフェライト・オーステナイト二相系ステンレス鋼用溶接材料。
Ph ={Ni+0.5Mn+0.1Co+30(C+N)−0.4(Cr+1.5Si+Mo)+5.6}/{Cr+1.5Si+Mo−6}…(1)
γcal = 151.9×C−6.15×Si−2.8×Mn+6.5×(Ni+Co)−5.7×Cr−3.8×Mo+209.3×N+129.8…(2)
PRE=Cr+3.3Mo+20N…(3)
(A) a welding material for ferrite-austenite duplex stainless steel having the following component composition (wt%) ,
C: 0.05% or less, Si: 0.05-2.0%, Mn: 2.0% or less, P: 0.03% or less, S: 0.03% or less, Ni: 5-12%, cr: 22~28%, Mo: 3.0~5.0 %, Cu: 0.01~ 0.2%, N: 0.10~0.22%, Co: 0.1 ~3%, B : 0.0005~0.01%, Al: 0.07% or less, O: 0.01% or less, and the balance Fe and unavoidable impurities was,
(B) is Ph value shown below SL of (1) from 0.25 to 0.60, the following (2) Ganmacal shown in equation 80 below, PRE value shown in the following equation (3) is satisfied more than 35 A welding material for ferritic-austenitic duplex stainless steel, characterized by being a wire used in the TIG method or MIG method .
Ph = {Ni + 0.5Mn + 0.1Co + 30 (C + N) −0.4 (Cr + 1.5Si + Mo) +5.6} / {Cr + 1.5Si + Mo-6} (1)
γcal = 151.9 × C-6.15 × Si−2.8 × Mn + 6.5 × (Ni + Co) −5.7 × Cr−3.8 × Mo + 209.3 × N + 129.8 (2)
PRE = Cr + 3.3Mo + 20N (3)
フェライト・オーステナイト二相系ステンレス鋼を、請求項1に記載の溶接材料を用い、TIG法またはMIG法により溶接した機器または構造物。An apparatus or a structure in which ferrite-austenite duplex stainless steel is welded by the TIG method or the MIG method using the welding material according to claim 1 .
JP29550199A 1999-10-18 1999-10-18 Welding materials for ferrite and austenitic duplex stainless steels Expired - Lifetime JP4465066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29550199A JP4465066B2 (en) 1999-10-18 1999-10-18 Welding materials for ferrite and austenitic duplex stainless steels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29550199A JP4465066B2 (en) 1999-10-18 1999-10-18 Welding materials for ferrite and austenitic duplex stainless steels

Publications (2)

Publication Number Publication Date
JP2001113388A JP2001113388A (en) 2001-04-24
JP4465066B2 true JP4465066B2 (en) 2010-05-19

Family

ID=17821440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29550199A Expired - Lifetime JP4465066B2 (en) 1999-10-18 1999-10-18 Welding materials for ferrite and austenitic duplex stainless steels

Country Status (1)

Country Link
JP (1) JP4465066B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111151918A (en) * 2019-12-27 2020-05-15 中国第一重型机械集团大连加氢反应器制造有限公司 E316H type stainless steel submerged arc welding material for manufacturing fast neutron reactor equipment and preparation method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1014512C2 (en) * 2000-02-28 2001-08-29 Dsm Nv Method for welding duplex steel.
JP5463527B2 (en) * 2008-12-18 2014-04-09 独立行政法人日本原子力研究開発機構 Welding material made of austenitic stainless steel, stress corrosion cracking preventive maintenance method and intergranular corrosion preventive maintenance method using the same
CN103370166B (en) * 2011-02-14 2016-04-06 新日铁住金株式会社 Duplex stainless steel welded joints
EP4317505A1 (en) * 2021-03-31 2024-02-07 Nippon Steel Corporation Two-phase stainless steel welded joint

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111151918A (en) * 2019-12-27 2020-05-15 中国第一重型机械集团大连加氢反应器制造有限公司 E316H type stainless steel submerged arc welding material for manufacturing fast neutron reactor equipment and preparation method thereof
CN111151918B (en) * 2019-12-27 2022-07-01 中国第一重型机械集团大连加氢反应器制造有限公司 E316H type stainless steel submerged arc welding material for manufacturing fast neutron reactor equipment and preparation method thereof

Also Published As

Publication number Publication date
JP2001113388A (en) 2001-04-24

Similar Documents

Publication Publication Date Title
KR101256268B1 (en) Austenitic stainless steel
JP3271262B2 (en) Duplex stainless steel with excellent corrosion resistance
JP5685198B2 (en) Ferritic-austenitic stainless steel
JP5793283B2 (en) Ferritic stainless steel with few black spots
JP7059357B2 (en) Duplex stainless clad steel sheet and its manufacturing method
KR102272169B1 (en) Ferritic stainless steel pipe with excellent salt decomposition resistance in gaps, pipe end thickness increase structure, welded joint, and welded structure
CA2860605C (en) Abrasion resistant welded steel pipe and method of producing the same
KR20150015049A (en) Ferrite-based stainless steel for use in components of automobile exhaust system
JP2007077496A (en) Ferritic stainless-steel sheet with excellent corrosion resistance and process for producing the same
KR20210136132A (en) Manufacturing method of high strength welded joint for cryogenic use
US20190126408A1 (en) Welding Structure Member
JP4784239B2 (en) Ferritic stainless steel filler rod for TIG welding
JP7135649B2 (en) Welding consumables for austenitic stainless steel
JP2009012070A (en) Weld metal of stainless steel weld joint, and its forming method
EP3862456A1 (en) Clad austenitic stainless steel sheet, base steel sheet and method for producing clad steel sheet
JP2007321181A (en) Method for forming martenstic stainless steel material welded part
JP4465066B2 (en) Welding materials for ferrite and austenitic duplex stainless steels
KR20180122675A (en) Weld structure member
US7429302B2 (en) Stainless steel sheet for welded structural components and method for making the same
US20210292876A1 (en) Austenitic Heat Resistant Alloy and Welded Joint Including the Same
JPH0787989B2 (en) Gas shield arc welding method for high strength Cr-Mo steel
JP4774588B2 (en) Manufacturing method of high strength oil well steel pipe joint with excellent corrosion resistance and high strength oil well steel pipe joint
JP2009167439A (en) Ferritic stainless steel for welding gap structural warm-water vessel
JP4082288B2 (en) Mo-containing austenitic stainless steel and method for producing the same
JP2001246495A (en) Welding material and method for producing welded joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080924

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4465066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term