JP2637371B2 - Method for producing Fe-Mn-based vibration damping alloy steel - Google Patents

Method for producing Fe-Mn-based vibration damping alloy steel

Info

Publication number
JP2637371B2
JP2637371B2 JP6188322A JP18832294A JP2637371B2 JP 2637371 B2 JP2637371 B2 JP 2637371B2 JP 6188322 A JP6188322 A JP 6188322A JP 18832294 A JP18832294 A JP 18832294A JP 2637371 B2 JP2637371 B2 JP 2637371B2
Authority
JP
Japan
Prior art keywords
alloy
alloy steel
vibration damping
manganese
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6188322A
Other languages
Japanese (ja)
Other versions
JPH07150300A (en
Inventor
▲鐘▼ ▲述▼ 崔
萬 業 李
承 ▲はん▼ 白
龍 哲 孫
正 ▲ちぇおる▼ 金
仲 ▲はん▼ 田
永 三 高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JUSHIN KK
Original Assignee
JUSHIN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JUSHIN KK filed Critical JUSHIN KK
Publication of JPH07150300A publication Critical patent/JPH07150300A/en
Application granted granted Critical
Publication of JP2637371B2 publication Critical patent/JP2637371B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Abstract

An Fe-Mn vibration damping alloy steel having a mixture structure of epsilon , alpha ' and gamma . The alloy steel consists of iron, manganese from 10 to 24 % by weight and limited amounts of impurities. The alloy steel is manufactured by preparing an ingot at a temperature of 1000 DEG C to 1300 DEG C for 12 to 40 hours to homogenize the ingot and hot-rolling the homogenized ingot to produce a rolled alloy bar or plate, performing solid solution treatment on the alloy steel at 900 DEG C to 1100 DEG C for 30 to 60 minutes, cooling the alloy steel by air or water, and cold-rolling the alloy steel at a reduction rate of below 30 % at around room temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はすぐれた振動減衰能を保
有しながら低廉な価格で生産可能なFe−Mn系振動減
衰合金鋼とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an Fe-Mn-based vibration damping alloy steel which can be produced at a low price while having excellent vibration damping ability, and a method for producing the same.

【0002】[0002]

【従来の技術】最近、航空機、船舶、自動車および各種
機械類の高級化趨勢および高精密度趨勢に従い振動と騒
音源になる各種機械部品に防振合金が広く用いられてお
り、これによって、防振合金の需要増加に従う研究開発
が活発に行われているのが実状である。
2. Description of the Related Art In recent years, anti-vibration alloys have been widely used for various mechanical parts which are sources of vibration and noise in accordance with the trend of high grade and high precision of aircraft, ships, automobiles and various machines. The reality is that research and development is being actively pursued in response to increasing demand for vibration alloys.

【0003】従来開発されて用いられている防振合金を
減衰機構別に分類すると、複合型(Fe−C−Si,A
l−Zn)、強磁性型(Fe−Cr,Fe−Cr−A
l,Co−Ni)、転位型(Mg−Zr,Mg−Mg2
Ni)および双晶型(Mn−Cu,Cu−Al−Ni,
Ni−Ti)などに分類される。このような防振合金な
どでは減衰能はすぐれるが、機械的性質が不良で特殊な
用途以外には使用が不可能であり、高価な元素を多く含
んでいるため合金材料の価格上昇を誘発して工業的用途
が極めて制限されてきた。
When the conventionally developed and used vibration damping alloys are classified by damping mechanism, a composite type (Fe—C—Si, A
1-Zn), ferromagnetic type (Fe-Cr, Fe-Cr-A)
1, Co—Ni), dislocation type (Mg—Zr, Mg—Mg 2)
Ni) and twin type (Mn-Cu, Cu-Al-Ni,
Ni-Ti). Such vibration-proof alloys have excellent damping performance, but have poor mechanical properties and cannot be used for anything other than special applications, and because they contain many expensive elements, they cause an increase in the price of alloy materials. As a result, industrial applications have been extremely limited.

【0004】かかる問題点を解決するものとして、出願
人が1990年8月27日に出願し、1992年12月
16日付で登録された韓国特許第57,437号があ
る。上記合金はマルテンサイト組織を有するFe−Mn
(10〜22%)系振動減衰合金鋼からなり、その製造
方法はFe−Mn(10〜22%)インゴットを100
0℃〜1300℃において20〜40時間均質化処理し
た後、熱間圧延して900〜1100℃において30分
ないし1時間加熱したあと空冷あるいは水冷することを
特徴とするγ⇔ε反復変態型Fe−Mn系防振合金であ
って、減衰機構は前述した従来の減衰機構とは全く異な
る、振動応力によりε/γ界面の移動時振動エネルギー
を吸収することを特徴とするものであった。
In order to solve such a problem, there is Korean Patent No. 57,437 filed by the applicant on August 27, 1990 and registered on December 16, 1992. The above alloy is Fe-Mn having a martensitic structure.
(10-22%)-based vibration damping alloy steel, and its manufacturing method is 100% Fe-Mn (10-22%) ingot.
Γ⇔ε repeating transformation type Fe characterized by being homogenized at 0 ° C to 1300 ° C for 20 to 40 hours, hot-rolled, heated at 900 to 1100 ° C for 30 minutes to 1 hour, and then air-cooled or water-cooled. -A Mn-based anti-vibration alloy, wherein the damping mechanism is completely different from the above-described conventional damping mechanism, and is characterized by absorbing vibration energy during movement of the ε / γ interface by vibration stress.

【0005】しかしながら、本出願人は前記結果に満足
せず、さらにすぐれた振動減衰合金鋼の開発に全力を注
ぎ、その結果、前記合金より振動減衰能がさらにすぐれ
た本発明の合金を開発することに成功した。
[0005] However, the present applicant is not satisfied with the above results, and devote his utmost to the development of a more excellent vibration damping alloy steel, and as a result, develops an alloy of the present invention having a better vibration damping ability than the above alloy. Succeeded.

【0006】目的 従って、本発明の目的はすぐれた振動減衰能を保有しな
がら低廉な価格で生産可能なFe−Mn系振動減衰合金
鋼の製造方法を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an Fe-Mn based vibration damping alloy which has excellent vibration damping ability and can be produced at a low price.
It is to provide a method for producing steel .

【0007】[0007]

【課題を解決するための手段】前記目的を達成するため
に本発明の合金は前記合金よりMnの組成範囲をやや広
く適用し、製造方法においても、前記合金の製造工程に
冷間加工工程を付加することを特徴とする。
In order to achieve the above object, the alloy of the present invention has a composition range of Mn which is slightly wider than that of the alloy. In the production method, a cold working step is included in the production step of the alloy. It is characterized by being added.

【0008】すなわち、本発明のFe−Mn系振動減衰
合金鋼の製造方法は、まずマンガン10〜24重量%、
不純物として炭素0.2重量%以下、珪素0.4重量%
以下、硫黄0.05重量%以下およびリン0.05重量
%以下を含み、残りがFeから組成された溶湯を鋳造し
てインゴットを製造する。
That is, the Fe—Mn vibration damping of the present invention.
The method for producing alloy steel is as follows: first, manganese is 10 to 24% by weight,
0.2% by weight or less of carbon and 0.4% by weight of silicon as impurities
Hereinafter, a molten metal containing 0.05% by weight or less of sulfur and 0.05% by weight or less of phosphorus and the balance being Fe is cast.
To produce ingots.

【0009】次いで、前述のインゴットを1000〜1
300℃において12〜40時間均質化処理して熱間圧
延を行い、900〜1100℃において30〜60分間
さらに加熱して空冷あるいは水冷した後、これを常温付
近(25℃±50℃)で30%以下の圧下率で冷間加工
することを特徴とする。
Next, the above-mentioned ingot was put into a
After homogenizing at 300 ° C. for 12 to 40 hours and performing hot rolling, further heating at 900 to 1100 ° C. for 30 to 60 minutes and air-cooling or water-cooling, and then cooling it at around room temperature (25 ° C. ± 50 ° C.). %, Characterized in that cold working is performed at a draft of not more than%.

【0010】[0010]

【作用】均質化の処理条件を1000〜1300℃にお
いて12〜40時間に限定した理由は、マンガンの組成
を均ーにするためであり、このため、1000〜130
0℃においてインゴットを加熱するが、1000℃より
温度が低いと拡散速度が遅く、1300℃以上に温度を
高めると結晶粒界の局部的溶融現象が起こる危険性が存
在するからである。
The reason why the homogenization treatment conditions are limited to 1000 to 1300 ° C. for 12 to 40 hours is to make the composition of manganese uniform, and therefore 1000 to 130 hours.
This is because the ingot is heated at 0 ° C., but if the temperature is lower than 1000 ° C., the diffusion rate is low, and if the temperature is increased to 1300 ° C. or higher, there is a risk that a local melting phenomenon of crystal grain boundaries may occur.

【0011】900〜1100℃の熱処理温度において
30〜60分間加熱することは、1100℃以上では結
晶粒が粗大化して引張強度が低くなり、900℃以下で
はεマルテンサイトが少なく生成されるので減衰能が低
くなる。
Heating at a heat treatment temperature of 900 to 1100 ° C. for 30 to 60 minutes requires that the crystal grains become coarser at 1100 ° C. or more and the tensile strength becomes lower, and that at 900 ° C. or less, less ε martensite is formed, so that attenuation occurs. Performance becomes lower.

【0012】マンガンを10〜24重量%の組成とする
ことは、10%マンガン以下はα’マルテンサイト単相
となって振動減衰効果がほとんど起こらないし、10〜
28%マンガン合金はεとγとが共存し、これによって
ε/γ界面が存在するので振動減衰能が現れる。常温付
近においての冷間加工によりスリップ転位の生成なしに
εを生成せしめてε/γ界面積を増加させることができ
る。すなわち、常温付近においての冷間加工によりスリ
ップ転位の生成なしにεを生成せしめてε/γ界面積を
増加させることができるマンガン組成範囲が10〜24
%のマンガンであるためである。
When the composition of manganese is 10 to 24% by weight, when the content of manganese is 10% or less, α 'martensite becomes a single phase and hardly has a vibration damping effect.
In a 28% manganese alloy, ε and γ coexist, and the ε / γ interface is present. Cold working at around room temperature can generate ε without generating slip dislocations, thereby increasing the ε / γ interface area. That is, the range of manganese composition in which ε can be generated by cold working at around normal temperature without generation of slip dislocation to increase the ε / γ interface area is 10 to 24.
% Manganese.

【0013】そして、常温付近において冷間加工を30
%以下に行うことは、上記組成のマンガン合金はε/γ
界面が存在して振動減衰能を有しているが、冷間加工を
行うことによりγ内部に微細なεをさらに多く生成せし
めてε/γの総界面積を増加させて冷間加工前よりすぐ
れた振動減衰能を現すためであり、また30%以上に冷
間加工量を増加させるとεマルテンサイト板の合体が発
生してε/γ界面積が減少し、εからα’マルテンサイ
トが生成されてこれがε/γ界面の移動を抑制し、εお
よびγ内部に多くの転位が生成されてε/γ界面との相
互作用が生じてε/γ界面の移動を難しくするなどの要
因により振動減衰能が劣るためである。
[0013] Then, cold working is carried out at around normal temperature for 30 minutes.
% Of the manganese alloy having the above composition
The interface has vibration damping ability due to the existence of the interface. However, by performing cold working, more fine ε is generated inside γ, and the total interfacial area of ε / γ is increased. In order to exhibit excellent vibration damping ability, if the amount of cold working is increased to 30% or more, coalescence of ε martensite plates occurs, the ε / γ boundary area decreases, and α ′ martensite changes from ε to α ′ martensite. Generated, which suppresses the movement of the ε / γ interface, and causes many dislocations to be generated inside ε and γ, causing an interaction with the ε / γ interface, thereby making it difficult to move the ε / γ interface. This is because the vibration damping ability is inferior.

【0014】本発明の合金鋼の製造方法において不純物
として、炭素0.2重量%以下、珪素0.4重量%以
下、硫黄0.05重量%以下およびリン0.05重量%
以下に制限する理由は、不純物があまり多く含まれる
と、ε/γ界面に不純物元素が拡散して界面を固着する
ためにε/γ界面の移動が難しくなって減衰能が劣るた
めである。
In the method for producing an alloy steel according to the present invention, as impurities, 0.2% by weight or less of carbon, 0.4% by weight or less of silicon, 0.05% by weight or less of sulfur and 0.05% by weight of phosphorus.
The reason for limiting to the following is that if too much impurities are contained, the impurity element diffuses into the ε / γ interface to fix the interface, making it difficult for the ε / γ interface to move, resulting in poor attenuation.

【0015】[0015]

【実施例】以下、本発明の好ましい実施例を添付図面に
基づいて詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

【0016】本発明の合金の製造時に、重量%でマンガ
ン10〜24%、残りはFeから構成されるように秤量
して、溶解炉において炉の温度を1500℃以上に加熱
してまずFeを溶かした後、マンガンを装入して溶解さ
せる。
At the time of producing the alloy of the present invention, 10 to 24% by weight of manganese is weighed so that the balance is made up of Fe, and the temperature of the furnace is heated to 1500 ° C. or more in a melting furnace, and Fe is first added. After melting, manganese is charged and dissolved.

【0017】次いで、インゴットを鋳造して1000〜
1300℃において12〜40時間均質化処理した後、
熱間圧延して所定形状の寸法に製造する。
Next, the ingot is cast and
After homogenizing at 1300 ° C for 12 to 40 hours,
It is manufactured by hot rolling to a predetermined shape.

【0018】その後、900〜1100℃の温度におい
て30〜60分間加熱して空冷あるいは水冷した後、常
温付近(25℃±50℃)において30%以下に冷間加
工すると高い減衰能の現れるFe−Mn系合金鋼にな
る。
Thereafter, after heating at a temperature of 900 to 1100 ° C. for 30 to 60 minutes and air-cooling or water-cooling, when cold-working to around 30% or less at around normal temperature (25 ° C. ± 50 ° C.), Fe— It becomes a Mn-based alloy steel.

【0019】本発明において前記条件に限定した理由
は、次のとおりである。
The reasons for limiting the above conditions in the present invention are as follows.

【0020】均質化の処理条件を1000〜1300℃
において12〜40時間に限定したのは、本発明の合金
の主元素であるマンガンが鋳造の際偏析を起こすので鋳
造したインゴットは高温で加熱して高濃度のマンガンを
低濃度の区域に拡散させてマンガンの組成を均一にしな
ければならない。
[0020] The homogenization treatment conditions are 1000-1300 ° C.
The reason for limiting to 12 to 40 hours is that manganese, a main element of the alloy of the present invention, segregates during casting, so that the cast ingot is heated at a high temperature to diffuse high-concentration manganese into low-concentration areas. Manganese composition must be uniform.

【0021】このため、1000〜1300℃において
インゴットを加熱するが、1000℃より温度が低いと
拡散速度が遅く均質化されるのに40時間以上の長時間
を要するので、これによって生産コストが上昇するよう
になり、1300℃以上に温度を高めると均質化の時間
を12時間以内に短縮することはできるが、鋳造の際マ
ンガンが偏析された結晶粒界の局部的溶融現象が起こる
危険性が存在する。従って、1000〜1300℃にお
いて12〜40時間均質化処理することが最も好まし
い。
For this reason, the ingot is heated at 1000 to 1300 ° C., but if the temperature is lower than 1000 ° C., the diffusion rate is slow and it takes 40 hours or more to homogenize, thereby increasing the production cost. When the temperature is increased to 1300 ° C. or more, the time for homogenization can be shortened to within 12 hours, but there is a risk that a local melting phenomenon of the grain boundaries where manganese is segregated during casting may occur. Exists. Therefore, it is most preferable to perform the homogenization treatment at 1000 to 1300 ° C. for 12 to 40 hours.

【0022】900〜1100℃の熱処理温度において
30〜60分間加熱することは、1100℃以上におい
て加熱する場合温度が高すぎて結晶粒が粗大化して引張
強度が低くなり、900℃以下の加熱では温度が極端に
低すぎて結晶粒が微細化して引張強度は上昇するがMs
が低くなってεマルテンサイトが少なく生成されるので
減衰能が低くなる。減衰能および引張強度を兼備した最
も好ましい条件は900〜1100℃において30〜6
0分間加熱することである。
Heating at a heat treatment temperature of 900 to 1100 ° C. for 30 to 60 minutes means that when heating at a temperature of 1100 ° C. or more, the temperature is too high, the crystal grains become coarse and the tensile strength becomes low. Although the temperature is extremely low, the crystal grains become finer and the tensile strength increases, but Ms
Becomes low and ε-martensite is generated in a small amount, so that the damping ability becomes low. The most preferable condition having both the damping ability and the tensile strength is 30 to 6 at 900 to 1100 ° C.
Heat for 0 minutes.

【0023】マンガンを10〜24重量%の組成とする
ことは、図1のFe−Mn合金の2元系状態図からみる
ように、10%マンガンまではα’マルテンサイトが生
成され、10〜15%マンガンにおいてはε+α’+γ
の3相が生成され、15〜28%マンガンにおいてはε
+γの2相混合組織が形成される。
When the composition of manganese is 10 to 24% by weight, α 'martensite is formed up to 10% manganese as shown in the binary phase diagram of the Fe—Mn alloy in FIG. Ε + α '+ γ for 15% manganese
Are formed, and at 15 to 28% manganese, ε
A two-phase mixed structure of + γ is formed.

【0024】Fe−Mn系減衰機構は前述したように、
振動応力により、ε/γ界面の移動時振動エネルギーを
吸収して減衰能が現れるので、10%マンガン以下は
α’マルテンサイト単相となって振動減衰効果がほとん
ど起こらないし、10〜28%マンガン合金はεとγと
が共存し、これによってε/γ界面が存在するので振動
減衰能が現れる。
As described above, the Fe-Mn-based damping mechanism is as follows.
Vibration stress absorbs vibrational energy during the movement of the ε / γ interface to exhibit damping ability, so that 10% or less of manganese becomes an α 'martensite single phase and hardly has a vibration damping effect, and 10 to 28% of manganese In the alloy, ε and γ coexist, and due to the existence of the ε / γ interface, vibration damping ability appears.

【0025】しかしながら、この組成合金に常温付近
(25℃±50℃)において適当量の冷間加工を加える
と、応力有機εマルテンサイトがさらに多く生成されて
ε/γ総界面積が増大するので減衰能が冷間加工以前の
状態より顕著に向上する。しかし、マンガン量が24%
以上となるとオーステナイトのネール(Neel)温度
(TN; 常磁性→反強磁性に変わる磁気変態温度)が常温
よりずっと高くなるため、オーステナイトが安定化され
るので、常温付近において多くの量の加工度を与えるこ
とによりεマルテンサイトが生成され、同時に、オース
テナイトのスリップ系(Slip System)が作動して多数
の転位が生成される。かかる転位は振動時にε/γ界面
の移動に対する減衰能の向上効果をもたらすことがな
い。従って、マンガン組成を10〜24%に限定したの
は、常温付近においての冷間加工によりスリップ転位の
生成なしにεを生成せしめてε/γ界面積を増加させる
ことができるマンガン組成範囲が10〜24%のマンガ
ンであるためである。
However, when an appropriate amount of cold working is applied to the alloy at around room temperature (25 ° C. ± 50 ° C.), more stress organic ε martensite is generated and the total ε / γ interfacial area increases. The damping ability is significantly improved compared to the state before the cold working. However, the amount of manganese is 24%
Above this, the austenite Neel temperature (T N ; the magnetic transformation temperature that changes from paramagnetism to antiferromagnetism) becomes much higher than room temperature, so that austenite is stabilized, and a large amount of machining is performed around room temperature. By giving the degree, ε martensite is generated, and at the same time, a number of dislocations are generated by operating the austenitic slip system. Such dislocation does not bring about the effect of improving the damping ability for the movement of the ε / γ interface during vibration. Therefore, the reason why the manganese composition is limited to 10 to 24% is that the range of manganese composition in which ε can be generated by cold working at around normal temperature without generation of slip dislocation to increase the ε / γ interface area is 10%. This is because manganese is 2424%.

【0026】そして、常温付近において冷間加工を30
%以下に行うことは、10〜24%マンガン合金はε/
γ界面が存在して振動減衰能を有しているが、冷間加工
を行うことによりγ内部に微細なεをさらに多く生成せ
しめてε/γの総界面積を増加させて冷間加工前よりす
ぐれた振動減衰能を現すためである。
Then, cold working is performed at around normal temperature for 30 minutes.
%, The manganese alloy has a ε /
Although it has a γ interface and has a vibration damping capacity, it performs cold working to generate more fine ε inside γ and increases the total interfacial area of ε / γ before cold working. This is to exhibit better vibration damping ability.

【0027】ところが、冷間加工を30%以下に制限す
ることは、30%以上に冷間加工量を増加させるとεマ
ルテンサイト板の合体が発生してε/γ界面積が減少
し、εからα’マルテンサイトが生成されてこれがε/
γ界面の移動を抑制し、εおよびγ内部に多くの転位が
生成されてε/γ界面との相互作用が生じてε/γ界面
の移動を難しくするなどの要因により振動減衰能が劣る
ためである。
However, limiting the cold working to 30% or less means that if the amount of cold working is increased to 30% or more, coalescence of ε martensite plates occurs and the ε / γ boundary area decreases, Α ′ martensite is generated from ε /
The movement of the γ interface is suppressed, and many dislocations are generated inside ε and γ, and the interaction with the ε / γ interface occurs to make the movement of the ε / γ interface difficult. It is.

【0028】本発明の方法により製造された合金におい
て不純物として、炭素0.2重量%以下、珪素0.4重
量%以下、硫黄0.05重量%以下およびリン0.05
重量%以下に制限する理由は、不純物があまり多く含ま
れると、ε/γ界面に不純物元素が拡散して界面を固着
するためにε/γ界面の移動が難しくなって減衰能が劣
るためである。
In the alloy produced by the method of the present invention, as impurities, 0.2% by weight or less of carbon, 0.4% by weight or less of silicon, 0.05% by weight or less of sulfur and 0.05% by weight of phosphorus.
The reason for limiting the content to not more than% by weight is that if too much impurities are contained, the impurity element diffuses into the ε / γ interface to fix the interface, making it difficult for the ε / γ interface to move, resulting in poor attenuation. is there.

【0029】次に、本発明の方法により製造された合金
鋼の特性を図1ないし図4および表1、表2の実施例に
従い説明する。
Next, the alloy produced by the method of the present invention will be described.
The characteristics of the steel will be described with reference to FIGS. 1 to 4 and examples of Tables 1 and 2.

【0030】表1は本発明の方法により製造された合金
と従来の合金とを加工工程に応じて振動減衰能を測定し
た結果を示すものであり、本発明の冷間加工を行う合金
が冷間加工しない合金に比べ非常にすぐれた減衰能を現
していることがわかり、従来の技術に比べてもすぐれた
減衰効果を有していることを現わす。
Table 1 shows the results of measuring the vibration damping ability of the alloy manufactured by the method of the present invention and the conventional alloy according to the working process. It can be seen that the alloy has a very excellent damping ability as compared with the alloy which is not cold-worked, indicating that the alloy has an excellent damping effect as compared with the conventional technology.

【0031】[0031]

【表1】 [Table 1]

【0032】図1は本発明の基本になるFe−Mn2元
系状態図のFe側部分を示すものであり、各相の変態点
は3℃/分の冷却速度で冷却しながら熱膨張計で測定し
たものである。図1において、10%Mnまではα’マ
ルテンサイトが生成され、10〜15%Mnにおいては
ε+α’+γの3相が存在し、15〜28%Mnにおい
てはε+γの2相が混合組織に存在し、28%Mn以上
においてはγ単相が存在する。
FIG. 1 shows the Fe side of the Fe--Mn binary phase diagram which is the basis of the present invention. The transformation point of each phase is determined by a thermal dilatometer while cooling at a cooling rate of 3 ° C./min. Measured. In FIG. 1, α ′ martensite is generated up to 10% Mn, three phases ε + α ′ + γ exist at 10-15% Mn, and two phases ε + γ exist at 15-28% Mn in the mixed structure. However, at 28% Mn or more, a γ single phase exists.

【0033】図2は各Mn合金を1000℃に加熱して
常温で空冷したとき、各相の体積%をX−線回析分析法
で測定したものである。図1および図2のような測定結
果及び、表2に示すように、α’マルテンサイト組織合
金は振動減衰能が非常に小さく、ε+α’+γ混合組織
の合金は振動減衰能が非常に大きく、引張強度もすぐれ
ていることがわかる。
FIG. 2 shows the results of measuring the volume% of each phase by X-ray diffraction analysis when each Mn alloy was heated to 1000 ° C. and air-cooled at room temperature. As shown in the measurement results as shown in FIGS. 1 and 2 and Table 2, the α ′ martensitic structure alloy has a very small vibration damping capacity, and the alloy having the ε + α ′ + γ mixed structure has a very large vibration damping capacity. It can be seen that the tensile strength is also excellent.

【0034】[0034]

【表2】 [Table 2]

【0035】ε+α’+γ混合組織の合金がα’マルテ
ンサイト合金より振動減衰能が大きい理由は、α’マル
テンサイトの下部組織は転位となっており、転位の移動
により振動エネルギーを吸収するのに対し、ε+α’+
γ混合組織の合金は、前述したように、材料が振動応力
を受けるとε/γ界面が移動し、このとき、振動エネル
ギーを吸収するため高い振動減衰能を現す。
The reason that the alloy having the mixed structure of ε + α ′ + γ has a larger vibration damping ability than the α ′ martensite alloy is that the lower structure of α ′ martensite is dislocation, and the vibration energy is absorbed by the dislocation movement. On the other hand, ε + α '+
As described above, an alloy having a mixed structure of γ moves the ε / γ interface when the material is subjected to vibration stress, and at this time, exhibits high vibration damping ability because it absorbs vibration energy.

【0036】図3は冷間加工度に伴う比減衰能(SD
C:Specific Damping Capacity )の変化をする本発明
合金について示すものである。冷間加工度の増加と共に
SDCが増加してほぼ10〜20%加工度においては最
大減衰能を示し、それ以上に冷間加工度が増加するとS
DCが減少してほぼ30%以上に加工度が増加すると冷
間加工をしないと状態よりも減衰能が劣るので、本発明
においては減衰能の向上のための冷間加工を30%以内
に制限した。
FIG. 3 shows the specific damping capacity (SD
C: Specific alloying of the present invention having a specific damping capacity change. The SDC increases with the increase of the cold working degree, and shows the maximum damping capacity at about 10 to 20% of the working degree. When the cold working degree further increases, the SDC increases.
When DC is reduced and the working ratio is increased to approximately 30% or more, the damping ability is inferior to the state without cold working. Therefore, in the present invention, the cold working for improving the damping ability is limited to 30% or less. did.

【0037】図4は比較鋼と本願発明の方法により製造
された合金鋼とに関して冷間加工の前後において自由振
動減衰曲線を示すものである。これはねじり(torsiona
l) 振子型減衰測定装置を用いて最大表面剪断変形率γ
=8×104 において棒状試片を有して得るものであ
る。比較鋼(Fe−4%Mn)は水冷の後減衰能が小さ
いばかりでなく〔図4(A)〕、15%冷間加工を付与
しても減衰能は改善されなかった〔図4(B)〕。しか
しながら、本発明の方法により製造された合金中の一つ
であるFe−17%Mnは高温において水冷の後にも振
幅減衰能現象が顕著であるが〔図4(C)〕、常温にお
いて冷間加工を15%付与すると振幅減衰能現象がより
顕著であることがわかる〔図4(D)〕。
FIG. 4 shows a comparative steel manufactured by the method of the present invention.
4 shows a free vibration damping curve before and after cold working with respect to a given alloy steel. This is a torsion (torsiona
l) Using a pendulum type attenuation measuring device, the maximum surface shear deformation rate γ
= 8 × 10 4 with a rod-shaped specimen. The comparative steel (Fe-4% Mn) had not only a small damping capacity after water cooling (FIG. 4 (A)), but the damping capacity was not improved even when 15% cold work was applied [FIG. 4 (B). )]. However, one of the alloys manufactured by the method of the present invention, Fe-17% Mn, has a remarkable amplitude decay phenomenon even after water cooling at a high temperature (FIG. 4 (C)). It can be seen that the amplitude damping ability phenomenon is more remarkable when 15% of processing is given [FIG. 4 (D)].

【0038】[0038]

【発明の効果】以上のように、本発明によれば従来技術
の合金より振動減衰能がすぐれ、引張強度など機械的性
質のすぐれた振動減衰合金を得られる。
As described above, according to the present invention, it is possible to obtain a vibration damping alloy having excellent vibration damping ability and superior mechanical properties such as tensile strength as compared with the prior art alloy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Fe−Mn合金の2元系状態図である。FIG. 1 is a binary phase diagram of an Fe—Mn alloy.

【図2】Fe−Mn合金の常温においての変態量を示す
図である。
FIG. 2 is a diagram showing the amount of transformation of an Fe—Mn alloy at room temperature.

【図3】Fe−17%Mn合金の加工度に従う減衰能の
変化を示す図である。
FIG. 3 is a diagram showing a change in damping capacity according to the working ratio of an Fe-17% Mn alloy.

【図4】Fe−Mn合金の冷間加工後の自由な振動振幅
減衰曲線をそれぞれ示す図で,(A)はFe−4%Mn
合金の冷間加工前(水冷状態)、(B)はFe−4%M
n合金の冷間加工後、(C)はFe−17%Mn合金の
冷間加工前(水冷状態)、(D)はFe−17%Mn合
金の冷間加工後を示すものである。
FIGS. 4A and 4B are diagrams showing free vibration amplitude attenuation curves after cold working of an Fe—Mn alloy, respectively, wherein FIG.
Before cold working (water-cooled state) of alloy, (B) is Fe-4% M
(C) shows the state before the cold working of the Fe-17% Mn alloy (in a water-cooled state), and (D) shows the state after the cold working of the Fe-17% Mn alloy.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 孫 龍 哲 大韓民国京畿道城南市盆塘區也搭洞211 住公アパート401−406 (72)発明者 金 正 ▲ちぇおる▼ 大韓民国ソウル特別市江南區▲ぽ▼夷洞 168−3 (72)発明者 田 仲 ▲はん▼ 大韓民国ソウル特別市江南區鴨▲鴎▼亭 洞現代アパート24−1006 (72)発明者 高 永 三 大韓民国ソウル特別市道峰區水流1洞53 −7 (56)参考文献 特開 平5−255813(JP,A) 特開 昭62−142722(JP,A) 特開 昭62−133045(JP,A) ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor, Rong Chen 211, Yato-dong, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea 401-406 Sumiko Apartment (72) Inventor Kim Jong ▲ Chioru ▼ Gangnam, Seoul, South Korea District ▲ ぽ ▼ Yi-dong 168-3 (72) Inventor Tanaka ▲ Han ▼ Duck Modern Apartment 24-1006 Gangnam-gu, Gangnam-gu, Seoul, Republic of Korea 24-1006 (72) Inventor Taka Yongsan Seoul, Seoul Special City Road 53-7 Water Stream 1-5, Mine District (56) References JP-A-5-255813 (JP, A) JP-A-62-142222 (JP, A) JP-A-62-133045 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 マンガン10〜24重量%、不純物とし
て炭素0.2重量%以下、珪素0.4重量%以下、硫黄
0.05重量%以下およびリン0.05重量%以下を含
み、残りがFeから組成された溶湯を鋳造してインゴッ
トをつくり、これを1000〜1300℃において12
〜40時間均質化処理して熱間圧延を行い、900〜1
100℃において30〜60分間さらに加熱して常温で
空冷あるいは水冷し、これを常温付近(25℃±50
℃)において30%以下の圧下率で冷間加工することを
特徴とするFe−Mn系振動減衰合金鋼の製造方法。
1. The composition contains 10 to 24% by weight of manganese, 0.2% by weight or less of carbon, 0.4% by weight or less of silicon, 0.05% by weight or less of sulfur, and 0.05% by weight or less of phosphorus as impurities. A molten metal composed of Fe is cast to form an ingot, which is heated at 1000 to 1300 ° C. for 12 hours.
Hot rolling by homogenizing for ~ 40 hours, 900 ~ 1
The mixture was further heated at 100 ° C. for 30 to 60 minutes, air-cooled or water-cooled at room temperature, and cooled to room temperature (25 ° C. ± 50
(C) cold working at a rolling reduction of 30% or less at 30 ° C).
JP6188322A 1993-10-22 1994-08-10 Method for producing Fe-Mn-based vibration damping alloy steel Expired - Fee Related JP2637371B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR93-21973 1993-10-22
KR1019930021973A KR960006453B1 (en) 1993-10-22 1993-10-22 Making method of vibration decrease alloy steel & the manufacturing process

Publications (2)

Publication Number Publication Date
JPH07150300A JPH07150300A (en) 1995-06-13
JP2637371B2 true JP2637371B2 (en) 1997-08-06

Family

ID=19366339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6188322A Expired - Fee Related JP2637371B2 (en) 1993-10-22 1994-08-10 Method for producing Fe-Mn-based vibration damping alloy steel

Country Status (5)

Country Link
EP (1) EP0649914B1 (en)
JP (1) JP2637371B2 (en)
KR (1) KR960006453B1 (en)
AT (1) ATE163687T1 (en)
DE (1) DE69408773T2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000033105A (en) * 1998-11-19 2000-06-15 구자홍 Lug assembly for color cathode ray tube and method thereof
JP4631228B2 (en) * 2001-07-31 2011-02-16 株式会社豊田自動織機 Vibration isolation structure in piston type compressor
US6979182B2 (en) 2001-07-31 2005-12-27 Kabushiki Kaisha Toyota Jidoshokki Vibration damping mechanism for piston type compressor
WO2006109919A1 (en) * 2005-04-11 2006-10-19 Korea Institute Of Science And Technology High-strength damping alloys and low-noise diamond saw using the same
DE102006059884B4 (en) * 2006-12-19 2020-08-06 Volkswagen Ag Austenitic welding filler material based on iron for welding an austenitic material with another material
KR100840287B1 (en) * 2006-12-26 2008-06-20 주식회사 포스코 Composite steel of retained austenite and hcp martensite, and method for heat treatment thereof
JP5200243B2 (en) * 2007-02-14 2013-06-05 国立大学法人 名古屋工業大学 Method for improving damping characteristics of Fe-Mn alloy
JP4984272B2 (en) * 2009-08-26 2012-07-25 有限会社Tkテクノコンサルティング Steel with excellent vibration damping performance, method for producing the same, and damping body including the steel
RU2443795C2 (en) * 2010-04-16 2012-02-27 Тамара Федоровна Волынова MULTI-FUNCTION ANTIFRICTION NANOSTRUCTURE WEAR-RESISTANT DAMPING ALLOYS WITH SHAPE MEMORY EFFECT ON METASTABLE BASIS OF IRON WITH STRUCTURE OF HEXAGONAL ε-MARTENSITE, AND ITEMS USING THESE ALLOYS WITH EFFECT OF SELF-ORGANISATION OF NANOSTRUCTURE COMPOSITIONS, SELF-STRENGTHENING AND SELF-LUBRICATION OF FRICTION SURFACES, WITH EFFECT OF SELF-DAMPING OF VIBRATIONS AND NOISES
JP2013221191A (en) * 2012-04-18 2013-10-28 Nagoya Institute Of Technology Method for treating damping alloy
EP2990768A4 (en) * 2013-04-25 2017-03-08 Woojin Inc. Ultrasonic flow rate measurement system
KR101518599B1 (en) * 2013-10-23 2015-05-07 주식회사 포스코 High manganess steel sheet with high strength and excellent vibration isolation property and mathod for manufacturing the same
KR101543898B1 (en) 2013-12-24 2015-08-11 주식회사 포스코 Steel having excellent impact toughness of welding zone and welding property
KR101736636B1 (en) * 2015-12-23 2017-05-17 주식회사 포스코 HIHG-Mn STEEL PLATE HAVING EXCELLENT DAMPING PROPERTY AND METHOD FOR PRODUCING THE SAME
CN114807726A (en) * 2022-05-06 2022-07-29 成都大学 Method for rapidly preparing Fe-Mn damping alloy

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2434330A1 (en) * 1974-07-17 1976-01-29 Stephan & Soehne DOUGH MIXING AND MIXING MACHINE
JPS62142722A (en) * 1985-12-18 1987-06-26 Nippon Steel Corp Manufacture of high tension steel superior in weldability
DE68919672T2 (en) * 1988-07-08 1995-04-06 Famcy Steel Corp APPLICATION OF A TWO-PHASE IRON-MANGANE-ALUMINUM CARBON ALLOY WITH HIGH DAMPING CAPABILITY.
JPH05255813A (en) * 1991-12-24 1993-10-05 Nippon Steel Corp High strength alloy excellent in workability and damping capacity

Also Published As

Publication number Publication date
KR960006453B1 (en) 1996-05-16
ATE163687T1 (en) 1998-03-15
JPH07150300A (en) 1995-06-13
EP0649914A2 (en) 1995-04-26
EP0649914A3 (en) 1995-10-25
DE69408773D1 (en) 1998-04-09
DE69408773T2 (en) 1998-08-13
KR950011633A (en) 1995-05-15
EP0649914B1 (en) 1998-03-04

Similar Documents

Publication Publication Date Title
JP2807566B2 (en) Austenitic high manganese steel having excellent formability, strength and weldability, and method for producing the same
JP2637371B2 (en) Method for producing Fe-Mn-based vibration damping alloy steel
JP4888277B2 (en) Hot rolled steel bar or wire rod
JPS61270356A (en) Austenitic stainless steels plate having high strength and high toughness at very low temperature
KR20210045464A (en) 800 MPa grade hot stamped axle housing steel and manufacturing method thereof
JPWO2002101108A1 (en) Duplex stainless steel strip for steel belt
US5634990A (en) Fe-Mn vibration damping alloy steel and a method for making the same
JP3483493B2 (en) Cast steel for pressure vessel and method of manufacturing pressure vessel using the same
JP2012067344A (en) Oxide dispersion strengthened steel and method for producing the same
JPS61117213A (en) Manufacture of structural steel superior in toughness at weld zone
JPH08269564A (en) Production of nonmagnetic thick stainless steel plate
JPH10310845A (en) High strength low thermal expansion alloy
JP3262687B2 (en) Fine graphite uniformly dispersed steel for cold working with excellent toughness
JPH0579727B2 (en)
JPS60106952A (en) Process hardenable stainless steel of substantially austenite and manufacture
JP3172848B2 (en) High Cr ferritic steel with excellent creep strength
JP2006161142A (en) Case-hardening rolled bar steel having excellent high temperature carburizing property
JP5363882B2 (en) Cold-working steel, cold-working steel manufacturing method, machine structural component manufacturing method, and machine structural component
JPH05279788A (en) Non-heattreated steel for hot forging excellent in strength and toughness
JPH0244891B2 (en)
JP2001234284A (en) Steel excellent in crystal grain size characteristic and its producing method
JPH0774415B2 (en) Fe-Mn vibration damping alloy steel and method for producing the same
JP3756795B2 (en) High-tensile steel with excellent toughness of weld heat-affected zone subjected to multiple thermal cycles
JPH0425342B2 (en)
JPS63103052A (en) Case hardening steel for cold forging

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080425

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 17

LAPS Cancellation because of no payment of annual fees