JPH0244891B2 - - Google Patents

Info

Publication number
JPH0244891B2
JPH0244891B2 JP61079149A JP7914986A JPH0244891B2 JP H0244891 B2 JPH0244891 B2 JP H0244891B2 JP 61079149 A JP61079149 A JP 61079149A JP 7914986 A JP7914986 A JP 7914986A JP H0244891 B2 JPH0244891 B2 JP H0244891B2
Authority
JP
Japan
Prior art keywords
cold rolling
wafer
strength
stainless steel
austenitic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61079149A
Other languages
Japanese (ja)
Other versions
JPS62238333A (en
Inventor
Atsushi Nakatsuka
Tomio Satsunoki
Hidehiko Sumitomo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7914986A priority Critical patent/JPS62238333A/en
Publication of JPS62238333A publication Critical patent/JPS62238333A/en
Publication of JPH0244891B2 publication Critical patent/JPH0244891B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、高強度でかつ強度の面内異方性が小
さいウエハスライサ用極薄オーステナイト系ステ
ンレス鋼板、特にSiウエハスライサ用素材に適し
たステンレス鋼板の製造方法に関するものであ
る。 〔従来の技術〕 Siウエハスライサ用素材としては、高強度かつ
高耐銹性の点から準安定オーステナイト系ステン
レス鋼の極薄板が使用されている。Siウエハスラ
イサは、第1図に示すように固定ボルト1によつ
て固定されバネのついた張り上げボルト2によつ
て張力を加え張り上げられ、ステンレス鋼板3の
内側に粒状のダイヤモンドを接着した内周刃4で
Siインゴツト5をスライスしてウエハにする(以
下、これをウエハ切断と言う)。このウエハスラ
イサは強度が低いとウエハ切断中に内周刃が変形
しウエハにそりを生じさせる。また、強度の面内
異方性が大きいと張り上げ時に平坦度が悪くな
り、精度の高いウエハ切断が行えない。そのため
高強度でかつ強度の面内異方性が小さいSiウエハ
スライサ用素材の開発が強く要望されていた。 従来の準安定オーステナイト系ステンレス鋼板
を高強度化する方法としては、焼鈍板に調質圧延
等の冷間加工を施して加工硬化させるとともに加
工誘起マルテンサイトを生成させる方法〔例え
ば、鉄と鋼67(1981)S619〕、調質圧延後に更に
マルテンサイトが消滅しない低温(例えば、200
℃から550℃)で熱処理して時刻硬化させる方法
〔例えば、日本金属学会誌21(1957)583〕が知ら
れている。しかし、これらの方法はいずれも高強
度化後の強度の面内異方性については考慮されて
いない。 〔発明が解決しようとする問題点〕 準安定オーステナイト系ステンレス鋼の焼鈍板
を調質圧延により強化し、または、調質圧延後更
に時刻硬化させると高強度は得られるが、これを
Si等のウエハスライサとして用いると強度の面内
異方性が大きい場合には、張り上げ時の平坦度が
悪くなるため、精度の高いウエハ切断が行えない
という問題があつた。 本発明者は、以上の問題点を解決した高強度で
かつ強度の面内異方性が小さいスライサ用極薄オ
ーステナイト系ステンレス鋼板の製造方法を提供
することを目的とする。 〔問題点を解決するための手段および作用〕 本発明は、この目的のために製造条件を種々検
討した結果、冷延および焼鈍回数、最終焼鈍前の
2回の冷延における圧下配分と調質圧延条件を適
切に組み合わせることによりこれを達成した。 本発明の要旨は、重量%にて、C;0.01〜0.2
%、Si;0.1〜2%、Mn:0.1〜4%、Ni;5〜
11%、Cr;15〜20%、Mo;0.05〜2.5%、N;
0.01〜0.3%を含有し残部Feおよび不可避的不純
物からなり、かつ(1)式に示すMd30が0〜+80℃
の範囲の組成にある準安定オーステナイト系ステ
ンレス鋼の熱延板または熱延焼鈍板に冷延および
焼鈍を2回以上繰り返して施し、最終焼鈍前の2
回の冷延における冷延率の比R(1回目冷延率/
2回目冷延率)を0.8以上とし、ついで冷延率が
40%以上の調質圧延を行うことを特徴とするウエ
ハスライサ用極薄オーステナイト系ステンレス鋼
板の製造方法である。 Md30=551−462(C%+N%)−9.2Si%−8.1Mn%−29
Ni%−13.7Cr%−18.5Mo%……(1) 以下、本発明の構成要件の限定理由について説
明する。尚、本発明において鋼板とはストリツプ
とシートの双方を意味する。 Cは、準安定オーステナイト系ステンレス鋼板
において加工により誘起されたマルテンサイトの
強力な固溶硬化元素であるが、この効果は0.01%
未満では十分でなく、また0.2%を超えるとオー
ステナイトが安定化しすぎるため加工誘起マルテ
ンサイトが十分生成されない。従つて、Cを0.01
〜0.2%とした。 Siは、0.1%未満では脱酸が不十分であり、2
%を超えるとフエライト量が増加し熱間加工性を
劣化させる。従つて、Siを0.1〜2%とした。 Mnは、0.1%未満では脱酸が不十分であり、4
%を超えるとオーステナイトが安定化しすぎるた
め加工誘起マルテンサイトが十分生成されない。
従つて、Mnを0.1〜4%とした。 Niは、有力なオーステナイト安定化元素であ
り、5%未満では焼鈍後に完全なオーステナイト
組織が得られず、11%を超えるとオーステナイト
が安定化しすぎるため加工誘起マルテンサイトが
十分生成されない。従つて、Niを5〜11%とし、
望ましくは6〜8%未満とした。 Crは、ステンレス鋼としてその耐銹性の点か
ら15%未満では不十分であり、また20%を超える
とフエライト量が増加し熱間加工性を劣化させ
る。従つて、Crを15〜20%とした。 Moは、耐銹性を向上させる元素であるが、そ
の効果は0.05%未満では不十分である。また、
Moは高価な元素であり多量に添加するとコスト
が高くなる。従つて、Moを0.05〜2.5%とした。 Nは、準安定オーステナイト系ステンレス鋼板
において加工により誘起されたマルテンサイトの
強力な固溶硬化元素であるが、この効果は0.01%
未満では十分でなく、また0.3%を超えると溶鋼
中のブローホールが多くなり製造上困難をきた
す。従つて、Nを0.01〜0.3%とした。 Md30は、本発明法の対象とするオーステナイ
ト系ステンレス鋼板のオーステナイト安定度を示
す指標となり、本ステンレス鋼板が加工誘起マル
テンサイトを利用して高強度を得るための重要な
因子である。Md30が0℃未満ではオーステナイ
トが安定化しすぎるため加工によるマルテンサイ
ト組織が得難く高強度が得られない。また、
Md30が+80℃を超えるとオーステナイトが不安
定化しすぎるため加工によるマルテンサイトが過
度に発生し急激に硬化するため目的の硬さと板厚
を保持した状態で精度の高い圧延加工が行えな
い。従つて、Md30の範囲を0〜+80℃とし、望
ましくは+15〜+60℃とした。 熱延板の冷延は、熱延ままあるいは焼鈍した後
に行う。 調質圧延前の冷延と焼鈍回数は、1回だけに比
べ2回以上の方が集合組織がランダム化し機械的
性質の面内異方性が小さくなるが、本発明者は更
に最終焼鈍前の2回の冷延における冷延率の比R
(1回目冷延率/2回目冷延率)を0.8以上とする
ことにより集合組織がいつそう顕著にランダム化
し面内異方性が小さくなり、その結果調質圧延後
の強度の面内異方性が著しく小さい鋼板が得られ
ることを見出した。従つて、冷延の圧下配分をこ
のように限定した。 調質圧延率は、40%未満ではウエハスライサに
要求される130Kg/mm2以上の引張強度が得られず、
ウエハ切断中に内周刃が変形しウエハにそりを生
じさせる。従つて、調質圧延率を40%以上とし
た。尚、調質圧延後の板厚は、0.1mm未満では高
強度であつてもウエハ切断中に内周刃が変形しウ
エハにそりを生じさせ易い。0.3mmを超えるとウ
エハ切断でスライサ自体による切断代が多く歩留
が悪い。従つて、調質圧延後の板厚は0.1〜0.3mm
が望ましい。 かくして、上記のような条件で準安定オーステ
ナイト系ステンレス鋼板を製造すれば、高強度で
かつ強度の面内異方性の著しく小さいウエハスラ
イサ用極薄オーステナイト系ステンレス鋼板が得
られる。 〔実施例〕 第1表に示すようなオーステナイト系ステンレ
ス鋼を電気炉で溶製しAOD炉で精錬し、連続鋳
造によつてスラブとした後、熱間圧延により板厚
3mmの熱延コイルとした。ついで、熱延板の酸洗
または熱延板の焼鈍・酸洗を行つた後、冷延およ
び焼鈍を1〜3回繰り返し、1050〜1100℃の最終
焼鈍を施し、続いて調質圧延を行い、ウエハスラ
イサ用素材とした。 本発明法および比較法による製造条件と引張強
さ、および強度の面内異方性を第2表に示す。引
張強さは、圧延方向と平行な方向より引張試験片
を採取し、JISZ2241に従い測定した。強度の面
内異方性は、圧延方向に対して平行・45゜・直角
方向より引張試験片を採取し、各試験片の0.2%
耐力をJISZ2241に従い測定した後、これらの3
方向の内、0.2%耐力の最も大きい値から最も小
さい値を引いた値として評価した。 第2表より、本発明法は比較法に比べ高強度で
かつ強度の面内異方性が小さくウエハスライサ用
素材として非常に優れていることがわかる。
[Industrial Application Field] The present invention relates to a method for manufacturing an ultra-thin austenitic stainless steel plate for wafer slicers that has high strength and low in-plane anisotropy of strength, and is particularly suitable as a material for Si wafer slicers. It is. [Prior Art] Ultra-thin plates of metastable austenitic stainless steel are used as materials for Si wafer slicers because of their high strength and high rust resistance. As shown in Fig. 1, the Si wafer slicer is fixed by a fixing bolt 1 and tensioned by a tensioning bolt 2 equipped with a spring. with blade 4
The Si ingot 5 is sliced into wafers (hereinafter referred to as wafer cutting). If the strength of this wafer slicer is low, the inner peripheral blade will deform while cutting the wafer, causing the wafer to warp. Furthermore, if the in-plane anisotropy of the strength is large, the flatness will be poor during tensioning, making it impossible to cut the wafer with high precision. Therefore, there has been a strong demand for the development of a material for Si wafer slicers that has high strength and low in-plane anisotropy of strength. A method for increasing the strength of conventional metastable austenitic stainless steel sheets is to subject an annealed sheet to cold working such as temper rolling to work harden it and generate strain-induced martensite [for example, Tetsu-to-Hagane 67 (1981) S619], low temperature at which martensite does not disappear further after temper rolling (for example, 200
A method of time-curing by heat treatment at a temperature of 550°C to 550°C [for example, Journal of the Japan Institute of Metals 21 (1957) 583] is known. However, none of these methods takes into account the in-plane anisotropy of strength after increasing the strength. [Problems to be solved by the invention] High strength can be obtained by strengthening an annealed plate of metastable austenitic stainless steel by temper rolling or by time-hardening it after temper rolling.
When used as a wafer slicer for Si, etc., if the in-plane strength anisotropy is large, the flatness during tensioning deteriorates, resulting in the problem that highly accurate wafer cutting cannot be performed. The present inventor aims to provide a method for manufacturing an ultra-thin austenitic stainless steel plate for slicers that has high strength and small in-plane anisotropy of strength, which solves the above problems. [Means and effects for solving the problems] As a result of various studies on manufacturing conditions for this purpose, the present invention has been developed to improve the number of cold rolling and annealing, the reduction distribution and tempering in the two cold rollings before the final annealing. This was achieved by appropriate combination of rolling conditions. The gist of the present invention is that, in weight%, C: 0.01 to 0.2
%, Si; 0.1~2%, Mn: 0.1~4%, Ni; 5~
11%, Cr; 15-20%, Mo; 0.05-2.5%, N;
Contains 0.01 to 0.3%, the balance consists of Fe and unavoidable impurities, and Md 30 shown in formula (1) is 0 to +80℃
Cold rolling and annealing are repeated two or more times on a hot-rolled or hot-rolled annealed sheet of metastable austenitic stainless steel having a composition in the range of
Ratio R of cold rolling rate in cold rolling (1st cold rolling rate/
The second cold rolling rate) is set to 0.8 or more, and then the cold rolling rate is
This is a method for manufacturing ultra-thin austenitic stainless steel sheets for wafer slicers, which is characterized by performing temper rolling of 40% or more. Md 30 =551−462(C%+N%)−9.2Si%−8.1Mn%−29
Ni%-13.7Cr%-18.5Mo%...(1) Below, the reasons for limiting the constituent elements of the present invention will be explained. In the present invention, the steel plate means both a strip and a sheet. C is a strong solid solution hardening element of martensite induced by processing in metastable austenitic stainless steel sheets, but this effect is only 0.01%
If it is less than 0.2%, it is not sufficient, and if it exceeds 0.2%, austenite becomes too stable and deformation-induced martensite is not sufficiently generated. Therefore, C is 0.01
~0.2%. If Si is less than 0.1%, deoxidation is insufficient;
%, the amount of ferrite increases and hot workability deteriorates. Therefore, Si was set at 0.1 to 2%. If Mn is less than 0.1%, deoxidation is insufficient;
%, austenite becomes too stable and deformation-induced martensite is not sufficiently generated.
Therefore, Mn was set to 0.1 to 4%. Ni is a powerful austenite stabilizing element; if it is less than 5%, a complete austenite structure cannot be obtained after annealing, and if it exceeds 11%, austenite is too stabilized and deformation-induced martensite is not sufficiently generated. Therefore, Ni should be 5 to 11%,
It is desirably less than 6% to 8%. When Cr is less than 15%, it is insufficient in terms of rust resistance for stainless steel, and when it exceeds 20%, the amount of ferrite increases and hot workability deteriorates. Therefore, Cr was set at 15 to 20%. Mo is an element that improves rust resistance, but its effect is insufficient at less than 0.05%. Also,
Mo is an expensive element, and adding a large amount increases the cost. Therefore, Mo was set at 0.05 to 2.5%. N is a strong solid solution hardening element for martensite induced by processing in metastable austenitic stainless steel sheets, but this effect is only 0.01%
If it is less than 0.3%, it is not sufficient, and if it exceeds 0.3%, there will be many blowholes in the molten steel, which will cause manufacturing difficulties. Therefore, N was set at 0.01 to 0.3%. Md 30 is an index indicating the austenite stability of the austenitic stainless steel sheet that is the object of the present invention method, and is an important factor for this stainless steel sheet to obtain high strength by utilizing deformation-induced martensite. If Md 30 is less than 0°C, austenite becomes too stable, making it difficult to obtain a martensitic structure through processing, making it impossible to obtain high strength. Also,
If Md 30 exceeds +80°C, austenite becomes too unstable and martensite is generated excessively during processing and hardens rapidly, making it impossible to perform highly accurate rolling while maintaining the desired hardness and thickness. Therefore, the Md 30 range is 0 to +80°C, preferably +15 to +60°C. Cold rolling of the hot-rolled sheet is performed either as hot-rolled or after annealing. The number of times of cold rolling and annealing before temper rolling is two or more times compared to just one time, the texture becomes more random and the in-plane anisotropy of mechanical properties becomes smaller. The ratio R of the cold rolling rate in two cold rollings of
By setting the ratio (first cold rolling ratio/second cold rolling ratio) to 0.8 or more, the texture becomes significantly random and the in-plane anisotropy becomes smaller, resulting in in-plane differences in strength after temper rolling. It has been found that a steel plate with extremely low orientation can be obtained. Therefore, the cold rolling reduction distribution was limited in this manner. If the temper rolling ratio is less than 40%, the tensile strength of 130 kg/mm 2 or more required for wafer slicers cannot be obtained.
The inner peripheral blade deforms during wafer cutting, causing warpage on the wafer. Therefore, the temper rolling ratio was set to 40% or more. Note that if the plate thickness after skin pass rolling is less than 0.1 mm, even if the plate has high strength, the inner peripheral blade is likely to deform during cutting the wafer, causing the wafer to warp. If it exceeds 0.3 mm, there will be a large amount of cutting allowance by the slicer itself when cutting the wafer, resulting in poor yield. Therefore, the plate thickness after temper rolling is 0.1 to 0.3 mm.
is desirable. Thus, if a metastable austenitic stainless steel plate is produced under the above conditions, an ultra-thin austenitic stainless steel plate for wafer slicers that has high strength and extremely small in-plane anisotropy of strength can be obtained. [Example] Austenitic stainless steel as shown in Table 1 was melted in an electric furnace, refined in an AOD furnace, made into a slab by continuous casting, and then hot-rolled into a hot-rolled coil with a thickness of 3 mm. did. Then, after pickling the hot-rolled sheet or annealing and pickling the hot-rolled sheet, cold rolling and annealing are repeated 1 to 3 times, final annealing is performed at 1050 to 1100°C, and then skin pass rolling is performed. , used as a material for wafer slicers. Table 2 shows the manufacturing conditions, tensile strength, and in-plane anisotropy of strength according to the method of the present invention and the comparative method. Tensile strength was measured according to JISZ2241 by taking a tensile test piece from a direction parallel to the rolling direction. The in-plane anisotropy of strength was determined by taking tensile test pieces from directions parallel, 45°, and perpendicular to the rolling direction, and measuring 0.2% of each test piece.
After measuring the yield strength according to JISZ2241, these three
It was evaluated as the value obtained by subtracting the smallest value from the largest value of 0.2% proof stress among the directions. From Table 2, it can be seen that the method of the present invention has higher strength and less in-plane anisotropy of strength than the comparative method, and is very excellent as a material for wafer slicers.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上のことから明らかな如く、本発明法により
極薄オーステナイト系ステンレス鋼板を製造すれ
ば、高強度でかつ強度の面内異方性が小さく、ウ
エハスライサに張力を加えて張り上げても平坦度
が非常に優れたウエハスライサ用素材が得られ
る。従つて、SiやGaAsインゴツトの精度の高い
ウエハ切断が可能となり、ウエハの歩留が著しく
改善され生産性も飛躍的に向上する。
As is clear from the above, if an ultra-thin austenitic stainless steel sheet is manufactured by the method of the present invention, it will have high strength and small in-plane anisotropy of strength, and will maintain flatness even when stretched by applying tension to a wafer slicer. A very excellent material for wafer slicer can be obtained. Therefore, it becomes possible to cut wafers of Si or GaAs ingots with high precision, and the yield of wafers is significantly improved, leading to a dramatic increase in productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はウエハスライサの構造および使用の説
明図である。
FIG. 1 is an explanatory diagram of the structure and use of a wafer slicer.

Claims (1)

【特許請求の範囲】 1 重量%にて、C;0.01〜0.2%、Si;0.1〜2
%、Mn:0.1〜4%、Ni;5〜11%、Cr;15〜
20%、Mo;0.05〜2.5%、N;0.01〜0.3%を含有
し残部Feおよび不可避的不純物からなり、かつ
(1)式に示すMd30が0〜+80℃の範囲の組成にあ
る準安定オーステナイト系ステンレス鋼の熱延板
または熱延焼鈍板に冷延および焼鈍を2回以上繰
り返して施し、最終焼鈍前の2回の冷延における
冷延率の比R(1回目冷延率/2回目冷延率)を
0.8以上とし、ついで冷延率が40%以上の調質圧
延を行うことを特徴とするウエハスライサ用極薄
オーステナイト系ステンレス鋼板の製造方法。 Md30=551−462(C%+N%)−9.2Si%−8.1Mn%−29
Ni%−13.7Cr%−18.5Mo%……(1)
[Claims] 1% by weight: C: 0.01-0.2%, Si: 0.1-2
%, Mn: 0.1-4%, Ni; 5-11%, Cr; 15-
20%, Mo: 0.05-2.5%, N: 0.01-0.3%, and the balance consists of Fe and inevitable impurities, and
A hot-rolled or hot-rolled annealed sheet of metastable austenitic stainless steel with Md 30 shown in formula (1) having a composition in the range of 0 to +80°C is subjected to cold rolling and annealing two or more times, and then before final annealing. The ratio R of the cold rolling rates in the two cold rollings (first cold rolling rate/second cold rolling rate) is
A method for producing an ultra-thin austenitic stainless steel sheet for use in a wafer slicer, characterized by performing temper rolling at a cold rolling rate of 0.8 or higher and a cold rolling rate of 40% or higher. Md 30 =551−462(C%+N%)−9.2Si%−8.1Mn%−29
Ni%−13.7Cr%−18.5Mo%……(1)
JP7914986A 1986-04-08 1986-04-08 Manufacture of ultrathin austenitic stainless steel sheet for water slicer Granted JPS62238333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7914986A JPS62238333A (en) 1986-04-08 1986-04-08 Manufacture of ultrathin austenitic stainless steel sheet for water slicer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7914986A JPS62238333A (en) 1986-04-08 1986-04-08 Manufacture of ultrathin austenitic stainless steel sheet for water slicer

Publications (2)

Publication Number Publication Date
JPS62238333A JPS62238333A (en) 1987-10-19
JPH0244891B2 true JPH0244891B2 (en) 1990-10-05

Family

ID=13681899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7914986A Granted JPS62238333A (en) 1986-04-08 1986-04-08 Manufacture of ultrathin austenitic stainless steel sheet for water slicer

Country Status (1)

Country Link
JP (1) JPS62238333A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5314549A (en) * 1993-03-08 1994-05-24 Nkk Corporation High strength and high toughness stainless steel sheet and method for producing thereof
DE4406052A1 (en) * 1993-11-30 1995-06-01 Nippon Kokan Kk Stainless steel sheet and process for its manufacture
JPH1066362A (en) * 1996-06-11 1998-03-06 Samsung Electron Co Ltd Oscillatory-wave motor equipped with piezoelectric pressing member

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2508869B2 (en) * 1990-02-16 1996-06-19 住友金属工業株式会社 Hard high ductility stainless steel
KR20120132691A (en) * 2010-04-29 2012-12-07 오또꿈뿌 오와이제이 Method for manufacturing and utilizing ferritic-austenitic stainless steel with high formability

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52104416A (en) * 1976-03-01 1977-09-01 Kawasaki Steel Co Production of austenitic stainless steel sheets
JPS5346421A (en) * 1976-10-08 1978-04-26 Sumitomo Electric Ind Ltd Seawater resistant stainless steel
JPS5418648A (en) * 1977-07-13 1979-02-10 Hitachi Denshi Ltd Digital differential analyzer
JPS55115927A (en) * 1979-02-28 1980-09-06 Nippon Steel Corp Production of austenite-base stainless steel plate which does not cause earing
JPS5728740A (en) * 1980-07-19 1982-02-16 Hiroshi Inaba Foaming polystyrene vessel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52104416A (en) * 1976-03-01 1977-09-01 Kawasaki Steel Co Production of austenitic stainless steel sheets
JPS5346421A (en) * 1976-10-08 1978-04-26 Sumitomo Electric Ind Ltd Seawater resistant stainless steel
JPS5418648A (en) * 1977-07-13 1979-02-10 Hitachi Denshi Ltd Digital differential analyzer
JPS55115927A (en) * 1979-02-28 1980-09-06 Nippon Steel Corp Production of austenite-base stainless steel plate which does not cause earing
JPS5728740A (en) * 1980-07-19 1982-02-16 Hiroshi Inaba Foaming polystyrene vessel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5314549A (en) * 1993-03-08 1994-05-24 Nkk Corporation High strength and high toughness stainless steel sheet and method for producing thereof
DE4329305A1 (en) * 1993-03-08 1994-09-15 Nippon Kokan Kk High strength and high toughness stainless steel sheet and method of manufacturing the same
DE4329305C2 (en) * 1993-03-08 1998-12-17 Nippon Kokan Kk High strength and high toughness stainless steel sheet and method of manufacturing the same
DE4406052A1 (en) * 1993-11-30 1995-06-01 Nippon Kokan Kk Stainless steel sheet and process for its manufacture
DE4406040A1 (en) * 1993-11-30 1995-06-01 Nippon Kokan Kk Stainless steel sheet having high fracture resistance
JPH1066362A (en) * 1996-06-11 1998-03-06 Samsung Electron Co Ltd Oscillatory-wave motor equipped with piezoelectric pressing member

Also Published As

Publication number Publication date
JPS62238333A (en) 1987-10-19

Similar Documents

Publication Publication Date Title
JP4857811B2 (en) Steel for knives
JP5349015B2 (en) Method for producing Ni-saving austenitic stainless hot-rolled steel sheet, slab and hot-rolled steel sheet
EP1396552B1 (en) Double phase stainless steel strip for steel belt
EP3392361A1 (en) Thick steel plate having excellent cryogenic toughness
US20180127858A1 (en) Martensitic stainless steel, method for the production of a semi-finished product from said steel, and cutting tool produced from the semi-finished product
JPH01172524A (en) Production of complex phase structure chromium stainless strip having excellent corrosion resistance and high ductility and strength
JP2637371B2 (en) Method for producing Fe-Mn-based vibration damping alloy steel
JP6142837B2 (en) Stainless steel with a structure consisting of two phases: ferrite phase and martensite phase
JPS583011B2 (en) Manufacturing method of steel plate with stable strength and toughness by direct quenching and tempering
JP4272394B2 (en) Ferritic stainless steel with excellent precision punchability
JP3449126B2 (en) Austenitic stainless cold-rolled steel sheet with small springback amount and method for producing the same
JPH0244891B2 (en)
JPS63317628A (en) Manufacture of high strength stainless steel having superior bulging strength and toughness
EP0141661B1 (en) Work-hardenable substantially austenitic stainless steel and method
JPH0830253B2 (en) Precipitation hardening type martensitic stainless steel with excellent workability
JP2995524B2 (en) High strength martensitic stainless steel and its manufacturing method
JPS62199721A (en) Production of steel sheet or strip of ferritic stainless steel having good workability
KR102517499B1 (en) Ferritic stainless steel sheet and manufacturing method thereof
JP3543200B2 (en) Manufacturing method of steel sheet for metal saw substrate
JP2006249559A (en) Surface supporting plate made from stainless steel
JP2019157267A (en) Carbon alloy steel sheet and method for manufacturing carbon alloy steel sheet
JPH04173926A (en) Method for providing fatigue characteristic to martensitic stainless steel strip
JP3418928B2 (en) Ferritic stainless steel sheet for cold forging and its manufacturing method
JPH10130734A (en) Production of austenitic stainless steel sheet for roll forming
JPH07268561A (en) High strength stainless steel excellent in hot workability and free from welding softening