JP2018178144A - Precipitation-hardened stainless steel having excellent hot workability - Google Patents

Precipitation-hardened stainless steel having excellent hot workability Download PDF

Info

Publication number
JP2018178144A
JP2018178144A JP2017074290A JP2017074290A JP2018178144A JP 2018178144 A JP2018178144 A JP 2018178144A JP 2017074290 A JP2017074290 A JP 2017074290A JP 2017074290 A JP2017074290 A JP 2017074290A JP 2018178144 A JP2018178144 A JP 2018178144A
Authority
JP
Japan
Prior art keywords
nieq
creq
hot workability
stainless steel
precipitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017074290A
Other languages
Japanese (ja)
Inventor
太一 渕上
Taichi Fuchigami
太一 渕上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2017074290A priority Critical patent/JP2018178144A/en
Publication of JP2018178144A publication Critical patent/JP2018178144A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a precipitation-hardened stainless steel which reduces contained amount of Co and Mo elements as mush as possible and furthermore employs two-phase structure of ferrite and martensite having excellent hot workability.SOLUTION: The precipitation-hardened stainless steel having excellent hot workability is provided which contains by mass: C:0.01 to 0.10%, Si: 0.30 to 2.00%, Mn: 0.01 to 1.00%, Ni: 4.0 to 9.0%, Cr: 10.0 to 18.0%, Mo: 0.10 to 2.00%, Cu: 0.60 to 4.00%, Ti: 0.50 to 3.50%, and the balance composed of Fe and inevitable impurities, and which satisfies the following expressions: (1) Nieq≤-0.83xCreq+25.5, (2) Creq≥0.85×Nieq+7.8, and (3) 5.0≤Nieq≤9.5, provided that: Nieq=[%Ni]+30×([%C]+[%Ni])+0.5×[%Mn]+0.3×[%Cu]; and Creq=[%Cr]+[%Mo]+1.5×[%Si]+0.5×[%Nb], above [%M] showing mass%.SELECTED DRAWING: None

Description

本出願は、プロペラシャフト、ドライブシャフト、軸受およびロールなどの高硬度、高耐食性が求められる部材として使用されるステンレス鋼に関する。   The present application relates to stainless steel used as a member requiring high hardness and high corrosion resistance, such as propeller shafts, drive shafts, bearings, and rolls.

いわゆる析出硬化型ステンレス鋼とは、ステンレス鋼としての耐食性に加えて、析出硬化による強度を付与することを目的とした高強度ステンレス鋼のことである。代表的な鋼種としては、17−4PHとして有名なSUS630が知られている。そして基質組織により、マルテンサイト系、セミマルテンサイト系およびオーステナイト系に分類されている。   The so-called precipitation-hardening stainless steel is a high-strength stainless steel intended to impart strength by precipitation hardening in addition to the corrosion resistance as stainless steel. As a representative steel type, SUS630, which is famous as 17-4 PH, is known. And according to the base | substrate structure | tissue, it is classified into a martensitic type, a semimartensitic type, and an austenitic type.

さて、析出硬化型ステンレス鋼及びその製造方法としては、ε−Cu相とG相(Ni16Ti6Si7)の複合析出により硬さを確保し、さらにSi/Mo比を最適化することで、熱間加工性を向上させるものがある(特許文献1参照。)。もっとも、この発明ではCoが必須元素とされており、さらに、Si/Mo≦0.7を満足することで、熱間加工性を改善しようとしている。しかし、未ださらなる熱間加工性の向上が求められており、また、CoやMoなどの高価な元素は、低コスト化の観点から更なる低減が求められていることから、十分とはいえない。 Now, as a precipitation hardening stainless steel and a method for producing the same, by securing complex hardness by complex precipitation of ε-Cu phase and G phase (Ni 16 Ti 6 Si 7 ), the Si / Mo ratio is further optimized. Some improve hot workability (see Patent Document 1). However, in the present invention, Co is regarded as an essential element, and further, by satisfying Si / Mo ≦ 0.7, it is intended to improve the hot workability. However, further improvement in hot workability is still required, and expensive elements such as Co and Mo are not enough because further reduction is required from the viewpoint of cost reduction. .

一方、本願出願人は、先般、耐食性および製造性に優れた高硬度ステンレス鋼を開発し、出願している(特願2015−206051)。この高硬度ステンレス鋼は、高硬度および高耐食性の両立と、高硬度が得られる熱処理範囲が広いことに着目した発明である。しかし、この発明は、マルテンサイト系の析出硬化型ステンレス鋼であり、さらなる熱間加工性が求められている。   On the other hand, the applicant of the present application has recently developed and filed a high-hardness stainless steel excellent in corrosion resistance and manufacturability (Japanese Patent Application No. 2015-206051). This high hardness stainless steel is an invention that focuses on the coexistence of high hardness and high corrosion resistance and the wide heat treatment range in which high hardness can be obtained. However, the present invention is a martensitic precipitation hardening stainless steel, and further hot workability is required.

特許第5887896号公報Patent No. 5887896

一般に、高硬度が必要とされる用途では、マルテンサイト系ステンレス鋼であるSUS420などが用いられている。ところが、マルテンサイト系ステンレス鋼はC含有量が相対的に多く、耐食性が低いものである。
それに比べればSUS630などの析出硬化型ステンレス鋼は、耐食性には優れるものの、他方で硬度が低いという問題があった。そこで、従来の発明では、これらを両立させるための調整が志向されてきたが、それ以外に、さらなる熱間加工性の向上や、CoやMoなどの高価な元素をより減らすことなどは考慮されてこなかった。
Generally, in applications where high hardness is required, martensitic stainless steel SUS420 or the like is used. However, martensitic stainless steel has a relatively high C content and low corrosion resistance.
Compared with that, although precipitation hardening type stainless steels, such as SUS630, are excellent in corrosion resistance, there existed a problem that hardness was low on the other hand. Therefore, in the conventional invention, adjustment for achieving both of them has been aimed at, but in addition to that, it is considered to further improve the hot workability, further reduce expensive elements such as Co and Mo, etc. I did not get up.

そこで、本発明が解決しようとする課題は、高硬度で耐食性があることに加えて、より一層の熱間加工性の向上を図ること、および、CoやMoなどの元素をより減らして、優れた熱間加工性を有する、マルテンサイト単相ではなく、フェライト−マルテンサイトの二相組織とした析出硬化型ステンレス鋼を提供することである。   Therefore, the problem to be solved by the present invention is to further improve the hot workability, in addition to having high hardness and corrosion resistance, and to reduce the elements such as Co and Mo, and to be excellent. It is an object of the present invention to provide a precipitation-hardened stainless steel having a ferritic-martensitic two-phase structure instead of a martensitic single phase, which has excellent hot workability.

上記の課題を解決するための本発明の手段は、第1の手段では、質量%で、C:0.01〜0.10%、Si:0.30〜2.00%、Mn:0.01〜1.00%、Ni:4.0〜9.0%、Cr10.0〜18.0%、Mo:0.10〜2.00%、Cu:0.60〜4.00%、Ti:0.50〜3.50%を含有し、残部Feおよび不可避不純物からなる鋼である。そして、この鋼は、下記の(1)〜(3)式を満足することを特徴とする優れた熱間加工性を有する析出硬化型ステンレス鋼である。
Nieq≦−0.83×Creq+25.5・・・(1)
Creq≧0.85×Nieq+7.8・・・(2)
5.0≦Nieq≦9.5・・・(3)
ただし、
Nieq=[%Ni]+30×([%C]+[%Ni])+0.5×[%Mn]+0.3×[%Cu]、
Creq=[%Cr]+[%Mo]+1.5×[%Si]+0.5×[%Nb] なお、上記の[%M]は質量%である。
The means of the present invention for solving the above problems is that, in the first means, C: 0.01 to 0.10%, Si: 0.30 to 2.00%, Mn: 0.% by mass. 01 to 1.00%, Ni: 4.0 to 9.0%, Cr 10.0 to 18.0%, Mo: 0.10 to 2.00%, Cu: 0.60 to 4.00%, Ti It is a steel containing 0.50 to 3.50% and containing balance Fe and unavoidable impurities. And this steel is a precipitation hardening stainless steel which has the outstanding hot workability characterized by satisfying following (1)-(3) Formula.
Nieq ≦ −0.83 × Creq + 25.5 (1)
Creq ≧ 0.85 × Nieq + 7.8 (2)
5.0 ≦ Nieq ≦ 9.5 (3)
However,
Nieq = [% Ni] + 30 × ([% C] + [% Ni]) + 0.5 × [% Mn] + 0.3 × [% Cu],
Creq = [% Cr] + [% Mo] + 1.5 × [% Si] + 0.5 × [% Nb] The above [% M] is% by mass.

第2の手段では、質量%で、C:0.01〜0.10%、Si:0.30〜2.00%、Mn:0.01〜1.00%、Ni:4.0〜9.0%、Cr10.0〜18.0%、Mo:0.10〜2.00%、Cu:0.60〜4.00%、Ti:0.50〜3.50%を含有し、さらに、Al:0.150%以下、Nb:0.01〜2.00%、N:0.050%以下、S:0.100%以下のいずれか1種もしくは2種以上を含有し、残部Feおよび不可避不純物からなる鋼である。そして、この鋼は、下記の(1)〜(3)式を満足することを特徴とする優れた熱間加工性を有する析出硬化型ステンレス鋼である。
Nieq≦−0.83×Creq+25.5・・・(1)
Creq≧0.85×Nieq+7.8・・・(2)
5.0≦Nieq≦9.5・・・(3)
ただし、
Nieq=[%Ni]+30×([%C]+[%Ni])+0.5×[%Mn]+0.3×[%Cu]
Creq=[%Cr]+[%Mo]+1.5×[%Si]+0.5×[%Nb] なお、上記の[%M]は質量%である。
In the second means, by mass%, C: 0.01 to 0.10%, Si: 0.30 to 2.00%, Mn: 0.01 to 1.00%, Ni: 4.0 to 9 .0%, Cr 10.0 to 18.0%, Mo: 0.10 to 2.00%, Cu: 0.60 to 4.00%, Ti: 0.50 to 3.50%, and further , Al: 0.150% or less, Nb: 0.01 to 2.00%, N: 0.050% or less, S: 0. 100% or less, containing any one or two or more kinds, balance Fe And steel of inevitable impurities. And this steel is a precipitation hardening stainless steel which has the outstanding hot workability characterized by satisfying following (1)-(3) Formula.
Nieq ≦ −0.83 × Creq + 25.5 (1)
Creq ≧ 0.85 × Nieq + 7.8 (2)
5.0 ≦ Nieq ≦ 9.5 (3)
However,
Nieq = [% Ni] + 30 × ([% C] + [% Ni]) + 0.5 × [% Mn] + 0.3 × [% Cu]
Creq = [% Cr] + [% Mo] + 1.5 × [% Si] + 0.5 × [% Nb] The above [% M] is% by mass.

第3の手段では、質量%で、C:0.01〜0.10%、Si:0.30〜2.00%、Mn:0.01〜1.00%、Ni:4.0〜9.0%、Cr10.0〜18.0%、Mo:0.10〜2.00%、Cu:0.60〜4.00%、Ti:0.50〜3.50%を含有し、さらに、Mg:0.0001〜0.0250%、Ca:0.0001〜0.0250%、B:0.0001〜0.0250%のいずれか1種もしくは2種以上を含有し、残部Feおよび不可避不純物からなる鋼である。そして、この鋼は、下記の(1)〜(3)式を満足することを特徴とする優れた熱間加工性を有する析出硬化型ステンレス鋼である。
Nieq≦−0.83×Creq+25.5・・・(1)
Creq≧0.85×Nieq+7.8・・・(2)
5.0≦Nieq≦9.5・・・(3)
ただし、
Nieq=[%Ni]+30×([%C]+[%Ni])+0.5×[%Mn]+0.3×[%Cu]、
Creq=[%Cr]+[%Mo]+1.5×[%Si]+0.5×[%Nb] なお、上記の[%M]は質量%である。
In the third means, by mass%, C: 0.01 to 0.10%, Si: 0.30 to 2.00%, Mn: 0.01 to 1.00%, Ni: 4.0 to 9 .0%, Cr 10.0 to 18.0%, Mo: 0.10 to 2.00%, Cu: 0.60 to 4.00%, Ti: 0.50 to 3.50%, and further Mg: 0.0001 to 0.0250%, Ca: 0.0001 to 0.0250%, B: any one or two or more of 0.0001 to 0.0250%, balance Fe and unavoidable It is a steel made of impurities. And this steel is a precipitation hardening stainless steel which has the outstanding hot workability characterized by satisfying following (1)-(3) Formula.
Nieq ≦ −0.83 × Creq + 25.5 (1)
Creq ≧ 0.85 × Nieq + 7.8 (2)
5.0 ≦ Nieq ≦ 9.5 (3)
However,
Nieq = [% Ni] + 30 × ([% C] + [% Ni]) + 0.5 × [% Mn] + 0.3 × [% Cu],
Creq = [% Cr] + [% Mo] + 1.5 × [% Si] + 0.5 × [% Nb] The above [% M] is% by mass.

第4の手段では、質量%で、C:0.01〜0.10%、Si:0.30〜2.00%、Mn:0.01〜1.00%、Ni:4.0〜9.0%、Cr10.0〜18.0%、Mo:0.10〜2.00%、Cu:0.60〜4.00%、Ti:0.50〜3.50%を含有し、さらに、Al:0.150%以下、Nb:0.01〜2.00%、N:0.050%以下、S:0.100%以下のいずれか1種もしくは2種以上を含有し、さらに、Mg:0.0001〜0.0250%、Ca:0.0001〜0.0250%、B:0.0001〜0.0250%のいずれか1種もしくは2種以上を含有し、残部Feおよび不可避不純物からなる鋼である。そして、この鋼は、下記の(1)〜(3)式を満足することを特徴とする優れた熱間加工性を有する析出硬化型ステンレス鋼である。
Nieq≦−0.83×Creq+25.5・・・(1)
Creq≧0.85×Nieq+7.8・・・(2)
5.0≦Nieq≦9.5・・・(3)
ただし、
Nieq=[%Ni]+30×([%C]+[%Ni])+0.5×[%Mn]+0.3×[%Cu]、
Creq=[%Cr]+[%Mo]+1.5×[%Si]+0.5×[%Nb] なお、上記の[%M]は質量%である。
In the fourth means, by mass%, C: 0.01 to 0.10%, Si: 0.30 to 2.00%, Mn: 0.01 to 1.00%, Ni: 4.0 to 9 .0%, Cr 10.0 to 18.0%, Mo: 0.10 to 2.00%, Cu: 0.60 to 4.00%, Ti: 0.50 to 3.50%, and further Al: 0.150% or less, Nb: 0.01 to 2.00%, N: 0.050% or less, S: 0. 100% or less, containing one or more selected from the group consisting of Mg: 0.0001 to 0.0250%, Ca: 0.0001 to 0.0250%, B: any one or more of 0.0001 to 0.0250%, the balance Fe and unavoidable impurities Steel. And this steel is a precipitation hardening stainless steel which has the outstanding hot workability characterized by satisfying following (1)-(3) Formula.
Nieq ≦ −0.83 × Creq + 25.5 (1)
Creq ≧ 0.85 × Nieq + 7.8 (2)
5.0 ≦ Nieq ≦ 9.5 (3)
However,
Nieq = [% Ni] + 30 × ([% C] + [% Ni]) + 0.5 × [% Mn] + 0.3 × [% Cu],
Creq = [% Cr] + [% Mo] + 1.5 × [% Si] + 0.5 × [% Nb] The above [% M] is% by mass.

本願の上記の手段とすることで、CoやMoの元素を可能な限り減らしつつ、優れた熱間加工性を有するフェライト−マルテンサイトの二相組織とした析出硬化型ステンレス鋼とし、プロペラシャフト、ドライブシャフト、軸受およびロールなどの高硬度、高耐食性が求められる部材として使用される鋼が得られる。   By using the above-described means of the present application, a precipitation-hardened stainless steel having a ferrite-martensitic two-phase structure having excellent hot workability while reducing the elements of Co and Mo as much as possible is obtained. A steel is obtained which is used as a member requiring high hardness and high corrosion resistance such as a drive shaft, a bearing and a roll.

本願の発明を実施するための形態の記載に先立ち、本願発明の析出硬化型ステンレス鋼の構成要件である化学成分の限定理由、(1)式のNieqとCreqの関係による限定理由、(2)式のCreqとNieqの関係による限定理由、および(3)式のNieqの限定理由について、それぞれ説明する。なお、化学成分における%は、質量%である。   Prior to the description of the mode for carrying out the invention of the present application, the reasons for limitation of the chemical components which are the constituent requirements of the precipitation-hardenable stainless steel of the present invention, the reasons for limitation by the relationship between Nieq and Creq in formula (1), (2) The limitation reason by the relationship between Creq and Nieq in the equation and the limitation reason of Nieq in equation (3) will be described respectively. In addition,% in a chemical component is mass%.

C:0.01〜0.10%
Cは、鋼のγ安定化元素で、過剰δフェライトの生成を抑制し、強度を確保して良好な靱性を確保するために必要な元素である。このためには、Cは0.01%以上が必要である。しかし、Cは0.10%を超えて含有されると、炭窒化物の生成により鋼の耐食性が劣化する。そこで、Cは0.01〜0.10%とする。
C: 0.01 to 0.10%
C is a γ-stabilizing element of steel and is an element necessary to suppress the formation of excess δ ferrite and secure the strength and secure the good toughness. For this purpose, C needs to be 0.01% or more. However, if C is contained in excess of 0.10%, the corrosion resistance of the steel is degraded due to the formation of carbonitrides. Therefore, C is set to 0.01 to 0.10%.

Si:0.30〜2.00%
Siは、製鋼段階での脱酸剤であり、鋼に析出強化元素として作用する元素である。しかし、Siは0.30%未満では脱酸剤として不足し、かつ析出強化元素として不足する。また、Siは2.00%を超えて含有されると、鋼の熱間加工性が低下する。そこで、Siは0.30〜2.00%とする。
Si: 0.30 to 2.00%
Si is a deoxidizer at the steel making stage, and is an element acting as a precipitation strengthening element on steel. However, if Si is less than 0.30%, it is insufficient as a deoxidizer and is insufficient as a precipitation strengthening element. In addition, when the Si content exceeds 2.00%, the hot workability of the steel is reduced. Therefore, Si is set to 0.30 to 2.00%.

Mn:0.01〜1.00%
Mnは、製鋼段階での脱酸剤である。このためには、Mnは0.01%以上が必要である。しかし、Mnが1.00%を超えて含有されると、脱酸剤としての効果は飽和し、熱間加工性が低下する。そこで、Mnは0.01〜1.00%とする。
Mn: 0.01 to 1.00%
Mn is a deoxidizer at the steel making stage. For this purpose, Mn needs to be 0.01% or more. However, when Mn is contained in excess of 1.00%, the effect as a deoxidizer is saturated and the hot workability is reduced. Therefore, Mn is set to 0.01 to 1.00%.

Ni:4.0〜9.0%
Niは、鋼のγ安定化元素で、過剰δフェライトの生成を抑制する一方で、析出強化元素である。よって、析出強化のためには、Niは4.0%が必要である。しかし、9.0%を超えて含有されても析出強化の効果は飽和する。そこで、Niは4.0〜9.0%とする。
Ni: 4.0 to 9.0%
Ni is a γ-stabilizing element of steel and, while suppressing the formation of excess δ ferrite, it is a precipitation strengthening element. Therefore, 4.0% of Ni is required for precipitation strengthening. However, even if it is contained over 9.0%, the effect of precipitation strengthening saturates. Therefore, Ni is set to 4.0 to 9.0%.

Cr:10.0〜18.0%
Crは、耐食性を向上させる元素である。耐食性向上のためには、Crは10.0%以上が必要である。しかし、Crは18.0%を超えて含有されると熱間加工性が低下する。そこで、Crは10.0〜18.0%とする。
Cr: 10.0 to 18.0%
Cr is an element that improves the corrosion resistance. In order to improve the corrosion resistance, Cr needs to be 10.0% or more. However, if the content of Cr exceeds 18.0%, the hot workability is reduced. Therefore, Cr is set to 10.0 to 18.0%.

Mo:0.10〜2.00%
Moは、耐孔食性を向上させる元素である。耐食性向上のためには、Moは0.10%以上が必要である。しかし、Moは高価な元素であるので、2.00%を超えて含有させるとコスト高となる。そこで、Moは0.10〜2.00%とする。
Mo: 0.10 to 2.00%
Mo is an element that improves the pitting resistance. In order to improve corrosion resistance, Mo needs 0.10% or more. However, since Mo is an expensive element, if it is contained over 2.00%, the cost becomes expensive. Therefore, Mo is set to 0.10 to 2.00%.

Cu:0.60〜4.00%
Cuは、耐食性を向上させると共に析出強化に資する元素である。耐食性向上と析出強化のためには、Cuは0.60%以上が必要である。しかし、Cuは4.00%を超えて含有されると熱間加工性が低下する。そこで、Cuは0.60〜4.00%とする。
Cu: 0.60 to 4.00%
Cu is an element contributing to precipitation strengthening as well as improving corrosion resistance. In order to improve corrosion resistance and precipitation strengthening, Cu needs to be 0.60% or more. However, if the Cu content exceeds 4.00%, the hot workability is reduced. Therefore, Cu is set to 0.60 to 4.00%.

Ti:0.50〜3.50%
Tiは、析出強化に資する元素である。析出強化のためには、Tiは0.50%以上が必要である。しかし、Tiは3.50%を超えて含有されると、粗大炭化物の生成により熱間加工性が低下するので、鋼の製造性が低下してコスト高となる。そこで、Tiは0.50〜3.50%とする。
Ti: 0.50 to 3.50%
Ti is an element contributing to precipitation strengthening. For precipitation strengthening, Ti needs to be 0.50% or more. However, if Ti is contained in excess of 3.50%, the hot workability is reduced due to the formation of coarse carbides, so the productivity of the steel is reduced and the cost is increased. Therefore, Ti is set to 0.50 to 3.50%.

Al:0.150%以下
Alは、0.150を超えて含有されると、耐食性および熱間加工性が低下する。そこで、Alは0.150%以下とする。
Al: 0.150% or less When Al is contained in excess of 0.150, corrosion resistance and hot workability are reduced. Therefore, Al is made 0.150% or less.

Nb:0.01〜2.00%
Nbは、析出強化に資する元素である。析出強化のためには、Nbは0.01%以上が必要である。一方、Nbは2.00%を超えて含有されると、熱間加工性が低下すると共にコストの増加となる。そこでNbは0.01〜2.00%とする。
Nb: 0.01 to 2.00%
Nb is an element contributing to precipitation strengthening. In order to strengthen the precipitation, Nb is required to be 0.01% or more. On the other hand, if Nb is contained in excess of 2.00%, the hot workability is lowered and the cost is increased. Therefore, Nb is made 0.01 to 2.00%.

N:0.050%以下
Nは、0.050%を超えて含有されると、熱間加工性が低下し、フェライトが生じても不安定となり二相組織とはならない。そこで、Nは0.050%以下とする。
N: 0.050% or less When N is contained in excess of 0.050%, the hot workability is reduced, and even if ferrite occurs, it becomes unstable and does not form a two-phase structure. Therefore, N is made 0.050% or less.

Mg:0.0001〜0.0250%
Mgは、0.0001%以上で熱間加工性に寄与する元素である。しかし、Mgは0.0250%を超えると、過剰のために逆に熱間加工性が低下する。そこで、Mgは0.0001〜0.0250%とする。
Mg: 0.0001 to 0.0250%
Mg is an element contributing to hot workability at 0.0001% or more. However, if the content of Mg exceeds 0.0250%, the hot workability is lowered due to the excess. Therefore, Mg is made 0.0001 to 0.0250%.

Ca:0.0001〜0.0250%
Caは、0.0001%以上で熱間加工性に寄与する元素である。しかし、Caは0.0250%を超えると、過剰のために逆に熱間加工性が低下する。そこで、Caは0.0001〜0.0250%とする。
Ca: 0.0001 to 0.0250%
Ca is an element contributing to hot workability at 0.0001% or more. However, if the Ca content exceeds 0.0250%, the hot workability is lowered due to the excess. Therefore, Ca is set to be 0.0001 to 0.0250%.

B:0.0001〜0.0250%
Bは、0.0001%以上で熱間加工性に寄与する元素である。しかし、Bは0.0250%を超えると、過剰のために逆に熱間加工性が低下する。そこで、Bは0.0001〜0.0250%とする。
B: 0.0001 to 0.0250%
B is an element contributing to hot workability at 0.0001% or more. However, if B exceeds 0.0250%, the hot workability is lowered due to the excess. Therefore, B is set to be 0.0001 to 0.0250%.

Nieq≦−0.83×Creq+25.5・・・(1)
(1)式を満足しないとマルテンサイトをほぼ生成しないので、硬さが低下する。そこで、Nieq≦−0.83×Creq+25.5の(1)式とする。
Nieq ≦ −0.83 × Creq + 25.5 (1)
If the expression (1) is not satisfied, martensite is hardly generated, so the hardness is lowered. Then, it is set as (1) Formula of Nieq <= 0.83xCreq + 25.5.

Creq≧0.85×Nieq+7.8・・・(2)
(2)式を満足しないとフェライトをほぼ生成しないので、高温で、フェライト/オーステナイトの二相組織とならず、熱間加工性が低下する。そこで、Creq≧0.85×Nieq+7.8の(2)式とする
Creq ≧ 0.85 × Nieq + 7.8 (2)
If the expression (2) is not satisfied, almost no ferrite is formed, so that at high temperatures, the two-phase structure of ferrite / austenite is not obtained, and the hot workability is deteriorated. Therefore, the equation (2) of Creq ≧ 0.85 × Nieq + 7.8 is used.

5.0≦Nieq≦9.5・・・(3)
(3)式を満足しないと高温でフェライト/オーステナイトの二相組織のバランスが悪くなり、熱間加工性が低下する。そこで、5.0≦Nieq≦9.5の(3)式とする。
5.0 ≦ Nieq ≦ 9.5 (3)
If the expression (3) is not satisfied, the balance of the ferrite / austenite two-phase structure is deteriorated at high temperature, and the hot workability is deteriorated. Then, it is set as (3) Formula of 5.0 <= Nieq <= 9.5.

上記の(1)式、(2)式、(3)式のNieqおよびCreqにおいては、
Nieq=[%Ni]+30×([%C]+[%Ni])+0.5×[%Mn]+0.3×[%Cu]、
Creq=[%Cr]+[%Mo]+1.5×[%Si]+0.5×[%Nb]
である。
なお、上記の[%M]は質量%である。
In the above-mentioned Nieq and Creq of the equations (1), (2) and (3),
Nieq = [% Ni] + 30 × ([% C] + [% Ni]) + 0.5 × [% Mn] + 0.3 × [% Cu],
Creq = [% Cr] + [% Mo] + 1.5 × [% Si] + 0.5 × [% Nb]
It is.
The above [% M] is mass%.

次いで、実施の形態について以下に記載する。   Next, an embodiment will be described below.

表1−1、表1−2に化学成分を有する本願発明の第1の手段〜第4の手段に係る発明鋼1〜4を示す。また表2−1、表2−2に、これらの手段に対応する各比較鋼1〜4を示す。なお、これらの表中の成分組成欄の空欄は、当該空欄の成分が意図的な添加成分ではないことを意味する。また、残部は不可避不純物およびFeである。なお、上に示す各表において、請求の範囲に規定の成分組成から外れるもの、ならびにNieqまたはCreqの値から外れるもの、および式(1)〜(3)の式の値を満足しないものには下線を付している。   Tables 1-1 and 1-2 show invention steels 1 to 4 according to the first means to the fourth means of the present invention having chemical components. Moreover, each comparative steel 1-4 corresponding to these means is shown to Table 2-1 and Table 2-2. In addition, the blank of the component composition column in these tables means that the component of the said blank is not an intentional addition component. Also, the balance is inevitable impurities and Fe. In each table shown above, those deviating from the component composition specified in the claims, those deviating from the value of Nieq or Creq, and those not satisfying the values of the formulas of formulas (1) to (3) Underlined.

さて、これらの表1−1および表2−1に記載の成分組成の各鋼を100kg真空誘導炉(VIM)で溶解してインゴットに鋳造し、これらを1150℃にてφ20mmに鍛伸し、次いで900〜1200℃で1時間保持した後に水冷する固溶化熱処理を施し、引続き直ちに−73℃に3時間保持するサブゼロ処理を施し、残留オーステナイトをマルテンサイトに変態させた。さらに、これらを300〜800℃に1時間保持した後に空冷する時効処理を施した。   Now, each steel of the component composition described in Table 1-1 and Table 2-1 is melted and cast into an ingot in a 100 kg vacuum induction furnace (VIM), and forged to 1 mm φ at 1150 ° C., Then, solution heat treatment was performed by holding at 900 to 1200 ° C. for 1 hour, followed by water cooling, and immediately thereafter, subzero treatment was performed to keep at -73 ° C. for 3 hours to transform residual austenite into martensite. Furthermore, they were subjected to an aging treatment of holding them at 300 to 800 ° C. for 1 hour and then air cooling.

Figure 2018178144
Figure 2018178144
Figure 2018178144
Figure 2018178144

Figure 2018178144
Figure 2018178144

Figure 2018178144
Figure 2018178144

さて、上記の時効理後のそれぞれのサイズに調整した素材を用い、以下の実験を実施した。試験結果の評価項目としては、各鋼のNieqの値およびCreqの値を満たすもの、および下線を付して示したこれらの値を外れるもの、並びに発明の手段に記載の式(1)〜(3)を満足するものを○とし、満足しないものを×とし、発明鋼の表1−2および比較鋼の表2−2にそれぞれ表記した。また、これらの表1−2および表2−2中の試験の評価項目の結果である、時効処理後の「ピーク硬さ(HRC)」、「腐食度(g/m2/hr)」および「グリーブル試験の絞り60%以上の温度範囲(℃)」については、後述の評価項目の目標値を下回るものには下線を付して示している。 The following experiment was performed using the material adjusted to each size after the above-mentioned aging process. As evaluation items of test results, those satisfying the values of Nieq and Creq of each steel, those outside the values indicated by underlining, and the formulas (1) to (6) described in the means of the invention The thing which satisfies 3) was made into O, and the thing which is not satisfied was made into x, and it described in Table 1-2 of invention steel, and Table 2-2 of comparative steel, respectively. In addition, “peak hardness (HRC)”, “corrosion degree (g / m 2 / hr)” after aging treatment, which are the results of evaluation items of the tests in Tables 1-2 and 2-2, and The “temperature range (° C.) of 60% or more of the greed test” is indicated by underlining those below the target values of the evaluation items described later.

本願発明の各発明鋼1〜4および各比較鋼1〜4を用いた試験の時効処理後の「ピーク硬さ(HRC)」、「腐食度(g/m2/hr)」で示す耐孔食性(JIS G0578に準拠し、6%FeCl3、25℃×24hrによる腐食度)、および熱間加工性を示す「グリーブル試験の絞り60%以上の温度範囲(℃)」の各評価方法について以下に説明する。 Pore resistance indicated by “peak hardness (HRC)” and “corrosion degree (g / m 2 / hr)” after aging treatment in tests using each invention steel 1 to 4 of the present invention and each comparison steel 1 to 4 Regarding each of the evaluation methods of "Eat 60% or more temperature range (° C) of Greeble test" showing corrosion resistance (according to JIS G0578, 6% FeCl 3 , degree of corrosion at 25 ° C. × 24 hr) and hot workability Explain to.

時効処理後の「ピーク硬さ(HRC)」:上記の時効処理を施した各丸棒を用い、鍛伸方向に垂直な断面の中周におけるロックウェル硬さを測定し、得られた硬さのうち最も大きな値のものをピーク硬さとし、その値がHRC53.0以上のものを目標値として良好であると判断した。   "Peak hardness (HRC)" after aging treatment: The hardness obtained by measuring the Rockwell hardness at the middle circumference of the cross section perpendicular to the forging direction, using each of the aging-treated round bars described above Among the above, the highest hardness was determined as the peak hardness, and the hardness was determined to be good with the HRC of 53.0 or more as the target value.

耐孔食性である「腐食度(g/m2/hr)」すなわち「(JIS G0578に準拠、6%FeCl3、25℃×24hrによる腐食度)」:上記の各ピーク硬さが得られた条件で各時効処理を施した丸棒を径12mm、長さ21mmのサイズに調整し、これらをJIS G0578に則って孔食試験を実施した。具体的には、試験片の初期質量と表面積を測定後、6%塩化第二鉄の溶液に25℃で24時間浸漬して試験を行ない、試験後洗浄して再度質量を測定した。得られた質量減から腐食度(g/m2/hr)を算出した。この腐食度の値が20.0(g/m2/hr)を下回るものを目標値として良好であると判断した。 Pitting resistance “corrosion degree (g / m 2 / hr)”, ie “(corrosion degree according to JIS G 0 578, 6% FeCl 3 , 25 ° C. × 24 hr)”: each peak hardness described above was obtained The round bars subjected to each aging treatment under the conditions were adjusted to a size of 12 mm in diameter and 21 mm in length, and these were subjected to a pitting corrosion test in accordance with JIS G0578. Specifically, after measuring the initial mass and surface area of the test piece, it was immersed in a 6% ferric chloride solution for 24 hours at 25 ° C. to conduct a test, and after the test, it was washed and its mass was measured again. The degree of corrosion (g / m 2 / hr) was calculated from the obtained mass reduction. It was determined that the target value was good if the value of this degree of corrosion was below 20.0 (g / m 2 / hr).

熱間加工性を示す「グリーブル試験の絞り60%以上の温度範囲(℃)」:上記の各ピーク硬さが得られた条件で時効処理を施した丸棒を径8mm、長さ100mmのサイズに調整し、通電加熱による熱間引張試験(グリーブル試験)を実施した。試験温度は800〜1350℃まで25℃毎とし、破断後の試験片の絞りが60%以上である温度域を算出した。その温度域が150℃以上のものを熱間加工性が良好であると評価した。   "Temperature range (° C) of 60% or more of the Greeble test" indicating hot workability: A diameter of 8 mm and a length of 100 mm for a round bar subjected to aging treatment under the conditions that each of the above peak hardness was obtained And a hot tensile test (greeble test) by electric heating. The test temperature was set at every 25 ° C. up to 800 to 1350 ° C., and the temperature range where the contraction of the test piece after breaking was 60% or more was calculated. It was evaluated that the hot workability was good if the temperature range was 150 ° C. or higher.

上記の各評価の結果、表1−1および表1−2に示す発明鋼1〜4のNo.1〜46の上記の時効処理後の鋼は、時効硬さである「ピーク硬さ」の値がHRC53.0以上、耐孔食性である「腐食度」の値が20.0(g/m2/hr)を下回り、熱間加工性を示す「グリーブル試験の絞り60%以上の温度範囲(℃)」の温度域が150℃以上であり、これらの発明鋼1〜4のいずれの評価において優れた特性を示した。 As a result of each of the above evaluations, No. 1 of the invention steels 1 to 4 shown in Tables 1-1 and 1-2. The steel after the above-mentioned aging treatment of 1 to 46 has a value of “peak hardness” which is an aging hardness of HRC 53.0 or more, and a value of “corrosion degree” which is a pitting resistance of 20.0 (g / m 2 / hr), and the temperature range of "a temperature range (.degree. C.) of the squeeze of 60% or more in the grebble test" indicating hot workability is 150.degree. C. or more, and any of the invention steels 1 to 4 are evaluated It showed excellent characteristics.

これに対し、表2−1および表2−2に示す比較鋼1〜4のNo.51〜88では、化学成分のいずれかにおいて本願の化学成分の範囲を外れるものであり、さらにNieqの値またはCreqの値のいずれかに本願のこれらの値を外れるもの、式(1)〜(3)においてその値を満足しない×のものなどを含んでいる。これらの比較鋼では、ピーク硬さ、腐食度、および熱間加工性を示す「グリーブル試験の絞り60%以上の温度範囲(℃)」において150℃未満のものがあり、下線で示されている点において、本願発明の目的を十分には満足しない鋼となった。   On the other hand, No. 1 of comparative steels 1 to 4 shown in Table 2-1 and Table 2-2. In 51 to 88, any one of the chemical components is out of the range of the chemical component of the present invention, and further, any one of the value of Nieq or the value of Creq which deviates from these values of the present invention, formulas (1) to In 3), the thing of x which does not satisfy the value is included. These comparative steels have peak hardness, corrosion degree, and hot workability. In "Greble test's temperature range of 60% or more (° C)", those below 150 ° C are shown and underlined. In terms of points, the steel of the present invention was not sufficiently satisfied.

Claims (4)

質量%で、C:0.01〜0.10%、Si:0.30〜2.00%、Mn:0.01〜1.00%、Ni:4.0〜9.0%、Cr10.0〜18.0%、Mo:0.10〜2.00%、Cu:0.60〜4.00%、Ti:0.50〜3.50%を含有し、残部Feおよび不可避不純物からなり、下記(1)〜(3)式を満足することを特徴とする優れた熱間加工性を有する析出硬化型ステンレス鋼。
Nieq≦−0.83×Creq+25.5・・・(1)
Creq≧0.85×Nieq+7.8・・・(2)
5.0≦Nieq≦9.5・・・(3)
ただし、
Nieq=[%Ni]+30×([%C]+[%Ni])+0.5×[%Mn]+0.3×[%Cu]、
Creq=[%Cr]+[%Mo]+1.5×[%Si]+0.5×[%Nb] なお、上記の[%M]は質量%である。
C: 0.01 to 0.10%, Si: 0.30 to 2.00%, Mn: 0.01 to 1.00%, Ni: 4.0 to 9.0%, Cr 10. 0 to 18.0%, Mo: 0.10 to 2.00%, Cu: 0.60 to 4.00%, Ti: 0.50 to 3.50%, the balance being Fe and unavoidable impurities A precipitation hardening stainless steel having excellent hot workability characterized by satisfying the following equations (1) to (3).
Nieq ≦ −0.83 × Creq + 25.5 (1)
Creq ≧ 0.85 × Nieq + 7.8 (2)
5.0 ≦ Nieq ≦ 9.5 (3)
However,
Nieq = [% Ni] + 30 × ([% C] + [% Ni]) + 0.5 × [% Mn] + 0.3 × [% Cu],
Creq = [% Cr] + [% Mo] + 1.5 × [% Si] + 0.5 × [% Nb] The above [% M] is% by mass.
質量%で、C:0.01〜0.10%、Si:0.30〜2.00%、Mn:0.01〜1.00%、Ni:4.0〜9.0%、Cr10.0〜18.0%、Mo:0.10〜2.00%、Cu:0.60〜4.00%、Ti:0.50〜3.50%を含有し、さらに、Al:0.150%以下、Nb:0.01〜2.00%、N:0.050%以下、S:0.100%以下のいずれか1種もしくは2種以上を含有し、残部Feおよび不可避不純物からなり、下記(1)〜(3)式を満足することを特徴とする優れた熱間加工性を有する析出硬化型ステンレス鋼。
Nieq≦−0.83×Creq+25.5・・・(1)
Creq≧0.85×Nieq+7.8・・・(2)
5.0≦Nieq≦9.5・・・(3)
ただし、
Nieq=[%Ni]+30×([%C]+[%Ni])+0.5×[%Mn]+0.3×[%Cu]、
Creq=[%Cr]+[%Mo]+1.5×[%Si]+0.5×[%Nb] なお、上記の[%M]は質量%である。
C: 0.01 to 0.10%, Si: 0.30 to 2.00%, Mn: 0.01 to 1.00%, Ni: 4.0 to 9.0%, Cr 10. 0 to 18.0%, Mo: 0.10 to 2.00%, Cu: 0.60 to 4.00%, Ti: 0.50 to 3.50%, and further, Al: 0.150 % Or less, Nb: 0.01 to 2.00%, N: 0.050% or less, S: 0. 100% or less of one or more selected from the balance Fe and unavoidable impurities, A precipitation hardenable stainless steel having excellent hot workability characterized by satisfying the following formulas (1) to (3).
Nieq ≦ −0.83 × Creq + 25.5 (1)
Creq ≧ 0.85 × Nieq + 7.8 (2)
5.0 ≦ Nieq ≦ 9.5 (3)
However,
Nieq = [% Ni] + 30 × ([% C] + [% Ni]) + 0.5 × [% Mn] + 0.3 × [% Cu],
Creq = [% Cr] + [% Mo] + 1.5 × [% Si] + 0.5 × [% Nb] The above [% M] is% by mass.
質量%で、C:0.01〜0.10%、Si:0.30〜2.00%、Mn:0.01〜1.00%、Ni:4.0〜9.0%、Cr10.0〜18.0%、Mo:0.10〜2.00%、Cu:0.60〜4.00%、Ti:0.50〜3.50%を含有し、さらに、Mg:0.0001〜0.0250%、Ca:0.0001〜0.0250%、B:0.0001〜0.0250%のいずれか1種もしくは2種以上を含有し、残部Feおよび不可避不純物からなり、下記(1)〜(3)式を満足することを特徴とする優れた熱間加工性を有する析出硬化型ステンレス鋼。
Nieq≦−0.83×Creq+25.5・・・(1)
Creq≧0.85×Nieq+7.8・・・(2)
5.0≦Nieq≦9.5・・・(3)
ただし、
Nieq=[%Ni]+30×([%C]+[%Ni])+0.5×[%Mn]+0.3×[%Cu]、
Creq=[%Cr]+[%Mo]+1.5×[%Si]+0.5×[%Nb] なお、上記の[%M]は質量%である。
C: 0.01 to 0.10%, Si: 0.30 to 2.00%, Mn: 0.01 to 1.00%, Ni: 4.0 to 9.0%, Cr 10. 0 to 18.0%, Mo: 0.10 to 2.00%, Cu: 0.60 to 4.00%, Ti: 0.50 to 3.50%, and further, Mg: 0.0001 -Containing 0.020%, Ca: 0.0001 to 0.0250%, B: any one or more of 0.0001 to 0.0250%, the balance being Fe and unavoidable impurities, 1) A precipitation hardening stainless steel having excellent hot workability characterized by satisfying the expressions (1) to (3).
Nieq ≦ −0.83 × Creq + 25.5 (1)
Creq ≧ 0.85 × Nieq + 7.8 (2)
5.0 ≦ Nieq ≦ 9.5 (3)
However,
Nieq = [% Ni] + 30 × ([% C] + [% Ni]) + 0.5 × [% Mn] + 0.3 × [% Cu],
Creq = [% Cr] + [% Mo] + 1.5 × [% Si] + 0.5 × [% Nb] The above [% M] is% by mass.
質量%で、C:0.01〜0.10%、Si:0.30〜2.00%、Mn:0.01〜1.00%、Ni:4.0〜9.0%、Cr10.0〜18.0%、Mo:0.10〜2.00%、Cu:0.60〜4.00%、Ti:0.50〜3.50%を含有し、さらに、Al:0.150%以下、Nb:0.01〜2.00%、N:0.050%以下、S:0.100%以下のいずれか1種もしくは2種以上を含有し、さらに、Mg:0.0001〜0.0250%、Ca:0.0001〜0.0250%、B:0.0001〜0.0250%のいずれか1種もしくは2種以上を含有し、残部Feおよび不可避不純物からなり、下記(1)〜(3)式を満足することを特徴とする優れた熱間加工性を有する析出硬化型ステンレス鋼。
Nieq≦−0.83×Creq+25.5・・・(1)
Creq≧0.85×Nieq+7.8・・・(2)
5.0≦Nieq≦9.5・・・(3)
ただし、
Nieq=[%Ni]+30×([%C]+[%Ni])+0.5×[%Mn]+0.3×[%Cu]、
Creq=[%Cr]+[%Mo]+1.5×[%Si]+0.5×[%Nb] なお、上記の[%M]は質量%である。
C: 0.01 to 0.10%, Si: 0.30 to 2.00%, Mn: 0.01 to 1.00%, Ni: 4.0 to 9.0%, Cr 10. 0 to 18.0%, Mo: 0.10 to 2.00%, Cu: 0.60 to 4.00%, Ti: 0.50 to 3.50%, and further, Al: 0.150 % Or less, Nb: 0.01 to 2.00%, N: 0.050% or less, S: 0. 100% or less, one or more selected from Mg: 0.0001 to 100%. 0.0250%, Ca: 0.0001 to 0.0250%, B: any one or two or more of 0.0001 to 0.0250%, the balance being Fe and unavoidable impurities, the following (1 2.) A precipitation hardening stainless steel having excellent hot workability characterized by satisfying the following equations (3).
Nieq ≦ −0.83 × Creq + 25.5 (1)
Creq ≧ 0.85 × Nieq + 7.8 (2)
5.0 ≦ Nieq ≦ 9.5 (3)
However,
Nieq = [% Ni] + 30 × ([% C] + [% Ni]) + 0.5 × [% Mn] + 0.3 × [% Cu],
Creq = [% Cr] + [% Mo] + 1.5 × [% Si] + 0.5 × [% Nb] The above [% M] is% by mass.
JP2017074290A 2017-04-04 2017-04-04 Precipitation-hardened stainless steel having excellent hot workability Pending JP2018178144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017074290A JP2018178144A (en) 2017-04-04 2017-04-04 Precipitation-hardened stainless steel having excellent hot workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017074290A JP2018178144A (en) 2017-04-04 2017-04-04 Precipitation-hardened stainless steel having excellent hot workability

Publications (1)

Publication Number Publication Date
JP2018178144A true JP2018178144A (en) 2018-11-15

Family

ID=64282404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017074290A Pending JP2018178144A (en) 2017-04-04 2017-04-04 Precipitation-hardened stainless steel having excellent hot workability

Country Status (1)

Country Link
JP (1) JP2018178144A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021171698A1 (en) * 2020-02-27 2021-09-02 日本冶金工業株式会社 Precipitation-hardening martensitic stainless steel
JP2022047494A (en) * 2020-09-11 2022-03-24 クエステック イノベーションズ リミテッド ライアビリティ カンパニー Stainless steel powders for additive manufacturing
CN114318138A (en) * 2021-11-26 2022-04-12 中钢集团邢台机械轧辊有限公司 High-hardness large-scale pole piece roller material and pole piece roller preparation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05112850A (en) * 1991-04-26 1993-05-07 Nippon Steel Corp Precipitation hardening martensitic stainless steel excellent in workability
JPH05255734A (en) * 1991-11-22 1993-10-05 Nippon Steel Corp Production of martensitic stainless steel minimal in cracking sensitivity
JP2001279385A (en) * 2000-03-29 2001-10-10 Aichi Steel Works Ltd Martensitic precipitation hardening stainless steel for machine structural use
JP2003226943A (en) * 2002-02-06 2003-08-15 Toshiba Corp High strength, high corrosion resistance steel, production method therefor and geothermal turbine blade

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05112850A (en) * 1991-04-26 1993-05-07 Nippon Steel Corp Precipitation hardening martensitic stainless steel excellent in workability
JPH05255734A (en) * 1991-11-22 1993-10-05 Nippon Steel Corp Production of martensitic stainless steel minimal in cracking sensitivity
JP2001279385A (en) * 2000-03-29 2001-10-10 Aichi Steel Works Ltd Martensitic precipitation hardening stainless steel for machine structural use
JP2003226943A (en) * 2002-02-06 2003-08-15 Toshiba Corp High strength, high corrosion resistance steel, production method therefor and geothermal turbine blade

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021171698A1 (en) * 2020-02-27 2021-09-02 日本冶金工業株式会社 Precipitation-hardening martensitic stainless steel
JP2021134395A (en) * 2020-02-27 2021-09-13 日本冶金工業株式会社 Precipitation-hardening martensitic stainless steel
JP2022047494A (en) * 2020-09-11 2022-03-24 クエステック イノベーションズ リミテッド ライアビリティ カンパニー Stainless steel powders for additive manufacturing
JP7324803B2 (en) 2020-09-11 2023-08-10 クエステック イノベーションズ リミテッド ライアビリティ カンパニー Stainless Steel Powder for Additive Manufacturing
CN114318138A (en) * 2021-11-26 2022-04-12 中钢集团邢台机械轧辊有限公司 High-hardness large-scale pole piece roller material and pole piece roller preparation method
CN114318138B (en) * 2021-11-26 2023-12-12 中钢集团邢台机械轧辊有限公司 High-hardness large-scale pole piece roller material and pole piece roller preparation method

Similar Documents

Publication Publication Date Title
KR101177540B1 (en) AUSTENITIC HIGH Mn STAINLESS STEEL EXCELLENT IN WORKABILITY
JP5335502B2 (en) Martensitic stainless steel with excellent corrosion resistance
JP7252761B2 (en) Precipitation hardening steel and its manufacture
JP5088455B2 (en) Duplex stainless steel
JP2018178144A (en) Precipitation-hardened stainless steel having excellent hot workability
CN104726789A (en) Low-nickel containing stainless steels
EP3126537B1 (en) Dual-phase stainless steel
JP6433341B2 (en) Age-hardening bainite non-tempered steel
JP5291479B2 (en) Duplex stainless steel and steel and steel products using the same
JP2006022369A (en) LOW Ni AUSTENITIC STAINLESS STEEL HAVING EXCELLENT BULGING PROPERTY AND RUST GENERATION RESISTANCE
JP2009228051A (en) Method for producing non-heattreated steel material
JP5100144B2 (en) Steel plate for spring, spring material using the same, and manufacturing method thereof
JP6583885B2 (en) High hardness stainless steel with excellent corrosion resistance and manufacturability
JP2014019925A (en) Ni SAVING TYPE AUSTENITIC STAINLESS STEEL
JP6722286B2 (en) Lean duplex stainless steel with improved corrosion resistance and workability and method for producing the same
JP6501652B2 (en) Martensitic stainless steel with excellent precipitation hardenability
JP2015218384A (en) HIGH-STRENGTH 13Cr-BASED STAINLESS THICK STEEL PLATE EXCELLENT IN TOUGHNESS AND WORKABILITY AND PRODUCTION METHOD THEREOF
JP6987651B2 (en) High hardness precipitation hardening stainless steel with excellent hot workability and no sub-zero treatment required
KR102263556B1 (en) Two-phase stainless steel strip and its manufacturing method
JP6111109B2 (en) Low Ni austenitic stainless steel sheet with excellent age hardening characteristics and method for producing the same
KR101554771B1 (en) Super ductile lean duplex stainless steel
JP4331731B2 (en) Austenitic stainless steel and springs made of that steel
US20180363112A1 (en) Lean duplex stainless steel and method of manufacturing the same
JP3587271B2 (en) Semi-austenite precipitation hardened stainless steel with excellent cold workability
JP2007113068A (en) Spring material made of high strength and high corrosion resistant stainless steel having excellent bendability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201124

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210608