JP2021134395A - Precipitation-hardening martensitic stainless steel - Google Patents

Precipitation-hardening martensitic stainless steel Download PDF

Info

Publication number
JP2021134395A
JP2021134395A JP2020031787A JP2020031787A JP2021134395A JP 2021134395 A JP2021134395 A JP 2021134395A JP 2020031787 A JP2020031787 A JP 2020031787A JP 2020031787 A JP2020031787 A JP 2020031787A JP 2021134395 A JP2021134395 A JP 2021134395A
Authority
JP
Japan
Prior art keywords
phase
stainless steel
precipitation
heat treatment
precipitation hardening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020031787A
Other languages
Japanese (ja)
Other versions
JP6776467B1 (en
Inventor
大樹 前田
Daiki Maeda
大樹 前田
富高 韋
Fu Gao Wei
富高 韋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP2020031787A priority Critical patent/JP6776467B1/en
Priority to EP20920783.6A priority patent/EP4112754A1/en
Priority to PCT/JP2020/040211 priority patent/WO2021171698A1/en
Priority to CN202080097683.0A priority patent/CN115210389A/en
Application granted granted Critical
Publication of JP6776467B1 publication Critical patent/JP6776467B1/en
Publication of JP2021134395A publication Critical patent/JP2021134395A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals

Abstract

To provide a precipitation-hardening martensitic stainless steel that maintains toughness and a higher strength through the execution of an aging heat treatment.SOLUTION: A precipitation-hardening martensitic stainless steel comprises the following on a mass% basis: C: 0.01-0.10%, Si: 1.0-2.0%, Mn: 0.50-1.50%, P: not more than 0.04%, S: not more than 0.01%, Ni: 6.0-8.0%, Cr: 12.0-15.0%, Mo: 0.50-1.50%, Cu: 0.40-1.20%, Ti: 0.20-0.50%, Nb: 0.05-0.40%, N: 0.001-0.02%, Al: 0.001-0.2%, and O: 0.0001-0.01%, with the balance being Fe and inevitable impurities. A Cu phase and a Ni16(Ti,Nb)6Si7 intermetallic compound phase are distributed in the precipitation-hardening martensitic stainless steel, wherein the Nb in the intermetallic compound phase is 0.2-3.0 (at%).SELECTED DRAWING: Figure 1

Description

本発明は、時効熱処理後に高い強度、延性を有する析出硬化型マルテンサイト系ステンレス鋼に関する。 The present invention relates to precipitation hardening martensitic stainless steels having high strength and ductility after aging heat treatment.

析出硬化型のステンレス鋼は、時効熱処理を施すことにより、強度を高めることができることから、スチールベルトやプレスプレートなどの用途に用いられる。その代表的なものとして、SUS630やSUS631などを挙げることができる。 Precipitation hardening type stainless steel is used for applications such as steel belts and press plates because its strength can be increased by subjecting it to aging heat treatment. Typical examples thereof include SUS630 and SUS631.

上記のSUS631はセミオーステナイト系ステンレス鋼であり、固溶化状態では、準安定オーステナイト系ステンレス鋼である。この鋼に冷間圧延を施し、加工誘起マルテンサイト組織にした後、時効熱処理によりNiAlを析出させることにより高強度化するが、製造性が悪いといった問題がある。また、Alを含むため、高温においてδフェライト相が析出しやすく、熱間加工性が悪いといった問題がある。 The above-mentioned SUS631 is a semi-austenitic stainless steel, and in a solid-dissolved state, it is a ferritic austenitic stainless steel. This steel is cold-rolled to form a work-induced martensite structure, and then NiAl is precipitated by aging heat treatment to increase the strength, but there is a problem that the manufacturability is poor. Further, since it contains Al, there is a problem that the δ ferrite phase is easily precipitated at a high temperature and the hot workability is poor.

上記のSUS630はマルテンサイト系ステンレス鋼であり、固溶化熱処理後でマルテンサイト組織であり、時効熱処理によって、ε−Cu相の析出によって強度を高めているが、到達強度は1500MPa程度(ビッカース硬さ400程度)である。 The above-mentioned SUS630 is a martensitic stainless steel, which has a martensitic structure after solidification heat treatment, and its strength is increased by precipitation of the ε-Cu phase by aging heat treatment, but the ultimate strength is about 1500 MPa (Vickers hardness). About 400).

また、SUS630と同じマルテンサイト系ステンレス鋼において、TiやSiを添加することによって、ε−Cu相に加え、Ni16TiSi系金属間化合物相(以下、G相と略称する場合がある)を析出させ強度を高めた鋼種が存在する。 Further, in the same martensitic stainless steel as SUS630, by adding Ti or Si, in addition to the ε-Cu phase, the Ni 16 Ti 6 Si 7 system intermetallic compound phase (hereinafter, may be abbreviated as G phase). ) Is deposited to increase the strength.

特開2003−73783号公報Japanese Unexamined Patent Publication No. 2003-73783 特開平11−256282号公報Japanese Unexamined Patent Publication No. 11-256282 特開2017−155317号公報JP-A-2017-155317

上記特許文献の技術より高強度の析出硬化型マルテンサイト系ステンレス鋼は広く用いられている。しかしながら、析出硬化型マルテンサイト系ステンレス鋼の使用用途が多岐にわたるに伴って、用途に応じた要求が強くなっており、使用条件によっては特性が十分でない場合がある。 Precipitation hardening martensitic stainless steels with higher strength than the techniques of the above patent documents are widely used. However, as precipitation hardening martensitic stainless steels are used in a wide variety of applications, there are increasing demands according to the applications, and the characteristics may not be sufficient depending on the conditions of use.

そこで、本発明は、時効熱処理を施すことにより、さらなる高強度と靭性を維持する析出硬化型マルテンサイト系ステンレス鋼を提供することを目的とする。 Therefore, an object of the present invention is to provide a precipitation hardening martensitic stainless steel that maintains higher strength and toughness by subjecting it to aging heat treatment.

発明者らは、上記の課題の解決に向けて合金元素および時効熱処理により析出する強化相着目し鋭意検討を重ねた。各元素の影響を調査するため、様々な成分で実験室溶解を行い、熱間鍛造、冷間圧延により、板厚2mmの冷間圧延材を作製し、これに対して固溶化熱処理、時効熱処理を施し、引張試験、ビッカース硬さ試験などの機械的性質の評価、透過型電子顕微鏡(TEM)、走査型透過電子顕微鏡(STEM)観察によるナノスケールの析出硬化相の評価を行った。 The inventors have made extensive studies focusing on the alloying elements and the strengthening phase precipitated by aging heat treatment in order to solve the above problems. In order to investigate the influence of each element, laboratory melting was performed with various components, and cold rolled material with a plate thickness of 2 mm was produced by hot forging and cold rolling, and then solidification heat treatment and aging heat treatment were performed. The mechanical properties such as tensile test and Vickers hardness test were evaluated, and the nanoscale precipitation hardening phase was evaluated by observation with a transmission electron microscope (TEM) and a scanning transmission electron microscope (STEM).

特に、解像度の高いSTEMにより詳細かつ注意深く観察し、EDSにより析出相を測定したところ、以下の知見を得た。時効熱処理により析出するG相(Ni16Si)のXには、Tiのみならず、Fe、Mn、Nbも置換し得ることが明らかとなった。 In particular, detailed and careful observation was performed using a high-resolution STEM, and the precipitated phase was measured by EDS, and the following findings were obtained. It was clarified that not only Ti but also Fe, Mn, and Nb can be substituted for X of the G phase (Ni 16 X 6 Si 7 ) precipitated by the aging heat treatment.

その中でも、TiはG相の骨格となる元素であることを確認できたこと、Nb無添加の場合にはXのサイトにMnが固溶することが明らかとなった。しかし、この場合、G相の粒径が4〜20nmと大きく、同時にCu相も4〜50nmと大きく、また、G相およびCu相は粒界に偏在する傾向を示し、析出硬化の向上に至らなかった。 Among them, it was confirmed that Ti is an element that forms the skeleton of the G phase, and it was clarified that Mn is dissolved in the site of X when Nb is not added. However, in this case, the particle size of the G phase is as large as 4 to 20 nm, the Cu phase is also as large as 4 to 50 nm, and the G phase and the Cu phase tend to be unevenly distributed at the grain boundaries, leading to improvement in precipitation hardening. There wasn't.

一方、Nbを添加した素材では、上記Xのサイトに、Mnではなく、Nbが固溶することが明らかとなった。その上、G相、Cu相といった析出硬化相の析出を促進し、Nb無添加の場合に比べ、短時間の時効熱処理で高強度が得られ、G相、Cu相といった析出硬化相は1〜20nmの粒径となり微細化することが分かった。さらに、これらのG相、Cu相は粒界に偏在せずに、結晶粒内にも微細に分散する作用を持つことも示された。これらの微細析出の効果により、析出硬化を著しく向上することが明らかとなった。 On the other hand, in the material to which Nb was added, it was clarified that Nb, not Mn, was dissolved in the site of X. In addition, it promotes precipitation hardening phases such as G phase and Cu phase, and higher strength can be obtained by aging heat treatment for a short time compared to the case where Nb is not added, and precipitation hardening phases such as G phase and Cu phase are 1 to 1. It was found that the particle size became 20 nm and the particle size became finer. Furthermore, it was also shown that these G phase and Cu phase have an action of finely dispersing in crystal grains without being unevenly distributed at the grain boundaries. It was clarified that the effect of these fine precipitations significantly improved precipitation hardening.

すなわち、本発明は以下の通りである。
以下質量%にて、C:0.01〜0.10%、Si:1.0〜2.0%、Mn:0.50〜1.50%、P:0.04%以下、S:0.01%以下、Ni:6.0〜8.0%、Cr:12.0〜15.0%、Mo:0.50〜1.50%、Cu:0.40〜1.20%、Ti:0.20〜0.50%、Nb:0.05〜0.40%、N:0.001〜0.02%、Al:0.001〜0.2%、O:0.0001〜0.01%、残部がFeおよび不可避的不純物から成り、Cu相およびNi16(Ti,Nb)Si系金属間化合物相が分布し、前記金属間化合物相中のNbが0.2〜3.0(at%)であることを特徴とする析出硬化型マルテンサイト系ステンレス鋼である。
That is, the present invention is as follows.
In the following mass%, C: 0.01 to 0.10%, Si: 1.0 to 2.0%, Mn: 0.50 to 1.50%, P: 0.04% or less, S: 0 0.01% or less, Ni: 6.0-8.0%, Cr: 12.0-15.0%, Mo: 5.00-1.50%, Cu: 0.40-1.20%, Ti : 0.25 to 0.50%, Nb: 0.05 to 0.40%, N: 0.001 to 0.02%, Al: 0.001 to 0.2%, O: 0.0001 to 0 .01%, the balance being Fe and inevitable impurities, Cu phase and Ni 16 (Ti, Nb) 6 Si 7 intermetallic compound phase distribution, Nb of the intermetallic compound in the phase is 0.2 to 3 It is a precipitation-hardening type martensite-based stainless steel characterized by having a temperature of 0.0 (at%).

さらに、析出硬化においては、析出硬化相の分布状態、サイズが強度に対して、大きな影響があるため、本発明の析出硬化型マルテンサイト系ステンレス鋼はCu相およびNi16(Ti,Nb)Si系金属間化合物相の50個数%以上が結晶粒内に分布することを特徴とする。 Further, in precipitation hardening, the distribution state and size of the precipitation hardening phase have a great influence on the strength. Therefore, the precipitation hardening martensitic stainless steel of the present invention has a Cu phase and Ni 16 (Ti, Nb) 6. It is characterized in that 50% or more of the Si 7 martensitic compound phase is distributed in the crystal grains.

また、本発明の析出硬化型マルテンサイト系ステンレス鋼は、Cu相およびNi16(Ti,Nb)Si系金属間化合物相は平均粒径1〜20nmであることを特徴とする。 Further, the precipitation hardenable martensitic stainless steel of the present invention, Cu phase and Ni 16 (Ti, Nb) 6 Si 7 intermetallic compound phase is characterized by an average particle size of 1 to 20 nm.

さらに、機械的性質として伸びが2〜15%であり、硬さが400〜600Hvであることを特徴とする析出硬化型ステンレス鋼を提供する。 Further provided are precipitation hardening stainless steels characterized by mechanical properties of 2 to 15% elongation and 400 to 600 Hv hardness.

本発明のステンレス鋼へのCu相とG相の析出状態を示す模式図であり、3つの結晶粒の粒界近傍を示す。It is a schematic diagram which shows the precipitation state of the Cu phase and the G phase on the stainless steel of this invention, and shows the vicinity of the grain boundary of three crystal grains.

本発明のステンレス鋼の成分組成を限定する理由について説明する。なお、以下「%」は特に断りのない限り「質量%」である。
C:0.01〜0.10%
Cはオーステナイト生成元素であり、高温でのδフェライト相の生成を抑制する。また、マルテンサイト相に固溶して強度を上昇させるが、固溶熱処理後の残留オーステナイト相が増加しやすくなり、時効熱処理後に十分な強度が得られなくなる。さらに、C量が高くなると、析出硬化に寄与するG相の構成成分であるTi、NbがTiC、NbCの形成により消費されやすくなる。よって、時効熱処理による析出硬化能を低下させるため、Cの含有量は0.01〜0.10%とする。さらに、好ましくは0.03〜0.05%とする。
The reason for limiting the composition of the stainless steel of the present invention will be described. Hereinafter, "%" is "mass%" unless otherwise specified.
C: 0.01 to 0.10%
C is an austenite-forming element and suppresses the formation of a δ-ferrite phase at high temperatures. Further, although the strength is increased by solid solution in the martensite phase, the residual austenite phase after the solid solution heat treatment tends to increase, and sufficient strength cannot be obtained after the aging heat treatment. Further, when the amount of C is high, Ti and Nb, which are constituents of the G phase that contribute to precipitation hardening, are easily consumed by the formation of TiC and NbC. Therefore, the content of C is set to 0.01 to 0.10% in order to reduce the precipitation hardening ability by the aging heat treatment. Further, it is preferably 0.03 to 0.05%.

Si:1.0〜2.0%
Siは、時効熱処理によってG相を生成させ、析出硬化により強度を大きく上昇させるため、1.0%以上とする。一方で、フェライト生成元素であるため多量に含有するとδフェライト相が生成しやすくなり、熱間加工性、溶接部での強度低下を助長するため、2.0%以下とする。さらに、好ましくは1.30〜1.90%とする。
Si: 1.0-2.0%
Si is 1.0% or more because G phase is generated by aging heat treatment and the strength is greatly increased by precipitation hardening. On the other hand, since it is a ferrite-forming element, if it is contained in a large amount, a δ-ferrite phase is likely to be formed, which promotes hot workability and a decrease in strength at the welded portion. Therefore, the content is set to 2.0% or less. Further, it is preferably 1.30 to 1.90%.

Mn:0.50〜1.50%
Mnはオーステナイト生成元素であり、高温でのδフェライト相の生成を抑制する。さらに、固溶熱処理後の残留オーステナイト相が増加しやすくなり、靭性を向上する一方、時効熱処理後に強度が低下する。また、MnOやMnSを形成し、耐食性を低下させる。よって、Mnの範囲は0.50〜1.50%とする。さらに、好ましくは0.70〜1.20%とする。
Mn: 0.50 to 1.50%
Mn is an austenite-forming element and suppresses the formation of a δ-ferrite phase at high temperatures. Further, the retained austenite phase after the solid solution heat treatment tends to increase, and the toughness is improved, while the strength is lowered after the aging heat treatment. Further, MnO and MnS are formed to reduce the corrosion resistance. Therefore, the range of Mn is set to 0.50 to 1.50%. Further, it is preferably 0.70 to 1.20%.

P:0.04%以下
Pは、結晶粒界に偏析することにより、凝固割れ感受性を高めるとともに、熱間加工性を低下させる。よって、P含有量は低いほど望ましく、0.04%以下とする。
P: 0.04% or less P increases the susceptibility to solidification and cracking and lowers the hot workability by segregating at the grain boundaries. Therefore, the lower the P content, the more desirable it is, and the P content is 0.04% or less.

S:0.01%以下
Sは、MnSを形成し耐食性を低下、粒界に偏析し熱間加工性を低下させる有害成分である。よって、S含有量は低いほど望ましく、0.01%以下とする。
S: 0.01% or less S is a harmful component that forms MnS, lowers corrosion resistance, segregates at grain boundaries, and lowers hot workability. Therefore, the lower the S content, the more desirable it is, and the S content is 0.01% or less.

Ni:6.0〜8.0%
Niはオーステナイト生成元素であるとともに、前記G相の構成元素であり、析出硬化に重要な元素であるため、6.0%以上とする。ただし、Ni含有量が多くなると固溶熱処理後の残留オーステナイト相が増加しやすくなり、強度低下の招く要因となるため、8.0%以下とした。
Ni: 6.0-8.0%
Since Ni is an austenite-forming element, is a constituent element of the G phase, and is an important element for precipitation hardening, it is set to 6.0% or more. However, when the Ni content increases, the residual austenite phase after the solid solution heat treatment tends to increase, which causes a decrease in strength. Therefore, the content was set to 8.0% or less.

Cr:12.0〜15.0%
Crはステンレス鋼の耐食性を確保するため、12.0%以上とした。しかしながら、フェライト生成元素であるため、高温においてδフェライト相が生成しやすくなり、熱間加工性を低下させるため、15.0%以下とする。
Cr: 12.0 to 15.0%
Cr was set to 12.0% or more in order to ensure the corrosion resistance of stainless steel. However, since it is a ferrite-forming element, a δ-ferrite phase is likely to be formed at a high temperature, and the hot workability is lowered. Therefore, the content is set to 15.0% or less.

Mo:0.50〜1.50%
Moは耐食性の向上に有効な元素であるが、δフェライト相が生成を助長するため0.50〜1.50%の範囲とした。さらに、好ましくは0.50〜1.00%とする。
Mo: 0.50 to 1.50%
Mo is an element effective for improving corrosion resistance, but it was set in the range of 0.50 to 1.50% because the δ ferrite phase promotes the formation. Further, it is preferably 0.50 to 1.00%.

Cu:0.40〜1.20%
Cuは時効熱処理によりCu相を生成し、析出硬化に有効な元素である。しかしながら、過度の添加は残留オーステナイト相増加による強度低下や熱間加工性の低下による割れの発生の原因となる。よって、Cuの含有量は0.40〜1.20%とする。さらに、好ましくは0.50〜1.00%とする。
Cu: 0.40 to 1.20%
Cu is an element that produces a Cu phase by aging heat treatment and is effective for precipitation hardening. However, excessive addition causes a decrease in strength due to an increase in the retained austenite phase and a decrease in hot workability, resulting in cracking. Therefore, the Cu content is set to 0.40 to 1.20%. Further, it is preferably 0.50 to 1.00%.

Ti:0.20〜0.50%
TiはG相形成に必須元素であり、析出硬化による強度上昇に有効な元素である。ただし、酸化物、窒化物を形成しやすく、欠陥の原因となることより、Tiの範囲は0.20〜0.50%とする。
Ti: 0.25 to 0.50%
Ti is an essential element for forming the G phase and is an element effective for increasing the strength due to precipitation hardening. However, the range of Ti is set to 0.20 to 0.50% because oxides and nitrides are easily formed and cause defects.

Nb:0.05〜0.40%
NbはG相を構成する元素であり、とても重要な元素である。NbはG相をNi16(Ti,Nb)Si系に制御して核生成を促進する作用を持つため有効な元素である。さらに、Cu相を微細に分散させる効果もあり、Cu相およびG相による析出硬化の能力を著しく向上する。さらに、特に限定しないが、およそ0.3〜1μmほどのサイズのNb炭化物を形成して、結晶粒の粗大化を妨げる効果があり、結晶粒の微細化にも有効である。よって、Nbの含有量は0.05%以上とする。しかしながら、過剰なNbの添加は、過剰なNbCの形成により、固溶C量低下を引き起こし、伸びが低下する原因となるため0.40%以下とする。さらに、好ましくは0.10〜0.30%とする。
Nb: 0.05 to 0.40%
Nb is an element that constitutes the G phase and is a very important element. Nb is an effective element because it has the effect of controlling the G phase to the Ni 16 (Ti, Nb) 6 Si 7 system and promoting nucleation. Further, there is also an effect of finely dispersing the Cu phase, and the ability of precipitation hardening by the Cu phase and the G phase is remarkably improved. Further, although not particularly limited, it has the effect of forming Nb carbide having a size of about 0.3 to 1 μm to prevent the coarsening of the crystal grains, and is also effective for the miniaturization of the crystal grains. Therefore, the content of Nb is set to 0.05% or more. However, the addition of excess Nb causes a decrease in the amount of solid solution C due to the formation of excess NbC, which causes a decrease in elongation, and thus the content is 0.40% or less. Further, it is preferably 0.10 to 0.30%.

N:0.001〜0.02%
Nは、Cと同様オーステナイト生成元素であり、マルテンサイト相に固溶して強度を上昇させるが、TiN、NbNの形成により析出硬化に寄与するG相の構成成分であるTi、Nbが消費されやすくなり、時効熱処理による析出硬化能を低下させる。よって、Nの範囲は0.001〜0.02%とする。
N: 0.001 to 0.02%
Like C, N is an austenite-forming element that dissolves in the martensite phase to increase its strength, but the formation of TiN and NbN consumes Ti and Nb, which are constituents of the G phase that contribute to precipitation hardening. It becomes easier and reduces the precipitation hardening ability by aging heat treatment. Therefore, the range of N is set to 0.001 to 0.02%.

Al:0.001〜0.2%
Alは、脱酸剤としてO量を低下させることに有効な元素である。また、Nbは比較的酸化し易い元素のため、Alで脱酸し酸素濃度を低下させることにより、Nbを確実に本願発明の範囲に制御することが出来る。しかし、過度に含有させるとδフェライト相の生成を助長し、熱間加工性の低下や靭性の低下が起こる。そこで、Alの範囲は0.001〜0.2%とする。
Al: 0.001 to 0.2%
Al is an element effective as a deoxidizing agent for reducing the amount of O. Further, since Nb is an element that is relatively easily oxidized, Nb can be reliably controlled within the scope of the present invention by deoxidizing with Al to reduce the oxygen concentration. However, if it is contained excessively, the formation of a δ ferrite phase is promoted, resulting in a decrease in hot workability and a decrease in toughness. Therefore, the range of Al is set to 0.001 to 0.2%.

O:0.0001〜0.01%、
Oは、析出硬化に寄与するG相の構成成分であるSi、Tiと非金属介在物を形成するため、時効熱処理後の強度を低下させる。さらに、酸化物系の介在物は鋼の清浄度を低下させ、欠陥の原因となる。しかしながら、過度の脱酸はコストの増大を招くため、Oの範囲は0.0001〜0.01%とする。
O: 0.0001 to 0.01%,
O forms non-metal inclusions with Si and Ti, which are constituents of the G phase that contribute to precipitation hardening, and thus reduces the strength after aging heat treatment. In addition, oxide-based inclusions reduce the cleanliness of the steel and cause defects. However, excessive deoxidation causes an increase in cost, so the range of O is set to 0.0001 to 0.01%.

本発明鋼は、Cu相、G相Ni16Siを同時に析出させることにより、優れた強度を有する析出硬化型マルテンサイト系ステンレス鋼である。これら析出硬化相の分布状態、析出硬化相自体の大きさは、硬さおよび伸びといった機械的性質に対して大きく影響を及ぼす。 The steel of the present invention is a precipitation hardening martensitic stainless steel having excellent strength by simultaneously precipitating Cu phase and G phase Ni 16 X 6 Si 7. The distribution state of these precipitation-hardened phases and the size of the precipitation-hardened phase itself have a great influence on mechanical properties such as hardness and elongation.

例えば、析出物が結晶粒界上に多く存在し、結晶粒内の存在割合が低い場合、析出物が粗大に成長しやすく、脆性的になる。一方で、結晶粒内、結晶粒界上の位置には関わらず、析出物が均一に分布している方が強度は上昇する。そのため、適切な条件での固溶化熱処理、時効熱処理により析出物を均一に分散させる。ここでの適切な熱処理条件とは、特に限定はしないが、1000〜1150℃にて1〜5minの固溶化熱処理を実施し、その後、400〜600℃にて30min〜10hrの時効熱処理を施すことを指す。 For example, when a large amount of precipitates are present on the grain boundaries and the abundance ratio in the crystal grains is low, the precipitates tend to grow coarsely and become brittle. On the other hand, the strength increases when the precipitates are uniformly distributed regardless of the positions in the crystal grains and on the grain boundaries. Therefore, the precipitates are uniformly dispersed by solution heat treatment and aging heat treatment under appropriate conditions. The appropriate heat treatment conditions here are not particularly limited, but the solution heat treatment is carried out at 1000 to 1150 ° C. for 1 to 5 minutes, and then the aging heat treatment is carried out at 400 to 600 ° C. for 30 min to 10 hr. Point to.

なお、G相中のNbの割合には最適値がある。つまり、Nbが低すぎると、G相の分布が不均一となり、結晶粒界上に多く分布し本願発明の硬さを満たせない。一方で、G相中のNbが高すぎると、伸びが本願発明の範囲の下限値である2%未満となり、十分に伸びず加工することが出来ない。Ni16(Ti,Nb)Si中のNbをxとした時、G相はNi16(Ti(1−x),NbSiと表される。したがって、G相中のNbの原子割合(at%)はx/(16+6+7)で表せる。特に限定はしないが、G相中のNb(at%)が0.2〜3.0の範囲とすることで、硬さおよび伸びを本願発明の範囲に制御することが出来る。この範囲を実現するためには、Nb含有量を0.05〜0.40%とすればよい。 There is an optimum value for the ratio of Nb in the G phase. That is, if Nb is too low, the distribution of the G phase becomes non-uniform, and a large amount is distributed on the grain boundaries, and the hardness of the present invention cannot be satisfied. On the other hand, if Nb in the G phase is too high, the elongation becomes less than 2%, which is the lower limit of the range of the present invention, and the elongation is not sufficient and processing cannot be performed. When Nb in Ni 16 (Ti, Nb) 6 Si 7 is x, the G phase is represented as Ni 16 (Ti (1-x) , Nb x ) 6 Si 7 . Therefore, the atomic ratio (at%) of Nb in the G phase can be expressed by x / (16 + 6 + 7). Although not particularly limited, the hardness and elongation can be controlled within the range of the present invention by setting the Nb (at%) in the G phase to the range of 0.2 to 3.0. In order to realize this range, the Nb content may be 0.05 to 0.40%.

また、本鋼においてはNbを添加することによって、析出相の核生成を促進することができ、析出物を均一に分散させることができる。したがって、Nbを本願発明の範囲に規定することによりCu相およびNi16(Ti,Nb)Si系金属間化合物相の50%以上を結晶粒内に分布させることが可能である。 Further, in this steel, by adding Nb, nucleation of the precipitated phase can be promoted, and the precipitate can be uniformly dispersed. Therefore, Cu phase and Ni 16 (Ti, Nb) and 6 Si 7 system more than 50% of the intermetallic phase is possible to distribute in the crystal grains by defining the Nb in the scope of the present invention.

さらに、これら析出硬化相自体のサイズは強度に対して大きく影響を及ぼし、本願ではとても重要な数値である。転位が移動しても、析出物によりその移動を止めることが出来れば強度は高くなる。 Furthermore, the size of these precipitation-hardened phases themselves has a great influence on the strength, which is a very important value in the present application. Even if the dislocations move, the strength will increase if the movement can be stopped by the precipitate.

この析出物の障害物としての作用は析出相の大きさによって変化し、最適な析出相のサイズが存在する。本鋼においては析出相のサイズが1nm以上、20nm以下において析出物の転位への障害物としての作用が最大となるため、析出物のサイズを最適化する必要がある。したがって、適切な条件での固溶化熱処理、時効熱処理およびNbを本願発明の範囲に規定することによりCu相およびNi16(Ti,Nb)Si系金属間化合物相は平均粒径1〜20nmとすることが可能である。 The action of this precipitate as an obstacle changes depending on the size of the precipitated phase, and there is an optimum size of the precipitated phase. In this steel, when the size of the precipitation phase is 1 nm or more and 20 nm or less, the action as an obstacle to the dislocation of the precipitate is maximized, so that it is necessary to optimize the size of the precipitate. Therefore, solution heat treatment under appropriate conditions, Cu phase and Ni 16 (Ti, Nb) 6 Si 7 intermetallic compound phase by defining the aging and Nb in the range of the present invention has an average particle size 1~20nm It is possible to

析出硬化型のステンレス鋼は、時効熱処理を施すことにより、強度を高めることができることから、スチールベルトやプレスプレートなどの用途に用いられる。これらは強度、疲労特性が要求されるが、これらの特性を上昇させるため硬さがHV400以上必要である。一方で非常に高い硬さになると伸びが減少してしまうため、HV600以下とする。加えて、靭性が要求されるため、伸びは硬さとのバランスより2〜15%とする。 Precipitation hardening type stainless steel is used for applications such as steel belts and press plates because its strength can be increased by subjecting it to aging heat treatment. These are required to have strength and fatigue characteristics, but in order to increase these characteristics, hardness of HV400 or more is required. On the other hand, if the hardness is very high, the elongation will decrease, so the HV is set to 600 or less. In addition, since toughness is required, the elongation should be 2 to 15% in balance with hardness.

次に、実施例を提示して、本発明の構成および作用効果をより明らかにするが、本発明は以下の実施例にのみ限定されるものではない。
表1に供試材の化学成分および析出硬化相の有無、G相中のNb量、粒内の析出物の割合、ビッカース硬さ、伸びをまとめたものを示す。化学成分が本発明の範囲外の数値には括弧を付してある。
Next, examples will be presented to further clarify the constitution and effects of the present invention, but the present invention is not limited to the following examples.
Table 1 shows the chemical composition of the test material, the presence or absence of a precipitation hardening phase, the amount of Nb in the G phase, the proportion of precipitates in the grains, the Vickers hardness, and the elongation. Numerical values whose chemical composition is outside the scope of the present invention are shown in parentheses.

Figure 2021134395
Figure 2021134395

いずれの鋼も高周波誘導炉により原料を溶解し、鋳鉄製の鋳型に鋳込むことで20kg規模のインゴットを作製した。これらを1000〜1200℃にて熱間鍛造し、厚み12mmの鍛造板を得た。その後、冷間圧延により、厚み2mmの冷間圧延材を作製し、これに対して固溶化熱処理、時効熱処理を施した。固溶加熱処理は、鋼中に存在する析出物を固溶させるために行われるものであり、熱処理後の急冷によりマルテンサイト変態がおこる。上記の冷間圧延材に対して、1050℃にて2minの固溶化熱処理を行った。 In each steel, the raw materials were melted by a high-frequency induction furnace and cast into a cast iron mold to prepare an ingot having a scale of 20 kg. These were hot forged at 1000 to 1200 ° C. to obtain a forged plate having a thickness of 12 mm. Then, a cold-rolled material having a thickness of 2 mm was produced by cold rolling, and the solution heat treatment and the aging heat treatment were performed on the cold rolled material. The solid solution heat treatment is performed to dissolve the precipitates existing in the steel, and martensitic transformation occurs due to rapid cooling after the heat treatment. The cold-rolled material was subjected to a solution heat treatment for 2 minutes at 1050 ° C.

時効熱処理は、固溶化熱処理後に析出硬化相、本鋼では、Cu相およびG相を微細に分散析出させる処理である。上記の冷間圧延材に対して、480℃にて1hrの固溶化熱処理を行った。 The aging heat treatment is a treatment in which the precipitation hardening phase is finely dispersed and precipitated after the solidification heat treatment, and in this steel, the Cu phase and the G phase are finely dispersed and precipitated. The above cold-rolled material was subjected to a solution heat treatment for 1 hr at 480 ° C.

これらの供試材を引張試験、ビッカース硬さ試験などの機械的性質の評価、光学顕微鏡、SEMによる組織の評価、さらにTEM、STEM観察によるナノスケールの析出硬化相の評価を行った。 These test materials were evaluated for mechanical properties such as tensile test and Vickers hardness test, microstructure evaluation by optical microscope and SEM, and nanoscale precipitation hardening phase evaluation by TEM and STEM observation.

析出硬化相であるCu相およびG相の有無、分布、サイズについては収束イオンビーム(FIB)により作製した薄膜試料を用いSTEMに搭載されたエネルギー分散型X線 (EDS)分析装置による元素マッピング像より画像解析を用いて、測定を行った。 Regarding the presence, distribution, and size of the Cu and G phases, which are precipitation hardening phases, an element mapping image by an energy dispersive X-ray (EDS) analyzer mounted on a STEM using a thin film sample prepared by a focused ion beam (FIB). The measurement was performed using more image analysis.

以下、表1に併記した評価の各項目における評価基準について説明する。
(Cu相の有無、G相の有無)
Cu相とG相が存在する場合、評価を○とした。いずれかの相が存在しない場合、×とした。各相の有無の判断基準は、任意の視野で観察して、析出物が0.001(個/nm)以上であった場合を存在するとした。
Hereinafter, the evaluation criteria for each item of the evaluation shown in Table 1 will be described.
(Presence / absence of Cu phase, presence / absence of G phase)
When the Cu phase and the G phase were present, the evaluation was evaluated as ◯. If either phase does not exist, it is marked with x. The criterion for determining the presence or absence of each phase was that there was a case where the amount of precipitates was 0.001 (pieces / nm 2) or more when observed in an arbitrary field of view.

(G相中のNb(at%))
G相Ni16(Ti,Nb)Si中のNb(at%)は、Ni16(Ti(1−x),NbSiとしたとき、x/(16+6+7)で表せる。この時効熱処理時のG相中のNb量を熱力学計算ソフトThermo−Calcを用いて求めた。また、この熱力学計算より得られたG相中のNb量はSTEM−EDS分析の結果とよい一致を示した。硬さ、伸びといった機械的性質より、G相中のNb(at%)が0.2〜3.0の範囲を評価が○とした。
(Nb (at%) in G phase)
G-phase Ni 16 (Ti, Nb) 6 Si 7 in Nb (at%) is, Ni 16 (Ti (1- x), Nb x) when the 6 Si 7, represented by x / (16 + 6 + 7 ). The amount of Nb in the G phase during this aging heat treatment was determined using the thermodynamic calculation software Thermo-Calc. In addition, the amount of Nb in the G phase obtained from this thermodynamic calculation showed good agreement with the results of STEM-EDS analysis. From the mechanical properties such as hardness and elongation, Nb (at%) in the G phase was evaluated as ◯ in the range of 0.2 to 3.0.

(粒内の析出物割合(%))
析出物の粒内の割合が50%以上のものを評価○とした。
(Percentage of precipitates in grains (%))
Evaluation ◯ was given when the ratio of the precipitate in the grain was 50% or more.

(析出相平均粒径(nm))
析出物の平均粒子径が1〜20nmである場合を評価○とした。
(Precipitated phase average particle size (nm))
The case where the average particle size of the precipitate was 1 to 20 nm was evaluated as ◯.

(硬さHv(10kg荷重))
ビッカース硬さ試験は、上記の板厚2mmの冷間圧延材に熱処理を施し、圧延面を#800で研磨した後、表面に対して10kgの荷重にて5点の測定を行い、平均値を求めた。硬さが400〜600Hvを評価○とした。
(Hardness Hv (10 kg load))
In the Vickers hardness test, the above cold-rolled material with a plate thickness of 2 mm is heat-treated, the rolled surface is polished with # 800, and then 5 points are measured with a load of 10 kg on the surface, and the average value is calculated. I asked. A hardness of 400 to 600 Hv was evaluated as ◯.

(伸び(%))
引張試験においては上記の板厚2mmの冷間圧延材に熱処理を施し、引張方向を圧延方向とするJIS13B号平型引張試験片を切り出し、測定を行った。測定結果より伸びが2〜15%の範囲を評価○とした。
(stretch(%))
In the tensile test, the cold-rolled material having a plate thickness of 2 mm was heat-treated, and a JIS13B flat tensile test piece having the tensile direction as the rolling direction was cut out and measured. From the measurement results, the range of elongation of 2 to 15% was evaluated as ◯.

(総合評価)
以上の結果より全ての評価が○となる場合、総合評価を◎、×が1〜2個ある場合、総合評価を○、×が3個以上の場合、評価を×とした。発明例の総合評価を◎または○に対して、比較例は総合評価が×である。
(comprehensive evaluation)
From the above results, when all the evaluations were ◯, the overall evaluation was ⊚, when there were 1 or 2 x, the overall evaluation was ◯, and when x was 3 or more, the evaluation was x. The overall evaluation of the invention example is ⊚ or ◯, while the overall evaluation of the comparative example is ×.

比較例6はNb量が低く、粒内の析出物割合が低い。さらに、Ni、Cu量が高いため残留γ量が多くなりやすく、硬さが小さい。 In Comparative Example 6, the amount of Nb is low and the proportion of precipitates in the grains is low. Further, since the amounts of Ni and Cu are high, the amount of residual γ tends to be large and the hardness is small.

比較例7は、Ti量が低く、G相が存在しないため、本発明範囲から外れ、硬さが低い。 In Comparative Example 7, since the amount of Ti is low and the G phase does not exist, it is out of the range of the present invention and the hardness is low.

比較例8は、G相は存在するものの、Cu量が低いため、Cu相が存在せず、硬さおよび伸びが低い。 In Comparative Example 8, although the G phase is present, the amount of Cu is low, so that the Cu phase is not present and the hardness and elongation are low.

比較例9はCu相、G相が存在するが、Ti、Nb量が高く、伸びが低い。 Comparative Example 9 has a Cu phase and a G phase, but the amounts of Ti and Nb are high and the elongation is low.

比較例10はMn量が高いため、比較例6の場合と同様に残留するγ量が非常に多く、また、Nb量が低いため、G相中のNbが低く、粒内の析出物割合も低いため、硬さが低く、伸びが高い値となっている。 Since the amount of Mn in Comparative Example 10 is high, the amount of γ remaining is very large as in the case of Comparative Example 6, and since the amount of Nb is low, Nb in the G phase is low and the proportion of precipitates in the grains is also high. Since it is low, the hardness is low and the elongation is high.

このように、比較例は発明例に対して、硬さもしくは伸びのいずれかまたは両方の機械的性質が劣っている。
As described above, the comparative example is inferior to the invention example in the mechanical properties of either or both of hardness and elongation.

すなわち、本発明は以下の通りである。
以下質量%にて、C:0.01〜0.05%、Si:1.0〜2.0%、Mn:0.70〜1.50%、P:0.04%以下、S:0.01%以下、Ni:6.0〜8.0%、Cr:12.0〜15.0%、Mo:0.50〜1.50%、Cu:0.40〜1.20%、Ti:0.20〜0.50%、Nb:0.05〜0.40%、N:0.001〜0.005%、Al:0.001〜0.2%、O:0.0001〜0.01%、残部がFeおよび不可避的不純物から成り、Cu相およびNi16(Ti,Nb)Si系金属間化合物相が分布し、前記金属間化合物相中のNbが0.2〜3.0(at%)であることを特徴とする析出硬化型マルテンサイト系ステンレス鋼である。
That is, the present invention is as follows.
In the following mass%, C: 0.01 to 0.05 %, Si: 1.0 to 2.0%, Mn: 0.70 to 1.50%, P: 0.04% or less, S: 0 0.01% or less, Ni: 6.0-8.0%, Cr: 12.0-15.0%, Mo: 5.00-1.50%, Cu: 0.40-1.20%, Ti : 0.25 to 0.50%, Nb: 0.05 to 0.40%, N: 0.001 to 0.005 %, Al: 0.001 to 0.2%, O: 0.0001 to 0 .01%, the balance being Fe and inevitable impurities, Cu phase and Ni 16 (Ti, Nb) 6 Si 7 intermetallic compound phase distribution, Nb of the intermetallic compound in the phase is 0.2 to 3 It is a precipitation-hardening type martensite-based stainless steel characterized by having a temperature of 0.0 (at%).

さらに、析出硬化においては、析出硬化相の分布状態、サイズが強度に対して、大きな影響があるため、本発明の析出硬化型マルテンサイト系ステンレス鋼はCu相およびNi16(Ti,Nb)Si系金属間化合物相を、収束イオンビーム(FIB)により作製した薄膜試料を用いて走査型透過電子顕微鏡(STEM)に搭載されたエネルギー分散型X線(EDS)分析装置による元素マッピング像より画像解析を用いて、ナノスケールでの析出硬化相を観察し評価することにより分布を求め、50個数%以上が結晶粒内に分布することを特徴とする。 Further, in precipitation hardening, the distribution state and size of the precipitation hardening phase have a great influence on the strength. Therefore, the precipitation hardening type martensite-based stainless steel of the present invention has a Cu phase and Ni 16 (Ti, Nb) 6. From the element mapping image of the Si 7- based intermetallic compound phase by an energy dispersive X-ray (EDS) analyzer mounted on a scanning transmission electron microscope (STEM) using a thin film sample prepared by a focused ion beam (FIB). The distribution is obtained by observing and evaluating the precipitation-hardened phase on a nanoscale using image analysis, and it is characterized in that 50% or more is distributed in the crystal grains.

次に、実施例を提示して、本発明の構成および作用効果をより明らかにするが、本発明は以下の実施例にのみ限定されるものではない。
表1に供試材の化学成分および析出硬化相の有無、G相中のNb量、粒内の析出物の割合、ビッカース硬さ、伸びをまとめたものを示す。化学成分が本発明の範囲外の数値には括弧を付してある。また、※2と※5は参考例である。
Next, examples will be presented to further clarify the constitution and effects of the present invention, but the present invention is not limited to the following examples.
Table 1 shows the chemical composition of the test material, the presence or absence of a precipitation hardening phase, the amount of Nb in the G phase, the proportion of precipitates in the grains, the Vickers hardness, and the elongation. Numerical values whose chemical composition is outside the scope of the present invention are shown in parentheses. In addition, * 2 and * 5 are reference examples.

Figure 2021134395
Figure 2021134395

Claims (5)

以下質量%にて、C:0.01〜0.10%、Si:1.0〜2.0%、Mn:0.50〜1.50%、P:0.04%以下、S:0.01%以下、Ni:6.0〜8.0%、Cr:12.0〜15.0%、Mo:0.50〜1.50%、Cu:0.40〜1.20%、Ti:0.20〜0.50%、Nb:0.05〜0.40%、N:0.001〜0.02%、Al:0.001〜0.2%、O:0.0001〜0.01%、残部がFeおよび不可避的不純物から成り、Cu相およびNi16(Ti,Nb)Si系金属間化合物相が分布し、前記金属間化合物相中のNbが0.2〜3.0(at%)であることを特徴とする析出硬化型マルテンサイト系ステンレス鋼。 In the following mass%, C: 0.01 to 0.10%, Si: 1.0 to 2.0%, Mn: 0.50 to 1.50%, P: 0.04% or less, S: 0 0.01% or less, Ni: 6.0 to 8.0%, Cr: 12.0 to 15.0%, Mo: 0.50 to 1.50%, Cu: 0.40 to 1.20%, Ti : 0.25 to 0.50%, Nb: 0.05 to 0.40%, N: 0.001 to 0.02%, Al: 0.001 to 0.2%, O: 0.0001 to 0 .01%, the balance being Fe and inevitable impurities, Cu phase and Ni 16 (Ti, Nb) 6 Si 7 intermetallic compound phase distribution, Nb of the intermetallic compound in the phase is 0.2 to 3 Precipitated and hardened martensite-based stainless steel characterized by being .0 (at%). 前記Cu相および前記Ni16(Ti,Nb)Si系金属間化合物相の50個数%以上が結晶粒内に分布することを特徴とする請求項1に記載の析出硬化型マルテンサイト系ステンレス鋼。 The precipitation hardening martensitic stainless steel according to claim 1, wherein 50% or more of the Cu phase and the Ni 16 (Ti, Nb) 6 Si 7 intermetallic compound phase are distributed in the crystal grains. steel. 前記Cu相および前記Ni16(Ti,Nb)Si系金属間化合物相は平均粒径1〜20nmであることを特徴とする請求項1または2に記載の析出硬化型マルテンサイト系ステンレス鋼。 The Cu phase and the Ni 16 (Ti, Nb) 6 Si 7 intermetallic compound phase has an average particle diameter of claim 1 or 2 precipitation hardenable martensitic stainless steel according to characterized in that it is a 1~20nm .. 伸びが2〜15%であることを特徴とする請求項1〜3のいずれかに記載の析出硬化型マルテンサイト系ステンレス鋼。 The precipitation hardening martensitic stainless steel according to any one of claims 1 to 3, wherein the elongation is 2 to 15%. 硬さが400〜600Hvであることを特徴とする請求項1〜4のいずれかに記載の析出硬化型マルテンサイト系ステンレス鋼。

The precipitation hardening martensitic stainless steel according to any one of claims 1 to 4, wherein the hardness is 400 to 600 Hv.

JP2020031787A 2020-02-27 2020-02-27 Precipitation hardening martensitic stainless steel Active JP6776467B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020031787A JP6776467B1 (en) 2020-02-27 2020-02-27 Precipitation hardening martensitic stainless steel
EP20920783.6A EP4112754A1 (en) 2020-02-27 2020-10-27 Precipitation-hardening martensitic stainless steel
PCT/JP2020/040211 WO2021171698A1 (en) 2020-02-27 2020-10-27 Precipitation-hardening martensitic stainless steel
CN202080097683.0A CN115210389A (en) 2020-02-27 2020-10-27 Precipitation hardening martensitic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020031787A JP6776467B1 (en) 2020-02-27 2020-02-27 Precipitation hardening martensitic stainless steel

Publications (2)

Publication Number Publication Date
JP6776467B1 JP6776467B1 (en) 2020-10-28
JP2021134395A true JP2021134395A (en) 2021-09-13

Family

ID=72916150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020031787A Active JP6776467B1 (en) 2020-02-27 2020-02-27 Precipitation hardening martensitic stainless steel

Country Status (4)

Country Link
EP (1) EP4112754A1 (en)
JP (1) JP6776467B1 (en)
CN (1) CN115210389A (en)
WO (1) WO2021171698A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116024496A (en) * 2022-12-22 2023-04-28 敦化市拜特科技有限公司 Stainless steel strip and method for manufacturing same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63171857A (en) * 1987-01-10 1988-07-15 Nippon Yakin Kogyo Co Ltd Manufacture of precipitation hardening-type stainless steel excellent in fatigue characteristic
JPH0873931A (en) * 1994-09-08 1996-03-19 Nisshin Steel Co Ltd Production of precipitation hardening type stainless steel for spring excellent in strength and twisting characteristic
JP2001179485A (en) * 1999-12-27 2001-07-03 Sumitomo Metal Ind Ltd Martensitic welded stainless steel pipe and producing method therefor
JP2015175054A (en) * 2014-03-18 2015-10-05 山陽特殊製鋼株式会社 Precipitation hardening stainless steel powder and sintered body thereof
JP2017014556A (en) * 2015-06-29 2017-01-19 山陽特殊製鋼株式会社 Martensitic stainless steel excellent in precipitation hardening performance
JP2017078195A (en) * 2015-10-20 2017-04-27 山陽特殊製鋼株式会社 High hardness stainless steel excellent in corrosion resistance and productivity
JP2018178144A (en) * 2017-04-04 2018-11-15 山陽特殊製鋼株式会社 Precipitation-hardened stainless steel having excellent hot workability
JP2019127613A (en) * 2018-01-23 2019-08-01 山陽特殊製鋼株式会社 High hardness precipitation hardening stainless steel having excellent hot workability and requiring no sub-zero treatment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11256282A (en) 1998-03-12 1999-09-21 Nisshin Steel Co Ltd Precipitation hardening martensitic stainless steel excellent in strength, toughness, and fatigue characteristic, and its production
JP2003073783A (en) 2001-09-03 2003-03-12 Nisshin Steel Co Ltd Precipitation-hardening type martensitic stainless steel sheet for flapper valve, and manufacturing method therefor
JP6572802B2 (en) 2016-03-04 2019-09-11 日鉄ステンレス株式会社 Precipitation hardening type martensitic stainless steel sheet for steel belt and manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63171857A (en) * 1987-01-10 1988-07-15 Nippon Yakin Kogyo Co Ltd Manufacture of precipitation hardening-type stainless steel excellent in fatigue characteristic
JPH0873931A (en) * 1994-09-08 1996-03-19 Nisshin Steel Co Ltd Production of precipitation hardening type stainless steel for spring excellent in strength and twisting characteristic
JP2001179485A (en) * 1999-12-27 2001-07-03 Sumitomo Metal Ind Ltd Martensitic welded stainless steel pipe and producing method therefor
JP2015175054A (en) * 2014-03-18 2015-10-05 山陽特殊製鋼株式会社 Precipitation hardening stainless steel powder and sintered body thereof
JP2017014556A (en) * 2015-06-29 2017-01-19 山陽特殊製鋼株式会社 Martensitic stainless steel excellent in precipitation hardening performance
JP2017078195A (en) * 2015-10-20 2017-04-27 山陽特殊製鋼株式会社 High hardness stainless steel excellent in corrosion resistance and productivity
JP2018178144A (en) * 2017-04-04 2018-11-15 山陽特殊製鋼株式会社 Precipitation-hardened stainless steel having excellent hot workability
JP2019127613A (en) * 2018-01-23 2019-08-01 山陽特殊製鋼株式会社 High hardness precipitation hardening stainless steel having excellent hot workability and requiring no sub-zero treatment

Also Published As

Publication number Publication date
JP6776467B1 (en) 2020-10-28
CN115210389A (en) 2022-10-18
WO2021171698A1 (en) 2021-09-02
EP4112754A1 (en) 2023-01-04

Similar Documents

Publication Publication Date Title
KR100422409B1 (en) Heat Resistant Steel
EP1867745A1 (en) Ferritic heat-resistant steel
WO2016148037A1 (en) Steel sheet for carburization having excellent cold workability and toughness after carburizing heat treatment
JP6772076B2 (en) Manufacturing method of non-magnetic austenitic stainless steel sheet and non-magnetic member
JP2011179116A (en) High-corrosion-resistant ferritic stainless steel cold-rolled sheet superior in toughness and method for manufacturing the same
JPWO2015098528A1 (en) Steel material for hot forging, method for producing the same, and method for producing hot forged raw material using the steel material
US20120055288A1 (en) Method of Making a High Strength, High Toughness, Fatigue Resistant, Precipitation Hardenable Stainless Steel and Product Made Therefrom
JP6988836B2 (en) Ultra-low yield ratio high-strength thick steel sheet and its manufacturing method
KR102009630B1 (en) Grater
WO2021171698A1 (en) Precipitation-hardening martensitic stainless steel
JPWO2018061101A1 (en) steel
JP2005105322A (en) Thick steel plate excellent in toughness of welded joint subjected to large heat input welding, and its production method
JPH1161351A (en) High hardness martensite-based stainless steel superior in workability and corrosion resistance
JP2007314837A (en) Age hardening type ferritic stainless steel sheet and age-treated steel material using the same
JP2019011510A (en) Steel sheet for carburization excellent in cold workability and toughness after carburization heat treatment
JP2001271143A (en) Ferritic stainless steel excellent in ridging resistance and its production method
JP3886864B2 (en) Ferritic stainless steel cold-rolled annealed material excellent in secondary workability and manufacturing method thereof
JP2023045253A (en) Steel plate and method for producing the same
JP2018131670A (en) Ferritic free-cutting stainless wire
JP2021161479A (en) Steel material and method for manufacturing the same
JP6597450B2 (en) Abrasion-resistant steel plate and method for producing the same
WO2018139671A1 (en) Steel pipe for underbody components of automobiles, and underbody component of automobiles
JPWO2018235342A1 (en) steel sheet
JPH0317245A (en) High strength non-magnetic stainless steel having excellent machinability
JP4196485B2 (en) Machine structural steel with excellent machinability, cold forgeability and hardenability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200416

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200416

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201007

R150 Certificate of patent or registration of utility model

Ref document number: 6776467

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250