JPH0247526B2 - - Google Patents
Info
- Publication number
- JPH0247526B2 JPH0247526B2 JP59207763A JP20776384A JPH0247526B2 JP H0247526 B2 JPH0247526 B2 JP H0247526B2 JP 59207763 A JP59207763 A JP 59207763A JP 20776384 A JP20776384 A JP 20776384A JP H0247526 B2 JPH0247526 B2 JP H0247526B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- strength
- steel
- toughness
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910000831 Steel Inorganic materials 0.000 claims description 32
- 239000010959 steel Substances 0.000 claims description 32
- 239000000463 material Substances 0.000 claims description 12
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 6
- 238000010791 quenching Methods 0.000 claims description 5
- 230000000171 quenching effect Effects 0.000 claims description 5
- 229910052758 niobium Inorganic materials 0.000 claims description 4
- 230000000670 limiting effect Effects 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims 1
- 229910052748 manganese Inorganic materials 0.000 claims 1
- 230000000694 effects Effects 0.000 description 12
- 238000001816 cooling Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 230000002411 adverse Effects 0.000 description 4
- 229910001566 austenite Inorganic materials 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000005496 tempering Methods 0.000 description 3
- 229910000851 Alloy steel Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910001563 bainite Inorganic materials 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 238000000137 annealing Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Heat Treatment Of Steel (AREA)
Description
(産業上の利用分野)
本発明は高温圧力容器に使用されるCr−Mo系
低合金鋼極厚鋼材の高温強度(特にクリープ強
度)を高めるための製造方法に係わるものであ
る。
(従来技術及び問題点)
Cr−Mo系低合金耐熱鋼は、そのすぐれた高温
強度、耐水素侵食性等から化学工業、石油化学、
石油精製などの高温高圧の反応容器に広く使用さ
れている。ところで最近の高温反応容器は、効率
向上のため大型化、高温化、高圧化の動きがあ
り、これに伴なつて装置の厚みがますます厚くな
る傾向がある。モノブロツクで製作する場合、極
厚化は板厚中心部の冷速の低下を招き、強度靭性
の低下をもたらす。また壁厚の増大は応力除去焼
鈍時間を長く必要とすることになり、この点から
も強度低下につながる。
このような事情から、これまでの成分系に対し
て壁厚の極度の増大を招かないための高温強度の
上昇、定期検査時の圧力テストによる脆性破壊を
防止するための高靭性及び耐焼もどし脆化性など
強度、靭性面からの新たな配慮が必要となる。
また、従来の操業温度にくらべて、反応効率を
高めるための高温化の動きは、これまでの鋼より
より一層耐水素侵食性が高く、且つクリープ強度
の高い鋼を要求している。このような高温化に対
応しうる鋼としては、たとえば3Cr−1Mo鋼が水
素侵食の点で538℃まで耐えるとされているが、
高温強度が低いという欠点がある。
即ち従来から知られているCr−Mo系低合金鋼
としては、特開昭50−130621号公報あるいは特開
昭55−41961号公報などにより知られている鋼が
あるが、これらはいずれも高温で充分な強度を保
証できず、鋼材成分のみで前記の如き問題点を解
決するには達していない。
(問題点を解決するための手段、作用)
本発明者らは、前述したようなこれまでの低合
金耐熱鋼より一層の強度上昇を図つて適量のV、
Nb、Ti等の添加を試みたが、これらの鋼は製造
履歴によつて強度水準及び靭性が大幅に変動する
ことを知り、バランスのとれた強度と靭性を確保
できる製造条件を確立することに成功したもので
ある。
即ち本発明は、重量%でC0.10〜0.20%、Si0.80
%以下、Mn0.2〜1.5%、Cr2.1〜5.0%、Mo0.4〜
1.5%、V0.35%以下、Nb,Tiの1種又は2種合
計で0.01〜0.12%、Sol、Al0.01〜0.1%を含有し、
またはこれに更にB0.0003〜0.002%を添加すると
共にN0.005%以下に制限した鋼塊或いはスラブ
を1100〜1280℃に加熱後、800℃以上の温度範囲
で熱間加工を行い、ひきつづきオーステナイト化
のため880〜1050℃の間の温度に保持した後、焼
入れまたは焼ならしを行うことを特徴とする高温
高圧容器用極厚鋼材の製造方法である。
以下に本発明を詳細に説明する。
まず、本発明において極厚鋼材とは100mm超の
板厚範囲のものを指す。これは、先にも述べた化
学工業、石油精製等の用途において装置の大型化
又は高圧化によつて従来の100mm以下の厚みにく
らべて増大している所から、上記のような板厚範
囲のものを対象としたものである。
次に本発明法の対象とする鋼の各成分を前記の
如く定めた限定理由について述べる。
Cは強度保持上必要であるが、0.20%を超すと
溶接性ならびに靭性を損なうので上限を0.20%と
し、下限はこれ未満では溶接後熱時に高いテンパ
ーパラメータを採用した時強度の保持が困難なた
め0.10%とした。ここでテンパーパラメータ(T.
P.)とはT.P.=T(20+1ogt)で求めるものであ
る。但しT:温度(K)t:時間(hour)であ
る。
Siは脱酸剤として添加されるものであるが、強
度の向上にも効果がある元素である。しかし多す
ぎると溶接性、靭性に悪影響が出るので0.80%以
下とした。
Mnは脱酸のためのみでなく、強度保持にも必
要な成分である。しかし1.5%を超すと靭性の点
から好ましくないので上限を1.5%とし、下限は
極厚材の強度保証の点から0.2%とした。
Crは耐酸化性、耐水素侵食性ならびに強度の
点から必要であるが、5%を超して添加すると溶
接性に対して問題が生ずるので上限を5%とし
た。
下限については、耐水素侵食性の観点から
Mo,V等の含有量を考慮して、2.1%とした。
Moは著しく高温強度を高める元素であるが、
0.4%未満では効果が極端に低下し、1.5%を超し
ても効果の増大はほとんどない上に溶接性に悪影
響を及ぼすので、上限を1.5%、下限を0.4%とし
た。
Vは焼もどし軟化抵抗を著しく高めるため、
Moと同様に高温強度の向上に顕著な効果のある
元素であるが、0.35%を超えて添加すると溶接性
に決定的な悪影響を与えるために上限を0.35%と
した。
次にNb,Tiは結晶粒を微細化し、強度も向上
する元素であるが、その量は単独又は合計で0.01
%未満では効果がなく、また0.12%を超すと却つ
てクリープ強度が低下するので、上限を0.12%、
下限を0.01%と定めた。
Sol,Alは靭性の向上に有効な元素であるが、
0.01%未満では効果が弱く、0.10%を超すと熱間
加工性に悪影響を与えるので、上限を0.10%、下
限を0.01%とした。
以上が本発明による鋼の基本成分であるが、板
厚が極端に厚くなると焼入性を考慮した成分系が
必要となる。
Bは極厚材で焼入の際の冷却速度が極度に遅く
なつた場合にフエライトの析出を防止し、ベイナ
イト組織を確保するのに有効な元素であるが、
0.0003%未満ではAl量を如何に多量にしても後述
するN量を如何に下げても焼入性に効果がない。
また0.0020%超では偏析のため加工性、溶接性に
悪影響があるので、上限を0.0020%、下限を
0.0003%とした。
Nは上述のごく微量のBで焼入性を確保するた
めにAlの添加とともにその量を低く抑えること
が有効であるが、0.005%以下にすることによつ
て微量Bの効果がはじめて現われてくるので、
0.005%以下に抑えることにした。
以上が本発明による製造方法の適用対象鋼であ
るが、この鋼を用いて高温強度を高め、かつ靭性
も同時に確保するための製造方法について以下に
述べる。
まず、鋼塊あるいはスラブは通常の製鋼手段で
溶製し、連続鋳造又は普通造塊で鋳塊にするが、
そのあと熱間圧延に先立つ加熱は、NbC、TiCを
オーステナイト中に固溶させその後の析出によつ
て強化を期待するためには、1100℃以上の加熱と
とすることが必要である。しかし、1280℃を超え
て加熱すると結晶粒の粗大化が始まり、最終成品
の靭性に悪影響がでるので、加熱温度の上限を
1280℃、下限を1100℃とした。
次に、熱間加工とはこの場合鍛造、リング圧
延、ロール圧延等を指すが、その加工の温度範囲
の下限は800℃と定めた。その理由は、この温度
より下げるとNbC、TiCの析出量が増大し、その
後のオーステナイト化処理中においてこれら析出
物が再固溶せず、最終段階での鋼の組織において
強度に寄与しない析出物が増えるためである。
また、その後ただちに880〜1050℃の間に保持
するわけであるが、ただちに保持する理由は加工
温度範囲を制限した理由と同様に、この段階での
NbC,TiCの析出を抑制するためであり、この温
度範囲に保つ理由は鋼材の均質化を図るためであ
り、下限を880℃としたのはこれより下では均質
化のために時間がかかりすぎるためであり、また
上限を1050℃としたのは1050℃超では靭性に悪影
響がでるためである。
なお、保持時間は特に定めないが、均熱の観点
から20分以上とする。
次に、焼入れ又は焼ならしは鋼材をオーステナ
イト域の温度から冷却する作業であつて、この場
合マルテンサイト、ベイナイト等に変態させて均
質ですぐれた強度特性を得るために行うものであ
る。
以下に本発明の効果を実施例についてさらに具
体的に述べる。
(実施例)
第1表に供試鋼の化学組成を示す。供試鋼は高
周波炉で溶解、造塊を行い、その後鍛造で60t×
100w×200lの形状の素材としたものである。ま
た、第2表に熱間加工及び冷却条件と冷却速度、
その冷却速度に対応する実鋼板での板厚、T(20
+logt)で計算されるテンパーパラメータ、諸特
性、すなわち常温、高温引張特性、クリープ破断
特性、0℃の衝撃値vEoを示す。
なお常温引張りはJIS4号高温引張り、クリープ
破断試験はJIS標準試験片を用いて行つた。
(Industrial Application Field) The present invention relates to a manufacturing method for increasing the high temperature strength (especially creep strength) of Cr-Mo based low alloy steel extra thick steel used in high temperature pressure vessels. (Prior art and problems) Cr-Mo based low alloy heat-resistant steel is used in the chemical industry, petrochemical industry, etc. due to its excellent high temperature strength and hydrogen corrosion resistance.
Widely used in high-temperature, high-pressure reaction vessels such as oil refining. Nowadays, high-temperature reaction vessels are becoming larger, higher in temperature, and higher in pressure in order to improve efficiency, and along with this, there is a tendency for the thickness of the apparatus to become thicker and thicker. When manufacturing as a monoblock, increasing the thickness leads to a decrease in the cooling rate at the center of the plate thickness, resulting in a decrease in strength and toughness. In addition, an increase in wall thickness requires a longer stress relief annealing time, which also leads to a decrease in strength. Due to these circumstances, we have increased high-temperature strength to avoid an extreme increase in wall thickness compared to conventional component systems, and developed high-toughness and tempering-resistant brittleness to prevent brittle fractures caused by pressure tests during periodic inspections. New considerations will need to be made in terms of strength and toughness, such as oxidation resistance. Additionally, the trend toward higher temperatures than conventional operating temperatures in order to increase reaction efficiency requires steels with higher hydrogen attack resistance and higher creep strength than conventional steels. For example, 3Cr-1Mo steel is said to be able to withstand hydrogen attack up to 538℃ as a steel that can withstand such high temperatures.
It has the disadvantage of low high temperature strength. In other words, conventionally known Cr-Mo based low alloy steels include steels known from JP-A-50-130621 and JP-A-55-41961, but both of these steels are However, sufficient strength cannot be guaranteed, and the above-mentioned problems have not been solved by using steel components alone. (Means and effects for solving the problem) The present inventors have attempted to further increase the strength of the heat-resistant low-alloy steel as described above by adding an appropriate amount of V.
We tried adding Nb, Ti, etc., but learned that the strength level and toughness of these steels vary greatly depending on the manufacturing history, so we decided to establish manufacturing conditions that would ensure balanced strength and toughness. It was a success. That is, the present invention has C0.10 to 0.20% and Si0.80% by weight.
% or less, Mn0.2~1.5%, Cr2.1~5.0%, Mo0.4~
Contains 1.5%, V 0.35% or less, 0.01 to 0.12% in total of one or both of Nb and Ti, Sol, Al 0.01 to 0.1%,
Alternatively, a steel ingot or slab to which 0.0003 to 0.002% of B is added and N is limited to 0.005% or less is heated to 1100 to 1280℃, and then hot worked in a temperature range of 800℃ or higher to continue forming austenite. This is a method for manufacturing extra-thick steel materials for high-temperature and high-pressure vessels, which is characterized by holding the steel material at a temperature between 880 and 1050° C. for oxidation, and then quenching or normalizing it. The present invention will be explained in detail below. First, in the present invention, the extremely thick steel refers to a steel with a thickness of over 100 mm. This is due to the fact that in applications such as the chemical industry and oil refining mentioned above, the thickness has increased compared to the conventional thickness of 100 mm or less due to larger equipment or higher pressure. It is intended for those of. Next, the reason for limiting each component of the steel to be subjected to the method of the present invention as described above will be described. C is necessary to maintain strength, but if it exceeds 0.20% it will impair weldability and toughness, so the upper limit is set at 0.20%, and the lower limit is that it is difficult to maintain strength when a high tempering parameter is used during post-weld heating. Therefore, it was set at 0.10%. Here, the temper parameter (T.
P.) is determined by TP=T(20+1ogt). However, T: temperature (K) and t: time (hour). Although Si is added as a deoxidizing agent, it is also an element that is effective in improving strength. However, if it is too large, weldability and toughness will be adversely affected, so it is set at 0.80% or less. Mn is a necessary component not only for deoxidizing but also for maintaining strength. However, if it exceeds 1.5%, it is undesirable from the viewpoint of toughness, so the upper limit was set at 1.5%, and the lower limit was set at 0.2% from the viewpoint of guaranteeing the strength of extremely thick materials. Cr is necessary from the viewpoints of oxidation resistance, hydrogen corrosion resistance, and strength, but if it is added in excess of 5%, problems will occur with weldability, so the upper limit was set at 5%. The lower limit is determined from the perspective of hydrogen erosion resistance.
Considering the content of Mo, V, etc., it was set at 2.1%. Mo is an element that significantly increases high-temperature strength,
If it is less than 0.4%, the effect is extremely reduced, and if it exceeds 1.5%, there is almost no increase in the effect and it has a negative effect on weldability, so the upper limit was set to 1.5% and the lower limit was set to 0.4%. V significantly increases tempering softening resistance,
Like Mo, it is an element that has a remarkable effect on improving high-temperature strength, but adding more than 0.35% has a decisive negative effect on weldability, so the upper limit was set at 0.35%. Next, Nb and Ti are elements that make crystal grains finer and improve strength, but their amount alone or in total is 0.01
If it is less than 0.12%, it will not be effective, and if it exceeds 0.12%, the creep strength will decrease, so the upper limit should be set to 0.12%,
The lower limit was set at 0.01%. Sol and Al are effective elements for improving toughness, but
If it is less than 0.01%, the effect is weak, and if it exceeds 0.10%, it will adversely affect hot workability, so the upper limit was set to 0.10% and the lower limit was set to 0.01%. The above are the basic components of the steel according to the present invention, but when the plate thickness becomes extremely thick, a component system that takes hardenability into consideration is required. B is an effective element for preventing the precipitation of ferrite and ensuring a bainite structure when the cooling rate during quenching becomes extremely slow in extremely thick materials.
If it is less than 0.0003%, there is no effect on hardenability no matter how large the amount of Al is or how much the amount of N (described later) is decreased.
In addition, if it exceeds 0.0020%, it will adversely affect workability and weldability due to segregation, so the upper limit should be set at 0.0020% and the lower limit should be set at 0.0020%.
It was set as 0.0003%. It is effective to keep the amount of N at a low level along with the addition of Al in order to ensure hardenability with the extremely small amount of B mentioned above, but the effect of the very small amount of B appears for the first time when it is reduced to 0.005% or less. Because it comes,
We decided to keep it below 0.005%. The above is the steel to which the manufacturing method of the present invention is applied. A manufacturing method using this steel to increase high-temperature strength and ensure toughness at the same time will be described below. First, a steel ingot or slab is melted using normal steelmaking methods and made into an ingot using continuous casting or ordinary ingot making.
After that, heating prior to hot rolling must be heated to 1100°C or higher in order to dissolve NbC and TiC in austenite and expect strengthening through subsequent precipitation. However, if heated above 1280℃, the crystal grains will begin to coarsen, which will have a negative effect on the toughness of the final product, so the upper limit of the heating temperature must be set.
The temperature was set at 1280℃, and the lower limit was set at 1100℃. Next, hot processing in this case refers to forging, ring rolling, roll rolling, etc., and the lower limit of the temperature range for such processing was set at 800°C. The reason for this is that when the temperature is lowered below this temperature, the amount of NbC and TiC precipitated increases, and these precipitates do not dissolve into solid solution again during the subsequent austenitization process, resulting in precipitates that do not contribute to the strength of the steel in the final stage. This is because the amount increases. Also, the temperature is immediately held between 880 and 1050°C, but the reason for holding it immediately is the same as the reason for limiting the processing temperature range.
This is to suppress the precipitation of NbC and TiC, and the reason for keeping it within this temperature range is to homogenize the steel material, and the reason why the lower limit was set at 880℃ is that below this it would take too long to homogenize. The reason why the upper limit was set at 1050°C is that exceeding 1050°C adversely affects toughness. Note that the holding time is not particularly determined, but from the viewpoint of soaking, it should be 20 minutes or more. Next, quenching or normalizing is an operation in which the steel material is cooled from a temperature in the austenite range, and in this case, it is performed to transform the steel material into martensite, bainite, etc., and obtain homogeneous and excellent strength characteristics. The effects of the present invention will be described in more detail with reference to Examples below. (Example) Table 1 shows the chemical composition of the test steel. The test steel was melted and ingot-formed in a high-frequency furnace, and then forged to 60t×
The material has a shape of 100w x 200l. Table 2 also shows hot working and cooling conditions, cooling rate,
The actual steel plate thickness corresponding to that cooling rate, T (20
+logt) and various properties, namely room temperature, high temperature tensile properties, creep rupture properties, and impact value vEo at 0°C. Note that the room temperature tensile test was conducted using JIS No. 4 high temperature tensile test, and the creep rupture test was conducted using a JIS standard test piece.
【表】【table】
【表】【table】
【表】
(注) ○印:比較例
水冷は焼入れに空冷は焼ならしに対応。
オーステナイト化の際の保持時間はすべて1
時間である。
第2表中No.1,2,5,6,8,9は比較例で
あり、No.3,4,7は本発明例である。
No.1は通常工程条件、すなわち1250℃加熱、
1100゜〜950℃加工終了後250℃以下に冷却する工
程を指すものであるが、圧延後冷却し、オーステ
ナイト化のために再加熱を行うので、充分な強度
が出ない。また、No.2,5は加熱条件が本発明の
要件を満さないものであつて、前者は高温強度が
従来工程にくらべそれほど向上せず、後者は靭性
の劣化が大きい。
さらに、No.6は加工終了時に加工温度の下限を
切るもの、No.9はオーステナイト化保持温度の上
限をはずれるものであつて、いずれも強度或いは
靭性の点で問題がある。また、No.8はオーステナ
イト化温度の下限を切つており、クリープ破断強
度が低い。
これに対し、本発明の要件を満すNo.3,4,7
の条件で製造された鋼は比較例にくらべ著しくク
リープ破断強度が向上し、靭性もほゞ遜色のない
値が得られている。
(発明の効果)
以上のごとく、本発明の製造法によれば、従来
の製造法にくらべ一段とクリープ破断強度、高温
強度が高く、靭性とのバランスのとれた鋼材を提
供できる。したがつて、高温高圧装置の大型化、
高温化に対応でき、即装置の軽量化に役立つもの
であつて、産業上貢献するところ極めて大であ
る。[Table] (Note) ○: Comparative example Water cooling corresponds to quenching, and air cooling corresponds to normalizing.
All retention times during austenitization are 1
It's time.
In Table 2, Nos. 1, 2, 5, 6, 8, and 9 are comparative examples, and Nos. 3, 4, and 7 are examples of the present invention. No. 1 is the normal process condition, i.e. heating at 1250℃,
This refers to the process of cooling the product to 250°C or less after finishing processing at 1100° to 950°C, but since it is cooled after rolling and then reheated to form austenite, sufficient strength cannot be obtained. Further, in Nos. 2 and 5, the heating conditions do not meet the requirements of the present invention, and the high temperature strength of the former does not improve much compared to the conventional process, and the toughness of the latter deteriorates significantly. Further, No. 6 is a material whose processing temperature is below the lower limit at the end of processing, and No. 9 is a material which exceeds the upper limit of the austenitization retention temperature, and both have problems in terms of strength or toughness. Further, No. 8 is below the lower limit of the austenitizing temperature and has low creep rupture strength. On the other hand, Nos. 3, 4, and 7 that meet the requirements of the present invention
The steel produced under these conditions has significantly improved creep rupture strength and comparable toughness compared to the comparative example. (Effects of the Invention) As described above, according to the manufacturing method of the present invention, it is possible to provide a steel material that has higher creep rupture strength and higher temperature strength than conventional manufacturing methods, and is well balanced with toughness. Therefore, the size of high-temperature and high-pressure equipment has increased,
It can handle high temperatures and is useful for reducing the weight of equipment, making it an extremely important contribution to industry.
Claims (1)
熱後、800℃以上の温度範囲で熱間加工を行い、
ただちにオーステナイト化のため880〜1050℃の
間の温度に保持した後、焼入れまたは焼ならしを
行うことを特徴とする高温高圧容器用極厚鋼材の
製造方法。[Claims] 1% by weight: C 0.10-0.20%, Si 0.80% or less, Mn 0.2-1.5%, Cr 2.1-5.0%, Mo 0.4-1.5%, V 0.35% or less, one of Nb, Ti Or a steel ingot or slab containing 0.01-0.12% in total of the two types, Sol, Al 0.01-0.1%, or further adding B 0.0003-0.002% and limiting N to 0.005% or less at 1100-1280℃ After heating, hot processing is performed in a temperature range of 800℃ or higher,
A method for producing an extra-thick steel material for high-temperature and high-pressure vessels, which comprises immediately holding the temperature at a temperature between 880 and 1050°C for austenitization, and then quenching or normalizing it.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20776384A JPS6187818A (en) | 1984-10-03 | 1984-10-03 | Manufacture of ultrathick steel material of high strength low alloy steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20776384A JPS6187818A (en) | 1984-10-03 | 1984-10-03 | Manufacture of ultrathick steel material of high strength low alloy steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6187818A JPS6187818A (en) | 1986-05-06 |
JPH0247526B2 true JPH0247526B2 (en) | 1990-10-22 |
Family
ID=16545139
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20776384A Granted JPS6187818A (en) | 1984-10-03 | 1984-10-03 | Manufacture of ultrathick steel material of high strength low alloy steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6187818A (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07809B2 (en) * | 1988-03-18 | 1995-01-11 | 新日本製鐵株式会社 | Manufacturing method of extra-thick steel plate for pressure vessel |
JPH01319631A (en) * | 1988-06-20 | 1989-12-25 | Nippon Steel Corp | Production of extra thick steel plate for pressure vessel |
JP2680350B2 (en) * | 1988-06-20 | 1997-11-19 | 新日本製鐵株式会社 | Method for producing Cr-Mo steel sheet having excellent toughness |
DE3837400C2 (en) * | 1988-11-01 | 1995-02-23 | Mannesmann Ag | Process for the production of seamless pressure vessels |
CN103510009B (en) * | 2012-06-20 | 2016-01-20 | 鞍钢股份有限公司 | Steel for steam turbine auxiliary machine of nuclear power unit and manufacturing method thereof |
CN107312981A (en) * | 2017-06-13 | 2017-11-03 | 南京钢铁股份有限公司 | A kind of high tough thick steel plates of low yield strength ratio and its manufacture method |
CN112210724B (en) * | 2020-08-10 | 2022-02-18 | 唐山钢铁集团有限责任公司 | ESP (electronic stability program) production-based high-strength hot forming steel and method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5576020A (en) * | 1978-11-30 | 1980-06-07 | Sumitomo Metal Ind Ltd | Production of steel plate stable in strength and toughness by direct hardening and tempering |
JPS55131126A (en) * | 1979-03-30 | 1980-10-11 | Sumitomo Metal Ind Ltd | Production of modified by low alloy containing boron high tensile steel plate |
JPS5779117A (en) * | 1980-11-06 | 1982-05-18 | Kawasaki Steel Corp | Production of ultrathick temper type high tensile steel |
JPS57210915A (en) * | 1981-06-22 | 1982-12-24 | Nippon Steel Corp | Manufacture of refined high tensile steel with high toughness |
JPS5819431A (en) * | 1981-07-24 | 1983-02-04 | Nippon Steel Corp | Manufacture of steel for line pipe with superior characteristic of stopping propagation of brittle crack |
-
1984
- 1984-10-03 JP JP20776384A patent/JPS6187818A/en active Granted
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5576020A (en) * | 1978-11-30 | 1980-06-07 | Sumitomo Metal Ind Ltd | Production of steel plate stable in strength and toughness by direct hardening and tempering |
JPS55131126A (en) * | 1979-03-30 | 1980-10-11 | Sumitomo Metal Ind Ltd | Production of modified by low alloy containing boron high tensile steel plate |
JPS5779117A (en) * | 1980-11-06 | 1982-05-18 | Kawasaki Steel Corp | Production of ultrathick temper type high tensile steel |
JPS57210915A (en) * | 1981-06-22 | 1982-12-24 | Nippon Steel Corp | Manufacture of refined high tensile steel with high toughness |
JPS5819431A (en) * | 1981-07-24 | 1983-02-04 | Nippon Steel Corp | Manufacture of steel for line pipe with superior characteristic of stopping propagation of brittle crack |
Also Published As
Publication number | Publication date |
---|---|
JPS6187818A (en) | 1986-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6562476B2 (en) | Ferritic heat resistant steel and its manufacturing method | |
JP2000345281A (en) | Low alloy heat resistant steel excellent in weldability and low temperature toughness, and its production | |
JPS6144121A (en) | Manufacture of high strength, high toughness steel for pressurized vessel | |
JPH0247526B2 (en) | ||
JPS61136622A (en) | Manufacture of high strength low alloy ultrathick steel material | |
JPH02250941A (en) | Low carbon chromium-molybdenum steel and its manufacture | |
EP0224591B1 (en) | Process for producing high-strength seamless steel pipes excellent in sulfide stress corrosion cracking resistance | |
EP0738784B1 (en) | High chromium martensitic steel pipe having excellent pitting resistance and method of manufacturing | |
JPH02310340A (en) | Ferritic heat-resistant steel having excellent toughness and creep strength | |
KR20200065150A (en) | Chromium-molybdenum steel sheet having excellent creep strength and method of manufacturing the same | |
JP3319222B2 (en) | Manufacturing method of high chromium ferritic steel with excellent creep characteristics of welded joint | |
US4400225A (en) | Cr-Mo Steel for use as very thick plates of 75 mm or more for oil refinery, coal liquefaction and coal gasification equipment | |
JPH01319629A (en) | Production of cr-mo steel sheet having excellent toughness | |
JPH0699741B2 (en) | Processing method of high Cr ferritic steel for high temperature | |
JPH0735548B2 (en) | Method for producing high-Cr ferritic heat-resistant steel pipe having high creep rupture strength | |
JPH0885848A (en) | High chromium ferritic heat resistant steel | |
JP2834500B2 (en) | Manufacturing method of high-strength steel sheet with excellent thermal toughness | |
JP2543282B2 (en) | Method for producing controlled rolled steel with excellent toughness | |
JPH0297619A (en) | Method for forming low-alloy steel for high-temperature service | |
JP3546543B2 (en) | Manufacturing method for steel for medium and high temperature pressure vessels | |
JPH04333516A (en) | Production of thick 80kgf/mm2 class high tensile strength steel excellent in weldability | |
JPS63241117A (en) | Manufacture of seamless stainless steel tube | |
JPH0610041A (en) | Production of high cr ferritic steel excellent in creep rupture strength and ductility | |
JP3752524B2 (en) | Ferritic heat resistant steel | |
JP2520198B2 (en) | Method for producing low alloy heat resistant steel with excellent high temperature low cycle fatigue properties and high temperature strength |