JPS62238333A - Manufacture of ultrathin austenitic stainless steel sheet for water slicer - Google Patents

Manufacture of ultrathin austenitic stainless steel sheet for water slicer

Info

Publication number
JPS62238333A
JPS62238333A JP7914986A JP7914986A JPS62238333A JP S62238333 A JPS62238333 A JP S62238333A JP 7914986 A JP7914986 A JP 7914986A JP 7914986 A JP7914986 A JP 7914986A JP S62238333 A JPS62238333 A JP S62238333A
Authority
JP
Japan
Prior art keywords
stainless steel
cold rolling
austenitic stainless
annealing
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7914986A
Other languages
Japanese (ja)
Other versions
JPH0244891B2 (en
Inventor
Atsushi Nakatsuka
淳 中塚
Tomio Satsunoki
富美夫 札軒
Hidehiko Sumitomo
住友 秀彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7914986A priority Critical patent/JPS62238333A/en
Publication of JPS62238333A publication Critical patent/JPS62238333A/en
Publication of JPH0244891B2 publication Critical patent/JPH0244891B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To manufacture the titled steel sheet having high strength, further low strength anisotropy in plane, by applying suitable annealing and cold rolling to hot rolled plate of metastable austenitic stainless steel having a specified compsn. CONSTITUTION:To hot rolled plate or hot rolled and annealed plate of metalstable austenitic stainless steel having compsn. composed of, by weight 0.01-0.2% C, 0.1-2% Si, 0.1-4% Mn, 5-11% Ni, 15-20% Cr, 0.05-2.5% Mo, 0.01-0.3% N, further under 0-+80 deg.C range of Md30 indicated by a formu la; Md30=551-462(C+N)-9.2Si-8.1Mn-29Ni-13.7Cr-18.5Mo and the balance Fe with inevitable impurity, cold rolling and annealing are applied repeatedly at >=2 times. Further, ratio of cold rolling rate in 2 times thereof before the final annealing is regulated to >=0.8. Thereafter, temper rolling of >=40% cold rolling ratio is applied, to obtain the titled high strength sheet having good flatness at stretching up time and capable of highly accurate water cutting.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高強度でかつ強度の面内異方性が小さいウェ
ハスライサ用極薄オーステナイト・系ステンレス鋼板、
特にSi ウェハスライサ用素材に適したステンレス鋼
板の製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides an ultra-thin austenitic stainless steel sheet for wafer slicers that has high strength and small in-plane anisotropy of strength;
In particular, the present invention relates to a method of manufacturing a stainless steel plate suitable as a material for a Si wafer slicer.

〔従来の技術〕[Conventional technology]

Si ウェハスライサ用素材としては、高強度かつ高耐
錆性の点から準安定オーステナイト系ステンレス鋼の橿
薄板が使用されている。Si ウェハスライサは、第1
図に示すように固定ボルト1によって固定されバネのつ
いた張り上げボルト2によって張力を加え張り上げられ
、ステンレス鋼板3の内側に粒状のダイヤモンドを接着
した内周刃4でSiインゴット5をスライスしてウェハ
にする(以下、これをウェハ切断と言う)。このウェハ
スライサは強度が低いとウェハ切断中に内周刃が変形し
ウェハにそりを生じさせる。また、強度の面内異方性が
大きいと張り上げ時に平坦度が悪くなり、精度の高いウ
ェハ切断が行えない。そのため高強度でかつ強度の面内
異方性が小さいSiウェハスライサ用素材の開発が強く
要望されていた。
As the material for the Si wafer slicer, a thin plate of metastable austenitic stainless steel is used because of its high strength and high rust resistance. The Si wafer slicer
As shown in the figure, the Si ingot 5 is fixed by a fixing bolt 1 and tensioned by a spring-loaded tensioning bolt 2, and the Si ingot 5 is sliced with an inner blade 4 having granular diamonds adhered to the inside of a stainless steel plate 3. (hereinafter referred to as wafer cutting). If the strength of this wafer slicer is low, the inner peripheral blade will deform while cutting the wafer, causing the wafer to warp. Furthermore, if the in-plane anisotropy of the strength is large, the flatness will be poor during tensioning, making it impossible to cut the wafer with high precision. Therefore, there has been a strong demand for the development of a material for Si wafer slicers that has high strength and low in-plane anisotropy of strength.

従来の準安定オーステナイト系ステンレス鋼板を高強度
化する方法としては、焼鈍板に調質圧延等の冷間加工を
施して加工硬化させるとともに加工誘起マルテンサイト
を生成させる方法(例えば、鉄と鋼−67(1981)
S619)、調質圧延後に更にマルテンサイトが消滅し
ない低温(例えば、200℃から550℃)で熱処理し
て時効硬化させる方法〔例えば、日本金属学会誌21 
 (195B)583〕が知られている。しかし、これ
らの方法はいずれも高強度化後の強度の面内異方性につ
いては考慮されていない。
Conventional methods for increasing the strength of metastable austenitic stainless steel sheets include cold working such as temper rolling on annealed sheets to work harden them and generate work-induced martensite (for example, iron-to-steel steel). 67 (1981)
S619), a method of aging hardening by heat treatment at a low temperature (e.g., 200°C to 550°C) where martensite does not disappear after temper rolling [e.g., Journal of the Japan Institute of Metals 21
(195B)583] is known. However, none of these methods takes into account the in-plane anisotropy of strength after increasing the strength.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

準安定オーステナイト系ステンレス鋼の焼鈍板を調質圧
延により強化し、または、調質圧延条件に時効硬化させ
ると高強度は得られるが、これをSi等のウニハスライ
ザとして用いると強度の面内異方性が大きい場合には、
張り」二げ時の平坦度が悪くなるため、精度の高いウェ
ハ切断が行えないという問題があった。
High strength can be obtained by strengthening an annealed plate of metastable austenitic stainless steel by temper rolling or age-hardening it under temper rolling conditions, but when used as a unifacial riser made of Si, etc., the in-plane anisotropy of strength occurs. If the gender is large,
There is a problem in that highly accurate wafer cutting cannot be performed because the flatness during tensioning and cutting becomes poor.

本発明者は、以上の問題点を解決した高強度でかつ強度
の面内異方性が小さいスライサ用極薄オーステナイト系
ステンレス鋼板の製造方法を提供することを目的とする
The present inventor aims to provide a method for manufacturing an ultra-thin austenitic stainless steel plate for slicers that has high strength and small in-plane anisotropy of strength, which solves the above problems.

〔問題点を解決するための手段および作用〕本発明は、
この目的のために製造条件を種々検討した結果、冷延お
よび焼鈍回数、最終焼鈍前の2回の冷延における圧下配
分と調質圧延条件を適切に組み合わせることによりこれ
を達成した。
[Means and effects for solving the problems] The present invention has the following features:
As a result of examining various manufacturing conditions for this purpose, this was achieved by appropriately combining the number of cold rolling and annealing, the reduction distribution in the two cold rollings before the final annealing, and the temper rolling conditions.

本発明の要旨は、重量%にて、C; 0.01〜0.2
%、Si;0.1〜2%、Mn:0.1〜4%、Ni;
5〜l1%、Cr;15〜20%、Mo ;0.05〜
2.5%、N ; 0.01〜0.3%を含有し残部f
eeおよび不可避的不純物からなり、かつ(1)式に示
すMd、。が0〜+80℃の範囲の組成にある準安定オ
ーステナイト系ステンレス鋼の熱延板または熱延焼鈍板
に冷延および焼鈍を2回以上繰り返して施し、最終焼鈍
前の2回の冷延における冷延率の比R(1回目冷延率/
2回目冷延率)を0.8以上とし、ついで冷延率が40
%以上の調質圧延を行うことを特徴とするウェハスライ
サ用極薄オーステナイト系ステンレス鋼板の製造方法で
ある。
The gist of the present invention is that in weight %, C: 0.01-0.2
%, Si; 0.1-2%, Mn: 0.1-4%, Ni;
5-11%, Cr; 15-20%, Mo; 0.05-
2.5%, N; Contains 0.01-0.3%, balance f
Md consisting of ee and inevitable impurities and represented by formula (1). A hot-rolled or hot-rolled annealed sheet of metastable austenitic stainless steel with a composition in the range of 0 to +80°C is subjected to cold rolling and annealing two or more times, and Rolling ratio ratio R (first cold rolling ratio/
The second cold rolling rate) is set to 0.8 or more, and then the cold rolling rate is set to 40.
This is a method for manufacturing an ultra-thin austenitic stainless steel plate for wafer slicer, which is characterized by performing temper rolling of 10% or more.

Ma :I O= 551−462 (cχ十Nχ)−
9,2Siχ−8,IMnχ−29N iχ−13,7
Crχ−18,5MoX         −(11以
下、本発明の構成要件の限定理由について説明する。尚
、本発明において鋼板とはストリップとシートの双方を
意味する。
Ma :I O= 551-462 (cχ 1 Nχ)-
9,2Siχ-8,IMnχ-29N iχ-13,7
Crχ-18,5MoX - (11 Below, the reasons for limiting the constituent elements of the present invention will be explained. In the present invention, the steel plate means both a strip and a sheet.

Cは、準安定オーステナイト系ステンレス鋼板において
加工により誘起されたマルテンサイトの強力な固溶硬化
元素であるが、この効果は0.01%未満では十分でな
く、また0、 2%を超えるとオーステナイトが安定化
しすぎるため加工誘起マルテンサイトが十分生成されな
い。従って、Cを0.01〜0.2%とした。
C is a strong solid solution hardening element for martensite induced by processing in metastable austenitic stainless steel sheets, but this effect is not sufficient if it is less than 0.01%, and if it exceeds 0.2%, it will harden austenite. is too stabilized, and deformation-induced martensite is not sufficiently generated. Therefore, C was set at 0.01 to 0.2%.

Si は、0,1%未満では脱酸が不十分であり、2%
を超えるとフェライ)lfが増加し熱間加工性を劣化さ
せる。従って、Siを0.1〜2%とした。
If Si is less than 0.1%, deoxidation is insufficient, and if Si is less than 2%
If it exceeds 10%, the ferrite) lf increases and hot workability deteriorates. Therefore, Si was set at 0.1 to 2%.

Mnは、0.1%未満では脱酸が不十分であり、4%を
超えるとオーステナイトが安定化しすぎるため加工誘起
マルテンサイトが十分生成されない。
When Mn is less than 0.1%, deoxidation is insufficient, and when it exceeds 4%, austenite is too stabilized and deformation-induced martensite is not sufficiently produced.

従って、Mnを0.1〜4%とした。Therefore, Mn was set at 0.1 to 4%.

Niは、有力なオーステナイト安定化元素であり、5%
未満では焼鈍後に完全なオーステナイト組織が得られず
、l1%を超えるとオーステナイトが安定化しすぎるた
め加工誘起マルテンサイトが十分生成されない。従って
、Niを5〜11%とし、望ましくは6〜8%未満とし
た。
Ni is a potent austenite stabilizing element, with 5%
If it is less than 1%, a complete austenite structure cannot be obtained after annealing, and if it exceeds 11%, austenite becomes too stable and deformation-induced martensite is not sufficiently generated. Therefore, the Ni content is 5 to 11%, preferably less than 6 to 8%.

Crは、ステンレス鋼としてその耐錆性の点から15%
未満では不十分であり、また20%を超えるとフェライ
トiが増加し熱間加工性を劣化させる。従って、Crを
15〜20%とした。
Cr is 15% for stainless steel due to its rust resistance.
If it is less than 20%, it is insufficient, and if it exceeds 20%, ferrite i increases and hot workability deteriorates. Therefore, Cr was set at 15 to 20%.

Moは、耐錆性を向上させる元素であるが、その効果は
0.05%未満では不十分である。また、Moは高価な
元素であり多量に添加するとコストが高くなる。従って
、Moを0,05〜2.5%とした。
Mo is an element that improves rust resistance, but its effect is insufficient if it is less than 0.05%. Further, Mo is an expensive element, and adding a large amount increases the cost. Therefore, Mo was set at 0.05 to 2.5%.

Nは、準安定オーステナイト系ステンレス鋼板において
加工により誘起されノこマルテンサイトの強力な固溶硬
化元素であるが、この効果は0.01%未満では十分で
なく、また0、 3%を超えると溶鋼中のブローホール
が多くなり製造上困難をきたす。従って、Nを0.01
〜0.3%とした。
N is a strong solid solution hardening element of martensite induced by processing in metastable austenitic stainless steel sheets, but this effect is not sufficient when it is less than 0.01%, and when it exceeds 0.3% There are many blowholes in the molten steel, which causes manufacturing difficulties. Therefore, N is 0.01
~0.3%.

M d 30は、本発明法の対象とするオーステナイ(
−系ステンレス鋼板のオーステナイト安定度を示す指標
となり、本ステンレス鋼板が加工誘起マルテンサイトを
利用して高強度を得るための重要な因子である。Md3
゜が0℃未満ではオーステナイトが安定化しすぎるため
加工によるマルテンサイト組織が得難く高強度が得られ
ない。また、Md3゜が+80°Cを超えるとオーステ
ナイトが不安定化しすぎるため加工によるマルテンサイ
トが過度に発生し急激に硬化するため目的の硬さと板厚
を保持した状態で精度の高い圧延加工が行えない。従っ
て、M d 3゜の範囲をO〜+80℃とし、望ましく
は+15〜+60℃とした。
M d 30 is the austenite (
It serves as an indicator of the austenite stability of the −-based stainless steel sheet, and is an important factor for this stainless steel sheet to obtain high strength by utilizing deformation-induced martensite. Md3
If the temperature is less than 0°C, austenite becomes too stable, making it difficult to obtain a martensitic structure through processing, making it impossible to obtain high strength. In addition, if Md3° exceeds +80°C, austenite becomes too unstable and martensite is generated excessively during processing and hardens rapidly, making it impossible to perform highly accurate rolling while maintaining the desired hardness and thickness. do not have. Therefore, the range of M d 3° is O to +80°C, preferably +15 to +60°C.

熱延板の冷延は、熱延ままあるいは焼鈍した後に行う。Cold rolling of the hot-rolled sheet is carried out either as hot-rolled or after annealing.

調質圧延前の冷延と焼鈍回数は、1回だけに比べ2回収
」二の方が集合組織がランダム化し機械的性質の面内異
方性が小さくなるが、本発明者は更に最終焼鈍前の2回
の冷延における冷延率の比R(1回目冷延率/2回目冷
延率)を0,8以上とすることにより集合組織がいっそ
う顕著にランダム化し面内異方性が小さくなり、その結
果調質圧延後の強度の面内異方性が著しく小さい鋼板が
得られることを見出しまた。従って、冷延の圧下配分を
このように限定した。
The number of times of cold rolling and annealing before temper rolling is 2 times compared to just 1 time.The texture is more randomized and the in-plane anisotropy of mechanical properties is smaller. By setting the ratio R of the cold rolling rates in the previous two cold rollings (first cold rolling rate/second cold rolling rate) to 0.8 or more, the texture becomes even more prominently randomized and the in-plane anisotropy is reduced. They also discovered that as a result, a steel plate with significantly small in-plane anisotropy of strength after temper rolling could be obtained. Therefore, the cold rolling reduction distribution was limited in this way.

調質圧延率は、40%未満ではウェハスライサに要求さ
れる1 30 kg/ III”以上の引張強度が得ら
れず、ウェハ切断中に内周刃が変形しウェハにそりを生
じさせる。従って、調質圧延率を40%以上とした。尚
、調質圧延後の板厚は−、0゜1龍未満では高強度であ
ってもウェハ切断中に内周刃が変形しウェハにそりを生
じさせ易い。0.3關を超えるとウェハ切断でスライサ
自体による切断代が多く歩留が悪い。従って、調質圧延
後の板厚ば0、1〜0.3 +nが望ましい。
If the temper rolling rate is less than 40%, the tensile strength of 130 kg/III" or more required for a wafer slicer cannot be obtained, and the inner peripheral blade deforms during wafer cutting, causing warpage on the wafer. Therefore, The temper rolling ratio was set to 40% or more.If the plate thickness after temper rolling is less than -0.1 mm, the inner peripheral blade will deform during wafer cutting even if the strength is high, and the wafer will warp. If the thickness exceeds 0.3, the cutting allowance by the slicer itself will be large during wafer cutting, resulting in poor yield.Therefore, it is desirable that the plate thickness after temper rolling be 0.1 to 0.3+n.

かくして、上記のような条件で準安定オーステナイト系
ステンレス鋼板を製造すれば、高強度でかつ強度の面内
異方性の著しく小さいウェハスライサ用極薄オーステナ
イト系ステンレス鋼板が得られる。
Thus, if a metastable austenitic stainless steel plate is produced under the above conditions, an ultrathin austenitic stainless steel plate for a wafer slicer that has high strength and extremely small in-plane anisotropy of strength can be obtained.

〔実施例〕〔Example〕

第1表に示すようなオーステナイト系ステンレス鋼を電
気炉で溶製しAOD炉で精錬し、連続鋳造によってスラ
ブとした後、熱間圧延により板厚3龍の熱延コイルとし
た。ついで、熱延板の酸洗または熱延板の焼鈍・酸洗を
行った後、冷延および焼鈍を1〜3回繰り返し、105
0〜1100℃の最終焼鈍を施し、続いて調質圧延を行
い、ウェハスライサ用素材とした。
Austenitic stainless steel as shown in Table 1 was melted in an electric furnace, refined in an AOD furnace, made into a slab by continuous casting, and then made into a hot-rolled coil with a plate thickness of 3 mm by hot rolling. Then, after pickling the hot-rolled sheet or annealing and pickling the hot-rolled sheet, cold rolling and annealing are repeated 1 to 3 times, and 105
Final annealing was performed at 0 to 1100°C, followed by skin pass rolling to obtain a material for a wafer slicer.

本発明法および比較法による製造条件と引張強さ、およ
び強度の面内異方性を第2表に示す。引張強さは、圧延
方向と平行な方向より引張試験片を採取し、JISZ2
241に従い測定した。強度の面内異方性は、圧延方向
に対して平行・45゜・直角方向より引張試験片を採取
し、各試験片の0.2%耐力をJISZ2241に従い
測定した後、これらの3方向の内、0.2%耐力の最も
大きい値から最も小さい値を引いた値として評価した。
Table 2 shows the manufacturing conditions, tensile strength, and in-plane anisotropy of strength according to the method of the present invention and the comparative method. Tensile strength was determined by taking a tensile test piece from a direction parallel to the rolling direction and using JIS Z2
Measured according to 241. The in-plane anisotropy of strength is determined by taking tensile test pieces from parallel, 45°, and perpendicular directions to the rolling direction, measuring the 0.2% yield strength of each test piece according to JIS Z2241, and then measuring the 0.2% yield strength of each test piece in accordance with JIS Z2241. It was evaluated as the value obtained by subtracting the smallest value from the largest value of 0.2% proof stress.

第2表より、本発明法は比較法に比べ高強度でかつ強度
の面内異方性が小さくウェハスライサ用素材として非常
に優れていることがわかる。
From Table 2, it can be seen that the method of the present invention has higher strength and smaller in-plane anisotropy of strength than the comparative method, and is very excellent as a material for wafer slicers.

〔発明の効果〕〔Effect of the invention〕

以上のことから明らかな如く、本発明法により極薄オー
ステナイト系ステンレス鋼板を製造すれば、高強度でか
つ強度の面内異方性が小さく、ウニハスライナに張力を
加えて張り上げても平坦度が非常に優れたウェハスライ
サ用素材が得られる。
As is clear from the above, if an ultra-thin austenitic stainless steel sheet is produced by the method of the present invention, it will have high strength and small in-plane anisotropy of strength, and will have extremely flatness even when tension is applied to the sea urchin liner. A material for a wafer slicer with excellent properties can be obtained.

従って、SiやGaAsインゴットの精度の高いウェハ
切断が可能となり、ウェハの歩留が著しく改善され生産
性も飛躍的に向上する。
Therefore, highly accurate wafer cutting of Si or GaAs ingots is possible, and the yield of wafers is significantly improved and productivity is also dramatically improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はウェハスライサの構造および使用の説明図であ
る。
FIG. 1 is an explanatory diagram of the structure and use of a wafer slicer.

Claims (1)

【特許請求の範囲】 重量%にて、C;0.01〜0.2%、Si;0.1〜
2%、Mn:0.1〜4%、Ni;5〜11%、Cr;
15〜20%、Mo;0.05〜2.5%、N;0.0
1〜0.3%を含有し残部Feおよび不可避的不純物か
らなり、かつ(1)式に示すMd_3_0が0〜+80
℃の範囲の組成にある準安定オーステナイト系ステンレ
ス鋼の熱延板または熱延焼鈍板に冷延および焼鈍を2回
以上繰り返して施し、最終焼鈍前の2回の冷延における
冷延率の比R(1回目冷延率/2回目冷延率)を0.8
以上とし、ついで冷延率が40%以上の調質圧延を行う
ことを特徴とするウェハスライサ用極薄オーステナイト
系ステンレス鋼板の製造方法。 Md_3_0=551−462(C%+N%)−9.2
Si%−8.1Mn%−29Ni%−13.7Cr%−
18.5Mo%…(1)
[Claims] In weight %, C; 0.01 to 0.2%, Si; 0.1 to 0.2%.
2%, Mn: 0.1-4%, Ni; 5-11%, Cr;
15-20%, Mo; 0.05-2.5%, N; 0.0
1 to 0.3%, the balance consists of Fe and unavoidable impurities, and Md_3_0 shown in formula (1) is 0 to +80
Cold rolling and annealing are repeated two or more times on a hot-rolled or hot-rolled annealed sheet of metastable austenitic stainless steel having a composition in the range of °C, and the ratio of the cold rolling rate in the two cold rollings before the final annealing is calculated. R (1st cold rolling rate/2nd cold rolling rate) is 0.8
A method for producing an ultra-thin austenitic stainless steel sheet for a wafer slicer, which is characterized in that the above is followed by temper rolling at a cold rolling rate of 40% or more. Md_3_0=551-462(C%+N%)-9.2
Si%-8.1Mn%-29Ni%-13.7Cr%-
18.5Mo%...(1)
JP7914986A 1986-04-08 1986-04-08 Manufacture of ultrathin austenitic stainless steel sheet for water slicer Granted JPS62238333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7914986A JPS62238333A (en) 1986-04-08 1986-04-08 Manufacture of ultrathin austenitic stainless steel sheet for water slicer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7914986A JPS62238333A (en) 1986-04-08 1986-04-08 Manufacture of ultrathin austenitic stainless steel sheet for water slicer

Publications (2)

Publication Number Publication Date
JPS62238333A true JPS62238333A (en) 1987-10-19
JPH0244891B2 JPH0244891B2 (en) 1990-10-05

Family

ID=13681899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7914986A Granted JPS62238333A (en) 1986-04-08 1986-04-08 Manufacture of ultrathin austenitic stainless steel sheet for water slicer

Country Status (1)

Country Link
JP (1) JPS62238333A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03240934A (en) * 1990-02-16 1991-10-28 Nippon Stainless Steel Co Ltd High-ductility hard stainless steel
CN103547695A (en) * 2011-04-18 2014-01-29 奥托库姆普联合股份公司 Method for manufacturing and utilizing ferritic-austenitic stainless steel

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5314549A (en) * 1993-03-08 1994-05-24 Nkk Corporation High strength and high toughness stainless steel sheet and method for producing thereof
DE4406052A1 (en) * 1993-11-30 1995-06-01 Nippon Kokan Kk Stainless steel sheet and process for its manufacture
KR100219146B1 (en) * 1996-06-11 1999-09-01 윤종용 Ultrasonic motor with piezoelectric element for press

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52104416A (en) * 1976-03-01 1977-09-01 Kawasaki Steel Co Production of austenitic stainless steel sheets
JPS5346421A (en) * 1976-10-08 1978-04-26 Sumitomo Electric Ind Ltd Seawater resistant stainless steel
JPS5418648A (en) * 1977-07-13 1979-02-10 Hitachi Denshi Ltd Digital differential analyzer
JPS55115927A (en) * 1979-02-28 1980-09-06 Nippon Steel Corp Production of austenite-base stainless steel plate which does not cause earing
JPS5728740A (en) * 1980-07-19 1982-02-16 Hiroshi Inaba Foaming polystyrene vessel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52104416A (en) * 1976-03-01 1977-09-01 Kawasaki Steel Co Production of austenitic stainless steel sheets
JPS5346421A (en) * 1976-10-08 1978-04-26 Sumitomo Electric Ind Ltd Seawater resistant stainless steel
JPS5418648A (en) * 1977-07-13 1979-02-10 Hitachi Denshi Ltd Digital differential analyzer
JPS55115927A (en) * 1979-02-28 1980-09-06 Nippon Steel Corp Production of austenite-base stainless steel plate which does not cause earing
JPS5728740A (en) * 1980-07-19 1982-02-16 Hiroshi Inaba Foaming polystyrene vessel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03240934A (en) * 1990-02-16 1991-10-28 Nippon Stainless Steel Co Ltd High-ductility hard stainless steel
CN103547695A (en) * 2011-04-18 2014-01-29 奥托库姆普联合股份公司 Method for manufacturing and utilizing ferritic-austenitic stainless steel

Also Published As

Publication number Publication date
JPH0244891B2 (en) 1990-10-05

Similar Documents

Publication Publication Date Title
EP1396552B1 (en) Double phase stainless steel strip for steel belt
JPS62124218A (en) Manufacture of high strength stainless steel material having superior workability without softening by welding
EP3392361A1 (en) Thick steel plate having excellent cryogenic toughness
KR101850231B1 (en) Ferritic stainless steel and method for producing same
JP2014185367A (en) Stainless steel wire excellent in twisting processability and manufacturing method therefor, and stainless steel wire and manufacturing method therefor
JPH01172524A (en) Production of complex phase structure chromium stainless strip having excellent corrosion resistance and high ductility and strength
JP2001323342A (en) Austenitic stainless steel excellent in fine blanking property
JP2019157203A (en) Duplex phase stainless steel excellent in corrosion resistance and processability, and manufacturing method therefor
WO2014157146A1 (en) Austenitic stainless steel sheet and method for manufacturing high-strength steel material using same
JP3449126B2 (en) Austenitic stainless cold-rolled steel sheet with small springback amount and method for producing the same
US5314549A (en) High strength and high toughness stainless steel sheet and method for producing thereof
JPS62238333A (en) Manufacture of ultrathin austenitic stainless steel sheet for water slicer
JPS63317628A (en) Manufacture of high strength stainless steel having superior bulging strength and toughness
JP3606200B2 (en) Chromium-based stainless steel foil and method for producing the same
JP3939568B2 (en) Nonmagnetic stainless steel with excellent workability
JPH0830253B2 (en) Precipitation hardening type martensitic stainless steel with excellent workability
JPS6137953A (en) Nonmagnetic steel wire rod and its manufacture
KR101940427B1 (en) Ferritic stainless steel sheet
JPS63171857A (en) Manufacture of precipitation hardening-type stainless steel excellent in fatigue characteristic
KR970009091B1 (en) Stainless steel sheet and method for producing thereof
JP3370441B2 (en) Duplex stainless steel sheet with excellent elongation characteristics and method for producing the same
JPS60106952A (en) Process hardenable stainless steel of substantially austenite and manufacture
JPH06207250A (en) High strength stainless steel excellent in toughness and its production
JP6809325B2 (en) Duplex stainless steel shaped steel and its manufacturing method
JP6589710B2 (en) High Young's modulus ultrathin steel plate excellent in deep drawability and method for producing the same