JPH062904B2 - High strength low alloy steel Extra thick steel manufacturing method - Google Patents

High strength low alloy steel Extra thick steel manufacturing method

Info

Publication number
JPH062904B2
JPH062904B2 JP59256275A JP25627584A JPH062904B2 JP H062904 B2 JPH062904 B2 JP H062904B2 JP 59256275 A JP59256275 A JP 59256275A JP 25627584 A JP25627584 A JP 25627584A JP H062904 B2 JPH062904 B2 JP H062904B2
Authority
JP
Japan
Prior art keywords
strength
steel
temperature
toughness
hot working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59256275A
Other languages
Japanese (ja)
Other versions
JPS61136622A (en
Inventor
勝義 山中
良太 山場
勝利 山口
▲靖▼男 乙黒
勝邦 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP59256275A priority Critical patent/JPH062904B2/en
Publication of JPS61136622A publication Critical patent/JPS61136622A/en
Publication of JPH062904B2 publication Critical patent/JPH062904B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高温圧力容器に使用されるMo系、Cr-Mo系低合
金鋼極厚鋼材の高温強度(特にクリープ強度)を高める
ための製造方法に係わるものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention is a production for increasing the high temperature strength (especially the creep strength) of a Mo type, Cr-Mo type low alloy steel extra thick steel material used for a high temperature pressure vessel. It is related to the method.

(従来技術及び問題点) Mo系、Cr-Mo系低合金耐熱鋼は、そのすぐれた高温強
度、耐水素侵食性等から化学工業、石油化学、石油精製
などの高温高圧の反応容器に広く使用されている。とこ
ろで最近の高温反応容器は、効率向上のため大型化、高
温化、高圧化の動きがあり、これに伴なって装置の厚み
がますます厚くなる傾向がある。モノブロックで製作す
る場合、極厚化は板厚中心部の冷速の低下を招き、強
度、靱性の低下をもたらす。また壁厚の増大は応力除去
焼鈍時間を長く必要とすることになり、この点からも強
度低下につながる。
(Prior art and problems) Mo-based and Cr-Mo-based low alloy heat-resistant steels are widely used in high temperature and high pressure reaction vessels such as chemical industry, petrochemistry, and oil refining due to their excellent high temperature strength and hydrogen corrosion resistance. Has been done. By the way, recent high-temperature reaction vessels are becoming larger, higher in temperature, and higher in pressure to improve efficiency, and as a result, the thickness of the apparatus tends to be further increased. In the case of manufacturing with a monoblock, the extremely thickening leads to a decrease in the cooling rate at the center of the plate thickness, resulting in a decrease in strength and toughness. Further, an increase in wall thickness requires a longer time for stress relief annealing, which also leads to a decrease in strength.

このような事情から、これまでの成分系に対して壁厚の
極度の増大を招かないための高温強度の上昇、定期検査
時の圧力テストによる脆性破壊を防止するための高靱性
及び耐焼もどし脆化性など強度、靱性面からの新たな配
慮が必要となる。
Under these circumstances, the high temperature strength is increased to prevent an extreme increase in wall thickness compared to the conventional component systems, and the high toughness and tempering resistance to prevent brittle fracture due to the pressure test during regular inspections. New consideration is required from the aspect of strength and toughness such as chemical conversion.

また、従来の操業温度にくらべて、反応効率を高めるた
めの高温化の動きは、これまでの鋼よりより一層耐水素
侵食性が高く、且つクリープ強度の高い鋼を要求してい
る。このような高温化に対応しうる鋼としては、たとえ
ば3Cr-1Mo鋼が水素侵食の点で538℃まで耐えるとさ
れているが、高温強度が低いという欠点がある。
Further, compared with the conventional operating temperature, the movement toward higher temperatures for increasing the reaction efficiency requires a steel having higher hydrogen corrosion resistance and higher creep strength than the conventional steels. As a steel that can cope with such a high temperature, for example, 3Cr-1Mo steel is said to endure up to 538 ° C. in terms of hydrogen attack, but it has a drawback of low high temperature strength.

即ち従来から知られているCr-Mo系低合金鋼としては、
特開昭50−130621号公報あるいは特開昭55−
41961号公報などにより知られている鋼があるが、
これらはいずれも高温で充分な強度を保証できず、鋼材
成分のみで前記の如き問題点を解決するには達していな
い。
That is, as a conventionally known Cr-Mo low alloy steel,
JP-A-50-130621 or JP-A-55-
There is steel known from Japanese Patent No. 41961 and the like,
None of these can guarantee sufficient strength at high temperatures, and the above-mentioned problems cannot be solved only by the steel material components.

(問題点を解決するための手段、作用) 本発明者等は前述したようなこれまでの低合金耐熱鋼よ
り一層の強度上昇を図るため種々実験を繰り返した結
果、適量のV,Nb,Ti等の強化元素を添加した鋼を用
い、特定の温度域で熱間加工を行い、次いでオフライン
焼入−焼戻しをしたものは強度、靱性が共に向上すると
いう知見を得て、特願昭59−207763号(特開昭
61−87818号)として特許出願した。そしてひき
つづき研究を進めるうち、この先願発明と同等もしくは
それ以上の高強度、高靱性の低合金高極厚鋼材を低コス
トで製造できるという知見を得て、本発明を完成したも
のである。
(Means and Actions for Solving Problems) The inventors of the present invention repeated various experiments in order to further increase the strength of the conventional low alloy heat resistant steel as described above, and as a result, an appropriate amount of V, Nb, Ti was obtained. It has been found that the strength and toughness of a steel obtained by hot working in a specific temperature range, followed by off-line quenching and tempering are improved by using steel to which strengthening elements such as A patent application was filed as 207763 (Japanese Patent Laid-Open No. 61-87818). While continuing research, the present invention has been completed by finding that it is possible to manufacture a low alloy, extremely thick steel material having high strength and high toughness equivalent to or higher than that of the prior invention, at low cost.

即ち本発明は、重量%でC0.05〜0.20%、Si
0.01〜0.80%以下、Mn0.2〜1.5%、C
r0.2〜5.0%、Mo0.4〜1.5%、V0.0
1〜0.35%、Nb,Tiの1種又は2種合計で0.
01〜0.12%、Sol.Al0.01〜0.1%を
含有し、残部Feおよび不可避不純物からなる鋼塊或い
はスラブ、またはこれに更に、B0.0003〜0.0
02%、N0.005%以下含有し、残部Feおよび不
可避不純物からなる鋼塊或いはスラブを1100〜12
80℃に加熱後、800〜1050℃での圧下比(加工
前厚/仕上り厚)が1.2以上となる熱間加工を行い、
次いで直ちに800℃以上の温度から直接焼入れし、し
かるのち焼戻しを行なうことを特徴とする高強度低合金
鋼極厚鋼材の製造方法である。
That is, in the present invention, C0.05 to 0.20% by weight, Si
0.01 to 0.80% or less, Mn 0.2 to 1.5%, C
r0.2-5.0%, Mo0.4-1.5%, V0.0
1 to 0.35%, and one or two of Nb and Ti in total of 0.
01-0.12%, Sol. A steel ingot or slab containing 0.01 to 0.1% Al and the balance Fe and unavoidable impurities, or B0.0003 to 0.0
The steel ingot or slab containing 02% and N 0.005% or less and the balance Fe and unavoidable impurities is 1100 to 12
After heating to 80 ° C., hot working is performed so that the reduction ratio (thickness before processing / finished thickness) at 800 to 1050 ° C. becomes 1.2 or more,
Then, the method for producing a high-strength low-alloy steel extra-thick steel material is characterized in that it is immediately quenched directly from a temperature of 800 ° C. or higher and then tempered.

以下、本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

まず、本発明において極厚鋼材とは100mm超の板厚範
囲のものを指す。これは、先にも述べた化学工業、石油
精製等の用途において装置の大型化又は高圧化によって
従来の100mm以下の厚みにくらべて増大している所か
ら、上記のような板厚範囲のものを対象としたものであ
る。
First, in the present invention, the extremely thick steel material refers to a material having a thickness range of more than 100 mm. This is because the thickness has increased from the conventional thickness of 100 mm or less due to the large size of the equipment or the increase in pressure in the applications such as the chemical industry and petroleum refining mentioned above. It is intended for.

次に本発明法の対象とする鋼の各成分を前記の如く定め
た限定理由について述べる。
Next, the reasons for limiting each component of the steel targeted by the method of the present invention will be described.

Cは強度保持上必要であるが、0.20%を超すと溶接
性ならびに靱性を損なうので上限を0.20%とし、下
限はこれ未満では溶接後熱時に高いテンパーパラメータ
を採用した時強度の保持が困難なため0.05%とし
た。ここでテンパーパラメータ(T.P.)とはT.
P.=T(20+logt)で求めるものである。但しT:温
度(K)、t=時間(hour)である。
C is necessary for maintaining the strength, but if it exceeds 0.20%, the weldability and toughness are impaired, so the upper limit is made 0.20%, and if the lower limit is less than this, the strength when high temper parameters are adopted during post-welding heat is adopted. Since it is difficult to hold the content, it was set to 0.05%. Here, the temper parameter (T.P.) is T.P.
P. = T (20 + logt). However, T: temperature (K) and t = time (hour).

Siは脱酸剤として0.01%以上添加されるものであ
るが、強度向上にも効果がある元素である。しかし0.
8%超になると溶接性、靱性に悪影響がでるので0.0
1〜0.80%とした。
Si is added as a deoxidizing agent in an amount of 0.01% or more, and is an element effective in improving strength. But 0.
If it exceeds 8%, the weldability and toughness will be adversely affected, so 0.0
It was set to 1 to 0.80%.

Mnは脱酸のためのみでなく、強度保持にも必要な成分
である。しかし1.5%を超すと靱性の点から好ましく
ないので上限を1.5%とし、下限は極厚材の強度保証
の点から0.2%とした。
Mn is a component necessary not only for deoxidation but also for strength retention. However, if it exceeds 1.5%, it is not preferable from the viewpoint of toughness, so the upper limit was made 1.5%, and the lower limit was made 0.2% from the viewpoint of ensuring the strength of the extra thick material.

Crは耐酸化性、耐水素侵食性ならびに強度の点から
0.2%以上必要であるが、5%を超えて添加すると溶
接性に対して問題が生ずるので0.2〜5%とした。
Cr is required to be 0.2% or more from the viewpoint of oxidation resistance, hydrogen corrosion resistance and strength, but if added in excess of 5%, problems occur with respect to weldability, so it was set to 0.2-5%.

Moは著しく高温強度を高める元素であるが、0.4%
未満では効果が極端に低下し、1.5%を超しても効果
の増大はほとんどない上に溶接性に悪影響を及ぼすの
で、上限を1.5%、下限を0.4%とした。
Mo is an element that significantly enhances high temperature strength, but 0.4%
If it is less than 1.0%, the effect is extremely reduced, and if it exceeds 1.5%, the effect is hardly increased and the weldability is adversely affected. Therefore, the upper limit is 1.5% and the lower limit is 0.4%.

Vは焼きもどし軟化抵抗を著しく高めるため0.01%
以上は必要で、Moと同様に高温強度の向上に顕著な効
果のある元素であるが、0.35%を超えて添加すると
溶接性に決定的な悪影響を与えるため0.01〜0.3
5%とした。
V is 0.01% because it significantly increases the resistance to temper softening.
The above is necessary and is an element that has a remarkable effect on the improvement of high temperature strength like Mo, but if added in excess of 0.35%, there is a detrimental adverse effect on weldability, so 0.01-0.3.
It was set to 5%.

次にNb,Tiは結晶粒を微細化し、強度も向上する元素で
あるが、その量は単独又は合計で0.01%未満では効
果がなく、また0.12%を超すと却ってクループ強度
が低下するので、上限を0.12%、下限を0.01%
と定めた。
Next, Nb and Ti are elements that make the crystal grains finer and improve the strength, but if the amount is alone or less than 0.01% in total, there is no effect, and if it exceeds 0.12%, the croup strength is rather increased. Lower, so the upper limit is 0.12% and the lower limit is 0.01%
I decided.

Sol・Alは靱性の向上に有効な元素であるが、0.01
%未満では効果が弱く、0.10%を超すと熱間加工性
に悪影響を与えるので、上限を0.10%、下限を0.
01%とした。
Sol · Al is an element effective in improving toughness, but 0.01
%, The effect is weak, and if it exceeds 0.10%, the hot workability is adversely affected, so the upper limit is 0.10% and the lower limit is 0.1%.
It was set to 01%.

以上が本発明による鋼の基本成分であるが、板厚が極端
に厚くなると焼入性を考慮した成分系が必要となる。
The above are the basic components of the steel according to the present invention, but if the plate thickness becomes extremely thick, a component system considering hardenability is required.

Bは極厚材で焼入の際の冷却速度が極度に遅くなった場
合にフェライトの析出を防止し、ベイナイト組織を確保
するのに有効な元素であるが、0.0003%未満では
Al量を如何に多量にしても後述するN量を如何に下げて
も焼入性に効果がない。また0.0020%超では偏折
のため加工性、溶接性に悪影響があるので、上限を0.
0020%、下限を0.0003%とした。
B is an extremely thick material and is an element effective for preventing the precipitation of ferrite and securing a bainite structure when the cooling rate during quenching is extremely slow, but if less than 0.0003%,
No matter how much the amount of Al is increased, no matter how much the amount of N described below is lowered, the hardenability is not effective. Further, if it exceeds 0.0020%, the workability and weldability are adversely affected due to uneven bending, so the upper limit is set to 0.
0020% and the lower limit was made 0.0003%.

Nは上述のごく微量のBで焼入性を確保するためにAlの
添加とともにその量を低く抑えることが有効であるが、
0.005%以下にすることによって微量Bの効果がは
じめて現れるてくるので、0.005%以下に抑えるこ
とにした。
N is an extremely small amount of B as described above, and it is effective to suppress the amount thereof with addition of Al in order to secure hardenability.
When the content is 0.005% or less, the effect of the trace amount B appears for the first time, so the content is determined to be 0.005% or less.

以上が本発明による製造方法の適用対象鋼であるが、こ
の鋼を用いて高温強度を高め、かつ靱性も同様に確保す
るための製造方法について以下に述べる。
The above is the steel to which the manufacturing method according to the present invention is applied. The manufacturing method for increasing the high temperature strength and similarly securing the toughness using this steel will be described below.

まず、鋼塊あるいはスラブは通常の製鋼手段で溶製し、
連続鋳造又は普通造塊で鋳塊にするが、そのあと熱間圧
延に先立つ加熱は、NbC,TiCをオーステナイト中に固溶
させその後の析出によって強化を期待するためには、1
100℃以上の加熱とすることが必要である。しかし、
1280℃を超えて加熱すると結晶粒の粗大化が始ま
り、最終成品の靭性に悪影響がでるので、加熱温度の上
限を1280℃、下限を1100℃とした。
First, ingots or slabs are melted by ordinary steelmaking means,
The ingot is made by continuous casting or ordinary ingot, and then heating prior to hot rolling is performed in order to obtain solid solution of NbC and TiC in austenite and to expect strengthening by subsequent precipitation.
It is necessary to heat at 100 ° C. or higher. But,
When the heating temperature exceeds 1280 ° C, coarsening of crystal grains starts and the toughness of the final product is adversely affected. Therefore, the upper limit of the heating temperature is 1280 ° C and the lower limit is 1100 ° C.

次に、熱間加工とはこの場合鋳造、リング圧延、ロール
圧延等を指す。
Next, hot working refers to casting, ring rolling, roll rolling, etc. in this case.

この熱間加工に於て、温度範囲800〜1050℃にて
圧下比(加工前厚/仕切り厚)1.2以上の熱間加工を
施こす理由は、極厚鋼板の板厚中心部まで十分な加工を
施こし、それによって中心部まで結晶粒の微細化を図
り、靱性の向上を図ったものである。
In this hot working, the reason for carrying out hot working with a reduction ratio (pre-working thickness / partition thickness) of 1.2 or more in the temperature range of 800 to 1050 ° C is that the thickness of the extra-thick steel plate is sufficient up to the center By performing various processing, the grain size is refined to the central portion and the toughness is improved.

熱間加工の下限温度は、後の冷却開始温度800℃確保
のため800℃以上とする。又、1050℃以上では高
温のため熱間加工による細粒化効果が失われる。
The lower limit temperature of hot working is 800 ° C. or higher in order to secure the subsequent cooling start temperature of 800 ° C. Further, at 1050 ° C. or higher, the effect of fine graining due to hot working is lost due to the high temperature.

圧下比(加工前厚/仕切り厚)が1.2未満では板厚中
心部まで十分な加工がなされず、細粒化が不十分となり
靱性の向上が望めない。しかして圧下比は800〜10
50℃における熱間加工回数の合計圧下比で良く、でき
るだけ大きい方が細粒化にとって好ましい。
If the reduction ratio (thickness before processing / partition thickness) is less than 1.2, sufficient processing cannot be performed up to the center of the plate thickness, and grain refinement is insufficient, and improvement in toughness cannot be expected. However, the reduction ratio is 800 to 10
The total reduction ratio of the number of hot workings at 50 ° C. is sufficient, and it is preferable that the total reduction ratio is as large as possible for fine grain formation.

上記の熱間加工後直ちに800℃以上の温度から直接焼
入れすることが、先に述べた鋼成分および熱間加工条件
を生かし、前記先願発明と同等ないしはそれ以上の高強
度高靱性を備えた低合金鋼極厚鋼材を製造する本発明の
ポイントである。しかして焼入れ開始温度が800℃未
満の場合、固溶したV,Nb,Ti等の強化元素が一部析出
し、強化に寄与しなくなるので800℃以上とした。
Direct quenching immediately after the above hot working from a temperature of 800 ° C. or higher makes use of the steel components and hot working conditions described above, and provides high strength and high toughness equivalent to or higher than that of the prior invention. This is a point of the present invention for producing an ultra-thick low alloy steel. However, when the quenching start temperature is lower than 800 ° C., some solid-solution strengthening elements such as V, Nb, and Ti are precipitated and do not contribute to strengthening.

次に、焼戻しは均質で優れた強度、靱性を得るために行
うものであり、通常のCr-Mo鋼の焼戻し(例えば625
〜700℃×30分以上保持)と同様に行なうものであ
る。
Next, tempering is performed to obtain uniform and excellent strength and toughness, and tempering of ordinary Cr-Mo steel (for example, 625
~ 700 ° C x 30 minutes or more).

以下に本発明の効果を実施例についてさらに具体的に述
べる。
The effects of the present invention will be described more specifically below with reference to examples.

(実施例) 第1表に供試鋼の化学組成を示す。供試鋼は高周波炉で
溶解、造塊を行い、その後鍛造で60t×100w×2
00lの形状の素材といたものである。また、第2表に
熱間加工及び冷却条件と冷却速度、その冷却速度に対応
する実鋼板での相当板厚、T(20+logt)で計算されるテ
ンパーパラメータ、諸特性、すなわち常温、高温引張特
性、クリープ破断特性、0℃の衝撃値vE0を示す。
(Example) Table 1 shows the chemical composition of the sample steel. The sample steel is melted and ingoted in a high-frequency furnace, and then forged by 60t x 100w x 2
It is the material of the shape of 001. Also, Table 2 shows the hot working and cooling conditions and cooling rates, the equivalent plate thickness of the actual steel plate corresponding to the cooling rate, the temper parameters calculated by T (20 + logt), various characteristics, that is, room temperature and high temperature. Tensile properties, creep rupture properties, and impact value vE 0 at 0 ° C are shown.

なお、常温引張りはJIS4号高温引張り、クリープ破
断試験はJIS標準試験片を用いて行った。
The room temperature tensile test was carried out using JIS No. 4 high temperature tensile test, and the creep rupture test was carried out using JIS standard test pieces.

第2表において、NO.1,3,6,7,8,11,1
2,14,15,16,18,19,21,22,24
は比較例、NO.2,4,9,10,13,17,20,
23は本発明例である。
In Table 2, NO.1,3,6,7,8,11,1
2,14,15,16,18,19,21,22,24
Is a comparative example, NO. 2, 4, 9, 10, 13, 17, 20,
Reference numeral 23 is an example of the present invention.

NO.1〜NO.7は3Cr−1Mo系鋼に関するもので、NO.1
は通常工程材、すなわち熱間加工後いったん常温まで冷
却し、その後再加熱して950℃より焼入れ処理したも
ので、強度及びクリープ破壊強度のいずれも充分な強度
が得られていない。NO.3は加熱温度が本発明の要件を
満さないもので、結晶粒が粗大化し靱性の劣化が大き
い。NO.6は熱間加工の圧下比が本発明の要件を満さな
いもので、靱性値が低い。NO.7は熱間加工後の直接焼
入温度が低すぎるため常温、高温のいずれの強度及びク
リープ破断強度も低い。
NO.1 to NO.7 are related to 3Cr-1Mo steel, NO.1
Is a normal process material, that is, a material that has been once cooled to room temperature after hot working and then reheated and quenched at 950 ° C., and neither sufficient strength nor creep rupture strength was obtained. In No. 3, the heating temperature does not satisfy the requirements of the present invention, and the crystal grains become coarse and the toughness deteriorates significantly. In No. 6, the reduction ratio of hot working does not satisfy the requirements of the present invention, and the toughness value is low. Since NO.7 has a too low direct quenching temperature after hot working, it has low strength at both normal temperature and high temperature and low creep rupture strength.

一方、NO.2,4,5は本発明の要件を満す範囲内で製
造されたもので、いずれもクリープ破断強度が高くかつ
高強度、高靱性を示し、優れた材質となっている。
On the other hand, Nos. 2, 4, and 5 were produced within the range satisfying the requirements of the present invention, and all have high creep rupture strength, high strength and high toughness, and are excellent materials.

次に、NO.8〜NO.11は1・1/4C′r-1/2Mo鋼に関するもの
である。NO.8は通常工程材、すなわち熱間加工後いっ
たん常温まで冷却し、その後再加熱して930℃より焼
入れ処理したもので、充分な強度が得られていない。N
O.11は熱間加工後の直接焼入温度が低いため十分な強度
が得られていない。
Next, No. 8 to No. 11 relate to the 1 / 4C'r-1 / 2Mo steel. No. 8 is a normal process material, that is, a material which is once cooled to room temperature after hot working and then reheated and hardened at 930 ° C., and sufficient strength is not obtained. N
O.11 does not have sufficient strength because the direct quenching temperature after hot working is low.

NO.9は本発明の要件を満す範囲で製造されたものであ
り、強度、靱性ともに高水準であり、かつクリープ破断
強度も高い。NO.10も本発明の要件を満す範囲で製造さ
れたもので、圧下比が下限ぎりぎりのため靱性値がやや
低目であるが、強度並びにクリープ破断強度は高い値で
ある。
No. 9 was produced within the range satisfying the requirements of the present invention, and has a high level of strength and toughness and a high creep rupture strength. NO.10 was also manufactured in a range satisfying the requirements of the present invention, and the toughness value is slightly low because the rolling reduction is close to the lower limit, but the strength and creep rupture strength are high values.

次に、NO.12〜NO.15はMn−Mo系鋼にかかるものである。
NO.12は通常工程材、すなわち熱間加工後いったん通常
まで冷却し、900℃に再加熱して焼入れ処理したもの
で、充分な強度が得られていない。NO.14は加熱温度が
本発明の要件を満さないもので、細粒化が不充分で靭性
値が低い値となっている。NO.15は熱間加工後の直接焼
入温度が本発明の要件を満さないため、充分な強度が得
られていない。
Next, NO.12 to NO.15 are related to Mn-Mo steel.
No. 12 is a normal process material, that is, a material which is once cooled to normal after hot working, reheated to 900 ° C. and hardened, and does not have sufficient strength. In NO.14, the heating temperature does not satisfy the requirements of the present invention, and the grain refinement is insufficient and the toughness value is low. No. 15 does not have sufficient strength because the direct quenching temperature after hot working does not satisfy the requirements of the present invention.

これに対し、NO.13は本発明の要件を満す範囲内で製造
されたもので、強度、靭性はもとより、クリープ破断強
度も高水準となっている。
On the other hand, NO.13 is manufactured within the range that satisfies the requirements of the present invention, and not only the strength and toughness but also the creep rupture strength is at a high level.

次にNO.16〜NO.18は1・1/4Cr−1/2Mo鋼に関す
るものである。NO.16は通常工程材、すなわち熱間加
工後いったん常温まで冷却し、930℃に再加熱して焼
入れ処理したもので、強度及びクリープ破断強度が低
く、かつ靭性も低い。NO.18は熱間加工後の直接焼入
れ温度が本発明の要件を満さないため十分な強度が得ら
れていない。NO.17は本発明の要件を満す範囲で製造
されたものであり、強度、靭性ともに高くかつクリープ
破断強度も高い。
Next, NO. 16 to NO. 18 relate to the 1/4 Cr-1 / 2 Mo steel. No. 16 is a normal process material, that is, after being hot worked, once cooled to room temperature, reheated to 930 ° C. and quenched, and has low strength and creep rupture strength and low toughness. No. 18 does not have sufficient strength because the direct quenching temperature after hot working does not satisfy the requirements of the present invention. No. 17 was produced within the range satisfying the requirements of the present invention, and has high strength and toughness as well as high creep rupture strength.

次に、NO.19〜NO.24は、2・1/4Cr−1Mo系鋼
に関し、NO.19、NO.22は通常工程材、すなわち熱間
加工後いったん常温まで冷却し夫々930℃、980℃
に再加熱して焼入れ処理したもので、強度が低く、クル
ープ破断強度も低い。NO.21、NO.24は熱間加工後の
直接焼入温度が本発明の要件を満さないため充分な強度
が得られないことのほかクリープ破断強度も低い。
Next, NO.19 to NO.24 are related to the 2.1 / 4Cr-1Mo steel, and NO.19 and NO.22 are normal process materials, that is, 930 ° C. and 980 ° C. after being hot worked and then cooled to room temperature. ℃
It is reheated and hardened, and has low strength and croup rupture strength. No. 21 and No. 24 do not have sufficient strength because the direct quenching temperature after hot working does not satisfy the requirements of the present invention, and the creep rupture strength is also low.

NO.20、NO.23は本発明の要件を満して製造されたも
のであり、強度、靭性ともに高水準であり、かつクリー
プ破断強度も高い。
NO.20 and NO.23 were produced satisfying the requirements of the present invention, and both strength and toughness are at a high level and creep rupture strength is also high.

(発明の効果) 以上の如く、本発明の製造法によれば従来の製造法に比
し、一段とクリープ破断強度、高温強度が高く、靭性と
のバランスのとれた鋼材が得られる。したがって、高温
高圧装置の大型化、高温化に対応でき、装置の軽量化に
好都合であるばかりでなく、熱間加工後直接焼入れする
方法であり、従来の如く熱間加工後一旦常温まで冷却し
焼入温度に再加熱する必要がないので、低コストでかつ
製造工期の短縮が可能である等、産業上効果の大きい発
明である。
(Effects of the Invention) As described above, according to the production method of the present invention, a steel material having higher creep rupture strength and high-temperature strength and a well-balanced toughness can be obtained as compared with the conventional production method. Therefore, not only is it suitable for increasing the size and temperature of high-temperature and high-pressure equipment and is convenient for reducing the weight of the equipment, but it is also a method of directly quenching after hot working. Since the invention does not need to be reheated to the quenching temperature, it is an invention that has a large industrial effect, such as low cost and a shortened manufacturing period.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 乙黒 ▲靖▼男 神奈川県相模原市淵野辺5−10―1 新日 本製鐵株式会社第二技術研究所内 (72)発明者 橋本 勝邦 神奈川県相模原市淵野辺5−10―1 新日 本製鐵株式会社第二技術研究所内 (56)参考文献 特開 昭55−76020(JP,A) 特開 昭57−210915(JP,A) 特開 昭55−131126(JP,A) 特開 昭57−79117(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Otoguro ▲ Yasushi ▼ Male 5-10-1, Fuchinobe, Sagamihara City, Kanagawa Prefecture, Nippon Steel Corporation 2nd Technical Research Institute (72) Inventor, Katsukuni Hashimoto Sagamihara, Kanagawa Prefecture 5-10-1 Ichibuchi Nobe, Nippon Steel Corporation Second Research Laboratory (56) References JP-A-55-76020 (JP, A) JP-A-57-210915 (JP, A) JP-A-55 -131126 (JP, A) JP-A-57-79117 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量%でC:0.05〜0.20%、 Si:0.01〜0.80%、 Mn:0.2〜1.5%、 Cr:0.2〜5.0%、 Mo:0.4〜1.5%、 V:0.01〜0.35%、 Nb,Tiの1種又は2種合計で0.01〜0.12
%、 Sol.Al:0.01〜0.1% を含有し、残部Feおよび不可避不純物からなる鋼塊或
いはスラブを1100〜1280℃に加熱後、800〜
1050℃での圧下比(加工前厚/仕上り厚)が1.2
以上となる熱間加工を行い、次いで直ちに800℃以上
の温度から直接焼入れし、しかるのち焼戻しを行なうこ
とを特徴とする高強度低合金鋼極厚鋼材の製造方法。
1. C: 0.05 to 0.20% by weight%, Si: 0.01 to 0.80%, Mn: 0.2 to 1.5%, Cr: 0.2 to 5.0 %, Mo: 0.4 to 1.5%, V: 0.01 to 0.35%, 0.01 to 0.12 in total of one or two of Nb and Ti.
%, Sol. Al: 0.01 to 0.1% is contained, and the steel ingot or slab containing the balance Fe and unavoidable impurities is heated to 1100 to 1280 ° C., and then 800 to
Reduction ratio (thickness before processing / finished thickness) at 1050 ° C is 1.2
A method for producing a high-strength low-alloy steel extra-thick steel material, which comprises performing hot working as described above, then immediately quenching directly from a temperature of 800 ° C. or higher, and then tempering.
【請求項2】重量%でC:0.05〜0.20%、 Si:0.01〜0.80%、 Mn:0.2〜1.5%、 Cr:0.2〜5.0%、 Mo:0.4〜1.5%、 V:0.01〜0.35%、 Nb,Tiの1種又は2種合計で0.01〜0.12
%、 Sol.Al:0.01〜0.1% を含有し、更に B:0.0003〜0.002% N:0.005%以下 を含み、残部Feおよび不可避不純物からなる鋼塊或い
はスラブを1100〜1280℃に加熱後、800〜1
050℃での圧下比(加工前厚/仕上り厚)が1.2以
上となる熱間加工を行い、次いで直ちに800℃以上の
温度から直接焼入れし、しかるのち焼戻しを行なうこと
を特徴とする高強度低合金鋼極厚鋼材の製造方法。
2. C: 0.05 to 0.20% by weight%, Si: 0.01 to 0.80%, Mn: 0.2 to 1.5%, Cr: 0.2 to 5.0 %, Mo: 0.4 to 1.5%, V: 0.01 to 0.35%, 0.01 to 0.12 in total of one or two of Nb and Ti.
%, Sol. A steel ingot or slab containing Al: 0.01 to 0.1%, B: 0.0003 to 0.002%, N: 0.005% or less, and the balance Fe and unavoidable impurities is 1100 to 1280. 800-1 after heating to ℃
A high feature characterized by performing hot working at a reduction ratio (thickness before processing / finished thickness) of 1.2 or more at 050 ° C, then immediately quenching directly from a temperature of 800 ° C or more and then tempering. Manufacturing method of high strength low alloy steel and extra thick steel.
JP59256275A 1984-12-04 1984-12-04 High strength low alloy steel Extra thick steel manufacturing method Expired - Lifetime JPH062904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59256275A JPH062904B2 (en) 1984-12-04 1984-12-04 High strength low alloy steel Extra thick steel manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59256275A JPH062904B2 (en) 1984-12-04 1984-12-04 High strength low alloy steel Extra thick steel manufacturing method

Publications (2)

Publication Number Publication Date
JPS61136622A JPS61136622A (en) 1986-06-24
JPH062904B2 true JPH062904B2 (en) 1994-01-12

Family

ID=17290380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59256275A Expired - Lifetime JPH062904B2 (en) 1984-12-04 1984-12-04 High strength low alloy steel Extra thick steel manufacturing method

Country Status (1)

Country Link
JP (1) JPH062904B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07809B2 (en) * 1988-03-18 1995-01-11 新日本製鐵株式会社 Manufacturing method of extra-thick steel plate for pressure vessel
JPH0635618B2 (en) * 1988-06-14 1994-05-11 新日本製鐵株式会社 Method for manufacturing pressure vessel steel that does not require heat treatment after welding
JPH01319631A (en) * 1988-06-20 1989-12-25 Nippon Steel Corp Production of extra thick steel plate for pressure vessel
JPH079027B2 (en) * 1988-09-30 1995-02-01 住友金属工業株式会社 Forming method of low alloy steel for high temperature
NO303695B1 (en) * 1994-03-09 1998-08-17 Mannesmann Ag Steel with high heat resistance for boiler construction
FR2859309B1 (en) * 2003-09-02 2005-12-16 Commissariat Energie Atomique HIGH IMPEDANCE SUBSTRATE
JP6086086B2 (en) * 2014-03-19 2017-03-01 Jfeスチール株式会社 Ultra-thick steel plate with excellent HIC resistance and manufacturing method thereof
CN104018089B (en) * 2014-05-23 2017-01-11 内蒙古包钢钢联股份有限公司 High-strength high-toughness steel plate with yield strength 890Mpa grade and method for producing same
CN109097701A (en) * 2018-08-31 2018-12-28 舞阳钢铁有限责任公司 A kind of alloy structure 15MnVB steel plate and its production method
CN111534738A (en) * 2020-02-18 2020-08-14 太原理工大学 Small-batch manufacturing method of tens of kilogram-level nuclear reactor pressure vessel steel

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5169422A (en) * 1974-12-12 1976-06-16 Nippon Steel Corp Cr mo keiteigokinko
JPS5541960A (en) * 1978-09-21 1980-03-25 Kawasaki Steel Corp Cr-mo steel for pressure vessel
JPS583011B2 (en) * 1978-11-30 1983-01-19 住友金属工業株式会社 Manufacturing method of steel plate with stable strength and toughness by direct quenching and tempering
JPS6025494B2 (en) * 1979-03-30 1985-06-18 住友金属工業株式会社 Manufacturing method of boron-containing low-alloy tempered high-strength steel sheet
JPS5779117A (en) * 1980-11-06 1982-05-18 Kawasaki Steel Corp Production of ultrathick temper type high tensile steel
JPS57188615A (en) * 1981-05-07 1982-11-19 Nippon Steel Corp Toughness increasing method for steel
JPS57185920A (en) * 1981-05-11 1982-11-16 Nippon Steel Corp Manufacture of high tensile steel with superior hydrogen embrittlement resistance
JPS604250B2 (en) * 1981-06-22 1985-02-02 新日本製鐵株式会社 Manufacturing method of high toughness heat-treated high tensile strength steel
JPS58224150A (en) * 1982-06-23 1983-12-26 Kawasaki Steel Corp Extremely-thick high-strength cr-mo steel for pressure vessel for use at high temperature
JPS6144121A (en) * 1984-08-09 1986-03-03 Nippon Kokan Kk <Nkk> Manufacture of high strength, high toughness steel for pressurized vessel

Also Published As

Publication number Publication date
JPS61136622A (en) 1986-06-24

Similar Documents

Publication Publication Date Title
US4776900A (en) Process for producing nickel steels with high crack-arresting capability
JPS6267152A (en) Tool steel for hot working
JPH10273756A (en) Cold tool made of casting, and its production
CN108998725A (en) Track link rail 35MnBM steel and preparation method thereof
JPH062904B2 (en) High strength low alloy steel Extra thick steel manufacturing method
JPH0748621A (en) Production of steel for pressure vessel excellent in ssc resistance and hic resistance
JPS6144121A (en) Manufacture of high strength, high toughness steel for pressurized vessel
JP2002167652A (en) Thin sheet material excellent in high strength-high fatigue resisting characteristic
JP2579841B2 (en) Method for producing as-rolled intragranular ferritic steel with excellent fire resistance and toughness
JPH029647B2 (en)
JP2776174B2 (en) Manufacturing method of high tensile strength and high toughness fine bainite steel
JPH09256037A (en) Production of thick high tensile strength steel plate for stress relieving annealing treatment
JP3319222B2 (en) Manufacturing method of high chromium ferritic steel with excellent creep characteristics of welded joint
JPH0247526B2 (en)
JP3819848B2 (en) Heat resistant steel and manufacturing method thereof
JP2579842B2 (en) Method for producing intragranular ferritic section steel with excellent toughness as rolled and excellent weld toughness
JPH11117019A (en) Production of heat resistant parts
JP2705946B2 (en) Manufacturing method of high strength steel sheet with excellent SSC resistance
JPH04157117A (en) Production of rolled shape steel having excellent toughness of base metal and weld zone
JPH09256038A (en) Heat treatment before stress relieving annealing treatment for thick steel plate
JP2834500B2 (en) Manufacturing method of high-strength steel sheet with excellent thermal toughness
JP3432713B2 (en) Structural steel plate with excellent strength and toughness
JP3107695B2 (en) Method for producing shaped steel having flange with excellent strength, toughness and weldability
JPH05132716A (en) Manufacture of rolled shape steel excellent in toughness
JP3107698B2 (en) Method for producing shaped steel having flange excellent in strength, toughness and fire resistance