JP2000303150A - Stainless steel for direct diffusion joining - Google Patents

Stainless steel for direct diffusion joining

Info

Publication number
JP2000303150A
JP2000303150A JP11111241A JP11124199A JP2000303150A JP 2000303150 A JP2000303150 A JP 2000303150A JP 11111241 A JP11111241 A JP 11111241A JP 11124199 A JP11124199 A JP 11124199A JP 2000303150 A JP2000303150 A JP 2000303150A
Authority
JP
Japan
Prior art keywords
stainless steel
less
diffusion bonding
direct diffusion
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11111241A
Other languages
Japanese (ja)
Inventor
Hiroshi Kihira
寛 紀平
Yutaka Morimoto
裕 森本
Osamu Ikegami
修 池上
Toshihiko Matsudaira
俊彦 松平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11111241A priority Critical patent/JP2000303150A/en
Publication of JP2000303150A publication Critical patent/JP2000303150A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce stainless steel for direct diffusion joining capable of general use. SOLUTION: This steel has a compsn. contg., by weight, <=0.08% C, 0.01 to 2% Si, 0.05 to 1.5% Mn, <=0.05% P, <=0.01% S, 0.005 to 0.1% Al, 13 to 32% Cr, 0.01 to 4% Ni, 0.1 to 6% Mo, <=0.05% Ti, and the balance Fe with inevitable impurities.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱交換器、機械部
品、燃料電池部品、家電製品部品、プラント部品、装飾
品構成部材、建材、その他種々のステンレス鋼が使用さ
れる部分において、インサート材なしに拡散接合が可能
なステンレス鋼に関わる。
BACKGROUND OF THE INVENTION The present invention relates to a heat exchanger, a mechanical part, a fuel cell part, a home electric appliance part, a plant part, a decorative component, a building material, and a part where various stainless steels are used. Involved in stainless steel that can be diffusion bonded without.

【0002】[0002]

【従来の技術】従来より多くの分野においてステンレス
鋼が拡散接合されて使用されてきた。接合方法を大別す
ると、被接合面の間に何らかのインサート材を挿入して
固相拡散または液相拡散が滞りなく起こるよう工夫した
インサート材挿入法と、直接被接合面同士を拡散接合す
る直接法に分類できる。
2. Description of the Related Art In many fields, stainless steel has been used by diffusion bonding. The joining method is roughly classified into two methods: an insert material insertion method that inserts some kind of insert material between the surfaces to be joined so that solid-phase diffusion or liquid-phase diffusion occurs without delay. Can be classified as law.

【0003】まず、インサート法に関しては、例えば、
特開昭63‐119993号公報に記載された2相ステ
ンレス鋼を母材間に挟み込み所定の温度と圧力をかけて
行う拡散接合法、特開平4−294884号公報に記載
のNiとAuを数μmめっきした被接合物と同一組成の
箔状インサート材を母材間に挿入して行うステンレス鋼
の液相拡散接合法、特公昭57−4431号公報に記載
のSi:0.5〜11.5重量%、Niおよび不可避的
不純物を含むオーステナイト系ステンレス鋼部材拡散接
合用インサート材などに示されるよう多くの技術が公知
の技術となっている。また、一般には、ニッケル系のロ
ウ材(JIS:BNi−1〜7など)をインサート材と
して固相または液相拡散接合が実施されている。これら
の技術は、比較的簡便に、しかも、確実に拡散接合がで
きる点に優位性があるが、インサート材が必要である点
がコストアップの原因であると同時に、接合部分におい
て異種金属接触状態となり、腐食環境に曝されると接合
部が優先的に腐食して長期信頼性が劣るという短所があ
った。
First, regarding the insert method, for example,
Japanese Patent Application Laid-Open No. 63-1191993 discloses a diffusion bonding method in which a duplex stainless steel is sandwiched between base materials and subjected to a predetermined temperature and pressure, and Ni and Au described in Japanese Patent Application Laid-Open No. Liquid phase diffusion bonding method of stainless steel performed by inserting a foil-like insert material having the same composition as that of the μm-plated workpiece between base materials, Si described in Japanese Patent Publication No. 57-4431: 0.5 to 11. Many techniques have been known as shown in an austenitic stainless steel member diffusion bonding insert material containing 5% by weight, Ni and unavoidable impurities. In general, solid-phase or liquid-phase diffusion bonding is performed using a nickel-based brazing material (JIS: BNi-1 to 7) as an insert material. These technologies have the advantage of relatively simple and reliable diffusion bonding.However, the need for an insert material increases the cost, and at the same time, the state of contact between dissimilar metals at the joints When exposed to a corrosive environment, the joints are preferentially corroded, resulting in poor long-term reliability.

【0004】一方、直接法に関しては、最近になって低
コスト化のために開発が進められており、例えば、特開
昭62−199277号公報に記載の鋼中のS量を0.
01%以下にし非酸化雰囲気中で所定の温度にて接合す
ると材料の変形が回避できるというステンレス鋼の拡散
接合方法、特開平2−261548号公報に記載の酸洗
処理を行って表面に適度の凹凸をつけたステンレス箔材
を用いて拡散接合を行うことを特徴とする自動車の排ガ
ス浄化装置用触媒金属担体の製造方法、特開平7−21
3918号公報に記載の拡散接合時に阻害要因として生
ずるアルミナ皮膜形成を抑えるためにAl量を不純物レ
ベル〜0.8%に抑えたステンレス鋼を用いた触媒用メ
タルハニカム、特開平9−279310号公報に記載の
冷間加工による変形を多く加えたステンレス鋼が拡散接
合しやすいという知見をもとに確立した拡散接合性に優
れたステンレス箔およびそれを用いたメタル担体、特開
平9−99218号公報に記載の拡散接合処理工程にお
いてクロム炭窒化物の形成によるダメージを軽減するた
めにTiおよび/またはNbを所定量添加したフェライ
ト系ステンレス鋼からなる箔材を重ねて巻回した強固な
接合強度を有する拡散接合された触媒用メタル担体およ
びその製造方法などがあるが、それぞれ一長一短があ
り、汎用的に確立した技術はない。
On the other hand, the direct method has recently been developed for cost reduction. For example, the S content in steel disclosed in Japanese Patent Application Laid-Open No. 62-199277 is set to 0.1%.
A diffusion bonding method for stainless steel in which deformation of the material can be avoided by bonding at a predetermined temperature in a non-oxidizing atmosphere by setting it to 0.01% or less. Diffusion bonding using uneven stainless steel foil material, method for producing catalytic metal carrier for exhaust gas purifying device for automobile, Japanese Patent Laid-Open No. 7-21
Japanese Patent Application Laid-Open No. 9-279310 discloses a catalyst metal honeycomb using stainless steel in which the amount of Al is suppressed to an impurity level of 0.8% in order to suppress the formation of an alumina film as an inhibiting factor at the time of diffusion bonding described in Japanese Patent No. 3918. A stainless steel foil having excellent diffusion bonding properties established based on the finding that stainless steel deformed by cold working and having been subjected to a large amount of deformation due to cold working is easy to perform diffusion bonding, and a metal carrier using the same, JP-A-9-99218 In order to reduce the damage caused by the formation of chromium carbonitride in the diffusion bonding process described in 1 above, a strong bonding strength obtained by stacking and winding a foil material made of a ferritic stainless steel to which a predetermined amount of Ti and / or Nb is added is applied. Diffusion-bonded metal carriers for catalysts and their manufacturing methods, but each has its own strengths and weaknesses. There is no technology.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記問題点
を解消し、汎用的な使用が可能な直接拡散接合用ステン
レス鋼を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to provide a stainless steel for direct diffusion bonding which can be used for general purposes.

【0006】[0006]

【課題を解決するための手段】発明者らは、ステンレス
鋼の直接法による拡散接合を行うにあたり、より汎用的
で確実に接合が行えるよう、フェライト系ステンレス
鋼、オーステナイト系ステンレス鋼ともに共通の支配的
阻害要因について検討すべく、真空度が10−4tor
r以下の真空炉内で種々のステンレス鋼の拡散接合を行
った。
Means for Solving the Problems In performing the diffusion bonding of stainless steel by the direct method, the inventors have set a common rule for both ferritic stainless steel and austenitic stainless steel so as to perform more general and reliable bonding. Vacuum degree is 10-4 torr
Various kinds of stainless steels were subjected to diffusion bonding in a vacuum furnace of r or less.

【0007】そのなかで、接合不良を起こしたステンレ
ス鋼表面の解析をX線回折法およびグロー放電分光分析
法にて行ったところ、その皮膜はTiの炭化物または窒
化物であり、Ti含有量が低いNb添加型のステンレス
鋼においては接合不良は発生しないこと、つまり、クロ
ム炭化物形成を抑制するために添加されるTiやNbの
うちTi含有量のみを低く押さえることで直接拡散接合
可能なステンレス鋼を提供できることを見出すに至り、
本発明を完成させたものであって,その要旨とするとこ
ろは、以下の通りである。 (1) 重量%で、 C :0.08%以下、 Si:0.01〜2%、 Mn:0.05〜1.5%、 P :0.05%以下、 S :0.01%以下、 Al:0.005〜0.1%、 Cr:13〜32%、 Ni:0.01〜4%、 Mo:0.1〜6%、 Ti:0.05%以下 を含有し、残部がFeおよび不可避的不純物からなるこ
とを特徴とする直接拡散接合用フェライト系ステンレス
鋼。 (2) さらに、重量%で、Nb:5×(C%+N%)
以上1%以下を含有することを特徴とする前記(1)に
記載の直接拡散接合用フェライト系ステンレス鋼。 (3) 重量%で、 C :0.08%以下、 Si:0.01〜2%、 Mn:0.05〜1.5%、 P :0.05%以下、 S :0.01%以下、 Al:0.005〜0.1%、 Cr:13〜25%、 Ni:7〜15%、 Si+Mo:1.5%以上、 Mo:6%以下、 Ti:0.05%以下 を含有し、残部がFeおよび不可避的不純物からなるこ
とを特徴とする直接拡散接合用オーステナイト系ステン
レス鋼。 (4) さらに、重量%で、Nb:5×(C%+N%)
以上1%以下を含有することを特徴とする前記(3)に
記載の直接拡散接合用オーステナイト系ステンレス鋼。
[0007] Among them, analysis of the surface of the stainless steel in which the bonding failure occurred was performed by X-ray diffraction and glow discharge spectroscopy. The coating was Ti carbide or nitride, and the Ti content was low. Bonding failure does not occur in low Nb-added stainless steel, that is, stainless steel capable of direct diffusion bonding by keeping only Ti content low among Ti and Nb added to suppress chromium carbide formation. That we can provide
The present invention has been completed, and its gist is as follows. (1) By weight%, C: 0.08% or less, Si: 0.01 to 2%, Mn: 0.05 to 1.5%, P: 0.05% or less, S: 0.01% or less , Al: 0.005 to 0.1%, Cr: 13 to 32%, Ni: 0.01 to 4%, Mo: 0.1 to 6%, Ti: 0.05% or less. A ferritic stainless steel for direct diffusion bonding, comprising Fe and unavoidable impurities. (2) Further, in weight%, Nb: 5 × (C% + N%)
The ferritic stainless steel for direct diffusion bonding according to the above (1), which contains at least 1% or less. (3) By weight%, C: 0.08% or less, Si: 0.01 to 2%, Mn: 0.05 to 1.5%, P: 0.05% or less, S: 0.01% or less , Al: 0.005 to 0.1%, Cr: 13 to 25%, Ni: 7 to 15%, Si + Mo: 1.5% or more, Mo: 6% or less, Ti: 0.05% or less Austenitic stainless steel for direct diffusion bonding, the balance being Fe and unavoidable impurities. (4) Further, in weight%, Nb: 5 × (C% + N%)
The austenitic stainless steel for direct diffusion bonding according to the above (3), containing at least 1% or less.

【0008】[0008]

【発明の実施の形態】本発明をさらに詳細に説明する。
まず、本発明に至った知見について説明する。本発明最
大のポイントは、フェライト系ステンレス鋼あるいはオ
ーステナイト系ステンレス鋼いずれにも共通した拡散接
合性阻害要因を抽出し得たこと、すなわち、鋼材中のT
i含有量を0.05重量%以下に抑えることで直接拡散
接合性の効果が出始めることを見出したところにある。
この知見をもとにチタン添加の上限値を0.05%とし
た。本発明の直接拡散接合用ステンレス鋼においては、
Tiは0.05%以下に抑えられるべきであるが、この
範囲で添加しても、不純物として低減しても構わないの
で、下限値は特に設定しない。
DETAILED DESCRIPTION OF THE INVENTION The present invention will be described in more detail.
First, the findings that led to the present invention will be described. The most important point of the present invention is that it was possible to extract a diffusion bonding property inhibiting factor common to both ferritic stainless steel and austenitic stainless steel.
It has been found that the effect of direct diffusion bonding property starts to be exhibited by suppressing the i content to 0.05% by weight or less.
Based on this finding, the upper limit of titanium addition was set to 0.05%. In the stainless steel for direct diffusion bonding of the present invention,
Ti should be suppressed to 0.05% or less, but the lower limit is not particularly set, since it may be added in this range or reduced as an impurity.

【0009】Ti以外の成分についての限定理由を述べ
る。まず、拡散接合性に優れたフェライト系ステンレス
鋼について説明する。Cは、ステンレス鋼を使用する上
で避けることができない溶接を行うにあたって、熱影響
を受ける部位でCr236 なる化合物が生じ、周囲のク
ロムを取り込んでクロム欠乏層を形成させて、耐食性の
劣化や接合強度の低下がおこることが知られている。そ
の意味でC含有量は少なければ少ないほどよい。また、
加工性、靭性の観点からも含有量は低い方がよく、上限
を0.08%とした。ただし、あまり低くしすぎると製
鋼時間が長くなりコストアップとなるることも鑑み0.
002%を限度とするのがよい。
The reasons for limiting the components other than Ti will be described. First, a ferritic stainless steel having excellent diffusion bonding properties will be described. When performing welding that cannot be avoided when using stainless steel, C forms a compound called Cr 23 C 6 at the site affected by heat, takes in the surrounding chromium, forms a chromium-deficient layer, and causes corrosion resistance. It is known that deterioration and reduction in bonding strength occur. In that sense, the smaller the C content, the better. Also,
From the viewpoints of workability and toughness, the lower the content, the better, and the upper limit is set to 0.08%. However, taking into account that if the temperature is too low, the steel making time becomes longer and the cost increases.
The upper limit is preferably 002%.

【0010】Siは、脱酸作用があるが、0.01%未
満では効果は期待できない。また、2%を超えると加工
性を阻害する。そこで上限値を2%と限定した。
Although Si has a deoxidizing effect, its effect cannot be expected if it is less than 0.01%. On the other hand, if it exceeds 2%, workability is impaired. Therefore, the upper limit is limited to 2%.

【0011】Mnは、特別な影響を与えることはないの
で、通常の成分範囲として、強度が維持できる0.05
%以上、靱性に悪影響のない1.5%以下と限定した。
Since Mn has no special effect, it has a normal component range of 0.05 to maintain strength.
% And 1.5% or less, which does not adversely affect toughness.

【0012】Pは、ステンレス鋼の耐食性を低下させる
元素であるので少ない方がよく0.05%を超えると耐
食性の劣化が顕著となるのでこの値を上限値とした。
Since P is an element which lowers the corrosion resistance of stainless steel, the smaller the better, the better the corrosion resistance is deteriorated when the content exceeds 0.05%.

【0013】Sも耐食性を劣化させる元素であるので低
い方がよい。上限値を0.01%とした。
Since S is also an element that deteriorates the corrosion resistance, the lower the better, the better. The upper limit was set to 0.01%.

【0014】Crは、十分な耐食性を確保するために下
限値を13%以上とし、上限値は鋼材製造上の限界から
32%とした。
The lower limit of Cr is set to 13% or more in order to secure sufficient corrosion resistance, and the upper limit is set to 32% from the limit in steel production.

【0015】Alは脱酸剤として、その効果が出始める
値である0.005%以上添加されるが、0.1%を超
えると靱性の低下させるので、0.1%を上限とした。
0.1%を超えると製造上のコストの点でも好ましくな
い。
Al is added as a deoxidizing agent in an amount of 0.005% or more, which is a value at which the effect starts to appear, but if it exceeds 0.1%, the toughness is reduced. Therefore, the upper limit is set to 0.1%.
If it exceeds 0.1%, it is not preferable in terms of manufacturing cost.

【0016】フェライト系ステンレスの場合は、さらに
耐食性を向上させるNi、Moを含有させる。Niは、
0.01%以上、好ましくは0.05%以上の添加で耐
食性向上に有効であるが、あまり添加すると加工時にマ
ルテンサイト化して水素脆化の原因となるので4%以
下、好ましくは1%までの範囲で添加する。Moは、
0.1%以上の添加で、耐食性、特に耐孔食性向上に極
めて大きな効果を発揮する元素であるが、コスト面から
6%を上限値とした。コストを重視する場合3%以下と
することが好ましい。
In the case of ferritic stainless steel, Ni and Mo for further improving corrosion resistance are contained. Ni is
Addition of 0.01% or more, preferably 0.05% or more is effective in improving the corrosion resistance. However, if added too much, it becomes martensite during processing and causes hydrogen embrittlement, so it is 4% or less, preferably up to 1%. Add within the range. Mo is
When added in an amount of 0.1% or more, it is an element which exerts a very large effect on the improvement of corrosion resistance, especially pitting corrosion resistance, but the upper limit is 6% from the viewpoint of cost. When importance is attached to cost, it is preferable to be 3% or less.

【0017】次に直接拡散接合性に優れたオーステナイ
ト系ステンレス鋼のTi以外の成分について説明する。
Cは、オーステナイト系ステンレス鋼の使用上避けるこ
とのできない溶接を行うにあたって、熱影響を受ける部
位でCr236 なる化合物を生じ、周辺のクロムを欠乏
させて、耐食性や接合部の強度靭性を特に結晶粒界にお
いて劣化させる。その意味でCは低ければ低いほどよ
い。また、加工性、靭性の観点からも含有量は低い方が
よく、上限を0.08%とした。ただし、あまり低くし
すぎると製鋼時間が長くなりコストアップとなるること
も鑑み0.002%を限度とするのがよい。
Next, components other than Ti of austenitic stainless steel having excellent direct diffusion bonding properties will be described.
C forms a compound called Cr 23 C 6 at a site affected by heat when performing welding which cannot be avoided due to the use of austenitic stainless steel, and depletes the surrounding chromium to reduce corrosion resistance and strength toughness of the joint. In particular, it deteriorates at the grain boundaries. In that sense, the lower the C, the better. Further, from the viewpoint of workability and toughness, the lower the content, the better, and the upper limit is set to 0.08%. However, if the temperature is set too low, the steelmaking time is prolonged and the cost is increased. Therefore, the upper limit is preferably set to 0.002%.

【0018】Siは、脱酸作用があるが、0.01%未
満では効果は期待できない。また2%を超えると加工性
を阻害する。そこで上限値を2%と限定した。
Although Si has a deoxidizing effect, its effect cannot be expected if it is less than 0.01%. On the other hand, if it exceeds 2%, workability is impaired. Therefore, the upper limit is limited to 2%.

【0019】Mnは、耐食性などの特性に対し、特別の
影響を与えない。0.05%以上の添加で強度を維持で
き、1.5%以下であれば靱性にも影響はない。
Mn has no particular effect on properties such as corrosion resistance. The strength can be maintained by adding 0.05% or more, and if it is 1.5% or less, the toughness is not affected.

【0020】Pは、ステンレス鋼の耐食性を劣化させる
元素であり、特に応力腐食割れには有害な元素である。
そこで、0.05%を上限として低減する必要がある。
P is an element that degrades the corrosion resistance of stainless steel, and is particularly harmful to stress corrosion cracking.
Therefore, it is necessary to reduce the upper limit to 0.05%.

【0021】SはMnなどと結びついて水に可溶性のM
nSを形成し、耐食性を劣化させる元素である。そこで
0.01%を上限とした。
S is combined with Mn or the like to form M soluble in water.
It is an element that forms nS and deteriorates corrosion resistance. Therefore, the upper limit is set to 0.01%.

【0022】Alは脱酸剤として、その効果が出始める
値である0.005%以上添加されるが、0.1%を超
えると靱性の低下させるので、0.1%を上限とした。
0.1%を超えると製造上のコストの点でも好ましくな
い。
Al is added as a deoxidizing agent in an amount of 0.005% or more, which is a value at which the effect starts to be exhibited, but if it exceeds 0.1%, the toughness is reduced. Therefore, the upper limit is 0.1%.
If it exceeds 0.1%, it is not preferable in terms of manufacturing cost.

【0023】Crは、全面腐食を抑制するためには必須
の元素であり、高い含有量であればあるほど効果を発揮
する。必要以上に高価なNiを添加せずにオーステナイ
ト相を安定化でき、耐食性を維持できる範囲として13
%以上25%以下と限定した。
Cr is an essential element for suppressing the overall corrosion, and the higher the content, the more effective. The range in which the austenite phase can be stabilized without adding unnecessarily expensive Ni and the corrosion resistance can be maintained is 13
% To 25% or less.

【0024】Niは、ステンレス鋼のオーステナイト化
に必須の成分であり加工性向上に効果がある。他の合金
成分との兼ね合いもあるが最低7%程度の添加でその効
果が発揮される。また、高Cr材の場合、シェフラー図
より算定されるだけNiの添加が必要となってくるが、
入れすぎるとコスト的に不利となるので、7%以上25
%以下と限定した。
Ni is an essential component for turning austenitic stainless steel into austenite, and is effective in improving workability. Although there is a balance with other alloy components, the effect is exhibited by adding at least about 7%. In the case of a high Cr material, it is necessary to add Ni as calculated from the Schaeffler diagram.
If added too much, it is disadvantageous in terms of cost.
% Or less.

【0025】Moは、耐応力腐食割れ性を向上させる。
この場合、Si%+Mo%の下限を1.5%以上となる
よう添加することにより効果が発揮されるが、Mo添加
量が6%を超えると効果が飽和し、コスト的に不利とな
る。特にコストを重視する場合は3%以下の範囲とする
ことが好ましい。
Mo improves stress corrosion cracking resistance.
In this case, the effect is exhibited by adding the lower limit of Si% + Mo% to 1.5% or more. However, if the amount of Mo exceeds 6%, the effect is saturated and the cost is disadvantageous. In particular, when cost is important, it is preferable to set the range to 3% or less.

【0026】フェライト系ステンレス鋼およびオーステ
ナイト系ステンレス鋼どちらにも共通することである
が、真空炉において10−4torrより真空度を上げ
れば拡散接合時に生成する黒色または黄色皮膜にはNb
は全く検出されなかった。つまり、Nb添加により鋼材
中のCやNを固定しクロム欠乏相の形成を防止する手法
は直接拡散接合性には悪影響を与えないことになる。こ
の知見によりCやNを固定する性能を発揮させる下限値
としてNbを5×(C%+N%)、効果が飽和する上限
値を1%として選択的に添加して良い。
As is common to both ferritic stainless steel and austenitic stainless steel, if the degree of vacuum is increased from 10 -4 torr in a vacuum furnace, the black or yellow film formed during diffusion bonding becomes Nb.
Was not detected at all. That is, the method of fixing C and N in the steel material by adding Nb to prevent the formation of a chromium-deficient phase does not adversely affect the direct diffusion bonding property. Based on this finding, it is possible to selectively add Nb as 5 × (C% + N%) as the lower limit for exhibiting the performance of fixing C and N, and 1% as the upper limit at which the effect is saturated.

【0027】Cuも、フェライト系、オーステナイト系
ともに、0.5%以上の添加で耐食性を向上できるので
添加されるが、添加しすぎるとε−Cu相が析出し靱性
などに悪影響を与えるので3%までの範囲で添加しても
良い。
Cu is also added to both ferritic and austenitic alloys because addition of 0.5% or more can improve the corrosion resistance. However, too much Cu causes precipitation of the ε-Cu phase and adversely affects toughness. % May be added.

【0028】なお、本発明のステンレス鋼の製造におい
ては、Ti添加量の制限に注意すれば、従来フェライト
系もしくはオーステナイト系ステンレスに用いられてい
るいかなる製造方法を適用しても良いが、直接拡散接合
性を考慮すると、油脂による汚染など表面の清浄性には
十分注意すべきである。
In the production of the stainless steel of the present invention, any production method conventionally used for ferritic or austenitic stainless steels may be applied, provided that attention is paid to the limitation of the amount of Ti added. In consideration of bondability, sufficient attention should be paid to the cleanliness of the surface such as contamination by oils and fats.

【0029】[0029]

【実施例】本発明の実施例について述べる。表1に示す
成分のステンレス鋼をラボ溶解により作成し、熱間圧
延、焼鈍、酸洗、冷間圧延して板厚0.3mmの鋼板を作
成した後、具体的な応用例として積層熱交換器を作成し
た。積層熱交換器は比較的複雑な形状で、気密性や接合
部も含めた耐食性が要求されるので、直接拡散接合が好
んで用いられる。拡散接合は真空炉をロータリーポンプ
で10−4torr以下となるまで真空度を上げ、その
後1000℃に加熱することにより行った。加重は0.
03〜0.10kg/mm2 程度の圧縮応力が接合面に加
わるように設定した。この真空度や加圧レベルは実操業
を行っている真空炉にて十分実現可能なレベルである。
接合処理後の試験体の様子を観察し、黒色または黄色皮
膜形成によるロウ接不良のあるなしを検査すると同時に
内部に5気圧の圧縮空気を封入し漏れのあるなしを評価
した。
An embodiment of the present invention will be described. A stainless steel having the components shown in Table 1 was prepared by laboratory melting, and hot-rolled, annealed, pickled, and cold-rolled to prepare a steel sheet having a thickness of 0.3 mm. As a specific application example, laminated heat exchange was performed. A vessel was created. Since the laminated heat exchanger has a relatively complicated shape and requires airtightness and corrosion resistance including a joint, direct diffusion bonding is preferably used. Diffusion bonding was performed by increasing the degree of vacuum in the vacuum furnace with a rotary pump until the pressure became 10 −4 torr or less, and then heating to 1000 ° C. Weight is 0.
It was set so that a compressive stress of about 03 to 0.10 kg / mm 2 was applied to the joint surface. The degree of vacuum and the level of pressurization are levels that can be sufficiently realized in a vacuum furnace in actual operation.
The state of the test specimen after the joining treatment was observed, and the presence or absence of brazing failure due to the formation of a black or yellow film was inspected. At the same time, compressed air at 5 atm was sealed inside to evaluate the presence or absence of leakage.

【0030】[0030]

【表1】 [Table 1]

【0031】結果は表1右の欄に示した通りであり、い
ずれの場合もTiが0.05%以下であれば拡散接合不
良は起きていないことが判る。NbについてはCおよび
Nを固定するのに十分な量を添加してもロウ接不良の原
因にならないことも明らかとなった。この実施例におい
ては積層熱交換器について説明を行ったが、本発明のス
テンレス鋼の具体的用途は積層熱交換器に限定されるこ
とはない。
The results are as shown in the right column of Table 1. In each case, if Ti is 0.05% or less, it can be seen that poor diffusion bonding has not occurred. It has also been clarified that adding Nb in an amount sufficient to fix C and N does not cause poor brazing. Although the laminated heat exchanger has been described in this embodiment, the specific application of the stainless steel of the present invention is not limited to the laminated heat exchanger.

【0032】[0032]

【発明の効果】本発明によって、耐食性が要求されるス
テンレス鋼部品を直接法による拡散接合で製造するに当
たって、Ti含有量を本発明の限定範囲内に低減するこ
とで実生産設備なしうる程度の真空度でもインサート材
を使わずに拡散接合ができるステンレス鋼の提供が可能
となった。本発明は、インサート材を不要化し低コスト
化できると同時に、インサート材部の信頼性の低下な
く、耐久信頼性の高い接合部を確保できるステンレス鋼
の直接拡散接合を実現したもので、その産業上の価値は
極めて高いものであるといえる。
According to the present invention, in manufacturing a stainless steel part requiring corrosion resistance by diffusion bonding by a direct method, the Ti content is reduced to within the limited range of the present invention, so that an actual production facility can be obtained. It has become possible to provide stainless steel that can be diffusion-bonded without using an insert even at a vacuum degree. The present invention realizes direct diffusion bonding of stainless steel, which can eliminate the need for an insert material and can reduce the cost, and at the same time, can ensure a highly durable and reliable joint without lowering the reliability of the insert material. The above value can be said to be extremely high.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 池上 修 東京都千代田区大手町2−6−3 新日本 製鐵株式会社技術開発本部内 (72)発明者 松平 俊彦 東京都千代田区大手町2−6−3 新日本 製鐵株式会社技術開発本部内 ──────────────────────────────────────────────────の Continued on the front page (72) Osamu Ikegami, Inventor 2-6-3 Otemachi, Chiyoda-ku, Tokyo Nippon Steel Corporation Technology Development Division (72) Inventor Toshihiko Matsudaira 2-, Otemachi, Chiyoda-ku, Tokyo 6-3 Nippon Steel Corporation Technology Development Division

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C :0.08%以下、 Si:0.01〜2%、 Mn:0.05〜1.5%、 P :0.05%以下、 S :0.01%以下、 Al:0.005〜0.1%、 Cr:13〜32%、 Ni:0.01〜4%、 Mo:0.1〜6%、 Ti:0.05%以下を含有し、残部がFeおよび不可
避的不純物からなることを特徴とする直接拡散接合用フ
ェライト系ステンレス鋼。
C: 0.08% or less, Si: 0.01 to 2%, Mn: 0.05 to 1.5%, P: 0.05% or less, S: 0.01% by weight %: Al: 0.005 to 0.1%, Cr: 13 to 32%, Ni: 0.01 to 4%, Mo: 0.1 to 6%, Ti: 0.05% or less, A ferritic stainless steel for direct diffusion bonding, the balance being Fe and unavoidable impurities.
【請求項2】 さらに、重量%で、 Nb:5×(C%+N%)以上1%以下 を含有することを特徴とする請求項1に記載の直接拡散
接合用フェライト系ステンレス鋼。
2. The ferritic stainless steel for direct diffusion bonding according to claim 1, further comprising Nb: 5 × (C% + N%) or more and 1% or less by weight%.
【請求項3】 重量%で、 C :0.08%以下、 Si:0.01〜2%、 Mn:0.05〜1.5%、 P :0.05%以下、 S :0.01%以下、 Al:0.005〜0.1%、 Cr:13〜25%、 Ni:7〜15%、 Si+Mo:1.5%以上、 Mo:6%以下、 Ti:0.05%以下 を含有し、残部がFeおよび不可避的不純物からなるこ
とを特徴とする直接拡散接合用オーステナイト系ステン
レス鋼。
3. In% by weight, C: 0.08% or less, Si: 0.01 to 2%, Mn: 0.05 to 1.5%, P: 0.05% or less, S: 0.01 %, Al: 0.005 to 0.1%, Cr: 13 to 25%, Ni: 7 to 15%, Si + Mo: 1.5% or more, Mo: 6% or less, Ti: 0.05% or less An austenitic stainless steel for direct diffusion bonding, wherein the austenitic stainless steel contains Fe and inevitable impurities.
【請求項4】 さらに、重量%で、 Nb:5×(C%+N%)以上1%以下 を含有することを特徴とする請求項3に記載の直接拡散
接合用オーステナイト系ステンレス鋼。
4. The austenitic stainless steel for direct diffusion bonding according to claim 3, further comprising Nb: 5 × (C% + N%) or more and 1% or less by weight%.
JP11111241A 1999-04-19 1999-04-19 Stainless steel for direct diffusion joining Withdrawn JP2000303150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11111241A JP2000303150A (en) 1999-04-19 1999-04-19 Stainless steel for direct diffusion joining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11111241A JP2000303150A (en) 1999-04-19 1999-04-19 Stainless steel for direct diffusion joining

Publications (1)

Publication Number Publication Date
JP2000303150A true JP2000303150A (en) 2000-10-31

Family

ID=14556168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11111241A Withdrawn JP2000303150A (en) 1999-04-19 1999-04-19 Stainless steel for direct diffusion joining

Country Status (1)

Country Link
JP (1) JP2000303150A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005282951A (en) * 2004-03-30 2005-10-13 Institute Of Tsukuba Liaison Co Ltd Heat exchanger having integrated laminate structure
JP2013103271A (en) * 2011-11-16 2013-05-30 Nisshin Steel Co Ltd Method for producing diffusion-bonded product of stainless steel
JP2013204150A (en) * 2012-03-29 2013-10-07 Nisshin Steel Co Ltd Austenitic stainless steel material for diffusion bonding and method for manufacturing diffusion-bonded article
JP2013204149A (en) * 2012-03-29 2013-10-07 Nisshin Steel Co Ltd Ferritic stainless steel material for diffusion bonding and method for manufacturing diffusion-bonded article
JP2014190664A (en) * 2013-03-28 2014-10-06 Nisshin Steel Co Ltd Stainless steel heat exchanger component and manufacturing method therefor
WO2014184890A1 (en) 2013-05-15 2014-11-20 日新製鋼株式会社 Process for producing stainless steel diffusion-joined product
US9150947B2 (en) 2005-04-11 2015-10-06 Nippon Steel & Sumitomo Metal Corporation Austenitic stainless steel
KR20170084138A (en) 2014-11-05 2017-07-19 닛신 세이코 가부시키가이샤 Stainless steel material for diffusion bonding
JP2019130586A (en) * 2018-02-02 2019-08-08 日鉄日新製鋼株式会社 Set of austenitic stainless steel sheet, manufacturing of conjugate, and conjugate
JP2020037123A (en) * 2018-09-05 2020-03-12 日本製鉄株式会社 Diffusion-joined product and method for manufacturing the same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005282951A (en) * 2004-03-30 2005-10-13 Institute Of Tsukuba Liaison Co Ltd Heat exchanger having integrated laminate structure
US9150947B2 (en) 2005-04-11 2015-10-06 Nippon Steel & Sumitomo Metal Corporation Austenitic stainless steel
JP2013103271A (en) * 2011-11-16 2013-05-30 Nisshin Steel Co Ltd Method for producing diffusion-bonded product of stainless steel
JP2013204150A (en) * 2012-03-29 2013-10-07 Nisshin Steel Co Ltd Austenitic stainless steel material for diffusion bonding and method for manufacturing diffusion-bonded article
JP2013204149A (en) * 2012-03-29 2013-10-07 Nisshin Steel Co Ltd Ferritic stainless steel material for diffusion bonding and method for manufacturing diffusion-bonded article
JP2014190664A (en) * 2013-03-28 2014-10-06 Nisshin Steel Co Ltd Stainless steel heat exchanger component and manufacturing method therefor
CN105517748A (en) * 2013-05-15 2016-04-20 日新制钢株式会社 Process for producing stainless steel diffusion-joined product
KR20160042818A (en) 2013-05-15 2016-04-20 닛신 세이코 가부시키가이샤 Process for producing stainless steel diffusion-joined product
WO2014184890A1 (en) 2013-05-15 2014-11-20 日新製鋼株式会社 Process for producing stainless steel diffusion-joined product
US20160114423A1 (en) * 2013-05-15 2016-04-28 Nisshin Steel Co., Ltd. Method for producing a stainless steel diffusion-bonded product
EP2998056A4 (en) * 2013-05-15 2017-01-18 Nisshin Steel Co., Ltd. Process for producing stainless steel diffusion-joined product
US9987706B2 (en) 2013-05-15 2018-06-05 Nisshin Steel Co., Ltd. Method for producing a stainless steel diffusion-bonded product
KR102037653B1 (en) 2013-05-15 2019-10-29 닛테츠 닛신 세이코 가부시키가이샤 Process for producing stainless steel diffusion-joined product
KR20170084138A (en) 2014-11-05 2017-07-19 닛신 세이코 가부시키가이샤 Stainless steel material for diffusion bonding
JP2019130586A (en) * 2018-02-02 2019-08-08 日鉄日新製鋼株式会社 Set of austenitic stainless steel sheet, manufacturing of conjugate, and conjugate
JP7077033B2 (en) 2018-02-02 2022-05-30 日鉄ステンレス株式会社 Manufacturing method of the joint
JP2020037123A (en) * 2018-09-05 2020-03-12 日本製鉄株式会社 Diffusion-joined product and method for manufacturing the same
JP7274837B2 (en) 2018-09-05 2023-05-17 日鉄ステンレス株式会社 Diffusion bonded product and its manufacturing method

Similar Documents

Publication Publication Date Title
KR101830561B1 (en) Ferritic stainless steel and production method therefor
JP6607268B2 (en) Ferritic stainless steel
JP4386144B2 (en) Ferritic stainless steel with excellent heat resistance
KR101935288B1 (en) Ferritic stainless steel
JP2011190524A (en) Ferritic stainless steel having excellent oxidation resistance, secondary processing brittleness resistance and weld zone toughness
JP6241485B2 (en) Clad steel manufacturing method
CN107109569B (en) Ferrite-group stainless steel and its manufacturing method
JPWO2016103565A6 (en) Ferritic stainless steel and manufacturing method thereof
JP3536567B2 (en) Ferritic stainless steel for engine exhaust components with excellent heat resistance, workability and muffler corrosion resistance
JP2000303150A (en) Stainless steel for direct diffusion joining
JP4457492B2 (en) Stainless steel with excellent workability and weldability
JP2896077B2 (en) Ferrite stainless steel with excellent high-temperature oxidation resistance and scale adhesion
JP3937369B2 (en) Processing method of ferritic stainless steel pipe
JP2923825B2 (en) Ferritic stainless steel sheet for heat resistance with excellent high-temperature strength and weldability
JPH08239737A (en) Heat resistant austentic stainlss steel excellent in hot workability and sigma-embrittlement resistance
JP7140309B1 (en) ferritic stainless steel
JP2018083979A (en) AUSTENITIC STAINLESS STEEL FOR HEAT EXCHANGER MEMBER AND Ni BRAZED HEAT EXCHANGER MEMBER
JP6547927B1 (en) Ferritic stainless steel
JPH11236654A (en) Stainless steel for ammonia-water base absorption type cycle heat exchanger excellent in brazing property
JPH11256287A (en) Ferritic stainless steel excellent in high temperature oxidation resistance and scale adhesion
WO2023276411A1 (en) Ferritic stainless steel
WO2019159606A1 (en) Ferritic stainless steel
JP2023070284A (en) ferritic stainless steel
JPH1136043A (en) Steel for high temperature-high pressure vessel excellent in creep embrittlement resistance and reheat cracking resistance
JPH11256286A (en) Unannealed welded steel tube for working, obtained by forming heat resistant ferritic stainless steel sheet into tube by welding

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050225

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050225

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060704