JPS63317628A - Manufacture of high strength stainless steel having superior bulging strength and toughness - Google Patents

Manufacture of high strength stainless steel having superior bulging strength and toughness

Info

Publication number
JPS63317628A
JPS63317628A JP15344387A JP15344387A JPS63317628A JP S63317628 A JPS63317628 A JP S63317628A JP 15344387 A JP15344387 A JP 15344387A JP 15344387 A JP15344387 A JP 15344387A JP S63317628 A JPS63317628 A JP S63317628A
Authority
JP
Japan
Prior art keywords
less
strength
stainless steel
steel
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15344387A
Other languages
Japanese (ja)
Other versions
JPH0826404B2 (en
Inventor
Teruo Tanaka
照夫 田中
Sadao Hirotsu
廣津 貞雄
Sadayuki Nakamura
定幸 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP62153443A priority Critical patent/JPH0826404B2/en
Publication of JPS63317628A publication Critical patent/JPS63317628A/en
Publication of JPH0826404B2 publication Critical patent/JPH0826404B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a high strength stainless steel having superior bulging strength and toughness by cold working and aging an austenitic stainless steel having a specified compsn. under specified conditions. CONSTITUTION:A steel consisting of, by weight, <=0.10% C, >1.0-3.0% Si, <=2.5% Mn, 4.0-8.0% Ni, 12.0-18.0$ Cr, 1.0-3.5% Cu, <=0.15% N (C+N>=0.10%), <=0.008% S and the balance Fe with inevitable impurities is subjected to soln. heat treatment. The resulting stainless steel having an austenite structure is cold worked at about 70% working rate so as to regulate the amt. of martensite produced by the working to 40-80vol.% and the steel is aged at 400-600 deg.C for a short time of 0.3-5min. Thus, a high strength stainless steel having >=180kg/mm<2> strength is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、 180kg/am”以上場合によっては2
00’g/m−”以上の高強度を有しながら、(I!れ
た張り出し強度および靭性を、有し1割れ発生応力の高
い高強力ステンレス鋼の製造法に関する。本発明法によ
って得られるステンレス鋼は、耐食性と共に高いぼね特
性の要求されるような仮ばね、コイルばね、更には可及
的薄くしても高強度を維持することが必要な半導体ウェ
ハーのスライス用のブレード基板材などに好適に適用で
きるものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention provides a method for carrying out a
The present invention relates to a method for producing a high-strength stainless steel that has a high strength of 00'g/m-'' or more, has a high overhang strength and toughness, and has a high 1-cracking stress. Obtained by the method of the present invention. Stainless steel is used for temporary springs and coil springs that require both corrosion resistance and high spring characteristics, as well as blade substrate materials for semiconductor wafer slicing that need to maintain high strength even when made as thin as possible. It can be suitably applied to.

〔従来の技術〕[Conventional technology]

従来、ステンレス鋼をばね材に使用したり、ブレード基
板材に適用する場合には、マルテンサイト系ステンレス
鋼、加工硬化型オーステナイト系ステンレス鋼または析
出硬化型ステンレス鋼などが使用されてきた。
Conventionally, when stainless steel is used as a spring material or as a blade substrate material, martensitic stainless steel, work hardening austenitic stainless steel, precipitation hardening stainless steel, etc. have been used.

マルテンサイト系ステンレス鋼は1周知のように高温の
オーステナイト状態から3、冷してマルテンサイト変態
させることによって硬化させたもので、 5tlS41
0Jl、 420J2.44OA、Cなどノw4$1が
これにあたる、これらの鋼は焼き入れ焼き戻しによりか
なりの高強度と靭性が得られる。しかし大きな板でかつ
薄いものでは、熱処理により変形し目的の形状のものを
得ることは非常に困難である。
As is well known, martensitic stainless steel is hardened by changing from a high-temperature austenitic state to martensitic transformation by cooling.
This includes steels such as 0Jl, 420J2.44OA, and C. These steels can be quenched and tempered to obtain considerably high strength and toughness. However, if the plate is large and thin, it will be deformed by heat treatment and it will be very difficult to obtain the desired shape.

このため、そのような用途には加工硬化型オーステナイ
ト系ステンレス鋼が使用されるのが通常である。この鋼
は冷間加工によりオーステナイト相とマルテンサイト相
の2相状態となるため1強度と延性に優れ、かつ耐食性
にも優れている。これらは、 5US301.5US3
04などに代表される。その強度は冷間加工量に依存す
るので、高強度を得るためには冷間加工量を大きくする
必要がある。この場合延性が低下する。
For this reason, work-hardening austenitic stainless steels are typically used for such applications. This steel has two phases, an austenite phase and a martensite phase, through cold working, so it has excellent strength and ductility, as well as excellent corrosion resistance. These are 5US301.5US3
Representative examples include 04. Since the strength depends on the amount of cold working, it is necessary to increase the amount of cold working in order to obtain high strength. In this case, ductility decreases.

析出硬化型ステンレス鋼は、析出硬化型元素を添加し1
時効処理により硬化させるものである。
Precipitation hardening stainless steel is made by adding precipitation hardening elements.
It is hardened by aging treatment.

代表的なものには析出元素としてCuを添加した5II
S630.  A Iを添加し5US631があるが、
前者は固溶化処理後時効処理により硬化させたもので1
強度は高々140kg/ms”である、一方、後者は固
溶化処理後準安定オーステナイト相を冷間加工などの1
7I処理で一部または全部をマルテンサイト相に変態さ
せその後時効処理することにより、N%3AI全3AI
合物を析出させて硬化させるものでありかなり高強度の
ものが得られる。 5IIS631のオーステナイト相
をマルテンサイト相に変態させ1時効処理する方法とし
てはTH1050,RH950,CI法などの周知の処
理法がある。前2者の方法により得られる強度は高々1
50kg/as”であるが、 CI!処理では190k
g/am”程度のものが得られる。 CH処理はまず前
処理として、加工硬化型オーステナイト系ステンレス鋼
の場合と同様に冷間加工を施してオーステナイト相とマ
ルテンサイト相の2相にし、その後時効処理を施すもの
である。この時効処理により、マルテンサイト相にN 
i s A 12金属間化合物が析出して前述のような
強度となる。
A typical example is 5II with Cu added as a precipitating element.
S630. There is 5US631 with the addition of AI,
The former is hardened by solution treatment followed by aging treatment.
The strength is at most 140 kg/ms. On the other hand, in the latter case, after solid solution treatment, the metastable austenite phase is
By partially or completely transforming into a martensitic phase by 7I treatment and then aging, N%3AI
The compound is precipitated and hardened, resulting in a material with considerably high strength. As a method for transforming the austenite phase of 5IIS631 into a martensite phase and subjecting it to one-time aging treatment, there are well-known treatment methods such as TH1050, RH950, and CI methods. The strength obtained by the first two methods is at most 1
50kg/as”, but with CI! processing it is 190k
As a pretreatment, CH treatment first performs cold working to form two phases, an austenite phase and a martensite phase, as in the case of work-hardening austenitic stainless steel, and then undergoes aging. This aging treatment adds N to the martensite phase.
is A 12 Intermetallic compounds precipitate and the strength as described above is obtained.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

例えばシリコン単結晶を切断してウェハーを製造するた
めの切断刃は、板厚が0.05〜0.2mmのディスク
基板の内縁にダイヤモンド粉を被着させ゛たInner
 diameter saw blade (通称 1
0 Saw Blade)が使用される。このブレード
基板は平tH度が良好であることはもとより、ウェハー
の切断ロスを出来るだけ少なくするために、厚みが薄く
且つ高強度のものでなければならない、そして切断機に
セツトされる場合には強く張り出されるので十分な張り
出し強度(高い割れ発生応力)を有することが必要であ
る。つまり、高い強度と高い張り出し強度を有した靭性
に優れた材料であることが必要である。このような要求
を満足するには200kg/ms”級の抗張力を有しな
がら且つ割れ発生応力の高い靭性の優れたステンレス鋼
であること、そして精密な寸法と平坦度をもつ薄板に加
工ができることが望まれるが1従来のステンレス鋼では
このような過酷な要求を同時に満足することはできなか
った。
For example, the cutting blade for manufacturing wafers by cutting silicon single crystals is an inner cutter with diamond powder coated on the inner edge of a disk substrate with a thickness of 0.05 to 0.2 mm.
Diameter saw blade (commonly known as 1
0 Saw Blade) is used. This blade substrate must not only have good flatness, but also be thin and strong in order to minimize cutting loss of the wafer, and when set in a cutting machine, Since it is strongly stretched out, it is necessary to have sufficient stretching strength (high cracking stress). In other words, it is necessary to use a material that has high strength, high overhang strength, and excellent toughness. In order to meet these requirements, the stainless steel must have a tensile strength of 200 kg/ms'' class, be tough enough to withstand cracking stress, and be able to be processed into thin plates with precise dimensions and flatness. However, conventional stainless steels have not been able to simultaneously satisfy these severe demands.

例えば、マルテンサイト系ステンレス鋼は焼き入れの際
に高温(950〜1100℃)に加熱され、冷却過程で
マルテンサイト変態も急激に生じるので。
For example, martensitic stainless steel is heated to a high temperature (950 to 1100°C) during quenching, and martensitic transformation occurs rapidly during the cooling process.

形状を損ないやすい、これはプレスクエンチのような特
殊熱処理によって防止することが可能であるが費用がか
かる。また薄板でかつ広幅鋼帯での熱処理はほとんど不
可能である。更に、 180kg/as”前後の強度に
すると張り出し加工はほどんど不可能となる。
It is easy to lose the shape, which can be prevented by special heat treatment such as press quenching, but it is expensive. Furthermore, it is almost impossible to heat treat thin and wide steel strips. Furthermore, if the strength is around 180 kg/as'', overhanging becomes almost impossible.

オーステナイト系ステンレス鋼の場合は高強度を得るた
めには冷間加工量を大きくしなければならない、しかし
、冷間加工によって高強度にすると延性が著しく阻害さ
れてしまう、また、製品が鋼帯や大板の場合、高度な冷
間加工によってそり等が発生し形状も損なわれることが
多い。
In the case of austenitic stainless steel, the amount of cold working must be increased in order to obtain high strength. However, increasing the strength by cold working significantly impairs ductility, and the product is In the case of large plates, advanced cold working often causes warping and damage to the shape.

析出硬化型ステンレス向の場合には、 5LIS630
では十分な高強度が得られない、 5US631は酸素
や窒素との親和力の大きいA1を0.75〜1.50%
添加しているので製鋼時にアルミナ系の非金属介在物を
形成したり、鋳造時にANNの凝集した介在物を形成し
、製品の表面肌が荒れたり、靭性や延性が阻害される場
合が多々ある。また薄板では、張り出し応力負荷時に介
在物を起点に低応力で割れるという現象が生じる。また
張り出し強度を必要とする部材への使用は本質的に不利
であった。そして析出硬化型ステンレス鋼は製品に加工
後に熱処理を施すことにより本来の特性が得られるのが
一般的であるが、加工後に熱処理を施すことにより形状
がくずれたり、費用も嵩むという問題があった。
For precipitation hardening stainless steel, 5LIS630
5US631 contains 0.75 to 1.50% A1, which has a high affinity for oxygen and nitrogen.
Because it is added, alumina-based nonmetallic inclusions are formed during steel manufacturing, and ANN agglomerated inclusions are formed during casting, which often results in rough surface texture and impaired toughness and ductility of the product. . In addition, when a thin plate is loaded with overhang stress, a phenomenon occurs in which it cracks at a low stress starting from an inclusion. In addition, it was inherently disadvantageous to use it for members that required tensile strength. Generally, the original properties of precipitation hardening stainless steel can be obtained by applying heat treatment to the product after processing, but there are problems in that heat treatment after processing can cause the product to lose its shape and increase costs. .

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、マルテンサイト相誘発および強化元素である
Siを1.0%を越え3.0%以下と従来鋼より高くす
るとともに、マルテンサイト相の強化元素であるC、N
を合計で0.10%以上にして、Slの添加により軽度
の冷間加工で固溶化後の準安定オーステナイト相からマ
ルテンサイト相が容易に誘発されるようにすると共に、
その誘発されたマルテンサイト相がSL、C,Hにより
硬くされて。
The present invention has a higher content of Si, which is a martensitic phase inducing and strengthening element, exceeding 1.0% and 3.0% or less than conventional steel, and C and N, which are martensitic phase strengthening elements.
is 0.10% or more in total, so that the martensite phase can be easily induced from the metastable austenite phase after solid solution formation by mild cold working by adding Sl, and
The induced martensitic phase is hardened by SL, C, and H.

冷間加工で形状1強度、延性に富んだ製品が得られるよ
うにし、そして析出硬化元素としては1時効硬化に対し
てSiと相互作用を有し介在物の心配のないCuを添加
して5時効処理を追加することにより一層高強度を発現
したものである。また張り出し加工における加工高さあ
るいは張り出し強度が1時効処理前の冷間加工量および
マルテンサイ)Iに影響されることを知見し、冷間加工
量と加工によって生ずるマルテンサイト量をバランスさ
せると共に、内在する非金属介在物を最少限にとどめる
ことにより、従来鋼では困難であった高強度でかつ張り
出し性のすぐれたステンレス鋼を得たものである。しか
もこの場合3時効処理は従来鋼のごとく長時間の時効処
理を施すことなく短時間処理で高強度が得られる。この
短時間時効でよいことは調帯ままで連続時効処理ができ
ることを意味する。
A product with shape 1 strength and ductility can be obtained by cold working, and as a precipitation hardening element, Cu is added which interacts with Si and does not cause inclusions during age hardening. By adding an aging treatment, even higher strength has been achieved. We also discovered that the working height or overhang strength in overhang processing is affected by the amount of cold work before aging and the amount of martensite (I). By minimizing non-metallic inclusions, we have obtained a stainless steel with high strength and excellent stretchability, which was difficult to achieve with conventional steels. Moreover, in this case, high strength can be obtained in the 3-aging treatment in a short period of time without requiring a long-term aging treatment unlike conventional steels. The fact that this short-time aging process is sufficient means that continuous aging treatment can be performed while the belt is still in place.

すなわち本発明は1重量%において、c:o、t。That is, the present invention has c:o,t at 1% by weight.

%以下、Si:1.O%を越え3.0%以下、Mn:2
.5%以下、Ni:4.0〜8.0%、  Cr : 
12.0−18.0%。
% or less, Si:1. More than 0% and less than 3.0%, Mn: 2
.. 5% or less, Ni: 4.0-8.0%, Cr:
12.0-18.0%.

、Cu : 1.0〜3.5%、N:o、ts%以下、
  S :0.008%以下、CとNの合計が0.10
%以上、必要に応して+  MoまたはWの少なくとも
一種を2.0%以下の匿で更に含有せしめ、残部がFe
および不可避的に混入してくる不純物よりなり、溶体化
処理状態でオーステナイトmtaを呈するオーステナイ
ト系ステンレス鋼を、溶体化処理後において、 40〜
80容量%の加工誘起マルテンサイ)Iが生成するに十
分な冷間加工率で冷間加工し9次いで、 400〜60
0℃で063〜5分の時効処理することがらなる張り出
し強度および靭性に優れ且つ180kg/am”以上、
場合によっては200kg/mm2以上の高強度を有す
るステンレス鋼の製造方法を提供するものである。前記
の鋼の化学成分範囲において、一層好ましくは、Si:
2.0〜3.0%、Ni:5.0〜7.0%、Cu:1
.5〜2.5%、  N :o、o4〜0.1%以下、
IMn:0.5%未満、  S:0.004%以下とす
る。
, Cu: 1.0 to 3.5%, N: o, ts% or less,
S: 0.008% or less, total of C and N is 0.10
% or more, if necessary + at least one of Mo or W is further contained in an amount of 2.0% or less, and the remainder is Fe.
After solution treatment, austenitic stainless steel consisting of unavoidably mixed impurities and exhibiting austenitic mta in the solution treatment state is 40~
Cold working at a cold working rate sufficient to produce 80% by volume of deformation-induced martensitic acid (I) 400-60
It has excellent tensile strength and toughness and has a weight of 180 kg/am” or more, which can be aged at 0°C for 0.63 to 5 minutes.
The present invention provides a method for manufacturing stainless steel having a high strength of 200 kg/mm2 or more in some cases. In the chemical composition range of the steel, more preferably Si:
2.0-3.0%, Ni: 5.0-7.0%, Cu: 1
.. 5-2.5%, N: o, o4-0.1% or less,
IMn: less than 0.5%, S: 0.004% or less.

〔発明の詳細な 説明鋼は、前記の範囲の組成を採用し 1体化処理状態
でオーステナイト相とし、これを冷間加工状態で実質的
に40〜80%のマルテンサイト組織として、従来の加
工硬化型オーステナイト系ステンレス鋼や析出硬化型ス
テンレス鋼よりも1強度、延性に優れしかも短時間の時
効処理で高強度が得られかつ張り出し強度の高いステン
レス鋼を得たものである。また、窒化物等の介在物を生
成する強化元素を使用しないことにより、さらに表面肌
の面でも勝るようにしたものである0本発明鋼は固溶化
状態で準安定オーステナイト相を呈するように成分調整
しであるので、製造に特別の条件を必要とせず、溶体化
処理までの工程は従来の加工硬化型オーステナイト系ス
テンレス鋼や析出硬化型ステンレス鋼と同要領で製造す
ることができる。
[Detailed Description of the Invention] The steel adopts a composition within the above range, is made into an austenite phase in an integrated state, is transformed into a substantially 40 to 80% martensite structure in a cold worked state, and is processed by conventional processing. This stainless steel is superior in strength and ductility to hardening type austenitic stainless steels and precipitation hardening type stainless steels, and is also capable of obtaining high strength and high elongation strength through short-time aging treatment. In addition, by not using reinforcing elements that generate inclusions such as nitrides, the steel of the present invention has a composition that exhibits a metastable austenite phase in a solid solution state. Since it is made by adjusting, no special conditions are required for production, and the steps up to solution treatment can be produced in the same manner as conventional work-hardening austenitic stainless steels and precipitation-hardening stainless steels.

以下に、先ず本発明鋼の成分範囲の限定理由のIJ1要
を説明する。
Below, first, IJ1 points of the reasons for limiting the composition range of the steel of the present invention will be explained.

Cはオーステナイト生成元素で、高温で生成するδフェ
ライトの抑制、冷間加工で誘発されたマルテンサイト相
の強化に極めて有効であるが1本発明鋼ではStが高い
ため1 Cの固溶限が低下されてしまっている。このた
め、Cを高くすると。
C is an austenite-forming element and is extremely effective in suppressing δ ferrite generated at high temperatures and strengthening the martensite phase induced by cold working. However, in the steel of the present invention, the solid solubility limit of C is high due to the high St content. It has been lowered. Therefore, if C is increased.

粒界に炭化物が析出し、耐粒界腐食や延性低下の原因と
なるので、Cは0.1%以下とした。
Since carbides precipitate at grain boundaries, causing intergranular corrosion resistance and a decrease in ductility, C was set to 0.1% or less.

Mnはオーステナイト相の安定度を支配する元素であり
、その活用は他の元素とのバランスのもとβ考慮される
0本発明においては2.5%までのMn1lでその活用
が図れる。ただ1本発明鋼ではMnがあまり高いと延性
を低下させる。したがって、特に延性を重視する場合に
は、Mn量は0.5%未満とするのが好ましい。
Mn is an element that controls the stability of the austenite phase, and its utilization is considered based on the balance with other elements.In the present invention, Mn11 of up to 2.5% can be utilized. However, in the steel of the present invention, if the Mn content is too high, the ductility decreases. Therefore, when ductility is particularly important, the Mn content is preferably less than 0.5%.

Niは高温および室温でオーステナイト相を得るために
必須の成分であるが9本発明鋼の場合。
Ni is an essential component to obtain austenite phase at high temperature and room temperature.9 In the case of the present invention steel.

室温で準安定オーステナイト相にして冷間加工でマルテ
ンサイト相を誘発させるようにしなければならない1本
発明鋼ではNiを4.0%より低くすると高温で多量の
δフェライト相が生成し且つ室温でオーステナイト相が
準安定状態になり難くなる。また8、0%を越えると冷
間加工でマルテンサイト相が誘発され難(なる、このた
め、NI量は4.0〜8.0%とするが、より好ましく
は、5.0〜7.0%とする。
In the steel of the present invention, if the Ni content is lower than 4.0%, a large amount of δ ferrite phase will be formed at high temperature, and at room temperature the martensitic phase should be induced. The austenite phase becomes less likely to become metastable. Moreover, if it exceeds 8.0%, it will be difficult to induce a martensite phase during cold working (for this reason, the NI amount should be 4.0 to 8.0%, but more preferably 5.0 to 7.0%). Set to 0%.

Crは耐食性上必須の成分である。意図する耐食性を賦
与するのには少なくとも12.0%のC「を必要とする
。しかし、Crはフェライト生成元素でもあるので、高
くしすぎると高温でδフェライト相が多量に生成してし
まう、そこでδフエライト相抑制のためにオーステナイ
ト生成元素(C。
Cr is an essential component for corrosion resistance. At least 12.0% of C is required to impart the intended corrosion resistance. However, since Cr is also a ferrite-forming element, if it is too high, a large amount of δ ferrite phase will be formed at high temperatures. Therefore, an austenite-forming element (C) is used to suppress the δ-ferrite phase.

N、Ni、Mn、Cuなど)をそれに見合ワた量で添加
しなければならなくなるが、オーステナイト生成元素を
多く添加すると今度は室温でのオーステナイト相が安定
してしまって、準安定オーステナイト相にならず、冷間
加工後1時効処理しても高強度が得られなくなる。この
ようなことがらC「の上限は18.0%とした。
(N, Ni, Mn, Cu, etc.) must be added in proportionate amounts, but if a large amount of austenite-forming elements is added, the austenite phase at room temperature becomes stable and becomes a metastable austenite phase. Therefore, high strength cannot be obtained even after one aging treatment after cold working. For these reasons, the upper limit of C' was set at 18.0%.

Cuは時効処理の際、前述のごと<Siとの相互作用に
より硬化させるものであるが、少なすぎると、その効果
は小さく、多すぎると1割れの原因となる。このため1
.0〜3.5%とした。
During aging treatment, Cu is hardened by interacting with Si as described above, but if it is too little, the effect will be small, and if it is too much, it will cause one crack. For this reason 1
.. The content was set at 0 to 3.5%.

Siは、冷間加工によるマルテンサイト相の誘発および
強化する上で重要な元素であると共に。
Si is an important element in inducing and strengthening the martensitic phase by cold working.

時効処理による硬化のうえでもCuと合わせて重要であ
る。その効果を発揮させるためには少なくとも1.0%
以上を必要とする。しかし、あまり高くするとδフェラ
イト相の生成を助長すると共に添加着の割りにはその効
果が小さいのでその上限を3.0%とした。
Together with Cu, it is important for hardening by aging treatment. At least 1.0% to be effective
or more is required. However, if the content is too high, the formation of the δ ferrite phase will be promoted and the effect will be small compared to the additive deposition, so the upper limit was set at 3.0%.

なお1時効処理後の強度は、特にマルテンサイト量およ
び5iltl!:Cu!lに支配され、これらをバラン
スさせる必要がある。特に高強度を得るためには、  
5illを2.0%以上3.0%以下、  Cujlを
1.5%以上2.5%以下とするのがよい。
The strength after 1 aging treatment is especially determined by the amount of martensite and 5iltl! :Cu! It is necessary to balance these factors. In order to obtain especially high strength,
It is preferable that 5ill be 2.0% or more and 3.0% or less, and Cujl be 1.5% or more and 2.5% or less.

Nはオーステナイト生成元素であると共に、オーステナ
イト相およびマルテンサイト相を硬化させるのに極めて
有効な元素でもあるが、多量になると鋳造時にブローホ
ールの原因となるので0.15%以下とした。
N is an austenite-forming element and is also an extremely effective element for hardening austenite and martensite phases, but a large amount causes blowholes during casting, so the content was set to 0.15% or less.

SはMnと共存のもとにMnSを生成し、延性の低下を
たらすので、 0.008%以下とした。なお。
Since S forms MnS when coexisting with Mn and causes a decrease in ductility, the content is set to 0.008% or less. In addition.

特に薄板で介在物が延性、張り出し強度に影響する領域
では、MnおよびSは低い方が好ましく。
In particular, in thin plates where inclusions affect ductility and overhang strength, lower Mn and S content is preferred.

Mn量は0.5%未満、S量は0.004%以下が適当
である。
It is appropriate that the amount of Mn is less than 0.5% and the amount of S is 0.004% or less.

MoとWは鋼のベース硬さを上昇させるとともに時効処
理後の硬さを上昇させ短時間時効で高強度を得る上で有
効に作用する。しかし、いずれもフェライトフォーマ−
であるために多量に添加するとδフェライト相を晶出さ
せ、かえって強度低下の要因ともなるので上限を2.0
%までとした。
Mo and W effectively act to increase the base hardness of the steel and increase the hardness after aging treatment to obtain high strength with short aging. However, both ferrite formers
Therefore, if a large amount is added, the δ ferrite phase will crystallize, which will actually cause a decrease in strength, so the upper limit should be set at 2.0.
Up to %.

なおCとNとは同様な作用効果を示し、互換性があり、
上限はそれぞれ上記のように限定したが本発明でa図す
る作用効果を十分に発揮させるには合計量で0.10%
以上とする必要がある。
Note that C and N have similar effects and are compatible.
Although the upper limits of each are limited as above, the total amount is 0.10% in order to fully exhibit the effects shown in figure a in the present invention.
It is necessary to do more than that.

なお1 本発明の製造法に用いられる鋼には前述の成分
以外に脱酸材として添加されるA1やTi。
Note 1: In addition to the above-mentioned components, A1 and Ti are added as deoxidizing agents to the steel used in the manufacturing method of the present invention.

脱硫剤として添加されるCaやREV、熱間加工性改善
効果のあるB (0,01%以下)の他、不可避的に混
入する不純物を含有することが出来る。
In addition to Ca and REV, which are added as desulfurization agents, and B (0.01% or less), which has an effect of improving hot workability, it can contain impurities that are inevitably mixed in.

以上の範囲に各化学成分値を調整した本発明に従う鋼は
その組織状態が溶体化処理状態でオーステナイト組織を
呈する。そして、このオーステナイト組織は準安定な&
Ii織であり、冷間加工によってマルテンサイト相を誘
起する0本発明においては、溶体化処理を行うてオース
テナイト組織としたあと、70%以下の加工率(圧延率
)で冷間加工(冷間圧延)シ、その際に生成する加工誘
起マルテンサイト置を40〜80%の範囲とする。そし
て。
The steel according to the present invention, in which each chemical component value is adjusted to the above range, exhibits an austenitic structure in the solution treatment state. And this austenite structure is metastable &
In the present invention, after solution treatment to form an austenitic structure, cold working (cold rolling) is performed at a working rate (rolling rate) of 70% or less. (rolling), and the amount of deformation-induced martensite produced at that time is in the range of 40 to 80%. and.

400〜600℃で0.3〜5分の範囲の短時間の時効
処理を施す、後記の実施例で実証するように、この冷間
加工と短時間の時効処理によって、目的とする高い張り
出し強度をもつ靭性に優れた高カステンレス鋼を得るこ
とができる。
As demonstrated in the examples below, in which a short-time aging treatment is performed at 400-600°C for 0.3-5 minutes, this cold working and short-time aging treatment achieves the desired high overhang strength. It is possible to obtain high strength stainless steel with excellent toughness.

例えば、IDブレード基板等の型ぬき (中央に円形の
開口をもつ円形ディスクの型ぬき)を行うには9w4帯
コイルからエツチング法で行うことが通常である。この
エツチング法による型ぬきは作業工程中に150℃〜2
50℃前後、材料温度が上昇する。このため冷間加工を
施して強化したものはこの温度上昇により寸法変化をき
たすことになりこのためエツチング法による型ぬき作業
前に時効処理を施しておくことが必要である。しかし、
従来鋼505301では時効による時効硬化度(ΔHv
)が低いので(後記実施例1の第2表に示すように特に
短時間時効ではΔHが低いので)、高強度を得るために
は高い圧延率と長時間の時効処理を必要とした。このよ
うなことから、従来fisIIs301ではコイルから
切板した単板で長時間時効したあと。
For example, when cutting ID blade substrates, etc. (cutting out a circular disk with a circular opening in the center), it is usual to use the etching method from a 9w4 band coil. The mold cutting process using this etching method is carried out at a temperature of 150℃ to 2
The material temperature rises to around 50°C. For this reason, materials that have been strengthened by cold working will undergo dimensional changes due to this temperature rise, and therefore, it is necessary to perform an aging treatment before cutting out the mold by etching. but,
In conventional steel 505301, the age hardening degree (ΔHv
) is low (as shown in Table 2 of Example 1 below, ΔH is low especially in short-time aging), so a high rolling rate and long-time aging treatment were required in order to obtain high strength. For this reason, conventional fisIIs301 is made from a single plate cut from a coil after being aged for a long time.

IDブレード基板材として加工されるのが常法であった
。単板による長時間の時効は周知のように作業も大変で
あるし費用も嵩む。
The conventional method was to process it as an ID blade substrate material. As is well known, long-term aging with veneer is difficult and expensive.

しかるに本発明によれば、短時間の時効処理でも高い時
効硬化度(ΔHv)が得られるので、この時効処理を連
続処理(アンコイラ−からコイラーへの鋼帯の連続流れ
の途中に熱処理帯を設けた鋼帯の連続熱処理)で実施し
ても、十分な強度を得ることが出来る。そして、得られ
た時効処理後の銅帯からIDブレード基板材を型抜する
ことができる1本発明による場合には従来鋼では困難で
あった張り出し強度、靭性の高いしかも高強度のステン
レス鋼板を製造でき、また寸法精度や平坦度においても
従来の場合に比べて非常に良好なIDブレード基板を経
済的に得ることができる。
However, according to the present invention, a high degree of age hardening (ΔHv) can be obtained even with short-time aging treatment, so this aging treatment is performed as a continuous treatment (a heat treatment zone is provided in the middle of the continuous flow of the steel strip from the uncoiler to the coiler). Sufficient strength can be obtained even by continuous heat treatment of steel strips. ID blade substrate material can be cut out from the obtained copper strip after aging treatment.In the case of the present invention, a high strength stainless steel plate with high overhang strength and toughness, which was difficult to achieve with conventional steel, can be produced. In addition, it is possible to economically obtain an ID blade substrate that is much better in dimensional accuracy and flatness than in the conventional case.

また、I[)ブレードは切断装置に装着して彊り上げる
さいに、チャック部で高い張り出し応力を受ける。この
張り上げ時に張り出し部が破断しないためには高い張り
出し応力を必要とする0本発明に従って得られた鋼は、
後記の実施例で実証するように大きな張り出し応力を加
えても割れず。
Further, when the I[) blade is attached to a cutting device and lifted up, it is subjected to high tension stress at the chuck portion. The steel obtained according to the present invention requires a high elongation stress in order to prevent the overhang part from breaking during this elongation.
As demonstrated in the examples below, it does not crack even when a large overhanging stress is applied.

エリクセン試験による割れ発生応力がSが低いものでは
140kg/ms”以上を示す、一般に高強度材料では
張り出し応力は表面欠陥の影響を受けやすく表面欠陥の
ない鋼板であることが必要である6本発明鋼では表面性
状が良好となるような鋼成分に規制するものではあるが
、溶体化処理(焼鈍)後の酸洗等によって表面肌荒れな
どが不可避的に生ずることもある。このような肌荒れが
生じた銅帯を冷間圧延した場合には、張り出し加工時に
割れの起点となる欠陥を生ずることがある。したがって
1本発明の製造法において、加工誘起マルテンサイトを
生成させる冷間圧延前に、その鋼の表面を研磨する処理
を施すのが好ましい、この研磨処理は通常の研磨紙やパ
フ研磨処理を行えばよい。
The crack initiation stress according to the Erichsen test is 140 kg/ms or more for materials with low S.Generally, in high-strength materials, the overhang stress is easily affected by surface defects, so it is necessary to use steel sheets without surface defects.6 The present invention Although steel components are regulated to provide good surface properties, surface roughness may inevitably occur due to pickling after solution treatment (annealing).Such roughness may occur. When a copper strip is cold-rolled, defects that become starting points for cracks may occur during stretching processing.Therefore, in the manufacturing method of the present invention, before cold rolling to generate strain-induced martensite, It is preferable to perform a polishing treatment on the surface of the steel, and this polishing treatment may be performed by ordinary abrasive paper or puff polishing treatment.

したがって9本発明はまた。10ブレード基板のように
高い張り出し強度を必要とする用途向きの高強度且つ高
靭性のステンレス鋼帯の製造法として1重量%において
、 C:o、1o%以下、Si:1.0%を越え3.0
%以下、Mn:2.5%以下、Ni+4.0〜8.0%
、  Cr : 12.0〜18.0%、  Cu:1
.0〜3.5%、N:0.15%以下、  S :o、
oos%以下、CとNの合計が0.10%以上、必要に
応じて、MoまたはWの少なくとも一種を2.0%以下
の量で更に含有せしめ、残部がFeおよび不可避的に混
入してくる不純物よりなるオーステナイト組織を有する
ステンレス鋼帯を9表面研磨処理のあと40〜80容璽
%の加工誘起マルテンサイ)Iが生成するに十分な冷間
圧延率で冷間圧延し1次いで得られた冷延鋼帯を熱処理
炉に連続的に通板して400〜600℃の温度で0.3
〜5分の連続時効処理を施すことからなる高い張り出し
強度と靭性を有する高強度ステンレス鋼帯の製造法を提
供するものである。本方法によると、従来の切り板材の
時効処理のごとく真空中あるいは不活性ガス中での長時
間時効と異なり安価な時効処理品が提供出来る。またエ
ツチング法による型ぬき等のように熱が加わることによ
る変形等も心配のないものがコイル状で提供でき、生産
性の向上を図ることができる。しかも張り出し強度、靭
性に優れているためIDブレード等張り出し応力が負荷
されるような用途ではさらにその効果が現われる。
Therefore, the present invention also provides. 10 As a manufacturing method for high-strength and high-toughness stainless steel strips for applications requiring high overhang strength such as blade substrates, at 1% by weight, C: o, 10% or less, Si: more than 1.0%. 3.0
% or less, Mn: 2.5% or less, Ni+4.0 to 8.0%
, Cr: 12.0-18.0%, Cu: 1
.. 0 to 3.5%, N: 0.15% or less, S: o,
oos% or less, the total of C and N is 0.10% or more, if necessary, at least one of Mo or W is further contained in an amount of 2.0% or less, and the balance is Fe and unavoidably mixed. A stainless steel strip having an austenitic structure consisting of impurities was subjected to surface polishing treatment and then cold rolled at a cold rolling rate sufficient to produce 40 to 80% by volume of deformation-induced martensi (I). The cold-rolled steel strip is passed continuously through a heat treatment furnace at a temperature of 400 to 600°C to achieve a temperature of 0.3
The present invention provides a method for producing a high-strength stainless steel strip having high elongation strength and toughness, which comprises subjecting it to continuous aging treatment for ~5 minutes. According to this method, an inexpensive aged product can be provided, unlike the conventional aging treatment of cut plate materials, which requires long-term aging in a vacuum or inert gas. Further, it is possible to provide a coiled product without worrying about deformation due to the application of heat, such as when molding is performed by etching, etc., and productivity can be improved. Furthermore, since it has excellent overhang strength and toughness, its effects are even more apparent in applications where overhang stress is applied, such as ID blades.

以下に実施例によって本発明の効果を具体的に示す。EXAMPLES The effects of the present invention will be specifically illustrated by examples below.

〔実施例〕〔Example〕

第1表に示す成分の本発明11(St〜S8)、従来m
(A、B)および比較鋼(a −c )を常法により熱
間圧延を施した後、冷延、焼鈍(溶体化処理)1M洗を
行った材料を第2表に示す圧延率で冷間圧延した。得ら
れた冷延w4仮の冷間圧延により誘発されたマルテンサ
イトI(α゛量)を測定し、また各鋼板の硬さ、引張強
さおよび伸びを調べた。その結果を第2表に示した。ま
た、各冷延鋼板を530℃X1分の短時間の時効処理し
3時効後の硬さ、引張強さ、伸びエリクセン試験による
割れ発生応力(割れ発生荷重を板厚およびポンチ径で割
った値)を調べ、その結果を第2表に併記した。なお、
第2表中のΔHvは時効前後の硬さの差である。
Invention 11 (St to S8) of the components shown in Table 1, conventional m
(A, B) and comparative steels (a-c) were hot-rolled by a conventional method, then cold-rolled, annealed (solution treatment) and washed with 1M, and then cooled at the rolling rate shown in Table 2. It was rolled for a while. The martensite I (amount) induced by the temporary cold rolling of the obtained cold rolled w4 was measured, and the hardness, tensile strength and elongation of each steel plate were examined. The results are shown in Table 2. In addition, each cold-rolled steel plate was aged at 530°C for 1 minute, and after 3 aging, the hardness, tensile strength, and elongation were determined by the Erichsen test to determine crack initiation stress (the value obtained by dividing the crack initiation load by the plate thickness and punch diameter). ), and the results are also listed in Table 2. In addition,
ΔHv in Table 2 is the difference in hardness before and after aging.

また、第1図に、前記の鋼についてのマルテンサイト量
とエリクセン試験による割れ発生応力の関係(・印)、
 マルテンサイト量と切欠引張強さくJIS13B号引
張片の平行部中央に両サイドから幅180μ、深さ1.
5msの切欠を挿入した切欠引張片による切欠引張強さ
)試験結果との関係を示す。
In addition, Fig. 1 shows the relationship between the amount of martensite and the stress at which cracking occurs in the Erichsen test (marked with .) for the above-mentioned steel.
Amount of martensite and notched tensile strength At the center of the parallel part of the JIS No. 13B tensile piece, a width of 180μ and a depth of 1.
The relationship with the notched tensile strength (notched tensile strength) test results using a notched tensile piece with a 5 ms notch inserted is shown.

第1図において、C印は切欠引張強さ/引張強さの比を
、O印は引張強さを示す。また丸印で表示したものは本
発明鋼、四角中のものは比較鋼である。
In FIG. 1, mark C indicates the ratio of notched tensile strength/tensile strength, and mark O indicates the tensile strength. Further, those indicated by circles are the steels of the present invention, and those indicated by squares are comparative steels.

第2表および第1図の結果から次のことがわかる。The following can be seen from the results shown in Table 2 and Figure 1.

本発明に従う短時間時効処理後のfils1〜S8(冷
間圧延30〜70%、マルテンサイト量40〜80%。
fils 1 to S8 after short-time aging treatment according to the present invention (cold rolling 30 to 70%, martensite content 40 to 80%).

時効処理530℃×1分の本発明の製造条件の範囲にあ
る鋼)は、エリクセン試験による割れ発生応力は、Sが
0.007%と高い32mおよびマルテンサイト量が本
発明で規定する上限(80%)に近い76%の36鋼を
除いて、全て140kg/mm”以上と高い値を示し、
従来鋼および比較鋼に比べ、張り出し応力を受けたさい
に高い割れ抵抗を示す。そして9強度レベルはほぼ19
0〜205kg/ms”の範囲にある。
The cracking stress according to the Erichsen test is 32m with a high S content of 0.007%, and the martensite content is the upper limit specified by the present invention (steel under the manufacturing conditions of the present invention that is aged at 530°C for 1 minute). Except for 36 steel with 76%, which is close to 80%), all showed high values of 140 kg/mm" or more,
Exhibits higher cracking resistance when subjected to tension stress compared to conventional steels and comparative steels. And the 9 intensity level is almost 19
It is in the range of 0 to 205 kg/ms.

従来鋼への5O53旧では本発明と同一強度レベルを得
ようとすれば、短時間時効でのΔHv(時効後硬さ一時
効前硬さ)が小さいので1時効前に高い冷間圧延を加え
て高強度としておく必要がある。
In order to obtain the same strength level as the present invention with the conventional 5O53 steel, ΔHv (hardness after aging, hardness before temporary aging) is small in short-time aging, so high cold rolling must be applied before one aging. It is necessary to maintain high strength.

さらにMnおよびSが高いため時効処理後の延性も低く
、張り出し加工時に低い応力で割れが発生する。
Furthermore, since the Mn and S contents are high, the ductility after aging treatment is low, and cracking occurs under low stress during stretching.

また、従来鋼Bの5US631でも割れ発生応力が本発
明鋼より低い。これは析出強化元素としてA1を多量に
使用するため、AIの窒化物等の非金属介在物が多量に
存在し、薄板で高強度とした場合に、張り出し加工時そ
れを起点に割れを発生しやすくなるからである。
Furthermore, the stress at which cracking occurs in conventional steel B, 5US631, is lower than that of the steel of the present invention. This is because a large amount of A1 is used as a precipitation strengthening element, so a large amount of non-metallic inclusions such as AI nitrides are present, and if a thin plate is made to have high strength, cracks will occur from these inclusions during overhang processing. This is because it becomes easier.

比較鋼Cでは時効前のマルテンサイト量が多いため靭性
が低く割れが発生しやすい。
Comparative steel C has a large amount of martensite before aging, so its toughness is low and cracks are likely to occur.

また、第1図に見られるように、マルテンサイト量が8
0%を超えると、たとえ引張強さが190〜205kg
/■”の範囲にあっても1割れ発生応力および切欠引張
強さ/引張強さが急激に低下し、鋼の化学成分値が本発
明で規定する範囲にあっても加工誘起マルテンサイト量
は80%以下としなければ良好な張り出し強度が達成で
きない。
Also, as seen in Figure 1, the amount of martensite is 8
If it exceeds 0%, even if the tensile strength is 190 to 205 kg
/■” range, the stress at which one crack occurs and the notch tensile strength/tensile strength decrease rapidly, and even if the chemical composition values of the steel are within the range specified by the present invention, the amount of deformation-induced martensite decreases. Good overhang strength cannot be achieved unless it is 80% or less.

このため本発明による製造法ではマルテンサイト量が8
0%以下となるように冷間圧延率と圧延温度を調整する
ことが必要であり、またあまりマルテンサイト量が低い
と十分な強度が得られないためその下限を40%とする
のがよい。
Therefore, in the production method according to the present invention, the amount of martensite is 8
It is necessary to adjust the cold rolling rate and rolling temperature so that the amount is 0% or less, and if the amount of martensite is too low, sufficient strength cannot be obtained, so the lower limit is preferably 40%.

第2図は、第1表の本発明tlis4について、溶体化
処理後の冷間圧延率を種々変化させて冷間圧延し1次い
で530℃x1分間の短時間時効処理を施した場合の、
該冷間圧延率と引張強さ、切欠引張強さ、エリクセン試
験による割れ発生応力との関係を示したものである。な
お、冷間圧延は強度レベルを195kg/m+s”前後
とするために、冷間圧延率が高いもの程高い温度で実施
した(15℃〜170゛Cの範囲)、各冷間圧延温度を
割れ発生応力の値を示すΔ印のデータの脇に表示した。
FIG. 2 shows the results of the TLIS4 of the present invention shown in Table 1, which was cold rolled with various cold rolling reductions after solution treatment, and then subjected to short-time aging treatment at 530°C for 1 minute.
This figure shows the relationship between the cold rolling rate, tensile strength, notch tensile strength, and cracking stress determined by the Erichsen test. In order to achieve a strength level of around 195 kg/m+s, the cold rolling was carried out at a higher temperature (in the range of 15°C to 170°C) with a higher cold rolling rate. It is displayed next to the data with a Δ symbol indicating the value of generated stress.

第2図から明らかなように2強度レベル(O印)がほぼ
一定でも、冷間圧延率が70%を越えると切欠靭性およ
び割れ発生応力が低下し始める。このため1本発明によ
る製造法では圧延率は70%以下とするのがよい、しか
しあまり圧延率が低いと強度が得られないので、その下
限は30%とするのがよい。
As is clear from FIG. 2, even if the strength level 2 (marked by O) is approximately constant, when the cold rolling rate exceeds 70%, the notch toughness and crack initiation stress begin to decrease. For this reason, in the manufacturing method according to the present invention, the rolling reduction is preferably 70% or less, but if the rolling reduction is too low, strength cannot be obtained, so the lower limit is preferably 30%.

第3図は、第2表の結果のうち、530℃×1分の短時
間時効を施した場合の時効前後の時効硬化度ΔHvとマ
ルテンサイト量との関係を示したものである。第3図よ
り2本発明の鋼(O印S1〜8)は、マルテンサイト量
の増加とともΔHvは高くなり1時効硬化度がマルテン
サイトIの影響を受けることが認められる。一方、成分
範囲外の比較@aおよび従来鋼5US301ではΔHv
は小さく本発明の目的を達成しがたい0本発明法では短
時間の時効処理で十分な時効硬化度が得られるから。
FIG. 3 shows the relationship between the degree of age hardening ΔHv and the amount of martensite before and after aging when short-time aging at 530° C. for 1 minute is performed among the results in Table 2. From FIG. 3, it is recognized that for the steels of the present invention (O marks S1 to S8), ΔHv increases as the amount of martensite increases, and the degree of age hardening is influenced by martensite I. On the other hand, in comparison @a outside the composition range and conventional steel 5US301, ΔHv
is so small that it is difficult to achieve the object of the present invention. In the method of the present invention, a sufficient degree of age hardening can be obtained with a short aging treatment.

この時効処理を鋼帯を熱処理炉に連続的に通板する連続
処理で実施することができる。これに対し5US301
では時効による時効硬化度(ΔHv)が低いため、特に
短時間時効では低いため、高強度を得るためには高い圧
延率と長時間の時効処理を必要とする0本発明に従う短
時間の時効処理で十分な高強度を得るという目的を達成
するためには冷間圧延によって誘起させるマルテンサイ
ト量は40%以上とするのがよい。
This aging treatment can be carried out by continuous treatment in which the steel strip is continuously passed through a heat treatment furnace. In contrast, 5US301
Since the degree of age hardening (ΔHv) due to aging is low, especially in short-time aging, a high rolling rate and long-time aging treatment are required to obtain high strength. In order to achieve the purpose of obtaining sufficiently high strength, the amount of martensite induced by cold rolling is preferably 40% or more.

第4図は2本発明鋼S6と従来W4A (SUS301
の60%冷間圧延材)の短時間時効処理温度と硬さの関
係を示す。本発明による冷間圧延率範囲内の従来鋼5U
S301 (A )では時効後の硬さ上昇が低く高強度
が得られず本発明の目的は達成出来ない。
Figure 4 shows two inventive steels S6 and conventional W4A (SUS301).
The relationship between short-time aging treatment temperature and hardness of 60% cold rolled material) is shown. Conventional steel 5U within the cold rolling reduction range according to the present invention
With S301 (A), the increase in hardness after aging is low and high strength cannot be obtained, so that the object of the present invention cannot be achieved.

一方1本発明の成分範囲内の材料では温度と時間の関係
で硬さは変化するが、400℃X0.5分てすでに高い
硬さが得られ600℃でも高い硬さを示している。した
がって2時効処理は400〜600℃の温度において0
.3〜5分の時間で十分である。
On the other hand, the hardness of materials within the component range of the present invention changes depending on the relationship between temperature and time, but high hardness is already obtained at 400°C for 0.5 minutes, and high hardness is shown even at 600°C. Therefore, 2 aging treatment is 0 at a temperature of 400 to 600℃.
.. A time of 3 to 5 minutes is sufficient.

表3に最終調質圧延前に研磨を施こしたものとそうでな
いもののエリクセン試験による割れ発生応力との関係を
示した。表面研磨を施したものではマルテンサイト量が
本発明で規定する範囲外のものでもその割れ発生はある
程度改善され、研磨の効果が認められる。これは、冷間
圧延前に研磨を施さないものでは酸洗等による表面肌荒
れや欠陥が存在し、そのまま圧延した場合にその欠陥が
張り出し加工時に切欠となって低応力で破断したもので
ある。この場合、特にマルテンサイト量の高いものでそ
の影響が顕著に現われる。このため切欠靭性の低いもの
では特に冷間圧延前の研摩の効果が大きく現れる。
Table 3 shows the relationship between the stress at which cracking occurs by the Erichsen test for those that were polished before final skin-pass rolling and those that were not polished. In cases where the surface has been polished, even if the amount of martensite is outside the range specified by the present invention, the occurrence of cracking is improved to some extent, and the effect of polishing is recognized. This is because if the material is not polished before cold rolling, there will be surface roughness and defects due to pickling, etc., and if the material is rolled as is, these defects will become notches during the stretching process and break with low stress. In this case, the effect is particularly noticeable when the amount of martensite is high. For this reason, the effect of polishing before cold rolling is particularly significant for products with low notch toughness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明法による実施例鋼31〜S 8(0印)
および比較例(口中)のマルテンサイ)Iと時効処理後
(530°cxt分)の引張強さ、切欠引張強さと引張
強さの比、エリクセン試験による割れ発生応力との関係
を示す図で、白ヌキは引張強さ、生爪は切欠引張強さと
引張強さの比、黒はエリクセン試験による割れ発生応力
を示す。 第2図は本発明の実施例FIS4の冷間圧延率と時効処
理後の引張強さおよび切欠引張強さエリクセン試験によ
る割れ発生応力の関係を示す図であり、O印は引張強さ
、Φ印は切欠引張強さ、Δ印はエリクセン試験による割
れ発生応力を示す。 第3図は本発明の実施例ff131〜8(O印)、比較
鋼(口中)および従来鋼A (StlS301Δ印)の
マルテンサイト4]と時効硬化度ΔHν(時効後硬さ一
時効処理前硬さ)との関係を示す図である。 第4図は本発明の実施例鋼S6と比較!iiI A (
SIIS301の60%冷間圧延材)について2時効処
理温度および時効処理時間が時効処理後の硬さに及ぼす
影響を示した図である。
Figure 1 shows example steels 31 to S8 (marked 0) made by the method of the present invention.
A diagram showing the relationship between the comparative example (martensis) I, the tensile strength after aging treatment (530°cxt minutes), the ratio of notch tensile strength to tensile strength, and the crack initiation stress by Erichsen test. The blank indicates the tensile strength, the raw nail indicates the ratio of the notched tensile strength to the tensile strength, and the black indicates the stress at which cracking occurs based on the Erichsen test. FIG. 2 is a diagram showing the relationship between the cold rolling rate and the tensile strength after aging treatment and the stress at which cracking occurs by the notch tensile strength Erichsen test of Example FIS4 of the present invention. The mark indicates the notch tensile strength, and the Δ mark indicates the stress at which cracking occurs based on the Erichsen test. Figure 3 shows martensite 4] and age hardening degree ΔHν (hardness after aging, hardness before temporary treatment FIG. Figure 4 compares with Example steel S6 of the present invention! iiiA (
2 is a diagram showing the influence of aging treatment temperature and aging treatment time on hardness after aging treatment for SIIS301 (60% cold rolled material).

Claims (5)

【特許請求の範囲】[Claims] (1)重量%において、C:0.10%以下、Si:1
.0%を越え3.0%以下、Mn:2.5%以下、Ni
:4.0〜8.0%、Cr:12.0〜18.0%、C
u;1.0〜3.5%、N:0.15%以下、S:0.
008%以下、CとNの合計が0.10%以上、残部が
Feおよび不可避的に混入してくる不純物よりなり、溶
体化処理状態でオーステナイト組織を呈するオーステナ
イト系ステンレス鋼を、溶体化処理後において、40〜
80容量%の加工誘起マルテンサイト量が生成するに十
分な冷間加工率で冷間加工し、次いで、400〜600
℃で0.3〜5分の時効処理することからなる、張り出
し強度および靭性に優れ且つ180kg/mm^2以上
の高強度を有するステンレス鋼の製造方法。
(1) In weight%, C: 0.10% or less, Si: 1
.. Over 0% and 3.0% or less, Mn: 2.5% or less, Ni
:4.0~8.0%, Cr:12.0~18.0%, C
u: 1.0 to 3.5%, N: 0.15% or less, S: 0.
008% or less, the total of C and N is 0.10% or more, the balance is Fe and unavoidably mixed impurities, and the austenitic stainless steel exhibits an austenitic structure in the solution treatment state. In, 40~
Cold working is carried out at a cold working rate sufficient to generate an amount of deformation-induced martensite of 80% by volume, and then
A method for producing stainless steel having excellent overhang strength and toughness and a high strength of 180 kg/mm^2 or more, which comprises aging treatment at 0.3 to 5 minutes at a temperature of 0.3 to 5 minutes.
(2)Si:2.0〜3.0%、Ni:5.0〜7.0
%、Cu:1.5〜2.5%、N:0.04〜0.1%
、Mn:0.5%未満、S:0.004%以下である特
許請求の範囲第1項記載のステンレス鋼の製造法。
(2) Si: 2.0-3.0%, Ni: 5.0-7.0
%, Cu: 1.5-2.5%, N: 0.04-0.1%
, Mn: less than 0.5%, and S: 0.004% or less.
(3)重量%において、C:0.10%以下、Si:1
.0%を越え3.0%以下、Mn:2.5%以下、Ni
:4.0〜8.0%、Cr:12.0〜18.0%、C
u:1.0〜3.5%。 N:0.15%以下、S:0.008%以下、CとNの
合計が0.10%以上、MoまたはWの少なくとも一種
:2.0%以下、残部がFeおよび不可避的に混入して
くる不純物よりなり、溶体化処理状態でオーステナイト
組織を呈するオーステナイト系ステンレス鋼を、溶体化
処理後において、40〜80容量%の加工誘起マルテン
サイト量が生成するに十分な冷間加工率で冷間加工し、
次いで、400〜600℃で0.3〜5分の時効処理す
ることからなる、張り出し強度および靭性に優れ且つ1
90kg/mm^2以上の高強度を有するステンレス鋼
の製造方法。
(3) In weight%, C: 0.10% or less, Si: 1
.. Over 0% and 3.0% or less, Mn: 2.5% or less, Ni
:4.0~8.0%, Cr:12.0~18.0%, C
u: 1.0-3.5%. N: 0.15% or less, S: 0.008% or less, the total of C and N is 0.10% or more, at least one of Mo or W: 2.0% or less, the balance is Fe and unavoidably mixed. Austenitic stainless steel, which is composed of impurities such as Between processing,
Next, aging treatment is performed at 400 to 600°C for 0.3 to 5 minutes.
A method for manufacturing stainless steel having a high strength of 90 kg/mm^2 or more.
(4)Si:2.0〜3.0%、Ni:5.0〜7.0
%、Cu:1.5〜2.5%、N:0.04〜0.1%
、Mn:0.5%未満、S:0.004%以下である特
許請求の範囲第3項記載のステンレス鋼の製造法。
(4) Si: 2.0-3.0%, Ni: 5.0-7.0
%, Cu: 1.5-2.5%, N: 0.04-0.1%
, Mn: less than 0.5%, and S: 0.004% or less.
(5)重量%において、C:0.10%以下、Si:1
.0%を越え3.0%以下、Mn:2.5%以下、Ni
:4.0〜8.0%、Cr:12.0〜18.0%、C
u:1.0〜3.5%、N:0.15%以下、S:0.
008%以下、CとNの合計が0.10%以上、必要に
応じてMoまたはWの少なくとも一種を2.0%以下の
量で更に含有せしめ、残部がFeおよび不可避的に混入
してくる不純物よりなるオーステナイトを有する鋼帯を
、表面研磨処理のあと40〜80容量%の加工誘起マル
テンサイト量が生成するに十分な冷間圧延率で冷間圧延
し、次いで得られた冷延鋼帯を熱処理炉に連続的に通板
して400〜600℃の温度で0.3〜5分の連続時効
処理を施すことからなる高い張り出し強度と靭性を有す
る高強度ステンレス鋼帯の製造法。
(5) In weight%, C: 0.10% or less, Si: 1
.. Over 0% and 3.0% or less, Mn: 2.5% or less, Ni
:4.0~8.0%, Cr:12.0~18.0%, C
u: 1.0 to 3.5%, N: 0.15% or less, S: 0.
008% or less, the total of C and N is 0.10% or more, if necessary, at least one of Mo or W is further contained in an amount of 2.0% or less, and the remainder is Fe and unavoidably mixed. A steel strip having austenite consisting of impurities is cold-rolled at a cold rolling rate sufficient to generate a strain-induced martensite amount of 40 to 80% by volume after surface polishing treatment, and then the obtained cold-rolled steel strip A method for manufacturing a high-strength stainless steel strip having high tensile strength and toughness, which comprises continuously passing the steel through a heat treatment furnace and subjecting it to continuous aging treatment at a temperature of 400 to 600°C for 0.3 to 5 minutes.
JP62153443A 1987-06-22 1987-06-22 Method for producing high strength stainless steel with excellent overhang strength and toughness Expired - Lifetime JPH0826404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62153443A JPH0826404B2 (en) 1987-06-22 1987-06-22 Method for producing high strength stainless steel with excellent overhang strength and toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62153443A JPH0826404B2 (en) 1987-06-22 1987-06-22 Method for producing high strength stainless steel with excellent overhang strength and toughness

Publications (2)

Publication Number Publication Date
JPS63317628A true JPS63317628A (en) 1988-12-26
JPH0826404B2 JPH0826404B2 (en) 1996-03-13

Family

ID=15562654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62153443A Expired - Lifetime JPH0826404B2 (en) 1987-06-22 1987-06-22 Method for producing high strength stainless steel with excellent overhang strength and toughness

Country Status (1)

Country Link
JP (1) JPH0826404B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02225646A (en) * 1989-02-27 1990-09-07 Nisshin Steel Co Ltd High strength stainless steel and manufacture of its steel material
JPH04147946A (en) * 1990-10-09 1992-05-21 Nippon Steel Corp Stainless steel excellent in strength and ductility and its manufacture
JPH04202643A (en) * 1990-11-30 1992-07-23 Nkk Corp Stainless steel having high strength and high toughness and its production
US5314549A (en) * 1993-03-08 1994-05-24 Nkk Corporation High strength and high toughness stainless steel sheet and method for producing thereof
JPH0711390A (en) * 1991-03-20 1995-01-13 Shinko Kosen Kogyo Kk Steel for spring
US5407493A (en) * 1993-03-08 1995-04-18 Nkk Corporation Stainless steel sheet and method for producing thereof
DE4406052A1 (en) * 1993-11-30 1995-06-01 Nippon Kokan Kk Stainless steel sheet and process for its manufacture
US5496514A (en) * 1993-03-08 1996-03-05 Nkk Corporation Stainless steel sheet and method for producing thereof
WO2011062152A1 (en) * 2009-11-18 2011-05-26 住友金属工業株式会社 Austenite stainless steel sheet and method for producing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5677364A (en) * 1979-11-29 1981-06-25 Kawasaki Steel Corp Spring stainless steel with superior manufacturability, forming workability and fatigue characteristic after aging
JPS5719738A (en) * 1980-06-05 1982-02-02 Mitsubishi Paper Mills Ltd Diffusion transfer material containing developing agent

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5677364A (en) * 1979-11-29 1981-06-25 Kawasaki Steel Corp Spring stainless steel with superior manufacturability, forming workability and fatigue characteristic after aging
JPS5719738A (en) * 1980-06-05 1982-02-02 Mitsubishi Paper Mills Ltd Diffusion transfer material containing developing agent

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02225646A (en) * 1989-02-27 1990-09-07 Nisshin Steel Co Ltd High strength stainless steel and manufacture of its steel material
JPH04147946A (en) * 1990-10-09 1992-05-21 Nippon Steel Corp Stainless steel excellent in strength and ductility and its manufacture
JPH04202643A (en) * 1990-11-30 1992-07-23 Nkk Corp Stainless steel having high strength and high toughness and its production
JPH0711390A (en) * 1991-03-20 1995-01-13 Shinko Kosen Kogyo Kk Steel for spring
US5407493A (en) * 1993-03-08 1995-04-18 Nkk Corporation Stainless steel sheet and method for producing thereof
DE4329305A1 (en) * 1993-03-08 1994-09-15 Nippon Kokan Kk High strength and high toughness stainless steel sheet and method of manufacturing the same
US5314549A (en) * 1993-03-08 1994-05-24 Nkk Corporation High strength and high toughness stainless steel sheet and method for producing thereof
US5496514A (en) * 1993-03-08 1996-03-05 Nkk Corporation Stainless steel sheet and method for producing thereof
DE4329305C2 (en) * 1993-03-08 1998-12-17 Nippon Kokan Kk High strength and high toughness stainless steel sheet and method of manufacturing the same
DE4406052A1 (en) * 1993-11-30 1995-06-01 Nippon Kokan Kk Stainless steel sheet and process for its manufacture
DE4406040A1 (en) * 1993-11-30 1995-06-01 Nippon Kokan Kk Stainless steel sheet having high fracture resistance
WO2011062152A1 (en) * 2009-11-18 2011-05-26 住友金属工業株式会社 Austenite stainless steel sheet and method for producing same
CN102639742A (en) * 2009-11-18 2012-08-15 住友金属工业株式会社 Austenite stainless steel sheet and method for producing same
JP5056985B2 (en) * 2009-11-18 2012-10-24 住友金属工業株式会社 Austenitic stainless steel sheet and manufacturing method thereof
KR101289518B1 (en) * 2009-11-18 2013-07-24 신닛테츠스미킨 카부시키카이샤 Austenite stainless steel sheet and method for producing same

Also Published As

Publication number Publication date
JPH0826404B2 (en) 1996-03-13

Similar Documents

Publication Publication Date Title
KR100324892B1 (en) High-strength, high-strength superstructure tissue stainless steel and its manufacturing method
KR900006605B1 (en) Process for making a hogh strength stainless steel having excellent workability and free form weld softening
KR950013188B1 (en) Process for the production of a strip of a chromium stainless steel of a duplex structure having high strength and elongation as will as reduced plane anisotropy
KR950013187B1 (en) Process for the production of a strip of a chromium staimless steel of a duplex structure having high strength and elong tion as wellas reduced plane anisotropy
KR0167778B1 (en) Method of producing high strength stainless steel strip having duplex structure and excellent spring characteristics
JPS63317628A (en) Manufacture of high strength stainless steel having superior bulging strength and toughness
JPH04202643A (en) Stainless steel having high strength and high toughness and its production
JPH07103445B2 (en) Blade stainless steel
JPH06287635A (en) Production of stainless steel material with high proof stress and high strength, excellent in ductility and free from softening by welding
JPH09268350A (en) High strength and high ductility ferrite single phase chromium-containing steel sheet and its production
JPH09263912A (en) High strength double phase structure chromium stainless steel sheet for punching and its production
JPH07107178B2 (en) Method for producing high strength dual phase chromium stainless steel strip with excellent ductility
JP2011001564A (en) Ferritic stainless steel sheet having excellent roughening resistance and method for producing the same
JP2826819B2 (en) Method for producing high-strength stainless steel with excellent workability and no welding softening
JPH07100822B2 (en) Manufacturing method of high ductility and high strength dual phase structure chromium stainless steel strip with small in-plane anisotropy.
KR970009092B1 (en) Stainless steel sheet and method for producing thereof
JP3230587B2 (en) A high-strength stainless cold-rolled steel strip having excellent formability and fatigue properties and exhibiting high strength by aging treatment, and a method for producing the same.
JPH07100824B2 (en) Method for producing high strength dual phase chromium stainless steel strip with excellent ductility
JP2003073783A (en) Precipitation-hardening type martensitic stainless steel sheet for flapper valve, and manufacturing method therefor
JP3735266B2 (en) High strength stainless steel for deep cooling treatment
JP3418928B2 (en) Ferritic stainless steel sheet for cold forging and its manufacturing method
JPH07100823B2 (en) Manufacturing method of high ductility and high strength dual phase structure chromium stainless steel strip with small in-plane anisotropy.
JPH0641686A (en) Stainless steel sheet for id blade and its production
KR20110075408A (en) Ferritic stainless steel and method for manufacturing the same
JP3727646B2 (en) Manufacturing method of austenitic stainless steel sheet with excellent precision punchability