JPS63171857A - Manufacture of precipitation hardening-type stainless steel excellent in fatigue characteristic - Google Patents

Manufacture of precipitation hardening-type stainless steel excellent in fatigue characteristic

Info

Publication number
JPS63171857A
JPS63171857A JP260687A JP260687A JPS63171857A JP S63171857 A JPS63171857 A JP S63171857A JP 260687 A JP260687 A JP 260687A JP 260687 A JP260687 A JP 260687A JP S63171857 A JPS63171857 A JP S63171857A
Authority
JP
Japan
Prior art keywords
precipitation hardening
stainless steel
steel
surface layer
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP260687A
Other languages
Japanese (ja)
Other versions
JPH0314899B2 (en
Inventor
Masaomi Tsuda
津田 正臣
Yuji Ikegami
雄二 池上
Masao Sato
昌男 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP260687A priority Critical patent/JPS63171857A/en
Publication of JPS63171857A publication Critical patent/JPS63171857A/en
Publication of JPH0314899B2 publication Critical patent/JPH0314899B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a stainless steel improved in fatigue characteristics, by casting a steel having a specific composition containing precipitation harden ing elements while regulating the Ms point to a value in a specific range to cause central segregation so as to provide compressive residual stress to the surface layer of the finished product. CONSTITUTION:A stock for manufacturing precipitation hardening-type martensitic stainless steel has a composition consisting of, by weight, <=0.1% C, <=2% Si, <=1% Mn, 10-20% Cr, 3-10% Ni, one or more kinds, as precipitation hardening elements, among 0.1-3% Mo, 0.1-3% Ti, 0.1-1% Nb, and 0.5-5% Cu, and the balance Fe with inevitable impurities. Casting is carried out by regulating Ms represented by an equation, determined based on the above chemical components, to 80-200 deg.C so as to cause solidification segregation, particularly central segregation. In this way, compressive residual stress can be provided to the surface layer without shot peening, so that fatigue strength of steels of this kinds can be easily improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、連続鋳造材の如きの急冷材から得られる疲労
特性に優れたマルテンサイト系析出硬化型ステンレス鋼
の製造方法に関するもので、原子力材料や海洋材料の他
化学装置材料の分野で好適に用いられる鋼の製造方法に
ついての提案である。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for producing martensitic precipitation hardening stainless steel with excellent fatigue properties obtained from rapidly cooled materials such as continuous casting materials. This is a proposal for a method for manufacturing steel that is suitably used in the fields of materials, marine materials, and chemical equipment materials.

この種のマルテンサイト系析出硬化型ステンレス鋼は、
オーステナイトには固溶するが、マルテンサイトにはほ
とんど溶解度を有しない金属をオーステナイト−マルテ
ンサイト変態後に、マルテンサイト地より析出させたも
ので、マルテンサイト変態と析出硬化を組合わせ利用し
たところに特徴を有するものである。
This type of martensitic precipitation hardening stainless steel is
A metal that dissolves in solid solution in austenite but has almost no solubility in martensite is precipitated from the martensite after the austenite-martensite transformation, and is characterized by the combination of martensitic transformation and precipitation hardening. It has the following.

(従来の技術) 上記マルテンサイト系析出硬化型ステンレス鋼の耐疲労
強度を向上させる方法として、従来例えば、金属表面技
術便覧(昭和51年)第1204頁などに見られるよう
なショットピーニングによる方法が知られている。要す
るに、ショットピーニングによって表面層に圧縮残留応
力を生じさせる方法である。一般に、金属が疲労破壊す
るケースは、引張り応力によるものが多く、特に引張り
残留応力は材料の強さを低下させるが、逆に圧縮残留応
力はそれを軽減させる作用をする。すなわち、ショット
ピーニングは、加工物の表面に無数の小球を衝突させて
伸ばす加工なので、加工物の表面には圧縮残留応力が発
生し、所謂疲労強度が改善されるのである。
(Prior Art) Conventionally, as a method for improving the fatigue strength of the martensitic precipitation hardening stainless steel, there has been a method using shot peening as described in, for example, Metal Surface Technology Handbook (1976), page 1204. Are known. In short, this is a method of generating compressive residual stress in the surface layer by shot peening. In general, fatigue failure of metals is often caused by tensile stress, and in particular, tensile residual stress reduces the strength of the material, whereas compressive residual stress acts to reduce it. In other words, since shot peening is a process in which countless small balls collide with the surface of a workpiece to stretch it, compressive residual stress is generated on the surface of the workpiece, improving the so-called fatigue strength.

(発明が解決しようとする問題点) 素材表面に圧縮残留応力を付与すれば、疲労特性は改善
されるものの上記従来技術の場合、ショットピーニング
という表面処理工程が不可欠で、そのために製造の効率
・コストの面で不利があった。
(Problems to be Solved by the Invention) Although fatigue properties can be improved by applying compressive residual stress to the surface of the material, in the case of the above-mentioned conventional technology, a surface treatment process called shot peening is essential, which reduces manufacturing efficiency and There was a disadvantage in terms of cost.

本発明の目的は、上述したショットピーニングという表
面処理工程に拠るまでもなく、従来の一般的な製造工程
の中で自然に付与し得る有利な技術を提案するところに
ある。
The object of the present invention is to propose an advantageous technique that can be applied naturally in the conventional general manufacturing process without relying on the above-mentioned surface treatment process of shot peening.

(問題点を解決するための手段) 本発明者らは、上掲の目的を実現するために開発・研究
を重ねた結果、化学成分に基いて決定されるマルテンサ
イト変態点(以下これをrMs点」と略記する)を特定
の範囲とし、凝固偏析、特に析出硬化元素などが濃化し
た中心偏析を生じさせるような鋳造を施せば、最終製品
の表面層に圧縮残留応力を付与でき、その結果として疲
労特性が改善されることを突き止めた。すなわち、本発
明は、 C:0.1wt%以下、St:2wt%以下、Mn :
 1 wt%以下、 Cr : 10〜20 wt%、
 Ni : 3〜10 wt%を含有し、かつ析出硬化
元素としてのMo:0.1〜3wt%、Ti:0.1〜
3Ht%Nb : 0.1〜1 wt%およびCu :
 0.5〜5 wt%を少なくとも一種含有し、残部が
Feおよび不可避的不純物よりなり、下記のMs点;M
s (”C) =1229.9−1666、7 (C+
N) −27,8Si−33,3Mn−41,7Cr−
61,1Ni−44,3Mo+59.2Ti+140.
8Nb−30,6Cuが80〜200℃の鋼を、中心偏
析が生じるような鋳造を経ることを特徴とする特許 テンサイト系析出硬化型ステンレス鋼の製造方法、を要
旨構成とする技術に想到した。
(Means for Solving the Problems) As a result of repeated development and research in order to achieve the above-mentioned purpose, the present inventors have discovered a martensitic transformation point (hereinafter referred to as rMs) determined based on chemical components. If casting is carried out in such a way that solidification segregation, especially central segregation where precipitation hardening elements are concentrated, is carried out within a specific range (abbreviated as "point"), compressive residual stress can be imparted to the surface layer of the final product, and its It was found that fatigue properties were improved as a result. That is, in the present invention, C: 0.1 wt% or less, St: 2 wt% or less, Mn:
1 wt% or less, Cr: 10-20 wt%,
Contains Ni: 3-10 wt%, Mo as a precipitation hardening element: 0.1-3 wt%, Ti: 0.1-3 wt%
3Ht%Nb: 0.1-1 wt% and Cu:
Contains at least one type of 0.5 to 5 wt%, the remainder consists of Fe and inevitable impurities, and has the following Ms point;
s (“C) = 1229.9-1666, 7 (C+
N) -27,8Si-33,3Mn-41,7Cr-
61,1Ni-44,3Mo+59.2Ti+140.
We have come up with a technology that consists of a patented method for producing precipitation hardening stainless steel based on a patented tensitic system, which is characterized by casting 8Nb-30,6Cu steel at 80 to 200°C in a manner that causes center segregation. .

(作 用) 本発明の着想の基礎とするところは、所要成分組成の析
出硬化型ステンレス鋼について、そのMs点が80〜2
00℃となるように合金設計し、かつ連続鋳造のよに急
冷に伴って最終凝固域の厚み中心部に特定成分(Ni,
 Cr. Mo etc)が濃化した正偏析を生じさせ
た場合に、ショットピーニングが不要となるというとこ
ろにある。
(Function) The idea of the present invention is based on the fact that the Ms point of precipitation hardening stainless steel of the required composition is 80 to 2.
The alloy is designed to have a temperature of 00°C, and as it is rapidly cooled as in continuous casting, specific components (Ni, Ni,
Cr. The point is that shot peening becomes unnecessary when positive segregation in which Mo, etc.) is concentrated occurs.

要するに、上記成分組成の綱を連続鋳造することにより
、連鋳スラブ中心部に、Ni, Cr等の主要合金元素
およびCu, Ti等の析出硬化元素の富化した部分を
偏析として残すことができ、その結果、中心部のMs点
は、表層部より低くなって室温以下において表層部がマ
ルテンサイト変態しても、中心部の方はオーステナイト
として残留する。従って、中心部と表層部とでは組織に
差が生じ、表層部に圧縮残留応力を付与することができ
るのである。
In short, by continuously casting a steel having the above-mentioned composition, a part enriched with major alloying elements such as Ni and Cr and precipitation hardening elements such as Cu and Ti can be left as segregation in the center of the continuously cast slab. As a result, the Ms point in the center becomes lower than that in the surface layer, and even if the surface layer undergoes martensitic transformation at room temperature or lower, the center portion remains as austenite. Therefore, there is a difference in structure between the center and the surface layer, and compressive residual stress can be applied to the surface layer.

そこで、本発明者らは、まず、化学成分とMs点との関
係を詳細に調べた。以下その結果を説明する。
Therefore, the present inventors first investigated in detail the relationship between chemical components and the Ms point. The results will be explained below.

各種成分組成の溶製材(5kg)を、鋳造−圧延し、1
050℃に加熱して熱処理し、その後熱膨張試験機によ
りMs点を測定した。その後、C+ Sit Mn。
Casting and rolling of melted materials (5 kg) of various component compositions, 1
The sample was heated to 050° C. for heat treatment, and then the Ms point was measured using a thermal expansion tester. Then C+ Sit Mn.

Cr, Niの各係数についてはBichervan 
”の式と同等とし、Mo+ Ti. NbおよびCuの
各係数については多重回帰によって求めた。得られた下
記の式と実測値とは±10℃の範囲にあり、極めて相関
が高いものであった。
For each coefficient of Cr and Ni, Bichervan
The coefficients of Mo + Ti. Ta.

Ms ( ’e )−1229. 9−1666. 7
 (C+N)−27.8Si−33. 3Mn−41.
 7Cr−61. INi−44.3Mo+59.2T
i+140.8Nb−30.6Cu次に、上記Ms点と
連続鋳造工程を施した製品の組織との関係を調べた。そ
の結果、計算されたMs点が80℃以下の場合、中心部
は合金元素富化層によるオーステナイト組織を示すが表
面近傍もオーステナイト・マルテンサイト混合組織を示
していた.また、計算されたMs点が200℃以上の場
合は、中心部まですべてマルテンサイト組織であった。
Ms('e)-1229. 9-1666. 7
(C+N)-27.8Si-33. 3Mn-41.
7Cr-61. INi-44.3Mo+59.2T
i+140.8Nb-30.6Cu Next, the relationship between the above Ms point and the structure of the product subjected to the continuous casting process was investigated. As a result, when the calculated Ms point was 80°C or less, the center showed an austenitic structure due to an alloying element enriched layer, but the near surface also showed a mixed austenite-martensitic structure. Further, when the calculated Ms point was 200° C. or higher, the entire structure up to the center was martensitic.

一方、Ms点が80〜200℃のものは中心部のみにオ
ーステナイト組織が見られた。こうしたことからMs点
によって組織の決定できることが確められた。
On the other hand, in the case where the Ms point was 80 to 200°C, an austenite structure was observed only in the center. From these results, it was confirmed that the organization can be determined by the Ms point.

さらに、上記3つのケースについて曲げ疲労試験を実施
したところ、中心部にのみオーステナイト組織を有する
鋼が最も高い疲労強度を示すこともわかった。これは次
のように理解される。すなわち、凝固過程において、通
常凝固偏析が生ずる。
Furthermore, when bending fatigue tests were conducted on the three cases mentioned above, it was found that steel having an austenitic structure only in the center exhibited the highest fatigue strength. This can be understood as follows. That is, during the solidification process, solidification segregation usually occurs.

角型鋼塊の場合、プレス工程を経るため、この偏析はか
なり軽減され内部は均質化している。ところが、スラブ
型鋼塊および連続鋳造のような急冷スラブの場合、中心
部に生じた合金元素等富化層による凝固偏析が最終製品
まで消滅することな(そのまま残る。しかも、表層部及
び中心部のNi。
In the case of square steel ingots, because they go through a pressing process, this segregation is considerably reduced and the inside is homogenized. However, in the case of rapidly cooled slabs such as slab-type steel ingots and continuous casting, the solidification segregation due to the layer enriched with alloying elements that occurs in the center does not disappear until the final product (remains as it is. Ni.

Cr等の合金元素の富化した部分のMs点が室温以上で
あれば、表層部から中心部まですべてマルテンサイトと
なるのに対し、表層部のMs点が室温以上で中心部のM
s点が室温以下となる場合には、表層と中心部とではそ
れぞれマルテンサイトとオーステナイトとなり、いわゆ
る組織差を生ずることとなる。
If the Ms point of the part enriched with alloying elements such as Cr is above room temperature, everything from the surface layer to the center becomes martensite, whereas when the Ms point of the surface layer is above room temperature, the M of the center becomes martensite.
When the s point is below room temperature, the surface layer and the center become martensite and austenite, respectively, resulting in a so-called structural difference.

その結果、表層部はマルテンサイト変態によって体積膨
張が起るため、残留オーステナイトのままである中心部
との間では歪が導入され、表面層に圧縮残留応力が生成
し、その結果として疲労強度が向上することになる。
As a result, volumetric expansion occurs in the surface layer due to martensitic transformation, which introduces strain between it and the center portion, which remains retained austenite, generating compressive residual stress in the surface layer, resulting in a decrease in fatigue strength. It will improve.

次に、本発明析出硬化型ステンレス鋼製造用素材につい
て、その成分を限定する理由について述べる。
Next, the reason for limiting the components of the material for producing precipitation hardening stainless steel of the present invention will be described.

C:強度を確保するために必要な元素であり、0.1%
1t%(以下は単に「%」で略記する)を超えると鋼板
が硬質化するから、上限を0.1%とした。
C: An element necessary to ensure strength, 0.1%
If it exceeds 1 t% (hereinafter simply abbreviated as "%"), the steel plate becomes hard, so the upper limit was set at 0.1%.

Si:Cと同様に強度の確保と共に脱酸剤として有効で
あるが、2%を超えると靭性が劣化するから、上限を2
%とした。
Si: Like C, it is effective as a deoxidizing agent while ensuring strength, but if it exceeds 2%, toughness deteriorates, so the upper limit should be set at 2%.
%.

Mn:強度および靭性の向上に有効であるが、1%を超
えると鋼板の機械的性質が劣化するから、上限を1%と
した。
Mn: Effective for improving strength and toughness, but if it exceeds 1%, the mechanical properties of the steel sheet deteriorate, so the upper limit was set at 1%.

Cr:マルテンサイト系析出硬化型ステンレス鋼として
の主要元素であり、必要な耐食性を得るために10%以
上の含有が不可決であり、一方20%以上含有する場合
、δフエライト量を急増させ熱間加工性を劣化させるの
で、10〜20%に限定した。
Cr: This is the main element for martensitic precipitation hardening stainless steel, and it is essential to contain 10% or more in order to obtain the necessary corrosion resistance.On the other hand, if it is contained in 20% or more, the amount of δ ferrite increases rapidly and heat Since it deteriorates machinability, it was limited to 10 to 20%.

Ni:δフェライト相の生成を抑制する元素であり、C
r量によっである程度左右されるが、あまり低くすると
本発明法で限られる鋼の特徴である析出硬化現象を低下
させるため、最低3%とした。一方高すぎると残留オー
ステナイト相が生成しやすくなるので10%を上限とし
た。
Ni: An element that suppresses the formation of δ ferrite phase, and C
It depends to some extent on the amount of r, but if it is too low, it will reduce the precipitation hardening phenomenon which is a characteristic of steel that is limited by the method of the present invention, so it is set to at least 3%. On the other hand, if it is too high, retained austenite phase tends to form, so the upper limit was set at 10%.

N:Nは強度を向上させるが0.2%を超えると鋼板が
硬質化するから、0.2%以下としたI Mo。
N: N improves the strength, but if it exceeds 0.2%, the steel plate becomes hard, so IMo is set to 0.2% or less.

Ti、 Nb、およびCuは、析出硬化のための元素で
あり、単独あるいは複合して用いられるが、いずれも限
定量以下ではその効果が少なくそれ以上では脆化あるい
は熱間加工性の低下を伴うので、Mo:0.1〜3%、
Ti : 0.1〜3%、Nb:0.1〜1%、Cu 
: 0.5〜5%とした。
Ti, Nb, and Cu are elements for precipitation hardening, and are used singly or in combination; however, below a limited amount, their effectiveness is small and, above that, embrittlement or reduction in hot workability occur. Therefore, Mo: 0.1-3%,
Ti: 0.1-3%, Nb: 0.1-1%, Cu
: 0.5 to 5%.

(実施例) 第1表に示す成分組成からなるマルテンサイト系析出硬
化型ステンレス鋼を、18トン溶解し、連綿鋳造にて鋳
込んだスラブと普通造塊後プレスを行ったスラブとにつ
いて、同じように熱間圧延−熱処理−冷間圧延を経て、
最終1mの帯を製造し、その後1050℃での溶体化処
理後480℃X1hr A、Cの析出硬化処理を施こし
て供試材1〜12とした。
(Example) 18 tons of martensitic precipitation-hardening stainless steel having the composition shown in Table 1 was melted and cast using continuous casting, and a slab that was pressed after normal ingot making was the same. After hot rolling, heat treatment, and cold rolling,
A final 1 m long strip was manufactured, and then subjected to solution treatment at 1050°C and precipitation hardening treatment A and C at 480°C for 1 hr to obtain test materials 1 to 12.

この供試材についてMs点の計算、組織観察による中心
部の残留オーステナイトの有無及び曲げ疲労試験を行つ
た。
For this sample material, the Ms point was calculated, the presence or absence of retained austenite in the center was determined by microstructural observation, and a bending fatigue test was performed.

曲げ疲労試験としては西原式両振り板曲げ疲労試験機を
用いた。その結果を第2表に示す、この第2表より明ら
かなように、計算されたMs点が80〜200℃のもの
は、普通造塊−プレス工程を経たものに比較すると連続
鋳造工程を経たものの方が疲労強度が優れている。第1
図に本発明材と比較材の各ミクロ組織の尊真を示すが、
本発明方法によって得られた鋼の中心部に残留オーステ
ナイト(白い層状のもの)が確認された。
For the bending fatigue test, a Nishihara type double swing plate bending fatigue tester was used. The results are shown in Table 2. As is clear from Table 2, those with a calculated Ms point of 80 to 200°C have undergone a continuous casting process compared to those that have undergone a normal ingot-pressing process. It has better fatigue strength. 1st
The figure shows the quality of each microstructure of the inventive material and comparative material.
Retained austenite (white layered material) was confirmed in the center of the steel obtained by the method of the present invention.

また、本発明方法による鋼が示している疲労強度のレベ
ルは、Fe系材料で得られる最高水準のものであるにも
かかわらず比較的合金元素添加量が少なくかつ単純な製
造工程で製造できる。
In addition, although the level of fatigue strength exhibited by the steel produced by the method of the present invention is the highest level that can be obtained with Fe-based materials, it can be manufactured with a relatively small amount of alloying elements added and by a simple manufacturing process.

(発明の効果) 以上説明したように、本発明に係るマルテンサイト系析
出硬化型ステンレス鋼の製造方法によれば、特別の処理
(ショットピーニング)を施すことなく、表面層に圧縮
残留応力を生じさせることができるので、この種の鋼種
について簡単にかつ安価に疲労強度を向上させることが
できる。
(Effects of the Invention) As explained above, according to the method for manufacturing martensitic precipitation hardening stainless steel according to the present invention, compressive residual stress is generated in the surface layer without performing any special treatment (shot peening). Therefore, the fatigue strength of this type of steel can be easily and inexpensively improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明方法と比較方法によって得られた各マ
ルテンサイト系析出硬化型ステンレス鋼についての表層
部と中心部における金属組織写真である。 特許出願人 日本冶金工業株式会社 代理人弁理士 杉  村  暁  秀 同    弁理士  杉   村   興   作第1
FIG. 1 is a photograph of the metallographic structure in the surface layer and center of each martensitic precipitation hardening stainless steel obtained by the method of the present invention and the comparative method. Patent applicant Nippon Yakin Kogyo Co., Ltd. Representative patent attorney Hidetoshi Sugimura Akira Sugimura Patent attorney No. 1
figure

Claims (1)

【特許請求の範囲】 1、C:0.1wt%以下、Si:2wt%以下、Mn
:1wt%以下、Cr:10〜20wt%、Ni:3〜
10wt%を含有し、かつ析出硬化元素としてのMo:
0.1〜3wt%、Ti:0.1〜3wt%Nb:0.
1〜1wt%およびCu:0.5〜5wt%を少なくと
も一種含有し、残部がFeおよび不可避的不純物よりな
り、下記のMs点が80〜200℃の鋼を、中心偏析が
生じるような鋳造を経ることを特徴とする疲労特性に優
れたマルテンサイト系析出硬化型ステンレス綱の製造方
法。 記 Ms(℃)=1229.9−1666.7(C+N)−
27.8Si−33.3Mn−41、Cr−61.1N
i−44.3Mo+59.2Ti+140.8Nb−3
0.6Cu
[Claims] 1. C: 0.1 wt% or less, Si: 2 wt% or less, Mn
: 1wt% or less, Cr: 10~20wt%, Ni: 3~
Mo containing 10 wt% and as a precipitation hardening element:
0.1 to 3 wt%, Ti: 0.1 to 3 wt%, Nb: 0.
A steel containing at least one type of 1 to 1 wt% and 0.5 to 5 wt% of Cu, the remainder consisting of Fe and unavoidable impurities, and having the following Ms point of 80 to 200 °C is cast in such a way that center segregation occurs. A method for manufacturing a martensitic precipitation hardening stainless steel steel having excellent fatigue properties. Ms(℃)=1229.9-1666.7(C+N)-
27.8Si-33.3Mn-41, Cr-61.1N
i-44.3Mo+59.2Ti+140.8Nb-3
0.6Cu
JP260687A 1987-01-10 1987-01-10 Manufacture of precipitation hardening-type stainless steel excellent in fatigue characteristic Granted JPS63171857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP260687A JPS63171857A (en) 1987-01-10 1987-01-10 Manufacture of precipitation hardening-type stainless steel excellent in fatigue characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP260687A JPS63171857A (en) 1987-01-10 1987-01-10 Manufacture of precipitation hardening-type stainless steel excellent in fatigue characteristic

Publications (2)

Publication Number Publication Date
JPS63171857A true JPS63171857A (en) 1988-07-15
JPH0314899B2 JPH0314899B2 (en) 1991-02-27

Family

ID=11534054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP260687A Granted JPS63171857A (en) 1987-01-10 1987-01-10 Manufacture of precipitation hardening-type stainless steel excellent in fatigue characteristic

Country Status (1)

Country Link
JP (1) JPS63171857A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7217905B2 (en) * 2003-10-29 2007-05-15 Delphi Technologies, Inc. Weld filler metal that reduces residual stress and distortion
JP2008127613A (en) * 2006-11-20 2008-06-05 Hitachi Ltd Precipitation-hardened martensitic stainless steel
JP2017155317A (en) * 2016-03-04 2017-09-07 日新製鋼株式会社 Precipitation curing type martensitic stainless steel sheet for steel belt and manufacturing method
JP2019127613A (en) * 2018-01-23 2019-08-01 山陽特殊製鋼株式会社 High hardness precipitation hardening stainless steel having excellent hot workability and requiring no sub-zero treatment
CN111101081A (en) * 2019-04-16 2020-05-05 嘉兴吉森科技有限公司 High-strength precipitation hardening stainless steel for laminated board and manufacturing method thereof
WO2021171698A1 (en) * 2020-02-27 2021-09-02 日本冶金工業株式会社 Precipitation-hardening martensitic stainless steel
JP2022047494A (en) * 2020-09-11 2022-03-24 クエステック イノベーションズ リミテッド ライアビリティ カンパニー Stainless steel powders for additive manufacturing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59129755A (en) * 1983-01-18 1984-07-26 Japan Steel Works Ltd:The Stainless cast steel with high corrosion fatigue strength
JPS6036649A (en) * 1983-08-05 1985-02-25 Nisshin Steel Co Ltd Precipitation hardening martensitic stainless steel with superior toughness

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59129755A (en) * 1983-01-18 1984-07-26 Japan Steel Works Ltd:The Stainless cast steel with high corrosion fatigue strength
JPS6036649A (en) * 1983-08-05 1985-02-25 Nisshin Steel Co Ltd Precipitation hardening martensitic stainless steel with superior toughness

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7217905B2 (en) * 2003-10-29 2007-05-15 Delphi Technologies, Inc. Weld filler metal that reduces residual stress and distortion
JP2008127613A (en) * 2006-11-20 2008-06-05 Hitachi Ltd Precipitation-hardened martensitic stainless steel
JP4702267B2 (en) * 2006-11-20 2011-06-15 株式会社日立製作所 Precipitation hardening type martensitic stainless steel
JP2017155317A (en) * 2016-03-04 2017-09-07 日新製鋼株式会社 Precipitation curing type martensitic stainless steel sheet for steel belt and manufacturing method
JP2019127613A (en) * 2018-01-23 2019-08-01 山陽特殊製鋼株式会社 High hardness precipitation hardening stainless steel having excellent hot workability and requiring no sub-zero treatment
CN111101081A (en) * 2019-04-16 2020-05-05 嘉兴吉森科技有限公司 High-strength precipitation hardening stainless steel for laminated board and manufacturing method thereof
WO2021171698A1 (en) * 2020-02-27 2021-09-02 日本冶金工業株式会社 Precipitation-hardening martensitic stainless steel
JP2021134395A (en) * 2020-02-27 2021-09-13 日本冶金工業株式会社 Precipitation-hardening martensitic stainless steel
JP2022047494A (en) * 2020-09-11 2022-03-24 クエステック イノベーションズ リミテッド ライアビリティ カンパニー Stainless steel powders for additive manufacturing

Also Published As

Publication number Publication date
JPH0314899B2 (en) 1991-02-27

Similar Documents

Publication Publication Date Title
US20200071782A1 (en) Ultra-high strength maraging stainless steel with salt-water corrosion resistance
EP2279276B1 (en) Stainless steel product, use of the product and method of its manufacture
WO2015111403A1 (en) Material for cold-rolled stainless steel sheet and method for producing same
JP2009503257A (en) Corrosion resistance, cold formability, machinability high strength martensitic stainless steel
JPH0445576B2 (en)
JP5862846B2 (en) Ferritic stainless steel and manufacturing method thereof
JP2020509175A (en) Low alloy steel sheet with excellent strength and softness
JP5181439B2 (en) Non-oriented electrical steel sheet
JP4327030B2 (en) Low Ni austenitic stainless steel with excellent overhanging and rust resistance
JPH05255813A (en) High strength alloy excellent in workability and damping capacity
JPS63171857A (en) Manufacture of precipitation hardening-type stainless steel excellent in fatigue characteristic
JPH0583610B2 (en)
JP2002167652A (en) Thin sheet material excellent in high strength-high fatigue resisting characteristic
JP2000017395A (en) Fe SERIES SHAPE MEMORY ALLOY AND ITS PRODUCTION
JPH029647B2 (en)
JP2583694B2 (en) Method for producing ferritic stainless steel for electrical materials with excellent ductility, wear resistance and rust resistance
JPS61136622A (en) Manufacture of high strength low alloy ultrathick steel material
JPH0717946B2 (en) Method for producing duplex stainless steel with excellent resistance to concentrated sulfuric acid corrosion
JPH0830253B2 (en) Precipitation hardening type martensitic stainless steel with excellent workability
JP2665009B2 (en) High strength martensitic stainless steel and method for producing the same
RU2173729C1 (en) Austenitic corrosion resistant steel and product manufactured therefrom
JPH0261540B2 (en)
JP6279118B1 (en) High-strength duplex stainless steel with excellent corrosion resistance and bending workability
JP5136174B2 (en) High strength steel for bolts with excellent weather resistance and delayed fracture resistance
US2677610A (en) High temperature alloy steel and articles made therefrom

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term