JPS61136622A - Manufacture of high strength low alloy ultrathick steel material - Google Patents

Manufacture of high strength low alloy ultrathick steel material

Info

Publication number
JPS61136622A
JPS61136622A JP25627584A JP25627584A JPS61136622A JP S61136622 A JPS61136622 A JP S61136622A JP 25627584 A JP25627584 A JP 25627584A JP 25627584 A JP25627584 A JP 25627584A JP S61136622 A JPS61136622 A JP S61136622A
Authority
JP
Japan
Prior art keywords
steel
strength
temperature
toughness
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25627584A
Other languages
Japanese (ja)
Other versions
JPH062904B2 (en
Inventor
Katsuyoshi Yamanaka
山中 勝義
Ryota Yamaba
山場 良太
Katsutoshi Yamaguchi
勝利 山口
Yasuo Otoguro
乙黒 ▲靖▼男
Katsukuni Hashimoto
橋本 勝邦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP59256275A priority Critical patent/JPH062904B2/en
Publication of JPS61136622A publication Critical patent/JPS61136622A/en
Publication of JPH062904B2 publication Critical patent/JPH062904B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled steel material superior in toughness, by adding V, Nb, Ti, etc. to Mn-Cr-Mo steel, hot rolling it at a specified temp. range, then quenching and tempering said plate. CONSTITUTION:Steel contg. 0.05-0.20wt% C, <=0.80% Si, 0.2-1.5% Mn, <=5.0% Cr, 0.4-1.5% Mo, <=0.35% V, 0.01-0.12% total of >=one kind of Nb, Ti, 0.01-0.1% sol Al, further 0.0003-0.002% B, while restricting N to <=0.005% is melted. Steel ingot or slab of the compsn. is heated to 1,100-1,280 deg.C, then hot rolled at 800-1,050 deg.C by >=1.2 draft, to refine crystal grains up to center part in thickness of ultrathick steel plate. Next, the plate is immediately quenched directly from >=800 deg.C, temperated to obtain the titled steel material having superior toughness.

Description

【発明の詳細な説明】 (産業上の利用分野ン 本発明は高温圧力容器に使用されるMo系、0「−Mo
系低會金鋼極厚鋼材の高温強度(49にクリープ強f)
を高めるための製造方法に係わるものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application)
High-temperature strength of ultra-thick steel (49% creep strength f)
This relates to a manufacturing method for increasing the

(従来技術及び問題点] Mo系、Or−Mo系低会金耐熱鋼は、そのすぐれ次高
温強度、耐水素侵食性等から化学工業1石油化学0石油
精製などの高温高圧の反応容器に広く使用されている。
(Prior art and problems) Mo-based and Or-Mo-based low alloy heat-resistant steels are widely used in high-temperature, high-pressure reaction vessels such as chemical industry, petrochemical industry, and petroleum refining industry due to their excellent high-temperature strength and hydrogen corrosion resistance. It is used.

ところで最近の高温反応容器は。By the way, what about recent high-temperature reaction vessels?

効率向上のため大型化、高温化、高圧化の動きがあり、
これに伴なって装置の厚みがますます厚くなる傾向があ
る。モノブロックで製作する場せ。
There is a movement toward larger sizes, higher temperatures, and higher pressures to improve efficiency.
Along with this, there is a tendency for devices to become increasingly thick. A place to make things with monoblocks.

極厚化は板厚中心部の冷速の低下を招き0強度。Extreme thickness leads to a decrease in the cooling rate at the center of the plate thickness, resulting in zero strength.

靭性の低下をもたらす、tた壁厚の増大は応力除去焼鈍
時間全長く必要とするととくなシ、この点からも強度低
下につながる。
Increasing the wall thickness, which leads to a decrease in toughness, requires a longer stress relief annealing time, which also leads to a decrease in strength.

このような事情から、これまでの成分系に対して壁厚の
極度の増大を招かない友めの高温強度の上昇、定期検査
時の圧力テストによる脆性破壊を防止するための高靭性
及び耐焼もどじ脆化性など強度、靭性面からの新たな配
慮が必要となる。
For these reasons, we have developed a new component system that has improved high-temperature strength without causing an extreme increase in wall thickness, as well as high toughness and fire resistance to prevent brittle fracture caused by pressure tests during periodic inspections. New consideration will be required from the viewpoint of strength and toughness, including embrittlement.

また、従来の操業温度にくらぺて1反応効率を高めるた
めの高温化の動きは、これまでの鋼重りより一層耐水素
侵食性が高く、且つクリープ強度の高い鋼を要求してい
る。このような高温化に対応し°うる鋼としては、たと
えば30r −I Mo鋼が水素侵食の点で538℃ま
で耐えるとされているが、高温強度が低いという欠点が
ある。
In addition, the trend toward higher temperatures to increase reaction efficiency compared to conventional operating temperatures requires steels with higher hydrogen attack resistance and higher creep strength than conventional steel weights. As a steel that can cope with such high temperatures, for example, 30r-I Mo steel is said to be able to withstand hydrogen attack up to 538°C, but it has the drawback of low high-temperature strength.

即ち従来から知られているOr−Mo系低合金鋼として
は、特開昭50−130621号公報あるいは特開昭5
5−41961号公報などに:り知られている鋼がある
が、これらはいずれも高温で充分表強度金保証できず、
鋼材成分のみで前記の如き問題点全解決するには達して
いない。
That is, conventionally known Or-Mo based low alloy steels include those disclosed in JP-A-50-130621 or JP-A-5
5-41961: There are some known steels, but none of these can guarantee sufficient surface strength at high temperatures;
It has not yet been possible to solve all of the above-mentioned problems with steel components alone.

c問題点を解決するための手段1作用)本発明者等は前
述したようなこれまでの低含金耐熱鋼より一層の強度上
昇を因るため種々実験を繰り返した結果、適量のV、N
b、Ti等の強化元素を添加した鋼を用い、特定の温度
域で熱間加工を行い8次いでオフライン焼入−焼戻しを
したものは強度、靭性が共和向上するという知見を得て
c) Means for Solving Problems 1 Effect) The inventors of the present invention have repeatedly conducted various experiments in order to achieve a further increase in strength compared to the conventional low metal content heat-resistant steels as described above.
We obtained the knowledge that the strength and toughness of steel added with strengthening elements such as Ti, hot worked in a specific temperature range, and then offline quenched and tempered are improved.

特願昭59−207763号として特許6鳳した。A patent was granted as Japanese Patent Application No. 59-207763.

そしてひきつづき研究を進めるうち、この先厘発明と同
等もしくはそれ以上の高強度、高靭性の低會金鋼極厚鋼
材金低コストで製造できるという知見を得て1本発明を
完放したものである。
As they continued their research, they discovered that it was possible to manufacture low-metallic steel with high strength and toughness equivalent to or better than the recent invention at a low cost, and thus completed the invention. .

即ち本発明は1重量係でo o、o s〜0.20 %
 。
That is, in the present invention, o o, o s ~ 0.20% in terms of 1 weight
.

st o、s o s以下、 Mn 0.2〜1.5 
’1k 、 Or 5.0 %以下。Mo0.4〜1.
5 % 、 V O,35’4以下、 Nb、Ti (
7)1種又は2種合計で0.01〜0.12 ’fk 
、8o1.uo、01〜0.1憾を含有し、まtはこれ
に更VC80,0003〜0.002% 1−添加する
と共ICN0.008%以下に制限した鋼塊或いはスラ
ブ11100〜1280tl:に加熱後、800−10
50℃テノ圧エテノ加工前原/仕上り厚)が1.2以上
となる熱間加工を行い1次いで直ちに800℃以上の温
度から直接焼入れし、しかるのち焼戻しを行なうことを
特徴とする高強度低合金鋼層厚鋼材の製造方法である。
sto, sos or less, Mn 0.2-1.5
'1k, Or 5.0% or less. Mo0.4-1.
5%, VO, 35'4 or less, Nb, Ti (
7) 0.01 to 0.12' fk for type 1 or type 2 in total
, 8o1. After heating to 11,100 to 1,280 tl, steel ingots or slabs containing 0.01 to 0.1% of VC and VC of 80,0003 to 0.002% are added and ICN is limited to 0.008% or less. , 800-10
A high-strength low alloy characterized by hot working such that the ratio (pre-processing material/finish thickness) is 1.2 or higher at 50°C, then directly quenching at a temperature of 800°C or higher, and then tempering. This is a method for manufacturing thick steel material.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

まず1本発明において極厚鋼材とは100閤超の板厚範
囲のものを指す。これ#i、先にも述べた化学工業1石
油精製等の用途において装置の大型化文は高圧化によっ
て従来の100+n+以下の厚みにくらぺて増大してい
る所から、上記のような板厚範囲のものを対象としたも
のである。
First, in the present invention, the term "extremely thick steel" refers to a steel with a thickness of more than 100 mm. This #i, as mentioned earlier, in applications such as chemical industry 1 petroleum refining, equipment is becoming larger due to higher pressure, and the thickness is increasing compared to the conventional thickness of 100 + n + or less, so the plate thickness as above is increasing. It is aimed at a range of items.

次に本発明法の対象とする鋼の各成分を前記の如く定め
定限定理由について述べる。
Next, each component of the steel to be subjected to the method of the present invention is defined as described above, and the reason for the limitations will be described.

oFi強度保持上必要であるが、0.201Th超すと
溶接性ならびに靭性を損なうので上限を0,20係とし
、下限はこれ未満でFi溶接後熱時に高いテンノぐ−ノ
9ラメータを採用した時強度の保持が困難な友めo、o
 s sとした。ここでテンノぞ−ノぞラメータ(T、
P、)とはT、P、=T(20+Iogt )で求める
ものである。但しT:温度(K)、t:時間(hour
)である。
It is necessary to maintain oFi strength, but if it exceeds 0.201 Th, it will impair weldability and toughness, so the upper limit is set to 0.20 Th, and the lower limit is less than this when using a high ten-no-9 meter when heated after Fi welding. A friend who has difficulty maintaining strength o, o
I made it s s. Here, Tennozo-nozoramata (T,
P, ) is determined by T, P, = T(20+Iogt). However, T: temperature (K), t: time (hour
).

8iは脱酸剤として添加されるものであるが1強度の向
上にも効果がある元素である。しかし多すぎると溶接性
、靭性に悪影響が出るのでo、s o s以下とし次。
Although 8i is added as a deoxidizing agent, it is also an element that is effective in improving strength. However, if it is too much, it will have a negative effect on weldability and toughness, so it should be less than o, s o s.

Mnは脱醸のためのみでなく1強度保持にも必要な成分
である。しかし1.5俤を超すと靭性の点から好ましく
ないので上限Q1.51とし、下限は極厚材の強度保証
の点から0.2係とした。
Mn is a necessary component not only for defrosting but also for maintaining one strength. However, if it exceeds 1.5 degrees, it is not preferable from the point of view of toughness, so the upper limit was set at 1.51, and the lower limit was set at 0.2 from the point of view of guaranteeing the strength of extremely thick materials.

Orは耐酸化性、耐水素侵食性ならびに強度の点から必
要であるが、5悌を超して添加すると溶接性に対して問
題が生ずるので上限を5%とし次。
Or is necessary from the viewpoint of oxidation resistance, hydrogen corrosion resistance, and strength, but if it is added in excess of 5%, problems will occur with weldability, so the upper limit is set at 5%.

Moは著しく高温強度を高める元素であるが。Mo is an element that significantly increases high temperature strength.

0.41未満では効果が極端に低下し、1.5係を超し
ても効果の増大はほとんどない上に?l接性に悪影響を
及ばずので、上限!−1,5チ、下限を0,41とした
If it is less than 0.41, the effect is extremely reduced, and even if it exceeds 1.5, there is almost no increase in effect. Upper limit as it does not have a negative effect on l-contact property! -1.5chi, the lower limit was set to 0.41.

■は焼もどし軟化抵抗を著しく高める友め’a M。■ is a friend'a M that significantly increases resistance to tempering and softening.

と同様に高温強度の向上に顕著な効果のある元素である
が、0.35%を超えて添加すると溶接性に決定的な悪
影響を与えるために上限を0,351とした。
Similarly, it is an element that has a remarkable effect on improving high-temperature strength, but if it is added in an amount exceeding 0.35%, it will have a decisive adverse effect on weldability, so the upper limit was set at 0.351.

次にNb 、 Ti は結晶粒を微細fヒし0強度も向
上する元素であるが、そのt#″を単独又は曾計で0.
01幅未満では効果がなく、ま友0.12慢を超すと却
ってクリープ強度が低下するので、上限!−0.12憾
、下限を0.01係と定め次。
Next, Nb and Ti are elements that make crystal grains finer and improve strength, but their t#'' can be reduced to 0.
If it is less than 0.01 width, it will not be effective, and if it exceeds 0.12 width, the creep strength will actually decrease, so set the upper limit! -0.12 Unfortunately, the lower limit is set to 0.01.

5oをAtは靭性の向上に有効な元素であるが。5o and At are effective elements for improving toughness.

0.01係未清では効果が弱<、0.1096金超すと
熱間加工性に悪影Wt与えるので、上限全0.10係、
下限を0.011とした。
The effect is weak when the 0.01 ratio is unfinished, and if it exceeds 0.1096 gold, it has a negative effect on hot workability, so the upper limit is 0.10 ratio for all
The lower limit was set to 0.011.

以上が本発明による鋼の基本取分であるが、板厚が極端
に厚くなると焼入性を考慮した成分系が必要となる。
The above is the basic content of the steel according to the present invention, but when the plate thickness becomes extremely thick, a composition system that takes hardenability into consideration is required.

Bは極厚材で焼入の際の冷却速度が極度に遅くなつ次項
eK7エライトの析出を防止し、4イナイト組織を確保
するのに有効な元素であるが。
B is an effective element for preventing the precipitation of eK7 elite, which is an extremely thick material and requires an extremely slow cooling rate during quenching, and for ensuring a 4-inite structure.

0.00031未満ではS、を量を如何に多量にしても
後述するN量を如何に下げても焼入性に効果がない。ま
た0、00201超では偏析のため加工性。
If it is less than 0.00031, no matter how large the amount of S is or how much the amount of N, which will be described later, is lowered, there is no effect on hardenability. Also, if it exceeds 0.00201, it will be difficult to work due to segregation.

溶接性に悪影響があるので、上限を0.002Q%。Since it has a negative effect on weldability, the upper limit is set at 0.002Q%.

下限t?o、o003*トL−7t。Lower limit t? o, o003*tL-7t.

Nは上述のごく微量の8で焼入性を確保する九めにAt
の添加とともにその量を低く抑えることが有効であるが
、0.00896以下にすることに工って微量Bの効果
がはじめて現われてくるので。
N is a very small amount of 8 mentioned above, and At is the ninth to ensure hardenability.
It is effective to keep the amount of B low while adding B, but the effect of the trace amount of B only becomes apparent when it is reduced to 0.00896 or less.

o、o o s%以下に抑えることにした。It was decided to keep it below o, o o s%.

以上が本発明VCよる製造方法の適用対象鋼であるが、
この鋼を用いて高温強度を高め、かつ靭性も同時に確保
するための製造方法九ついて以下に述べる。
The above are the steels to which the manufacturing method using VC of the present invention is applied,
Nine manufacturing methods for increasing high-temperature strength and ensuring toughness at the same time using this steel will be described below.

まず、鋼塊あるいはスラブは通常の製鋼手段で溶魅し、
連続鋳造又は普通造塊で鋳塊にするが。
First, a steel ingot or slab is melted using normal steelmaking methods.
It is made into an ingot by continuous casting or ordinary ingot making.

そのあと熱間圧延に先立つ加熱は、 NbO、TiOt
オーステナイト中に固溶させその後の析出によって強化
を期待するためには、1100℃以上の加熱とすること
が必要である。しかし、1280℃を超えて加熱すると
結晶粒の粗大化が始まり、最終成品の靭性に悪影響がで
るので、加熱温度の上限を1280℃、下限’を110
0℃とした。
After that, heating prior to hot rolling is performed using NbO, TiOt
In order to expect strengthening by solid solution in austenite and subsequent precipitation, it is necessary to heat it to 1100° C. or higher. However, if heated above 1280°C, the crystal grains will begin to coarsen, which will have a negative effect on the toughness of the final product, so the upper limit of the heating temperature should be set to 1280°C and the lower limit to 110°C.
The temperature was 0°C.

次に、熱間加工とはこの場合鍛造、リング圧延。Next, hot working refers to forging and ring rolling in this case.

ロール圧延等を指す。Refers to roll rolling, etc.

この熱間加工に於て、温度範囲80()〜1050℃に
て圧下比(加工前厚/仕上り厚)1.2以上の熱間加工
を施こす理由は、極厚鋼板の板厚中心部まで十分な加工
を施こし、それによって中心部まで結晶粒の微細化を図
り、靭性の向上を図ったものである。
In this hot working, the reason why hot working is carried out at a temperature range of 80 () to 1050°C and a reduction ratio (unprocessed thickness/finished thickness) of 1.2 or more is because the center of the thickness of the extra-thick steel plate This process has been thoroughly processed to refine the crystal grains down to the center, improving toughness.

熱間加工の下限温度は、後の冷却開始温度800℃確保
のため800℃以上とする。又、1050℃以上では高
温の友め熱間加工による細粒化効果が失われる。
The lower limit temperature for hot working is set to 800°C or higher to ensure a later cooling start temperature of 800°C. Moreover, at 1050° C. or higher, the grain refining effect due to high-temperature hot working is lost.

圧下比(加工前厚/仕上り厚ンが1.2未満では板厚中
心部まで十分な加工がなされず、細粒化が不十分となり
靭性の向上が望めない。しかして圧下比は800〜10
50℃における熱間加工回数り含計圧下比で良く、でき
るだけ大きい方が細粒化にとって好ましい。
If the reduction ratio (unprocessed thickness/finished thickness) is less than 1.2, sufficient processing will not be performed to the center of the plate thickness, grain refinement will be insufficient, and no improvement in toughness can be expected.
The number of hot workings at 50° C. and the measured reduction ratio may be sufficient, and it is preferable that the ratio is as large as possible for grain refinement.

上記の熱間加工後直ちに800℃以上の温度から直接焼
入れすることが、先に述べた鋼成分お工び熱間加工条件
を生かし、前記先願発明と同等ないしはそれ以上の高強
度高靭性を備え友低曾金鋼極厚鋼材を製造する本発明の
ポイントである。しかして焼入れ開始温度が800℃未
満の場會、固廖し7?: V 、 Nb 、 Ti等の
強化元素が一部析出し。
Immediately after the above-mentioned hot working, direct quenching at a temperature of 800°C or higher takes advantage of the steel composition processing and hot working conditions described above to achieve high strength and toughness equivalent to or higher than that of the prior invention. This is the key point of the present invention in manufacturing extremely thick steel materials. However, in the case where the quenching start temperature is less than 800℃, the hardness is 7? : Strengthening elements such as V, Nb, and Ti are partially precipitated.

強化に寄与しなくなるので800℃以上とした。Since it no longer contributes to strengthening, the temperature was set at 800°C or higher.

次に、焼戻しは均質で優れた強度、靭性を得るtめに行
うものであり0通常のOr −Mo鋼の焼戻しく例えば
625〜700″cX30分以上保持)と同様に行なう
ものである。
Next, tempering is carried out to obtain homogeneous and excellent strength and toughness, and is carried out in the same manner as ordinary Or-Mo steel (e.g., 625 to 700 cm x 30 minutes or more).

以下に本発明の効果全実施例についてさらに具体的に述
べる。
All embodiments of the effects of the present invention will be described in more detail below.

C実施例〉 第1表に供試鋼の化学組WItを示す、供試鋼は高周波
炉で溶解、造塊を行い、その後鍛造で60tX100w
X200tの形状の素材としたものである。ま次、第2
表に熱間加工及び冷却条件と冷却速度、その冷却速度に
対応する実鋼板での相当板厚、T(20+togりで計
算されるテンノぞ−)ぐラメータ、諸特性、すなわち常
温、高温引張特性。
C Example〉 Table 1 shows the chemical composition WIt of the test steel.The test steel was melted and ingot-formed in a high frequency furnace, and then forged to 60tX100w.
The material has a shape of X200t. Second, second
The table shows the hot working and cooling conditions and cooling rate, the equivalent plate thickness of the actual steel plate corresponding to the cooling rate, the T (Tennozo-) parameter calculated by 20 + TOG, and the various properties, namely room temperature and high temperature tensile properties. .

クリープ破断特性、0℃の衝撃値Tri(l t”示す
Creep rupture properties, impact value Tri(lt") at 0°C.

なお、常温引張りはJI84号高温引張り1.クリープ
破断試験はJI8標準試験片を用いて行つ友。
In addition, room temperature tension is JI84 high temperature tension 1. Creep rupture tests are performed using JI8 standard test pieces.

第2表において、No、1.3,6,7,8,11゜1
2.14.15Fi、比較例、 NO,2、4、5、9
、10。
In Table 2, No, 1.3, 6, 7, 8, 11゜1
2.14.15Fi, Comparative Example, NO, 2, 4, 5, 9
, 10.

13は本発明例である。No. 13 is an example of the present invention.

No、 1〜N0.7は30r −I Mo系鋼に関す
るもので、NO,1は通常工程材、すなわち熱間加工後
いつtん常温まで冷却し、その後再加熱して950℃よ
り焼入れ処理しtもので1強度及びクリープ破断強度の
いずれも充分な強度が得られていない。
No. 1 to No. 0.7 are related to 30r-I Mo-based steel, and No. 1 is a normal process material, that is, after hot working, it is cooled to room temperature, then reheated and quenched from 950 ° C. In the case of t-type steel, sufficient strength was not obtained in both 1 strength and creep rupture strength.

N013は加熱温度が本発明の要件を潰さないもので。No. 013 has a heating temperature that does not violate the requirements of the present invention.

結晶粒が粗大化し靭性の劣化が大きい。N006は熱間
加工の圧下比が本発明の要件を満さないもので。
The crystal grains become coarser and the toughness deteriorates significantly. No. 006 has a hot working reduction ratio that does not meet the requirements of the present invention.

靭性値が低い。No、 7は熱間加工後の直接焼入温度
が低すぎるため常温、高温のいずれの強度及びクリープ
破断強度も低い。
Toughness value is low. In No. 7, the direct quenching temperature after hot working was too low, so the strength and creep rupture strength at both room temperature and high temperature were low.

一方、NO,2,4,5は本発明の要件を濡す範囲内で
製造されたもので、いずれもクリープ破断強度が高くか
つ高強度、高靭性を示し、優れた材質となっている。
On the other hand, NO, 2, 4, and 5 were manufactured within the range that met the requirements of the present invention, and all exhibited high creep rupture strength, high strength, and high toughness, making them excellent materials.

次に、 NO,8〜No、 11は1 ・1/40’r
 −1/2 Mo鋼に関するものである。N018は通
常工程材、すなわち熱間加工後いつtん常温まで冷却し
、その後再加熱して9301:!り焼入れ処理したもの
で、充分な強度が得られていない。NO,11は熱間加
工後の直接焼入温度が低い友め十分な強度が得られてい
ない。
Next, NO, 8~No, 11 is 1 ・1/40'r
-1/2 This relates to Mo steel. N018 is a normal process material, that is, after hot processing, it is cooled to room temperature and then reheated to 9301:! It is hardened and does not have sufficient strength. No. 11 does not have sufficient strength because the direct quenching temperature after hot working is low.

N029は本発明の要件金満す範囲で製造されたもので
あり1強度、靭性ともに高水準であり、かつクリープ破
断強度も高い。No、10も本発明の要件を満す範囲で
製造されたもので、圧下比が下限ぎりぎりのため靭性値
がやや低目であるが1強度並びにクリープ破断強度は高
い値である。
N029 was manufactured within a range that satisfies the requirements of the present invention, and has high levels of both strength and toughness, as well as high creep rupture strength. No. 10 was also manufactured within the range that satisfied the requirements of the present invention, and the rolling ratio was just at the lower limit, so the toughness value was a little low, but the 1 strength and creep rupture strength were high values.

次に、NO,12〜N0.15はMn −Mo系鋼くか
かわるものである。NO,12#i通常工穆材、すなわ
ち熱間加工後いつtん常温まで冷却し、900’CK再
加熱して焼入れ処理したもので、充分な強度が得られて
いない。N0114は加熱温度が本発明の要件を満さな
いもので、細粒化が不充分で靭性値が低い値となってい
る。No、15は熱間加工後の直接焼入温度が本発明の
要件を満さないため、充分な強度が得られていない。
Next, NO.12 to NO.15 are related to Mn-Mo steel. NO, 12#i is a conventionally worked material, that is, after hot working, it is cooled to room temperature, reheated to 900°C, and quenched, and does not have sufficient strength. In N0114, the heating temperature does not meet the requirements of the present invention, grain refinement is insufficient, and the toughness value is low. No. 15 did not have sufficient strength because the direct quenching temperature after hot working did not meet the requirements of the present invention.

これに対し、No、13は本発明の要件を満す範囲内で
製造されたもので1強度、靭性はもとより。
On the other hand, No. 13 was manufactured within the range that satisfied the requirements of the present invention, and had good strength and toughness.

クリープ破断強度も高水準となっている。Creep rupture strength is also at a high level.

(発明の効果) 以上の如く6本発明の製造法によれば従来の製造法に比
し、一段とクリープ破断強度、高温強度が高く、靭性と
のバランスのとれた鋼材が得られる。したがって、高温
高圧装置の大型化、高温化に対応でき、装置の軽量化に
好都せであるばかりでなく、熱間加工後直接焼入れする
方法であり。
(Effects of the Invention) As described above, according to the manufacturing method of the present invention, a steel material with higher creep rupture strength, higher high temperature strength, and a better balance with toughness than the conventional manufacturing method can be obtained. Therefore, this method is not only suitable for larger and higher temperature high-temperature and high-pressure equipment and is advantageous for reducing the weight of the equipment, but also allows direct quenching after hot working.

従来の如く熱間加工後一旦常温まで冷却し焼入温度に再
加熱する必要がないので、低コストでかつ製造工期の短
縮が可能である等、産業上効果の大きい発明である。
Since there is no need to cool the product to room temperature and then reheat it to the quenching temperature after hot working as in the conventional method, this invention has great industrial effects, such as being able to reduce costs and shorten the manufacturing period.

代理人 弁理士  秋 沢 政 光 信2名Agent Patent Attorney Masaaki Aki Sawa 2 believers

Claims (1)

【特許請求の範囲】[Claims] (1)重量%で0:0.05〜0.20%、Si:0.
80%以下、 Mn:0.2〜1.5%、 Cr:5.0%以下、 Mo:0.4〜1.5%、 V:0.35%以下、 Nb、Tiの1種又は2種合計で 0.01〜0.12%、 Sol.Al:0.01〜0.1% を含有し、またはこれに更に B:0.0003〜0.002% を添加すると共に N:0.005%以下 に制限した鋼塊或いはスラブを1100〜1280℃に
加熱後、800〜1050℃での圧下比(加工前厚/仕
上り厚)が1.2以上となる熱間加工を行い、次いで直
ちに800℃以上の温度から直接焼入れし、しかるのち
焼戻しを行なうことを特徴とする高強度低合金鋼極厚鋼
材の製造方法。
(1) 0:0.05-0.20% by weight, Si:0.
80% or less, Mn: 0.2 to 1.5%, Cr: 5.0% or less, Mo: 0.4 to 1.5%, V: 0.35% or less, one or two of Nb and Ti Total species 0.01-0.12%, Sol. Steel ingots or slabs containing Al: 0.01-0.1%, or further adding B: 0.0003-0.002% and limiting N: 0.005% or less to 1100-1280 After heating to ℃, hot working is performed at 800 to 1050℃ so that the reduction ratio (unprocessed thickness/finished thickness) is 1.2 or more, then immediately quenched directly at a temperature of 800℃ or higher, and then tempered. A method for producing high-strength, low-alloy steel and extra-thick steel.
JP59256275A 1984-12-04 1984-12-04 High strength low alloy steel Extra thick steel manufacturing method Expired - Lifetime JPH062904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59256275A JPH062904B2 (en) 1984-12-04 1984-12-04 High strength low alloy steel Extra thick steel manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59256275A JPH062904B2 (en) 1984-12-04 1984-12-04 High strength low alloy steel Extra thick steel manufacturing method

Publications (2)

Publication Number Publication Date
JPS61136622A true JPS61136622A (en) 1986-06-24
JPH062904B2 JPH062904B2 (en) 1994-01-12

Family

ID=17290380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59256275A Expired - Lifetime JPH062904B2 (en) 1984-12-04 1984-12-04 High strength low alloy steel Extra thick steel manufacturing method

Country Status (1)

Country Link
JP (1) JPH062904B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01240616A (en) * 1988-03-18 1989-09-26 Nippon Steel Corp Production of extremely thick steel plate for pressure vessel
JPH01316419A (en) * 1988-06-14 1989-12-21 Nippon Steel Corp Production of pressure-vessel steel with no need for heat treatment after welding
JPH01319631A (en) * 1988-06-20 1989-12-25 Nippon Steel Corp Production of extra thick steel plate for pressure vessel
JPH0297619A (en) * 1988-09-30 1990-04-10 Sumitomo Metal Ind Ltd Method for forming low-alloy steel for high-temperature service
EP0681033A1 (en) * 1994-03-09 1995-11-08 MANNESMANN Aktiengesellschaft High temperature steel for boiler construction
JP2007504643A (en) * 2003-09-02 2007-03-01 コミツサリア タ レネルジー アトミーク High impedance substrate
CN104018089A (en) * 2014-05-23 2014-09-03 内蒙古包钢钢联股份有限公司 High-strength high-toughness steel plate with yield strength 890Mpa grade and method for producing same
JP2015178647A (en) * 2014-03-19 2015-10-08 Jfeスチール株式会社 Extra thick steel plate excellent in hic resistance performance and production method thereof
CN109097701A (en) * 2018-08-31 2018-12-28 舞阳钢铁有限责任公司 A kind of alloy structure 15MnVB steel plate and its production method
CN111534738A (en) * 2020-02-18 2020-08-14 太原理工大学 Small-batch manufacturing method of tens of kilogram-level nuclear reactor pressure vessel steel

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5169422A (en) * 1974-12-12 1976-06-16 Nippon Steel Corp Cr mo keiteigokinko
JPS5541960A (en) * 1978-09-21 1980-03-25 Kawasaki Steel Corp Cr-mo steel for pressure vessel
JPS5576020A (en) * 1978-11-30 1980-06-07 Sumitomo Metal Ind Ltd Production of steel plate stable in strength and toughness by direct hardening and tempering
JPS55131126A (en) * 1979-03-30 1980-10-11 Sumitomo Metal Ind Ltd Production of modified by low alloy containing boron high tensile steel plate
JPS5779117A (en) * 1980-11-06 1982-05-18 Kawasaki Steel Corp Production of ultrathick temper type high tensile steel
JPS57185920A (en) * 1981-05-11 1982-11-16 Nippon Steel Corp Manufacture of high tensile steel with superior hydrogen embrittlement resistance
JPS57188615A (en) * 1981-05-07 1982-11-19 Nippon Steel Corp Toughness increasing method for steel
JPS57210915A (en) * 1981-06-22 1982-12-24 Nippon Steel Corp Manufacture of refined high tensile steel with high toughness
JPS58224150A (en) * 1982-06-23 1983-12-26 Kawasaki Steel Corp Extremely-thick high-strength cr-mo steel for pressure vessel for use at high temperature
JPS6144121A (en) * 1984-08-09 1986-03-03 Nippon Kokan Kk <Nkk> Manufacture of high strength, high toughness steel for pressurized vessel

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5169422A (en) * 1974-12-12 1976-06-16 Nippon Steel Corp Cr mo keiteigokinko
JPS5541960A (en) * 1978-09-21 1980-03-25 Kawasaki Steel Corp Cr-mo steel for pressure vessel
JPS5576020A (en) * 1978-11-30 1980-06-07 Sumitomo Metal Ind Ltd Production of steel plate stable in strength and toughness by direct hardening and tempering
JPS55131126A (en) * 1979-03-30 1980-10-11 Sumitomo Metal Ind Ltd Production of modified by low alloy containing boron high tensile steel plate
JPS5779117A (en) * 1980-11-06 1982-05-18 Kawasaki Steel Corp Production of ultrathick temper type high tensile steel
JPS57188615A (en) * 1981-05-07 1982-11-19 Nippon Steel Corp Toughness increasing method for steel
JPS57185920A (en) * 1981-05-11 1982-11-16 Nippon Steel Corp Manufacture of high tensile steel with superior hydrogen embrittlement resistance
JPS57210915A (en) * 1981-06-22 1982-12-24 Nippon Steel Corp Manufacture of refined high tensile steel with high toughness
JPS58224150A (en) * 1982-06-23 1983-12-26 Kawasaki Steel Corp Extremely-thick high-strength cr-mo steel for pressure vessel for use at high temperature
JPS6144121A (en) * 1984-08-09 1986-03-03 Nippon Kokan Kk <Nkk> Manufacture of high strength, high toughness steel for pressurized vessel

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01240616A (en) * 1988-03-18 1989-09-26 Nippon Steel Corp Production of extremely thick steel plate for pressure vessel
JPH01316419A (en) * 1988-06-14 1989-12-21 Nippon Steel Corp Production of pressure-vessel steel with no need for heat treatment after welding
JPH0635618B2 (en) * 1988-06-14 1994-05-11 新日本製鐵株式会社 Method for manufacturing pressure vessel steel that does not require heat treatment after welding
JPH01319631A (en) * 1988-06-20 1989-12-25 Nippon Steel Corp Production of extra thick steel plate for pressure vessel
JPH0297619A (en) * 1988-09-30 1990-04-10 Sumitomo Metal Ind Ltd Method for forming low-alloy steel for high-temperature service
EP0681033A1 (en) * 1994-03-09 1995-11-08 MANNESMANN Aktiengesellschaft High temperature steel for boiler construction
JP2007504643A (en) * 2003-09-02 2007-03-01 コミツサリア タ レネルジー アトミーク High impedance substrate
JP4901473B2 (en) * 2003-09-02 2012-03-21 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ High impedance substrate
JP2015178647A (en) * 2014-03-19 2015-10-08 Jfeスチール株式会社 Extra thick steel plate excellent in hic resistance performance and production method thereof
CN104018089A (en) * 2014-05-23 2014-09-03 内蒙古包钢钢联股份有限公司 High-strength high-toughness steel plate with yield strength 890Mpa grade and method for producing same
CN109097701A (en) * 2018-08-31 2018-12-28 舞阳钢铁有限责任公司 A kind of alloy structure 15MnVB steel plate and its production method
CN111534738A (en) * 2020-02-18 2020-08-14 太原理工大学 Small-batch manufacturing method of tens of kilogram-level nuclear reactor pressure vessel steel

Also Published As

Publication number Publication date
JPH062904B2 (en) 1994-01-12

Similar Documents

Publication Publication Date Title
RU2415196C2 (en) Composition of martensite stainless steel, procedure for fabrication of mechanical tool out of this steel and part fabricated by this procedure
US4776900A (en) Process for producing nickel steels with high crack-arresting capability
WO2010050394A1 (en) Fire-resistant steel material with excellent resistance to reheat embrittlement and with low-temperature toughness at welded heat-affected parts, and manufacturing method thereof
JPS6411105B2 (en)
JPH02175816A (en) Manufacture of hot rolled steel or thick plate
JP2012122111A (en) Method for producing tmcp and tempering process type high-strength thick steel plate having both excellent productivity and weldability, and excellent in drop-weight characteristic after pwht
JPS5896818A (en) Production of hot-rolled steel material having high strength and excellent low temperature toughness
JPS61136622A (en) Manufacture of high strength low alloy ultrathick steel material
JPH0421718A (en) Production of high strength steel excellent in sulfide stress cracking resistance
JPS6144121A (en) Manufacture of high strength, high toughness steel for pressurized vessel
JPS6160891B2 (en)
JPH02250941A (en) Low carbon chromium-molybdenum steel and its manufacture
JPH029647B2 (en)
JPS59129724A (en) Production of thick walled ultra high tension steel
JPH0247526B2 (en)
JPH03291358A (en) Duplex stainless steel excellent in toughness and hot workability and its production
JP2826819B2 (en) Method for producing high-strength stainless steel with excellent workability and no welding softening
JPH0314899B2 (en)
JPH07188840A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
WO1987004731A1 (en) Corrosion resistant stainless steel alloys having intermediate strength and good machinability
JP2005105346A (en) Method for producing two-phase stainless steel excellent in corrosion resistance and toughness
JPS59211555A (en) Steel for pressure vessel with high toughness
JP2834500B2 (en) Manufacturing method of high-strength steel sheet with excellent thermal toughness
JPH08269566A (en) Production of high strength and high toughness uoe steel pipe excellent in sr characteristic
JP2007302978A (en) Method for manufacturing high-strength steel of tensile strength of 780 mpa class having excellent toughness of weld heat affected zone