JP2012067344A - Oxide dispersion strengthened steel and method for producing the same - Google Patents

Oxide dispersion strengthened steel and method for producing the same Download PDF

Info

Publication number
JP2012067344A
JP2012067344A JP2010212153A JP2010212153A JP2012067344A JP 2012067344 A JP2012067344 A JP 2012067344A JP 2010212153 A JP2010212153 A JP 2010212153A JP 2010212153 A JP2010212153 A JP 2010212153A JP 2012067344 A JP2012067344 A JP 2012067344A
Authority
JP
Japan
Prior art keywords
phase
oxide dispersion
dispersion strengthened
steel
strengthened steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010212153A
Other languages
Japanese (ja)
Other versions
JP5636532B2 (en
Inventor
Shigeharu Ukai
重治 鵜飼
Shigenari Hayashi
重成 林
Ryota Miyata
亮太 宮田
Tsukasa Azuma
司 東
Takeji Minafuji
威二 皆藤
Tomohito Otsuka
智史 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Japan Atomic Energy Agency
Original Assignee
Hokkaido University NUC
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC, Japan Atomic Energy Agency filed Critical Hokkaido University NUC
Priority to JP2010212153A priority Critical patent/JP5636532B2/en
Publication of JP2012067344A publication Critical patent/JP2012067344A/en
Application granted granted Critical
Publication of JP5636532B2 publication Critical patent/JP5636532B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an oxide dispersion strengthened steel in which a ferritic phase composed of coarse crystal grains can be generated in the presence of a residual α-phase remaining untransformed to a γ-phase, and which therefore has improved high temperature strength and ductility, and to provide a method for producing the oxide dispersion strengthened steel.SOLUTION: The method for producing the oxide dispersion strengthened steel includes: blending raw material powder in such a manner that excess oxygen content in the steel falls within the prescribed range, the raw material powder being composed of, by mass%, 0.05-0.25% C, 8.0-12.0% Cr, 0.1-4.0% W 0.1-1.0% Ti, 0.1-0.5% YOand the balance Fe with inevitable impurities; solidifying the raw material powder after subjecting to mechanical alloying treatment; and hot-rolling the solidified raw material powder at a temperature of Artransforming point or higher, then cooling the hot-rolled material in the prescribed cooling speed range.

Description

本発明は、酸化物粒子を分散させた酸化物分散強化型鋼に関し、特に、高温強度および延性に優れた酸化物分散強化型鋼およびその製造方法に関するものである。   The present invention relates to an oxide dispersion strengthened steel in which oxide particles are dispersed, and particularly to an oxide dispersion strengthened steel excellent in high-temperature strength and ductility and a method for producing the same.

従来、本願発明者らによって酸化物粒子を分散させた、いわゆる酸化物分散強化型鋼が提案されている。このような酸化物分散強化型鋼には、フェライト組織を主体とするフェライト系酸化物分散強化型鋼と、マルテンサイト組織を主体とするマルテンサイト系酸化物分散強化型鋼の二種類がある。   Conventionally, the present inventors have proposed so-called oxide dispersion strengthened steel in which oxide particles are dispersed. Such oxide dispersion strengthened steels are classified into two types: ferritic oxide dispersion strengthened steel mainly composed of ferrite structure and martensitic oxide dispersion strengthened steel mainly composed of martensite structure.

たとえば、マルテンサイト系酸化物分散強化型鋼に関し、特開2005−76087号公報には、原料粉末を機械的合金化処理する際に、鋼中の過剰酸素量が特定の値となるように配合し、機械的合金化処理を行って熱間押出しにより固化した後、最終熱処理として焼きならし焼き戻し熱処理を施すマルテンサイト系酸化物分散強化型鋼の製造方法が提案されている(特許文献1)。この製法によれば、高温強度の改善に有効な微細かつ高密度の酸化物分散組織を有する残留α相(γ相に変態することなく残留するα相)の割合を高めることができる。   For example, regarding martensitic oxide dispersion strengthened steel, Japanese Patent Application Laid-Open No. 2005-76087 is formulated so that the amount of excess oxygen in the steel becomes a specific value when the raw material powder is mechanically alloyed. There has been proposed a method for producing martensitic oxide dispersion strengthened steel that is subjected to mechanical alloying treatment and solidified by hot extrusion, and then subjected to normalizing and tempering heat treatment as the final heat treatment (Patent Document 1). According to this production method, it is possible to increase the proportion of the residual α phase (the α phase remaining without being transformed into the γ phase) having a fine and high density oxide dispersed structure effective for improving the high temperature strength.

また、発明者らは、フェライト系酸化物分散強化型鋼に関し、特開2004−68121号公報において、機械的合金化処理に際し、Ti成分としてTiO粉末を混合し、最終熱処理としてAC変態点以上への加熱保持と、それに続くマルテンサイト生成臨界速度以下での徐冷熱処理を施すフェライト系酸化物分散強化型鋼の製造方法を提案している(特許文献2)。この製法によれば、残留α相をなくすことで、高温強度の改善に有効な粗大化した結晶粒組織を有するフェライト組織を生成することができる。 In addition, regarding the ferrite-based oxide dispersion strengthened steel, the inventors mixed TiO 2 powder as a Ti component during the mechanical alloying treatment in Japanese Patent Application Laid-Open No. 2004-68121, and the AC 3 transformation point or more as a final heat treatment. Has proposed a method for producing a ferritic oxide dispersion-strengthened steel that is subjected to heating and holding followed by a slow cooling heat treatment at a martensite formation critical speed or lower (Patent Document 2). According to this manufacturing method, by eliminating the residual α phase, it is possible to generate a ferrite structure having a coarsened grain structure that is effective for improving high-temperature strength.

特開2005−76087号公報JP-A-2005-76087 特開2004−68121号公報JP 2004-68121 A

しかしながら、特許文献1に記載された発明においては、最終熱処理として焼きならし焼き戻し熱処理を施している。このため、冷却時にオーステナイト相から生成するマルテンサイト相が微細なブロック粒となり、このブロック粒界でのすべり変形により高温強度が低下するという問題がある。   However, in the invention described in Patent Document 1, normalizing and tempering heat treatment is performed as the final heat treatment. For this reason, the martensite phase produced | generated from an austenite phase at the time of cooling becomes a fine block grain, and there exists a problem that high temperature strength falls by the slip deformation in this block grain boundary.

一方、特許文献2に記載された発明においては、マルテンサイト生成臨界冷却速度以下である約100℃/hで徐冷しなければならない。このため、炉冷設備等が必要となる上、オーステナイト温度(約1050℃)からフェライトへの変態が完了する温度(約600℃)まで冷却するには約4時間も要することとなり、大量生産に不向きであって実用上の問題が残る。   On the other hand, in the invention described in Patent Document 2, it must be gradually cooled at about 100 ° C./h, which is below the martensite formation critical cooling rate. For this reason, furnace cooling equipment and the like are required, and it takes about 4 hours to cool from the austenite temperature (about 1050 ° C.) to the temperature at which the transformation to ferrite (about 600 ° C.) is completed. Unsuitable and practical problems remain.

さらに、上述したように、残留α相と、粗大な結晶粒組織を有するフェライト相は、いずれも高温強度の改善に有効であることが知られている。しかしながら、残留α相が存在している場合、その残留α相の存在によりオーステナイトから変態するフェライト相は細粒組織となり、粗大化しない。このため、残留α相を有するマルテンサイト系酸化物分散強化型鋼の長所と、粗大な結晶粒組織からなるフェライト相を有するフェライト系酸化物分散強化型鋼の長所との両方を兼ね備える酸化物分散強化型鋼は存在しなかった。   Furthermore, as described above, it is known that both the residual α phase and the ferrite phase having a coarse crystal grain structure are effective in improving the high temperature strength. However, when the residual α phase is present, the ferrite phase transformed from austenite becomes a fine-grained structure due to the presence of the residual α phase and does not become coarse. Therefore, an oxide dispersion strengthened steel having both the advantages of a martensitic oxide dispersion strengthened steel having a residual α phase and the advantages of a ferritic oxide dispersion strengthened steel having a ferrite phase having a coarse crystal grain structure. Did not exist.

本発明は、このような問題点を解決するためになされたものであって、γ相に変態することなく残留する残留α相の存在下で、粗大な結晶粒からなるフェライト相を生成することができ、高温強度および延性を向上することができる酸化物分散強化型鋼およびその製造方法を提供することを目的としている。   The present invention has been made to solve such problems, and in the presence of a residual α phase that remains without transformation into a γ phase, a ferrite phase composed of coarse crystal grains is generated. It is an object of the present invention to provide an oxide dispersion strengthened steel capable of improving high temperature strength and ductility and a method for producing the same.

本発明に係る酸化物分散強化型鋼は、残留α相の存在下で、3μm以上の粗大な結晶粒からなるフェライト相を有している。   The oxide dispersion strengthened steel according to the present invention has a ferrite phase composed of coarse crystal grains of 3 μm or more in the presence of a residual α phase.

また、本発明に係る酸化物分散強化型鋼の製造方法は、質量%で、Cが0.05〜0.25%、Crが8.0〜12.0%、Wが0.1〜4.0%、Tiが0.1〜1.0%、Yが0.1〜0.5%、残部がFeおよび不可避不純物からなる原料粉末を前記鋼中の過剰酸素量が所定の範囲内となるように調合し、機械的合金化処理してから固化し、Ac変態点以上の温度で熱間圧延した後、所定の冷却速度範囲内で冷却する。 Moreover, the manufacturing method of the oxide dispersion | distribution strengthening type steel which concerns on this invention is the mass%, C is 0.05-0.25%, Cr is 8.0-12.0%, W is 0.1-4. 0%, Ti is 0.1 to 1.0%, Y 2 O 3 is 0.1 to 0.5%, and the raw material powder composed of Fe and inevitable impurities is used, and the amount of excess oxygen in the steel is within a predetermined range. The mixture is mixed so as to be inside, solidified after mechanical alloying treatment, hot-rolled at a temperature equal to or higher than the Ac 3 transformation point, and then cooled within a predetermined cooling rate range.

本発明によれば、γ相に変態することなく残留する残留α相の存在下で、粗大な結晶粒からなるフェライト相を生成することができ、高温強度および延性を向上することができる。   According to the present invention, a ferrite phase composed of coarse crystal grains can be generated in the presence of a residual α phase that remains without being transformed into a γ phase, and high-temperature strength and ductility can be improved.

本発明に係る酸化物分散強化型鋼の製造方法を示すフローチャート図である。It is a flowchart figure which shows the manufacturing method of the oxide dispersion strengthened steel which concerns on this invention. 熱間圧延を行っていない通常のCr含有量が9.0%の酸化物分散強化型鋼の連続冷却変態線図である。It is a continuous cooling transformation diagram of an oxide dispersion strengthened steel having a normal Cr content of 9.0% which is not hot-rolled. 実施例1における酸化物分散強化型鋼(HR材)の組織写真である。2 is a structural photograph of oxide dispersion strengthened steel (HR material) in Example 1. FIG. 実施例1における酸化物分散強化型鋼の硬度測定結果を示す図である。It is a figure which shows the hardness measurement result of the oxide dispersion | distribution strengthening type steel in Example 1. FIG. 実施例1における酸化物分散強化型鋼(NT材)の組織写真である。2 is a structural photograph of oxide dispersion strengthened steel (NT material) in Example 1; (a)NT材および(b)HR材について、電子線後方散乱回折(EBSD)による結晶粒界の方位差分布の測定結果を示す図である。It is a figure which shows the measurement result of orientation difference distribution of the crystal grain boundary by electron beam backscattering diffraction (EBSD) about (a) NT material and (b) HR material. 実施例2において、HR材、NT材およびT材について行った700℃での引張試験の結果を示す図である。In Example 2, it is a figure which shows the result of the tensile test at 700 degreeC performed about HR material, NT material, and T material. HR材、NT材、T材および従来の鋼材について、700℃での引張強さを示す図である。It is a figure which shows the tensile strength in 700 degreeC about HR material, NT material, T material, and the conventional steel material. HR材、NT材、T材および従来の鋼材について、700℃での破断伸びを示す図である。It is a figure which shows the breaking elongation in 700 degreeC about HR material, NT material, T material, and the conventional steel material. 実施例2における実験結果を整理した図である。It is the figure which arranged the experimental result in Example 2.

まず、本発明に係る酸化物分散強化型鋼は、C(炭素)と、Cr(クロム)と、W(タングステン)と、Ti(チタン)と、Y(酸化イットリウム)と、残部がFe(鉄)および不可避不純物とからなるものである。以下、これら化学成分の目標組成と、その限定理由について説明する。なお、本明細書において、化学成分は質量%で表記する。 First, the oxide dispersion strengthened steel according to the present invention includes C (carbon), Cr (chromium), W (tungsten), Ti (titanium), Y 2 O 3 (yttrium oxide), and the balance being Fe. (Iron) and inevitable impurities. Hereinafter, the target composition of these chemical components and the reason for limitation will be described. In addition, in this specification, a chemical component is described with the mass%.

Crは、耐食性の確保に重要な元素であり、8.0%未満となると耐食性が著しく悪化する。一方、12.0%を超えると、靱性および延性の低下が懸念される。したがって、Crの含有量は8.0〜12.0%が好ましい。   Cr is an important element for ensuring corrosion resistance, and when it is less than 8.0%, the corrosion resistance is remarkably deteriorated. On the other hand, if it exceeds 12.0%, there is a concern that the toughness and the ductility are lowered. Therefore, the Cr content is preferably 8.0 to 12.0%.

Cは、Crの含有量が8.0〜12.0%の場合、α相からγ相への変態を生じさせるために0.05%以上含有させる必要がある。一方、Cの含有量が高くなるほど炭化物(M23、MC等)の析出量が多くなり高温強度が高くなるが、0.25%より多量に含有すると加工性が悪くなる。この理由から、Cの含有量は0.05〜0.25%が好ましい。 When the Cr content is 8.0 to 12.0%, C needs to be contained in an amount of 0.05% or more in order to cause transformation from the α phase to the γ phase. On the other hand, the higher the C content, the greater the amount of carbides (M 23 C 6 , M 6 C, etc.) precipitated and the higher the high-temperature strength. However, when the content is higher than 0.25%, the workability deteriorates. For this reason, the C content is preferably 0.05 to 0.25%.

Wは、合金中に固溶し高温強度を向上させる重要な元素であり、0.1%以上添加する。Wの含有量を多くすれば、固溶強化作用、炭化物(M23、MC等)析出強化作用、金属間化合物析出強化作用により、クリープ破断強度が向上する。しかし、4.0%を超えるとδフェライト量が多くなり、かえって強度も低下する。この理由から、Wの含有量は0.1〜4.0%が好ましい。 W is an important element that improves the high-temperature strength by dissolving in the alloy, and is added in an amount of 0.1% or more. If the W content is increased, the creep rupture strength is improved by the solid solution strengthening action, carbide (M 23 C 6 , M 6 C, etc.) precipitation strengthening action, and intermetallic compound precipitation strengthening action. However, if it exceeds 4.0%, the amount of δ ferrite increases and the strength also decreases. For this reason, the W content is preferably 0.1 to 4.0%.

Tiは、Yの分散強化に重要な役割を果たす元素である。具体的には、TiはYと反応してYTiまたはYTiOという複合酸化物を形成し、酸化物粒子を微細化させる働きがある。この作用は、Tiの含有量が1.0%を超えると飽和する傾向があり、0.1%未満では微細化作用が小さい。この理由から、Tiの含有量は0.1〜1.0%が好ましい。 Ti is an element that plays an important role in the dispersion strengthening of Y 2 O 3 . Specifically, Ti reacts with Y 2 O 3 to form a composite oxide of Y 2 Ti 2 O 7 or Y 2 TiO 5 and has a function of refining oxide particles. This action tends to saturate when the Ti content exceeds 1.0%, and if it is less than 0.1%, the refining action is small. For this reason, the Ti content is preferably 0.1 to 1.0%.

は、分散強化により高温強度を向上させる重要な添加物である。この含有量が0.1%未満の場合には、分散強化の効果が小さく強度が低い。一方、0.5%を超えて含有すると、著しく硬化し加工性に問題が生じる。この理由から、Yの含有量は0.1〜0.5%が好ましい。 Y 2 O 3 is an important additive that improves high-temperature strength by dispersion strengthening. When this content is less than 0.1%, the dispersion strengthening effect is small and the strength is low. On the other hand, if it exceeds 0.5%, it will be remarkably cured and a problem will arise in workability. For this reason, the content of Y 2 O 3 is preferably 0.1 to 0.5%.

上記成分以外の残部としては、鋼の主成分であるFeの他、混入が避けられない不可避不純物を含有する。   As the balance other than the above components, in addition to Fe which is the main component of steel, inevitable impurities are unavoidable.

つぎに、本発明に係る酸化物分散強化型鋼の製造方法について、図1を用いて説明する。   Next, the manufacturing method of the oxide dispersion strengthened steel according to the present invention will be described with reference to FIG.

まず、上記した各化学成分の元素粉末、合金粉末および酸化物粉末を原料粉末として、上記の目標組成となるように調合する(ステップS1)。このとき、本実施形態では、酸化物分散強化型鋼中の過剰酸素量ExOが、下記式(1)を満たすように原料粉末を調合する。
0.22×Ti<ExO<0.32−8C/3+2Ti/3 …式(1)
ただし、
ExO:鋼中の過剰酸素量[YがすべてYとして存在すると仮定して、鋼中の全酸素量からY中の酸素量(0.27Y)を差し引いた量]
Ti:鋼中のTi含有量
C:鋼中のC含有量
First, the element powder, alloy powder, and oxide powder of each chemical component described above are used as raw material powders and mixed so as to achieve the above target composition (step S1). At this time, in this embodiment, the raw material powder is prepared so that the excess oxygen amount ExO in the oxide dispersion strengthened steel satisfies the following formula (1).
0.22 × Ti <ExO <0.32-8C / 3 + 2Ti / 3 Formula (1)
However,
ExO: [amount of Y is assumed to exist all as Y 2 O 3, minus the amount of oxygen in Y 2 O 3 from the total amount of oxygen in the steel (0.27Y)] excess oxygen content in steel
Ti: Ti content in steel C: C content in steel

なお、本酸化物分散強化型鋼では化学組成に応じて、後述する固化成形時に、α相からγ相への完全な変態が生じて変態γ相の単相組織となる場合と、α相からγ相へ完全に変態せずα相のまま残留する残留α相が生じて二相組織となる場合がある。変態γ相は、その後の熱処理により、マルテンサイト相に変態し、炉冷熱処理を施すとα相に変態する。一方、残留α相は、その後に熱処理を施してもα相のままであり、この残留α相中の酸化物分散粒子は、変態により生じる各相中の酸化物分散粒子に比べて微細かつ高密度となる。したがって、固化成形時に残留α相をできるだけ残しておくことで、高温強度の改善に有効な微細かつ高密度の酸化物分散組織を得ることができるといえる。   In this oxide dispersion strengthened steel, depending on the chemical composition, a complete transformation from the α phase to the γ phase occurs during the solidification forming described later, resulting in a single phase structure of the transformed γ phase, and from the α phase to the γ There is a case where a residual α phase that does not completely transform into a phase and remains as an α phase is generated to form a two-phase structure. The transformed γ phase is transformed into a martensite phase by the subsequent heat treatment, and transformed into the α phase when subjected to furnace cooling heat treatment. On the other hand, the residual α phase remains in the α phase even after heat treatment, and the oxide dispersed particles in the residual α phase are finer and higher than the oxide dispersed particles in each phase caused by transformation. It becomes density. Therefore, it can be said that a fine and high-density oxide dispersion structure effective for improving the high-temperature strength can be obtained by leaving as much residual α phase as possible during solidification molding.

上述した残留α相の形成割合は、強力なγ相の生成元素であるC量に依存する。すなわち、マトリックス中のC量を低く抑えると、α相からγ相への変態が減少するため、残留α相の割合が増加する。本実施形態では、酸化物粒子の微細化のためにTiを添加しているが、Tiは炭化物の生成能が強いため、過剰に添加するとTi炭化物を形成してマトリックス中の固溶C量が減少し、残留α相が増加する。   The formation ratio of the residual α-phase described above depends on the amount of C, which is a strong γ-phase-forming element. That is, if the amount of C in the matrix is kept low, the transformation from the α phase to the γ phase decreases, and the ratio of the residual α phase increases. In this embodiment, Ti is added for finer oxide particles. However, since Ti has a strong ability to generate carbides, if added excessively, Ti carbides are formed and the amount of dissolved C in the matrix is reduced. It decreases and the residual α phase increases.

しかしながら、鋼中の過剰酸素量を過度に低減すると、酸化物分散粒子の数密度が減るため、酸化物分散粒子による変態抑制効果が低減し残留α相は減少すると考えられる。一方、Ti酸化物はTi炭化物よりも安定であるため、過剰酸素量を高めると、Ti酸化物の形成によりTi炭化物生成が抑制され、マトリックス中の固溶C量は増加する。このため、α相からγ相への変態が十分に生じ、残留α相は減少することとなる。   However, if the excessive oxygen amount in the steel is excessively reduced, the number density of the oxide dispersed particles is reduced, so that the effect of suppressing the transformation by the oxide dispersed particles is reduced and the residual α phase is reduced. On the other hand, since Ti oxide is more stable than Ti carbide, when the amount of excess oxygen is increased, the formation of Ti carbide is suppressed by the formation of Ti oxide, and the amount of solid solution C in the matrix increases. For this reason, transformation from the α phase to the γ phase occurs sufficiently, and the residual α phase decreases.

以上より、本実施形態では、原料粉末の配合量、特にTiの添加量を調整し鋼中の過剰酸素量が所定の範囲内となるように、すなわち、上記式(1)を満たすように調合することによって、残留α相の割合を高めている。   As described above, in this embodiment, the blending amount of the raw material powder, especially the addition amount of Ti, is adjusted so that the excess oxygen amount in the steel is within a predetermined range, that is, so as to satisfy the above formula (1). By doing so, the proportion of the residual α phase is increased.

つぎに、ステップS1で配合した混合粉末を遊星型ボールミル等に投入し、機械的合金化処理(メカニカルアロイング)を行う(ステップS2)。この機械的合金化処理とは、遊星型ボールミル等に備えられているボールの衝突エネルギーを利用して、粉末同士の折りたたみと圧延を繰り返し起こさせ、合金化する処理である。この機械的合金化処理により、室温条件下であっても、混合粉末が原子オーダーで合金化される。   Next, the mixed powder blended in step S1 is put into a planetary ball mill or the like, and mechanical alloying treatment (mechanical alloying) is performed (step S2). This mechanical alloying treatment is a treatment for alloying by repeatedly causing folding and rolling of powders using the collision energy of balls provided in a planetary ball mill or the like. By this mechanical alloying treatment, the mixed powder is alloyed in atomic order even under room temperature conditions.

つづいて、ステップS2で合金化した混合粉末に対し、ホットプレスや熱間静水圧プレス(Hot Isostatic Pressing)等によって固化成形する(ステップS3)。これにより、混合粉末が固化成形されるため、所定形状の成型体が得られる。   Subsequently, the mixed powder alloyed in step S2 is solidified by hot pressing, hot isostatic pressing, or the like (step S3). Thereby, since the mixed powder is solidified and molded, a molded body having a predetermined shape is obtained.

つぎに、ステップS3で固化成形した成型体に対し、Ac変態点以上の温度で熱間圧延処理を施す(ステップS4)。ここで、Ac変態点とは、酸化物分散強化型鋼を加熱する際に、フェライトがオーステナイトへの変態を完了する温度であり、本実施形態では、約950℃である。上記熱間圧延処理により、変態したオーステナイト相の結晶粒が微細化するとともに、多量の転位が導入され、高歪エネルギーが蓄積する。 Next, with respect to the solidified molded molded in step S3, Ac 3 subjected to hot rolling processes in the above transformation point temperature (step S4). Here, the Ac 3 transformation point is a temperature at which ferrite completes transformation to austenite when heating the oxide dispersion strengthened steel, and is about 950 ° C. in this embodiment. As a result of the hot rolling treatment, the transformed austenite phase crystal grains are refined, and a large amount of dislocations are introduced to accumulate high strain energy.

最後に、ステップS4で熱間圧延処理を施した圧延体を所定の冷却速度範囲内で冷却する(ステップS5)。これにより、上記熱間圧延処理により微細化したオーステナイトの結晶粒界から、フェライト粒の核生成が容易に起こるため、空冷に相当する約10000℃/hという急速な冷却速度でも、フェライト組織が形成される。また、上記熱間圧延処理によって導入された高歪エネルギーを駆動力として、オーステナイトから生成されたフェライト中の結晶粒の成長が促進される。このため、残留α相の存在下であってもフェライト相の結晶粒が粗大化するという効果を奏する。   Finally, the rolled body subjected to the hot rolling process in step S4 is cooled within a predetermined cooling rate range (step S5). As a result, nucleation of ferrite grains easily occurs from the grain boundaries of austenite refined by the hot rolling process, so that a ferrite structure is formed even at a rapid cooling rate of about 10,000 ° C./h corresponding to air cooling. Is done. Moreover, the growth of the crystal grains in the ferrite produced from austenite is promoted by using the high strain energy introduced by the hot rolling process as a driving force. For this reason, even in the presence of the residual α phase, there is an effect that the crystal grains of the ferrite phase become coarse.

なお、本実施形態において、上記ステップS5における冷却速度は、空冷に相当する約10000℃/hという急冷である。しかしながら、この冷却速度に限定されるものではなく、オーステナイトがフェライトへ変態しうる冷却速度範囲内であればよい。ここで、本実施形態における冷却速度範囲を考慮するための指標として、熱間圧延を施していない通常のCr含有量が9.0%の酸化物分散強化型鋼についての連続冷却変態線図を図2に示す。   In the present embodiment, the cooling rate in step S5 is rapid cooling of about 10,000 ° C./h corresponding to air cooling. However, it is not limited to this cooling rate, as long as it is within a cooling rate range in which austenite can be transformed into ferrite. Here, as an index for considering the cooling rate range in the present embodiment, a continuous cooling transformation diagram for an oxide dispersion strengthened steel having a normal Cr content of 9.0% not subjected to hot rolling is shown. It is shown in 2.

図2に示すように、30℃/hの遅い速度で冷却した場合、オーステナイト(γ)は、フェライト(α)へと変態する。一方、120000℃/hの速い速度で冷却した場合、オーステナイト(γ)は、マルテンサイト(m)へと変態する。さらに、3000℃/hで冷却した場合、オーステナイト(γ)は、フェライト(α)およびマルテンサイト(m)の2相へと変態する。   As shown in FIG. 2, when cooled at a slow rate of 30 ° C./h, austenite (γ) transforms into ferrite (α). On the other hand, when cooled at a fast rate of 120,000 ° C./h, austenite (γ) transforms into martensite (m). Furthermore, when cooled at 3000 ° C./h, austenite (γ) transforms into two phases of ferrite (α) and martensite (m).

したがって、冷却速度が遅すぎると、フェライト相は形成するものの、炉冷設備等が必要となる上、オーステナイトからフェライトへの変態が完了するまで冷却するのに多くの時間を要することとなり、大量生産に不向きである。一方、冷却速度が速すぎると、フェライト組織が形成されず、マルテンサイト組織に変態してしまう。したがって、本実施形態では、所定の冷却速度範囲内の冷却速度で冷却することが好ましい。   Therefore, if the cooling rate is too slow, a ferrite phase will be formed, but furnace cooling equipment will be required, and more time will be required for cooling until the transformation from austenite to ferrite is completed. Not suitable for. On the other hand, if the cooling rate is too high, a ferrite structure is not formed, and it transforms into a martensite structure. Therefore, in this embodiment, it is preferable to cool at a cooling rate within a predetermined cooling rate range.

また、上記ステップS4の熱間圧延処理は、一般的に、自動車のボディー等に使われる鋼板において、結晶粒を微細化することにより室温での引張強度を向上させる方法として用いられている。一方、微細粒組織は、高温強度を弱化させるため、通常、高温下における強度を高めるための手段として、熱間圧延処理を施すという着想には至らない。つまり、酸化物分散強化型鋼に対して熱間圧延処理を施すと、フェライト相の結晶粒が粗大化するという事実は、当業者が予測できるものではなく、本願発明者らが実証することによって初めて得られた知見である。   The hot rolling process in step S4 is generally used as a method for improving the tensile strength at room temperature by refining crystal grains in a steel sheet used for an automobile body or the like. On the other hand, since the fine grain structure weakens the high-temperature strength, it usually does not lead to the idea of performing a hot rolling process as a means for increasing the strength at high temperatures. That is, the fact that when the oxide dispersion strengthened steel is hot rolled, the crystal grains of the ferrite phase become coarser is not something that can be predicted by those skilled in the art, and is only demonstrated by the inventors of the present application. This is the knowledge obtained.

以上のような本実施形態の酸化物分散強化型鋼およびその製造方法によれば、γ相に変態することなく残留する残留α相の存在下であるにもかかわらず、粗大な結晶粒からなるフェライト相を生成することができ、高温強度および延性を著しく向上することができる等の効果を奏する。   According to the oxide dispersion strengthened steel of the present embodiment and the method for producing the same as described above, the ferrite composed of coarse crystal grains despite the presence of the residual α phase that remains without transformation into the γ phase. A phase can be generated, and the effects such as high temperature strength and ductility can be significantly improved.

つぎに、本発明に係る酸化物分散強化型鋼およびその製造方法の実施例について説明する。なお、本発明の技術的範囲は、以下の実施例によって示される特徴に限定されるものではない。   Next, examples of the oxide dispersion strengthened steel and the manufacturing method thereof according to the present invention will be described. The technical scope of the present invention is not limited to the features shown by the following examples.

本実施例1では、本発明に係る酸化物分散強化型鋼を製造し、当該酸化物分散強化型鋼が、残留α相の存在下で、3μm以上の粗大な結晶粒からなるフェライト相を有していることを確認する実験を行った。   In Example 1, an oxide dispersion strengthened steel according to the present invention is manufactured, and the oxide dispersion strengthened steel has a ferrite phase composed of coarse crystal grains of 3 μm or more in the presence of a residual α phase. An experiment was conducted to confirm that the

まず、原料粉末を本発明に係る目標組成であるFe−0.14C−9Cr−0.2Ti−2Wi−0.35Yに配合し、遊星ボールミルを用いてAr雰囲気中で機械的合金化処理を48時間行った。本実施例1では、機械的合金化処理に際し、鋼中の過剰酸素量が上記式(1)を満たすように、0.1%とした。 First, raw material powder was formulated into Fe-0.14C-9Cr-0.2Ti- 2Wi-0.35Y 2 O 3 is a target composition of the present invention, the mechanical alloying in an Ar atmosphere using a planetary ball mill The treatment was performed for 48 hours. In Example 1, in the mechanical alloying treatment, the amount of excess oxygen in the steel was set to 0.1% so as to satisfy the above formula (1).

つぎに、作製した合金粉末を高耐食性ステンレス鋼(SUS316)製のカプセルに充填し、真空雰囲気下で1150℃、130MPa、30分間の熱間静水圧プレス処理を行って固化成形した。そして、当該成型体をAc変態点以上の1000℃に加熱し、圧延率70%に設定した上下ローラ間を通して熱間圧延した後、空冷することにより、酸化物分散強化型鋼を製造した。このときの冷却速度は、約10000℃/hであった。 Next, the produced alloy powder was filled into a capsule made of high corrosion resistance stainless steel (SUS316), and was subjected to hot isostatic pressing at 1150 ° C. and 130 MPa for 30 minutes in a vacuum atmosphere to be solidified. The molded body was heated to 1000 ° C. above the Ac 3 transformation point, hot-rolled between upper and lower rollers set at a rolling rate of 70%, and then air-cooled to produce oxide dispersion strengthened steel. The cooling rate at this time was about 10,000 ° C./h.

以上の工程により製造された酸化物分散強化型鋼の試験片(以下、熱間圧延(Hot Rolling)を施したものとして、「HR材」という)を走査型電子顕微鏡(SEM:Scanning Electron Microscope)で観察した。このときのHR材の組織写真を図3に示す。また、HR材の表面10箇所における結晶粒について、ナノインデンターによる硬度測定を行った。図4は、当該硬度測定の結果を示す表である。なお、硬度を測定した位置は、図3において、丸数字の1〜10を付したピラミッド形状の圧痕位置である。   A specimen of oxide dispersion strengthened steel manufactured by the above process (hereinafter referred to as “HR material” as subjected to hot rolling) is scanned with a scanning electron microscope (SEM). Observed. The structure photograph of the HR material at this time is shown in FIG. Moreover, the hardness measurement by the nanoindenter was performed about the crystal grain in 10 surfaces of the HR material. FIG. 4 is a table showing the results of the hardness measurement. In addition, the position which measured hardness is a pyramid-shaped indentation position which attached | subjected the round numerals 1-10 in FIG.

図3に示すように、丸数字の1、3、4、7、9の位置では、表面が比較的平らで、かつ、3〜5μm程度の粗大な結晶粒が存在している。また、図4に示すように、上記各位置での硬度は、1098〜1157mgf/μm程度であり、他の位置より相対的に低いことからもフェライト粒と認められる。一方、丸数字の2、5、6、8、10の位置では、表面がシワシワで微細な組織が形成されており、硬度も比較的高いため、マルテンサイト粒と認められる。 As shown in FIG. 3, at the positions of the circled numbers 1, 3, 4, 7, and 9, the surface is relatively flat and coarse crystal grains of about 3 to 5 μm are present. Further, as shown in FIG. 4, the hardness at each of the above positions is about 1098 to 1157 mgf / μm 2 , and it is recognized as ferrite grains because it is relatively lower than the other positions. On the other hand, at the positions of the round numerals 2, 5, 6, 8, and 10, since the surface is wrinkled and a fine structure is formed and the hardness is relatively high, it is recognized as martensite grains.

一方、比較例1として、上述した本実施例1の製造工程に従って熱間圧延した後、焼きならし(1050℃×1h)、水中急冷、および焼戻し(800℃×1h)を行い、新たな試験片を用意した。この比較例1による試験片を以下、焼きならし(Normalizing)および焼き戻し(Tempering)を施したものとして「NT材」という。   On the other hand, as Comparative Example 1, after hot rolling in accordance with the manufacturing process of Example 1 described above, normalization (1050 ° C. × 1 h), quenching in water, and tempering (800 ° C. × 1 h) were performed, and a new test was performed. A piece was prepared. The test piece according to Comparative Example 1 is hereinafter referred to as “NT material” as subjected to normalizing and tempering.

このNT材の組織写真を図5に示す。NT材では、いったん焼ならしを施すと、熱間圧延で導入された高歪エネルギーは消失し、通常の残留α相とマルテンサイトが形成される。また、図5に示すように、NT材で認められる残留α相と同様のものが、図3に示したHR材にも存在していることから、図3で認められるフェライト粒から図5の残留α相を除いた組織が、熱間圧延後の冷却中に形成された粗大なフェライト相に相当する。   A structural photograph of this NT material is shown in FIG. In the NT material, once normalization is performed, the high strain energy introduced by hot rolling disappears, and normal residual α-phase and martensite are formed. Further, as shown in FIG. 5, since the same residual α phase observed in the NT material is also present in the HR material shown in FIG. 3, the ferrite grains observed in FIG. The structure excluding the residual α phase corresponds to a coarse ferrite phase formed during cooling after hot rolling.

また、NT材およびHR材について、電子線後方散乱回折(EBSD)によって結晶粒界の方位差分布を測定した。その結果を図6に示す。図6(a)に示すように、比較例1のNT材では、60°において顕著にピークが出現している。ここで、NT材は、上記のとおり、熱間圧延後に焼きならしをしたものであるから、フェライトからオーステナイトへの相変態が行われている。また、焼きならし後の水中急冷によって、マルテンサイト主体の組織になっている。このため、60°のピークが、マルテンサイトに対応しているといえる。一方、図6(b)に示すように、本実施例1のHR材では、60°のピークが著しく低減していることからも、マルテンサイト相よりもフェライト相が主体の組織であることが確認できる。   Further, for the NT material and the HR material, the orientation difference distribution of the grain boundaries was measured by electron beam backscatter diffraction (EBSD). The result is shown in FIG. As shown to Fig.6 (a), in the NT material of the comparative example 1, the peak has appeared notably at 60 degrees. Here, as described above, the NT material is subjected to normalization after hot rolling, and therefore, a phase transformation from ferrite to austenite is performed. In addition, the martensite-based organization has been formed by quenching in water after normalization. For this reason, it can be said that the 60 ° peak corresponds to martensite. On the other hand, as shown in FIG. 6 (b), in the HR material of Example 1, the 60 ° peak is remarkably reduced, and therefore, the structure is mainly composed of the ferrite phase rather than the martensite phase. I can confirm.

以上の本実施例1によれば、本発明に係る製造方法により得られた酸化物分散強化型鋼は、残留α相の存在下で、3μm以上の粗大な結晶粒からなるフェライト相を有していることが示された。   According to the above Example 1, the oxide dispersion strengthened steel obtained by the manufacturing method according to the present invention has a ferrite phase composed of coarse crystal grains of 3 μm or more in the presence of the residual α phase. It was shown that

本実施例2では、本発明に係る酸化物分散強化型鋼について、高温強度および延性を確認する実験を行った。   In Example 2, an experiment was conducted to confirm the high temperature strength and ductility of the oxide dispersion strengthened steel according to the present invention.

本実施例2では、まず、上述したHR材およびNT材の他に、上述した実施例1の製造工程に従って熱間圧延した後、焼き戻し(800℃×1h)のみを行い、新たな試験片(以下、焼き戻し(Tempering)のみを施したものとして「T材」という)を用意した。そして、これらHR材、T材およびNT材について、700℃の温度下で10−3−1の歪速度で引張試験を行った。その結果を図7に示す。 In this Example 2, first, in addition to the above-described HR material and NT material, after hot rolling according to the manufacturing process of Example 1 described above, only tempering (800 ° C. × 1 h) was performed, and a new test piece was obtained. (Hereinafter referred to as “T material” as having been subjected only to tempering). And about these HR material, T material, and NT material, the tension test was done at the strain rate of 10 <-3> s <-1 > under the temperature of 700 degreeC. The result is shown in FIG.

図7に示すように、HR材は引張強さのみならず、破断伸びも最も大きいことが確認された。これに対し、NT材では、焼きならし処理により、フェライトがオーステナイトへ変態し、当該オーステナイトが水中急冷によりマルテンサイトに変態したため、高温強度および延性の双方において低下している。一方、T材では、熱間圧延後、焼き戻しをしたが、フェライトからオーステナイトへの相変態が行われていないため、HR材よりは劣るものの、高温強度および延性は比較的大きな値を示すことが確認された。   As shown in FIG. 7, it was confirmed that the HR material had the largest not only tensile strength but also breaking elongation. On the other hand, in the NT material, ferrite is transformed into austenite by the normalizing treatment, and the austenite is transformed into martensite by quenching in water, so that both the high temperature strength and ductility are lowered. On the other hand, the T material was tempered after hot rolling, but since the phase transformation from ferrite to austenite was not performed, it was inferior to the HR material, but the high temperature strength and ductility showed relatively large values. Was confirmed.

一方、比較例2として、従来の酸化物分散強化型鋼について、上記と同様の条件下で引張試験を行った。なお、従来の酸化物分散強化型鋼としては、以下に示す5つの鋼材を用意した。
(1)9Cr−ODS(S. Ohtsuka, et al. J. Nucl. Mater. 329-333 (2004) 372-376.)
組成:9Cr-0.13C-2W-0.2Ti-0.35Y2O3
製法:熱間押出し→焼きならし(1050℃×1h)→焼戻し(800℃×1h)
(2)ODS−Eurofer(P. Olier, et al. J. Nucl. Mater. 386-388 (2009) 561-563.)
組成:9Cr-0.076C-1.2W-0.13Si-0.33Mn-0.07Ni-0.18V-0.11Ta-0.2Y2O3
製法:熱間押出し→冷間圧延→焼ならし(1100℃×0.5h)→焼戻し(780℃×2h)
(3)14YWT(D. A. Mclintock, et al. J. Nucl. Mater. 386-388 (2009) 307-311.)
組成:14Cr-0.05C-3W-0.4Ti-0.3Y2O3
製法:熱間押出し(850℃)
(4)12YWT(D. A. Mclintock, et al. J. Nucl. Mater. 386-388 (2009) 307-311.)
組成:12Cr-0.05C-3W-0.4Ti-0.25Y2O3
製法:熱間押出し(1150℃)
(5)PM2000(R. L. Klueh, et al. J. Nucl. Mater. 341 (2005) 103-114.)
組成:19Cr-0.01C-5Al-0.45Ti-0.04W -0.47Y2O3
製法:熱間押出し→熱間圧延→冷間圧延→再結晶熱処理
On the other hand, as Comparative Example 2, a conventional oxide dispersion strengthened steel was subjected to a tensile test under the same conditions as described above. In addition, as conventional oxide dispersion strengthened steel, the following five steel materials were prepared.
(1) 9Cr-ODS (S. Ohtsuka, et al. J. Nucl. Mater. 329-333 (2004) 372-376.)
Composition: 9Cr-0.13C-2W-0.2Ti-0.35Y 2 O 3
Manufacturing method: Hot extrusion → Normalizing (1050 ℃ × 1h) → Tempering (800 ℃ × 1h)
(2) ODS-Eurofer (P. Olier, et al. J. Nucl. Mater. 386-388 (2009) 561-563.)
Composition: 9Cr-0.076C-1.2W-0.13Si-0.33Mn-0.07Ni-0.18V-0.11Ta-0.2Y 2 O 3
Manufacturing method: Hot extrusion → Cold rolling → Normalization (1100 ℃ × 0.5h) → Tempering (780 ℃ × 2h)
(3) 14YWT (DA Mclintock, et al. J. Nucl. Mater. 386-388 (2009) 307-311.)
Composition: 14Cr-0.05C-3W-0.4Ti-0.3Y 2 O 3
Manufacturing method: Hot extrusion (850 ℃)
(4) 12YWT (DA Mclintock, et al. J. Nucl. Mater. 386-388 (2009) 307-311.)
Composition: 12Cr-0.05C-3W-0.4Ti-0.25Y 2 O 3
Manufacturing method: Hot extrusion (1150 ℃)
(5) PM2000 (RL Klueh, et al. J. Nucl. Mater. 341 (2005) 103-114.)
Composition: 19Cr-0.01C-5Al-0.45Ti-0.04W -0.47Y 2 O 3
Manufacturing method: Hot extrusion → Hot rolling → Cold rolling → Recrystallization heat treatment

図8および図9は、それぞれ上記従来鋼材に関する700℃での引張強さおよび破断伸びの測定結果を図7の結果と比較したものである。また、図10は、本実施例2における実験結果を整理したものである。図8から図10に示すように、700℃での引張強さおよび破断伸びを比較すると、HR材およびT材は、他のマルテンサイト系酸化物分散強化型鋼であるNT材、9Cr−ODS、およびODS−Euroferよりも大きな引張強さおよび破断伸びを示している。また、フェライト系の酸化物分散強化型鋼として市販されているPM2000は、固化成型後に再結晶熱処理を施しているにも関わらず、HR材およびT材よりも小さい値を示している。   FIG. 8 and FIG. 9 compare the measurement results of the tensile strength and breaking elongation at 700 ° C. for the conventional steel materials with the results of FIG. FIG. 10 is a summary of the experimental results in the second embodiment. As shown in FIG. 8 to FIG. 10, when comparing the tensile strength and breaking elongation at 700 ° C., the HR material and T material are NT material, 9Cr-ODS, which is another martensitic oxide dispersion strengthened steel, And higher tensile strength and elongation at break than ODS-Eurofer. Further, PM2000, which is commercially available as a ferritic oxide dispersion strengthened steel, shows a value smaller than that of the HR material and the T material despite being subjected to recrystallization heat treatment after solidification molding.

一方、図8に示すように、フェライト系の酸化物分散強化型鋼である14YWTおよび12YWTは、HR材およびT材よりも高い引張強さを示している。しかし、上記のとおり、14YWTおよび12YWTは、メカニカルアロイング粉末を熱間押出しによって固化成型したままの鋼材である。このため、押出し方向には高強度であるが、当該方向と直角方向では強度が劣るという性質がある。また、図9に示すように、破断伸びについては、押出し方向であってもHR材の半分以下であり、極めて低いという欠点がある。   On the other hand, as shown in FIG. 8, 14YWT and 12YWT, which are ferritic oxide dispersion strengthened steels, exhibit higher tensile strength than HR and T materials. However, as described above, 14YWT and 12YWT are steel materials that have been solidified and molded by hot extrusion of mechanical alloying powder. For this reason, although it is high intensity | strength in an extrusion direction, there exists a property that intensity | strength is inferior in the direction orthogonal to the said direction. Further, as shown in FIG. 9, the elongation at break is less than half of the HR material even in the extrusion direction, and has a disadvantage that it is extremely low.

以上の本実施例2によれば、本発明に係る酸化物分散強化型鋼としてのHR材およびT材は、高温強度が改善されているのみならず、優れた破断伸び、延性を有することが示された。   According to the above Example 2, the HR material and the T material as the oxide dispersion strengthened steel according to the present invention have not only improved high-temperature strength but also excellent break elongation and ductility. It was done.

なお、本発明に係る酸化物分散強化型鋼およびその製造方法は、前述した実施形態および実施例に限定されるものではなく、適宜変更することができる。   The oxide dispersion strengthened steel according to the present invention and the manufacturing method thereof are not limited to the above-described embodiments and examples, and can be appropriately changed.

本発明に係る酸化物分散強化型鋼は、高温での強度および優れた延性が求められる材料として利用でき、例えば、高速増殖炉燃料要素用材料、核融合炉第一壁材料、火力発電用材料、高温加熱炉材料等に好適な材料である。   The oxide dispersion strengthened steel according to the present invention can be used as a material that requires strength at high temperature and excellent ductility, such as a fast breeder reactor fuel element material, a fusion reactor first wall material, a thermal power generation material, It is a material suitable for high-temperature furnace materials and the like.

Claims (2)

残留α相の存在下で、3μm以上の粗大な結晶粒からなるフェライト相を有する酸化物分散強化型鋼。   An oxide dispersion strengthened steel having a ferrite phase composed of coarse crystal grains of 3 μm or more in the presence of a residual α phase. 質量%で、Cが0.05〜0.25%、Crが8.0〜12.0%、Wが0.1〜4.0%、Tiが0.1〜1.0%、Yが0.1〜0.5%、残部がFeおよび不可避不純物からなる原料粉末を前記鋼中の過剰酸素量が所定の範囲内となるように調合し、機械的合金化処理してから固化し、Ac変態点以上の温度で熱間圧延した後、所定の冷却速度範囲内で冷却する酸化物分散強化型鋼の製造方法。 % By mass, C is 0.05 to 0.25%, Cr is 8.0 to 12.0%, W is 0.1 to 4.0%, Ti is 0.1 to 1.0%, Y 2 A raw material powder composed of 0.1 to 0.5% of O 3 and the balance of Fe and inevitable impurities is prepared so that the excess oxygen amount in the steel is within a predetermined range, and after mechanical alloying treatment is performed. A method for producing oxide dispersion strengthened steel, which is solidified and hot-rolled at a temperature equal to or higher than the Ac 3 transformation point and then cooled within a predetermined cooling rate range.
JP2010212153A 2010-09-22 2010-09-22 Oxide dispersion strengthened steel and manufacturing method thereof Expired - Fee Related JP5636532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010212153A JP5636532B2 (en) 2010-09-22 2010-09-22 Oxide dispersion strengthened steel and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010212153A JP5636532B2 (en) 2010-09-22 2010-09-22 Oxide dispersion strengthened steel and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012067344A true JP2012067344A (en) 2012-04-05
JP5636532B2 JP5636532B2 (en) 2014-12-10

Family

ID=46164950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010212153A Expired - Fee Related JP5636532B2 (en) 2010-09-22 2010-09-22 Oxide dispersion strengthened steel and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5636532B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103966500A (en) * 2014-05-22 2014-08-06 北京航空航天大学 ODS (ozone depleting substance) high temperature alloy added with composite oxide nanoparticles and preparation method thereof
JP2014198900A (en) * 2013-03-29 2014-10-23 コリア アトミック エナジー リサーチ インスティチュート Ferritic oxide dispersion reinforced alloy and manufacturing method therefor
JP2015000992A (en) * 2013-06-13 2015-01-05 独立行政法人日本原子力研究開発機構 Oxide dispersion strengthened tempered martensitic steel having excellent corrosion resistance, toughness and high-temperature mechanical properties and method of producing the same
CN110405197A (en) * 2019-08-28 2019-11-05 燕山大学 A kind of laser cladding powder and preparation method thereof and cladding layer and preparation method thereof
CN114622138A (en) * 2022-03-03 2022-06-14 上海大学 A kind of11B-doped oxide dispersion strengthened alloy, preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004068121A (en) * 2002-08-08 2004-03-04 Japan Nuclear Cycle Development Inst States Of Projects Method for manufacturing ferritic oxide dispersion strengthened steel having coarse grain structure and excellent high temperature creep strength
JP2005076087A (en) * 2003-09-01 2005-03-24 Japan Nuclear Cycle Development Inst States Of Projects METHOD OF MANUFACTURING OXIDE DISPERSION-STRENGTHENED MARTENSITIC STEEL HAVING RESIDUAL alpha-GRAIN AND EXCELLENT HIGH-TEMPERATURE STRENGTH

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004068121A (en) * 2002-08-08 2004-03-04 Japan Nuclear Cycle Development Inst States Of Projects Method for manufacturing ferritic oxide dispersion strengthened steel having coarse grain structure and excellent high temperature creep strength
JP2005076087A (en) * 2003-09-01 2005-03-24 Japan Nuclear Cycle Development Inst States Of Projects METHOD OF MANUFACTURING OXIDE DISPERSION-STRENGTHENED MARTENSITIC STEEL HAVING RESIDUAL alpha-GRAIN AND EXCELLENT HIGH-TEMPERATURE STRENGTH

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014198900A (en) * 2013-03-29 2014-10-23 コリア アトミック エナジー リサーチ インスティチュート Ferritic oxide dispersion reinforced alloy and manufacturing method therefor
JP2015000992A (en) * 2013-06-13 2015-01-05 独立行政法人日本原子力研究開発機構 Oxide dispersion strengthened tempered martensitic steel having excellent corrosion resistance, toughness and high-temperature mechanical properties and method of producing the same
CN103966500A (en) * 2014-05-22 2014-08-06 北京航空航天大学 ODS (ozone depleting substance) high temperature alloy added with composite oxide nanoparticles and preparation method thereof
CN103966500B (en) * 2014-05-22 2017-11-14 北京航空航天大学 A kind of ODS high temperature alloys for adding composite oxides nano particle and preparation method thereof
CN110405197A (en) * 2019-08-28 2019-11-05 燕山大学 A kind of laser cladding powder and preparation method thereof and cladding layer and preparation method thereof
CN114622138A (en) * 2022-03-03 2022-06-14 上海大学 A kind of11B-doped oxide dispersion strengthened alloy, preparation method and application thereof
CN114622138B (en) * 2022-03-03 2023-03-31 上海大学 A kind of 11 B-doped oxide dispersion strengthened alloy, preparation method and application thereof

Also Published As

Publication number Publication date
JP5636532B2 (en) 2014-12-10

Similar Documents

Publication Publication Date Title
US20200056272A1 (en) Twinning/transformation induced plasticity high entropy steels and method of manufacturing the same
CN112877606B (en) Ultrahigh-strength full-austenite low-density steel and preparation method thereof
JP3689009B2 (en) High corrosion resistance high strength austenitic stainless steel and its manufacturing method
JP6584961B2 (en) Copper-rich nanocluster reinforced ultra high strength ferritic steel and method for producing the same
Xu et al. Cold deformation behavior of the Ti-15Mo-3Al-2.7 Nb-0.2 Si alloy and its effect on α precipitation and tensile properties in aging treatment
US11078554B2 (en) Lightweight steel and steel sheet with enhanced elastic modulus, and manufacturing method thereof
JP4712838B2 (en) High strength cold-rolled steel sheet with excellent hydrogen embrittlement resistance and workability
CN111826550B (en) Moderate-strength nitric acid corrosion resistant titanium alloy
JP2013503265A (en) Manufacturing method of iron-chromium alloy
WO2020078472A1 (en) 800 mpa-grade hot-stamped axle housing steel and manufacturing method therefor
JP5082112B2 (en) Ni-base alloy material excellent in strength, workability and creep characteristics at room temperature, and its production method
WO2023093464A1 (en) High-entropy austenitic stainless steel, and preparation method therefor
CN112063883A (en) Aluminum bronze and preparation method thereof
JP5636532B2 (en) Oxide dispersion strengthened steel and manufacturing method thereof
TWI789871B (en) Manufacturing method of Wostian iron-based stainless steel strip
WO2014027677A1 (en) Resource-saving titanium alloy member having excellent strength and toughness, and method for manufacturing same
US9493855B2 (en) Class of warm forming advanced high strength steel
CN114990382B (en) Ultra-low-gap phase transition induced plasticity metastable beta titanium alloy and preparation method thereof
CN112522634B (en) High-strength high-entropy alloy and preparation method thereof
KR101630403B1 (en) Manufacture method of nuclear fuel component made of zirconium applied multi-stage cold rolling
Fu et al. Enhancing mechanical properties of dual-phase Al0. 5CoCrFeNiSi0. 25 high entropy alloy via thermomechanical treatment
JP2023501564A (en) Austenitic stainless steel containing a large amount of uniformly distributed nano-sized precipitates and method for producing the same
CN105839027A (en) Nickel-based corrosion-resistant alloy and manufacturing method thereof
CN109321843B (en) High-strength high-plasticity cold-rolled steel plate and manufacturing method thereof
CN114480984A (en) Ti alloyed low-density high-strength steel and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140905

R150 Certificate of patent or registration of utility model

Ref document number: 5636532

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees