JPH079027B2 - Forming method of low alloy steel for high temperature - Google Patents

Forming method of low alloy steel for high temperature

Info

Publication number
JPH079027B2
JPH079027B2 JP63248417A JP24841788A JPH079027B2 JP H079027 B2 JPH079027 B2 JP H079027B2 JP 63248417 A JP63248417 A JP 63248417A JP 24841788 A JP24841788 A JP 24841788A JP H079027 B2 JPH079027 B2 JP H079027B2
Authority
JP
Japan
Prior art keywords
alloy steel
strength
high temperature
transformation point
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63248417A
Other languages
Japanese (ja)
Other versions
JPH0297619A (en
Inventor
敦朗 伊勢田
義淳 椹木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP63248417A priority Critical patent/JPH079027B2/en
Publication of JPH0297619A publication Critical patent/JPH0297619A/en
Publication of JPH079027B2 publication Critical patent/JPH079027B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高温用低合金鋼の成形加工方法に関し、詳し
くは従来の焼ならし処理を省略したV又はVとNbを含有
する高温用低合金鋼の成形加工方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for forming a high-alloy low-alloy steel, and more particularly to a high-temperature low-alloy steel containing V or V and Nb containing no normalizing treatment. The present invention relates to a method of forming low alloy steel.

(従来の技術) CrおよびMoを主要合金元素とする高温用低合金鋼は、炭
素鋼に比べ高温強度と耐食性に優れていることからボイ
ラ、化学工業、原子力などの分野で、オーステナイト鋼
や高Crフェライト鋼を必要としない耐熱部材、例えば熱
交換器官、配管、構造用鋼板等に広く用いられている。
代表的なものとしてはJISに制定されているG 3462 STBA
22鋼、同STBA24鋼、同STBA25鋼がある。
(Prior art) High-temperature low-alloy steels containing Cr and Mo as the main alloying elements are superior in high-temperature strength and corrosion resistance to carbon steels, so they are used in fields such as boilers, chemical industry, and nuclear power in austenitic steels and high-grade steels. It is widely used for heat resistant members that do not require Cr ferritic steel, such as heat exchange organs, pipes, structural steel plates and the like.
G 3462 STBA established in JIS as a representative
22 steel, STBA24 steel, STBA25 steel.

他方、CrおよびMoを主要合金元素とする低合金鋼に更に
析出強化元素としてのV或いはNbを添加した高温強度の
高い低合金鋼も実用材として使われている。その代表的
なものとしては、タービンロータ、ケーシング材として
使われている1%Cr-1%Mo-0.25%V鋼、高速増殖炉用
構造材として使われている2.25%Cr-1%Mo-0.3%Nb鋼が
ある。
On the other hand, a low alloy steel having high strength at high temperature in which V or Nb as a precipitation strengthening element is further added to a low alloy steel containing Cr and Mo as main alloying elements is also used as a practical material. Typical examples are 1% Cr-1% Mo-0.25% V steel used as a turbine rotor and casing material, and 2.25% Cr-1% Mo- used as a structural material for fast breeder reactors. There is 0.3% Nb steel.

後者の析出強化元素を含む低合金鋼については、従来、
添付第4図に示すような工程により成形加工するのが一
般的であった。即ち、熱間圧延或いは熱間押出等の最終
熱間成形加工の後に、一旦常温まで放冷し、その後Ac3
変態点以上の温度での焼ならし処理とAc1変態点以上の
温度での焼もどし処理を施す成形加工方法である。
For low alloy steels containing the latter precipitation strengthening element,
In general, the molding process was performed by the process shown in FIG. That is, after the final hot forming process such as hot rolling or hot extrusion, it is allowed to cool to room temperature and then Ac 3
This is a forming method in which normalizing treatment at a temperature of the transformation point or higher and tempering treatment at a temperature of the Ac 1 transformation point or higher are performed.

なお、上記焼もどし処理後に熱間曲げ加工、冷間加工お
よび溶接等の処理を施した場合には、これら処理後に応
力除去焼鈍等の後熱処理を行うことが多い。
When hot bending, cold working, and welding are performed after the above tempering treatment, post heat treatment such as stress relief annealing is often performed after these treatments.

ところで、この従来の成形加工方法では、高温材料とし
て特に重要なクリープ強度を高め、且つ安定な強度を得
るためには、熱間加工後の熱処理が必須の工程である。
この点が前掲のVおよびNbを添加していないいわゆる固
溶強化型の高Crフェライト鋼と異なる点である。
By the way, in this conventional forming method, heat treatment after hot working is an essential step in order to increase creep strength which is particularly important as a high temperature material and to obtain stable strength.
This point is different from the so-called solid solution strengthened high Cr ferritic steel to which V and Nb are not added.

即ち、従来の製造方法では成形加工後の焼ならしおよび
焼もどし処理において、良好なクリープ強度および高温
強度を確保するために、焼ならし処理では熱間加工後の
材料をAc3変態点以上の温度域に加熱して、粗大化した
炭化物等の析出物を固溶させるとともに各種合金成分の
偏析を除去し、加熱後の急冷により組織をマルテンサイ
トもしくはベイナイトにしなければならない。また焼も
どし処理では微細析出物を析出させて高温で安定な組織
を形成させてやる必要がある。
That is, in the conventional manufacturing method, in the normalizing and tempering treatments after forming, in order to ensure good creep strength and high-temperature strength, in the normalizing treatment, the material after hot working is made to have an Ac 3 transformation point or higher. It is necessary to heat to the temperature range of 1 to dissolve precipitates such as coarsened carbides and to eliminate segregation of various alloy components, and rapidly cool after heating to make the structure martensite or bainite. Further, in the tempering treatment, it is necessary to precipitate fine precipitates to form a stable structure at high temperature.

しかしながら、従来の成形加工方法ではこの熱処理工程
と熱間加工工程とが独立していることから加熱のための
エネルギーコストが嵩む欠点があった。特に焼ならし処
理は、熱間加工後の材料をAc3変態点以上の高い温度に
再加熱しなければならないので、必然的に多くの熱エネ
ルギーを使用するうえに、この熱処理によって材料が著
しく変形したり酸化したりするために、熱処理後には矯
正や手入れを余儀なくされいた。そのために製品コスト
を更に上昇させる結果となっていた。
However, in the conventional forming method, since the heat treatment step and the hot working step are independent, there is a drawback that the energy cost for heating increases. Especially in the normalizing process, since the material after hot working has to be reheated to a high temperature of Ac 3 transformation point or higher, a large amount of thermal energy is inevitably used, and the heat treatment causes the material to remarkably increase. After heat treatment, it had to be straightened and maintained due to its deformation and oxidation. Therefore, the product cost has been further increased.

このように焼ならし工程には多くの問題点を有してお
り、製造者にとっては好ましくない工程であった。しか
し、この焼ならし処理を単に省略した場合には、製品の
強度および靱性が損なわれ、とりわけ高温クリープ強度
の低下が著しくなって、製品は価値のないものになる。
その理由は、焼ならし処理を省略すると熱間加工時の未
固溶炭窒化物が粗大化して微細な析出物が得られないこ
と、組織が安定なマルテンサイトもしくはベイナイトと
ならないこと、合金成分が偏析したままであること等が
原因して高温クリープ強度が低下するのである。
As described above, the normalizing process has many problems and is not preferable for the manufacturer. However, if this normalizing treatment is simply omitted, the strength and toughness of the product will be impaired, and especially, the decrease in high temperature creep strength will become remarkable, and the product will become worthless.
The reason for this is that if normalizing treatment is omitted, undissolved carbonitrides during hot working become coarse and fine precipitates cannot be obtained, and the structure does not become stable martensite or bainite. The high temperature creep strength is lowered due to the fact that the segregation of the steel remains segregated.

なお、西独のDIN規格には、14MoV63鋼(0.5%Cr-0.5%M
o-0.3%V鋼)については、熱間仕上げ加工後の焼なら
し処理を省略することも可能とあるが、詳細な熱間加工
条件については何ら制定されていない。また特公昭63-3
928号公報には、固溶強化型低合金鋼である2・1/4Cr-1
Mo鋼を対象に焼ならし処理を省略する製造方法が開示さ
れているが、本発明とは対象合金および熱処理の目的を
異にするものである。
The DIN standard of West Germany is based on 14MoV63 steel (0.5% Cr-0.5% M
For o-0.3% V steel), it is possible to omit the normalizing process after hot finishing, but no detailed hot working conditions have been established. See also Sho 63-3
No. 928 discloses a solid solution strengthened low alloy steel, 2.1 / 4Cr-1.
Although a manufacturing method is disclosed in which normalizing treatment is omitted for Mo steel, the present invention differs from the present invention in the object of the object alloy and heat treatment.

(発明が解決しようとする課題) 本発明の課題は、VおよびNbを1種以上含む析出強化型
低合金鋼の成型加工方法において、焼ならし処理を省略
しても、従来と同等もしくはより以上の特性を有する製
品を得ることができる成形加工方法を提供することにあ
る。
(Problems to be Solved by the Invention) An object of the present invention is to provide a method of forming a precipitation-strengthened low alloy steel containing at least one of V and Nb, even if the normalizing treatment is omitted, the same as or better than the conventional one. An object of the present invention is to provide a molding processing method capable of obtaining a product having the above characteristics.

(課題を解決するための手段) 本発明者らは、VおよびNbを1種以上含む析出強化型低
合金鋼を成形加工するに際し、最終の熱間圧延や熱間押
出等の熱間加工条件を特定範囲内に限定すれば、熱間加
工後に焼ならし処理を施さなくても従来と同等もしくは
これ以上の特性を有する製品を得ることができることを
見出した。
(Means for Solving the Problems) The inventors of the present invention, when forming a precipitation-strengthened low alloy steel containing at least one of V and Nb, perform hot working conditions such as final hot rolling and hot extrusion. It was found that by limiting the value to a specific range, it is possible to obtain a product having characteristics equal to or higher than those of the conventional products without performing a normalizing treatment after hot working.

即ち、最終熱間加工を組織制御の加工熱処理法で行い、
最終熱間加工における加熱中に炭窒化物を均一固溶させ
るとともに合金成分を均一化させ、熱間加工および冷却
中に健全なマルテンサイトもしくはベイナイト組織を生
成させ、且つVおよび/又はNbの微細炭化物を分散析出
させ、その後Ac1変態点以下の温度に加熱して、更に微
細炭化物を析出させるとともに加工により硬化した組織
を軟化させ、高温で安定な組織とすれば、熱間加工後に
焼ならし処理を施さなくとも高い強度と優れた靱性が得
られるのである。
In other words, the final hot working is performed by the structure heat treatment method
During the final hot working, the carbonitride is uniformly solid-dissolved and the alloy components are homogenized, and a sound martensite or bainite structure is generated during the hot working and cooling, and the V and / or Nb fine Carbide is dispersed and precipitated, and then heated to a temperature below the Ac 1 transformation point to further precipitate fine carbide and soften the structure hardened by processing, and if the structure is stable at high temperature, it is possible to perform normalization after hot working. High strength and excellent toughness can be obtained without any treatment.

ここに本発明の要旨は「重量%で、C:0.02〜0.3%、Cr:
0.1〜5%、MoおよびWの1種又は2種を総量で0.2〜4
%含有し、更にVおよびNbの1種又は2種を総量で0.01
〜1%含有する低合金鋼の成形加工方法において、最終
の熱間成形加工をAc3変態点+50℃以上、1150℃以下の
温度域に1分以上加熱して700℃〜1150℃の温度範囲に
おける加工度を20%以上とする条件で行い、次いで500
℃/h以上の冷却速度で冷却した後、Ac1変態点以下の温
度域に加熱して焼もどしすることを特徴とする高温用低
合金鋼の成形加工方法」にある。
Here, the gist of the present invention is "by weight, C: 0.02 to 0.3%, Cr:
0.1 to 5%, one or two of Mo and W in a total amount of 0.2 to 4
%, And one or two of V and Nb in a total amount of 0.01
In molding method of a low alloy steel containing 1%, the final hot-molding Ac 3 transformation point + 50 ℃ or higher, the temperature range of heating than 1 minute to 1150 ° C. or less of the temperature range to 700 ° C. to 1150 ° C. At a processing rate of 20% or more, and then 500
After cooling at a cooling rate of ℃ / h or more, it is heated to a temperature range below the Ac 1 transformation point and tempered, and it is described in “Formation processing method for low alloy steel for high temperature”.

さらに本発明は「重量%で、C:0.02〜0.3%、N:0.1%以
下、Cr:0.1〜5%、MoおよびWの1種又は2種を総量で
0.2〜4%含有し、更にVおよびNbの1種又は2種を総
量で0.01〜1%含有する低合金鋼を、上記の最終の熱間
成形加工、冷却および焼もどしと同じ条件で加工、冷却
および熱処理することを特徴とする高温用低合金鋼の成
形加工方法」、「上記の方法の最終工程のAc1変態点以
下の焼もどしにかえて500℃以上、Ac1変態点以下の温度
域に加熱後、温間加工することを特徴とする高温用低合
金鋼の成形加工方法」および「前記温間加工の後に、更
にAc1変態点以下の温度域に加熱して応力除去焼鈍する
ことを特徴とする高温用低合金鋼の成形加工方法」を要
旨とする。
Further, the present invention is "in weight%, C: 0.02 to 0.3%, N: 0.1% or less, Cr: 0.1 to 5%, and one or two kinds of Mo and W in a total amount.
A low alloy steel containing 0.2 to 4% and further containing one or two kinds of V and Nb in a total amount of 0.01 to 1% is processed under the same conditions as the above final hot forming, cooling and tempering, Forming method of high temperature low alloy steel characterized by cooling and heat treatment "," Temperature of Ac 1 transformation point or less in the final step of the above method is 500 ° C or more, temperature of Ac 1 transformation point or less Forming method of low alloy steel for high temperature, characterized by performing warm working after heating to the temperature range "and" after the warm working, further heating to a temperature range below the Ac 1 transformation point to perform stress relief annealing "The method for forming and processing low-alloy steel for high temperature, characterized in that".

(作用) 以下、本発明にかかる高温用低合金鋼の成形加工方法に
ついて詳細に説明する。
(Operation) Hereinafter, the method of forming the low alloy steel for high temperature according to the present invention will be described in detail.

まず、本発明が対象とする低合金鋼の含有成分を前記の
ように限定する理由を作用効果とともに説明する。
First, the reason why the contents of the low alloy steel contained in the present invention are limited as described above will be explained together with the function and effect.

C: Cは後述するVおよびNbと結合して炭化物を析出させる
とともに強度を付与する元素である。しかし、その含有
量が0.02%未満では強度が十分ではなく、安定な炭化物
が生成されず、また健全なマルテンサイトもしくはベイ
ナイト組織とはならない。従って、十分なクリープ強度
と靱性とを確保することができない。一方、0.3%を越
えて含有させると炭化物を著しく粗大化し、強度および
靱性が低下するのみならず、鋼が硬化して加工性および
溶接性を損なうことになる。
C: C is an element that combines with V and Nb described later to precipitate carbides and give strength. However, if its content is less than 0.02%, the strength is not sufficient, stable carbides are not formed, and a sound martensite or bainite structure is not obtained. Therefore, sufficient creep strength and toughness cannot be secured. On the other hand, if the content exceeds 0.3%, the carbides are remarkably coarsened, and not only the strength and toughness are lowered, but also the steel is hardened and the workability and weldability are impaired.

Cr: Crは高温材料における主要合金元素であり、その含有量
が0.1%未満では高温用鋼として必要な耐酸化性が得ら
れない。Crはその含有量を多くするほど耐酸化性、耐水
素侵食性、耐Na腐食性等が向上する。しかし、5%を超
えて含有させるとベイナイト組織とはならず、十分なク
リープ強度および靱性を得ることができない。
Cr: Cr is a main alloying element in high temperature materials, and if its content is less than 0.1%, the oxidation resistance required for high temperature steel cannot be obtained. As the content of Cr increases, the oxidation resistance, hydrogen corrosion resistance, Na corrosion resistance, etc. improve. However, if the content exceeds 5%, a bainite structure is not formed, and sufficient creep strength and toughness cannot be obtained.

MoおよびW: これら元素はともに高温材料における主要な固溶強化元
素であり、単独もしくは複合で添加されて高温クリープ
強度を高める作用がある。しかし、その含有量が1種も
しくは2種総量で0.2%未満では十分な強度が得られ
ず、また総量で4%を超えて含有させると鋼が著しく硬
化して加工性および溶接性を損なうだけではなく、強度
および靱性をも低下させることになる。
Mo and W: Both of these elements are major solid solution strengthening elements in high temperature materials, and have the action of increasing the high temperature creep strength when added alone or in combination. However, if the total content of 1 type or 2 types is less than 0.2%, sufficient strength cannot be obtained, and if the total amount exceeds 4%, the steel is significantly hardened and the workability and weldability are impaired. Not only that, it also reduces strength and toughness.

VおよびNb: これら元素はいずれもC又はNと結合してV(C、N)
又はNb(C、N)の微細析出部を形成し、クリープ強度
を向上させる重要な元素である。しかし、これらの炭窒
化物が粗大析出した場合には、前記効果が消失してクリ
ープ強度の著しい低下を起こす原因となるばかりか、加
工性、溶接性および靱性に対しても有害となる。従っ
て、本発明ではこれら元素の含有量を1種又は2種総量
で0.01〜1%に限定する。含有量が総量で0.01%未満で
は、炭窒化物が十分に析出しないのでクリープ強度が向
上しない。また総量で1%を超えて含有させるとV
(C、N)又はNb(C、N)の析出物が粗大化し、強
度、靱性、加工性および溶接性を損なう原因となる。
V and Nb: All of these elements combine with C or N to form V (C, N)
Alternatively, it is an important element that forms fine precipitates of Nb (C, N) and improves creep strength. However, when these carbonitrides are coarsely deposited, not only the effect disappears and the creep strength is remarkably lowered, but also the workability, weldability and toughness are adversely affected. Therefore, in the present invention, the content of these elements is limited to 0.01 to 1% in total of one or two kinds. If the total content is less than 0.01%, the carbonitride will not be sufficiently precipitated and the creep strength will not be improved. Also, if the total content exceeds 1%, V
Precipitates of (C, N) or Nb (C, N) become coarse, which causes deterioration of strength, toughness, workability and weldability.

N: Nはオーステナイトを安定化させるとともに窒化物を析
出させる作用がある。通常の不純物レベルでもこの効果
はあるが、不純物レベル以上に積極的に含有させてもよ
い。但し、その含有量が0.1%を超えると加工性および
溶接性が著しく損なわれるとともに靱性および強度も低
下する。従って、Nを積極的に添加する場合でも、その
含有量を0.1%以下とする。
N: N stabilizes austenite and has a function of precipitating a nitride. Although this effect is obtained even at a normal impurity level, it may be positively contained above the impurity level. However, if its content exceeds 0.1%, the workability and weldability are significantly impaired, and the toughness and strength also decrease. Therefore, even when N is positively added, its content is set to 0.1% or less.

本発明方法が対象とする析出強化型低合金鋼は、少なく
とも上記の各元素の含有量を前記の範囲内にすれば目的
を達成することができるが、下記に示すような元素を含
んでいてもよい。
The precipitation-strengthened low alloy steel targeted by the method of the present invention can achieve the object if the content of at least each of the above elements is within the above range, but contains the elements as shown below. Good.

Si:0.5%以下、Mn:1.5%以下、Al:0.04%以下、Ni:1%
以下。或いはさらには必要に応じ、Ti、B、Zr、Ca、La
の1種又は2種以上を総量で0.3%以下含んでいてもよ
い。これらの元素は、強度、靱性、加工性および溶接性
を向上させる作用効果を有している。
Si: 0.5% or less, Mn: 1.5% or less, Al: 0.04% or less, Ni: 1%
Less than. Or, if necessary, Ti, B, Zr, Ca, La
The total amount of one or more of the above may be 0.3% or less. These elements have the effect of improving strength, toughness, workability and weldability.

なお、その他にP、S、Ab、Snなどが不純物となるが、
これらの不純物はそれぞれ0.03%以下の範囲で可能な限
り低くするのがよい。
In addition, P, S, Ab, Sn, etc. become impurities,
Each of these impurities should be as low as possible within the range of 0.03% or less.

次に、本発明の成形加工方法を添付図を参照して説明す
るとともに、その成形加工条件の限定理由について述べ
る。
Next, the molding method of the present invention will be described with reference to the accompanying drawings, and the reasons for limiting the molding conditions will be described.

第1図は本眼第1発明の成形加工方法にかかる工程を示
す模式図、である。
FIG. 1 is a schematic view showing the steps involved in the molding method of the first aspect of the invention.

(I)加熱工程: 最終熱間加工における加熱工程は、鋳込、ビレットやス
ラブに加工する熱間加工およびこれから管、板等に加工
する熱間加工等の前行程で粗大化した炭窒化物などの析
出物を固溶させるとともに、添加合金元素の偏析を均一
化し、さらに不均一な加工組織を均一化するのが狙いで
ある。特にこの加熱はVおよび/又はNbの炭窒化物を十
分固溶させることに目的がある。従って、この加熱では
前記組成の低合金鋼をAc3変態点+50℃以上(通常、本
発明の対象鋼ではAc3変態点は850℃〜950℃程度であ
る)、1150℃以下の温度域で1分以上加熱する条件で実
施する必要がある。加熱温度がAc3変態点+50℃以上よ
り低いと上記析出物の固溶が不十分で、従来の焼ならし
処理を省略した場合には高温クリープ強度が著しく損な
われたり、前工程の不均一組織や偏析が残存し、強度お
よび靱性を低下させることになる。一方、加熱温度が高
いほど析出物の均一化固溶が促進されるが、1150℃を超
えると粒成長が起こり、靱性および強度を低下させるこ
ととなる。
(I) Heating step: The heating step in the final hot working is a carbonitride coarsened in the preceding process such as casting, hot working to form billets or slabs and hot working to form pipes, plates, etc. The purpose is to solidify precipitates such as the above, to homogenize segregation of additional alloying elements, and to homogenize non-uniform processed structure. In particular, this heating has the purpose of sufficiently dissolving V and / or Nb carbonitrides. Therefore, in this heating, the low alloy steel having the above composition is subjected to Ac 3 transformation point + 50 ° C. or higher (usually, in the target steel of the present invention, the Ac 3 transformation point is about 850 ° C. to 950 ° C.) and a temperature range of 1150 ° C. or lower. It is necessary to carry out the heating under the condition of heating for 1 minute or more. If the heating temperature is lower than the Ac 3 transformation point + 50 ° C or higher, the solid solution of the above precipitates will be insufficient, and if the conventional normalizing process is omitted, the high temperature creep strength will be significantly impaired, and the non-uniformity of the previous process will occur. The structure and segregation remain, resulting in a decrease in strength and toughness. On the other hand, the higher the heating temperature is, the more uniform the solid solution of precipitates is promoted. However, if the heating temperature exceeds 1150 ° C., grain growth occurs and the toughness and strength are reduced.

なお、Vおよび/又はNbの含有量の多いものは、前記温
度範囲の高温側で加熱して炭窒化物の固溶を促進させて
やるのが望ましい。
In addition, it is desirable that the material containing a large amount of V and / or Nb is heated on the high temperature side of the above temperature range to promote the solid solution of carbonitride.

加熱保温時間が1分未満では未固溶析出物が多く、且つ
合金元素の偏析もあって微細なV、Nbの炭窒化物が十分
に析出しないためにクリープ強度の向上が得られない。
If the heating / holding time is less than 1 minute, there are many undissolved precipitates, and because of the segregation of alloying elements, fine carbonitrides of V and Nb are not sufficiently precipitated, so that the creep strength cannot be improved.

加熱保持時間の上限に関しては、本発明では特に規定を
要しない。長く加熱しても特性劣化を起こすことはない
が、実生産上は1h/25mm厚さ程度を上限とするのが望ま
しい。また、加熱後の材料温度が所定の加工開始温度で
あれば、材料は直ちに加工に供されるが、この場合も1
分以上加熱保持してやるのがよい。
The upper limit of the heating and holding time is not particularly specified in the present invention. Although it does not deteriorate in characteristics even if it is heated for a long time, it is desirable to limit the thickness to about 1h / 25mm in actual production. Further, if the material temperature after heating is a predetermined processing start temperature, the material is immediately subjected to processing.
It is better to heat and hold for more than a minute.

(II)最終熱間成形加工工程: 熱間圧延および熱間押出し等の最終熱間成形加工工程
は、加熱後の材料を700〜1150℃において加工度を20%
以上とする条件で行う。加工はフェライト単相、フェラ
イトとオーステナイトの2相、オーステナイト単相のい
ずれの温度域で行ってもよいが、材料に20%以上の加工
を付与して十分な加工歪みを与え、合金元素の偏析を均
一化し、V、Nb、Crの炭窒化物などの微細析出物の析出
をコントロールすることが大切である。
(II) Final hot forming process: In the final hot forming process such as hot rolling and hot extrusion, the workability of the heated material is 20% at 700 to 1150 ° C.
It is performed under the above conditions. The processing may be carried out in any temperature range of ferrite single phase, two phases of ferrite and austenite, and austenite single phase, but 20% or more of processing is applied to the material to give sufficient processing strain, segregation of alloying elements It is important to control the precipitation of fine precipitates such as carbonitrides of V, Nb, Cr, etc.

加工温度が700℃未満では、変形抵抗が高くて十分な成
形加工ができないばかりか、加工歪みの残存によりクリ
ープ強度、靱性および溶接性が損なわれることになる。
また、1150℃を超える温度で加工すると加工歪みの回復
が早くて、加工歪みによる微細析出物および組織制御を
行うことができなくなって強度および靱性を損なう。
If the processing temperature is less than 700 ° C., not only the deformation resistance is high and sufficient forming processing cannot be performed, but also the creep strain, toughness and weldability are impaired due to the residual processing strain.
Further, when processed at a temperature higher than 1150 ° C, the recovery of the working strain is fast, and it becomes impossible to control the fine precipitates and the structure due to the working strain, and the strength and toughness are impaired.

この工程における加工度が20%未満の場合には、炭窒化
物などの析出が不十分となり且つ安定な微細析出物が生
成しないためにクリープ強度が損なわれる。
If the workability in this step is less than 20%, the precipitation of carbonitrides and the like will be insufficient and stable fine precipitates will not be formed, so that the creep strength will be impaired.

(III)熱間加工後の冷却工程: 熱間加工後の冷却工程も、本発明方法の重要な工程のひ
とつである。その目的は熱間加工後の冷却中に加工歪み
により微細析出物の析出形態を制御することにある。即
ち、熱間加工後に500℃/h以上の冷却速度で急冷するこ
とにより、Ar1変態点以下で加工歪みによりV、Nbの炭
窒化物が微細に点列状に析出するとともに健全なマルテ
ンサイト組織もしくはベイナイト組織(一部にフェライ
トを含むベイナイト組織)が形成されるのである。
(III) Cooling step after hot working: The cooling step after hot working is also one of the important steps of the method of the present invention. Its purpose is to control the precipitation morphology of fine precipitates by processing strain during cooling after hot working. That is, by quenching at a cooling rate of 500 ° C./h or more after hot working, V and Nb carbonitrides are finely precipitated in a dot sequence and sound martensite due to processing strain below the Ar 1 transformation point. A structure or a bainite structure (a bainite structure partially containing ferrite) is formed.

しかし、冷却速度が500℃/h未満では、V、Nbの炭窒化
物が粗大化して整合性が失われ、クリープ強度を損なわ
しめるとともに、FeおよびCrの炭化物が析出して組織が
パーライトもしくはフェライト+パーライトとなり強度
および溶接性を損なうことになる。
However, if the cooling rate is less than 500 ° C / h, the carbonitrides of V and Nb are coarsened and the conformity is lost, the creep strength is impaired, and the carbides of Fe and Cr are precipitated and the structure is pearlite or ferrite. + It becomes pearlite, which impairs strength and weldability.

ここで、前記整合性とはV、Nbの炭窒化物がマトリック
ス中にある結晶方位関係を保って微細分散析出した状態
をいう。
Here, the consistency means a state in which carbonitrides of V and Nb are finely dispersed and deposited while maintaining the crystal orientation relationship in the matrix.

通例、析出物の大きさが500Å以下であれば、マトリッ
クスに整合し格子歪をもった状態となり、これがクリー
プによる転位移動の障害となって強度を高めるが、析出
物の整合性がなくなると、即ち、0.1μm以上のような
粗大化した析出物ではもはやクリープ強度の向上に何ら
寄与しなくなる。本発明では最終の熱間成形加工、冷却
およびその後の焼もどしの条件を規定することにより、
析出物を前記のような状態とすることができるのであ
る。
Generally, if the size of the precipitate is 500 Å or less, it will be in a state with lattice distortion that matches the matrix, and this will impede dislocation movement due to creep and increase strength, but if the consistency of the precipitate disappears, That is, coarse precipitates of 0.1 μm or more no longer contribute to the improvement of creep strength. In the present invention, by defining the conditions of the final hot forming, cooling and subsequent tempering,
The precipitate can be brought into the state as described above.

なお、冷却は大型厚肉部材では、通例の空冷では500℃/
h以上の冷却速度を確保することが困難であるので、こ
のようなものは水冷或いはミスト冷却などの加速冷却法
で急冷してやるのがよい。
In addition, cooling is performed at 500 ° C /
Since it is difficult to secure a cooling rate of h or more, it is preferable to rapidly cool such a material by an accelerated cooling method such as water cooling or mist cooling.

本発明にかかる成形加工方法は、上記の(I)〜(II
I)の工程を経た後の材料を焼もどしして最終製品とし
てもよく、或いは添付第2図に示すように上記(I)〜
(III)の工程を経た後の材料を再加熱し、温間加工し
て最終製品としてもよい。さらには添付第3図に示すよ
うにこの温間加工後に応力除去焼鈍して最終製品として
もよい。
The molding processing method according to the present invention includes the above (I) to (II
The material after the step I) may be tempered to obtain a final product, or as shown in the attached FIG.
The material after the step (III) may be reheated and warm-processed to obtain the final product. Further, as shown in FIG. 3 of the attached drawings, stress-relief annealing may be carried out after the warm working to obtain a final product.

熱間成形加工後に、これらの処理工程を行う目的は下記
の通りである。
The purpose of performing these processing steps after hot forming is as follows.

(IV)焼もどし処理工程: 焼もどし処理は、従来と同様Ac1変態点以下で処理する
ことにより高温で安定な組織を確保するとともに微細炭
窒化物を更に析出させることにある。Ac1変態点を超え
る温度では強度および靱性が損なわれる。
(IV) Tempering treatment step: The tempering treatment is to secure a stable structure at high temperature and further precipitate fine carbonitrides by treating it at the Ac 1 transformation point or lower as in the conventional case. At temperatures above the Ac 1 transformation point, strength and toughness are impaired.

この焼もどしは熱間加工歪みを取り除くうえからは、72
0〜750℃の温度範囲で1〜2時間加熱する処理条件で行
うのがよい。
This tempering is 72 in terms of removing hot working strain.
It is preferable to perform the treatment under a treatment condition of heating in a temperature range of 0 to 750 ° C. for 1 to 2 hours.

(V)再加熱工程、(VI)温間加工工程: 再加熱工程および温間加工工程の目的は、加熱および温
間加工(例えば曲げ加工)中に微細なVおよび/又はNb
の炭窒化物を更に析出させてクリープ強度を高めること
にある。さらには前工程(I)〜(III)の加工熱処理
で形成したマルテンサイト組織およびベイナイト組織を
より安定化させて強度および靱性を高めることにある。
そのためには、熱間加工後の材料を500℃以上、Ac1変態
点以下の温度域で加熱した後、好ましくは20%以下の加
工度の温間加工を施してやるのがよい。
(V) Reheating step, (VI) Warm working step: The purpose of the reheating step and the warm working step is to fine V and / or Nb during heating and warm working (for example, bending).
The purpose of this is to further precipitate the carbonitride of to increase the creep strength. Further, it is to further stabilize the martensite structure and bainite structure formed by the thermo-mechanical treatment of the previous steps (I) to (III) to enhance the strength and toughness.
For that purpose, it is preferable that the material after hot working is heated in a temperature range of 500 ° C. or higher and the Ac 1 transformation point or lower, and then subjected to warm working with a working degree of preferably 20% or less.

加熱温度が500℃より低いと、組織が硬いマルテンサイ
トもしくはベイナイトとなって靱性、高温クリープ強度
および延性が損なわれる。一方、Ac1変態点より高い温
度で加熱すると、部分変態により再オーステナイト化が
起こり、強度および靱性が著しく損なわれる。
When the heating temperature is lower than 500 ° C, the structure becomes hard martensite or bainite, and the toughness, high temperature creep strength and ductility are impaired. On the other hand, when heated at a temperature higher than the Ac 1 transformation point, re-austenization occurs due to partial transformation, and strength and toughness are significantly impaired.

(VII)温間加工後の応力除去焼鈍工程: この工程は、温間加工後の材料をAc1変態点以下の温度
に加熱することによって、温間加工により蓄積された内
部歪みを除去するのが目的である。
(VII) Stress relief annealing step after warm working: This step removes internal strain accumulated by warm working by heating the material after warm working to a temperature below the Ac 1 transformation point. Is the purpose.

なお、上記成形加工方法で得られた成品は、その後更に
冷間加工、もしくは溶接およびAc1点以下の加熱により
温間加工する場合もある。
The product obtained by the above-described forming method may be further cold worked, or may be warm worked by welding and heating at the Ac 1 point or lower.

以下、実施例により本発明を更に説明する。The present invention will be further described below with reference to examples.

(実施例) 第1表に示す化学組成の低合金鋼を150kg真空炉で溶解
し、鋳型に鋳込んでインゴットを製造し、これを1150〜
900℃の温度に加熱した後、熱間鍛造して40mm厚×80mm
幅×200mm長さのブロックを作製した。これを素材にし
て第2表に示す熱間加工および熱処理条件で成形加工を
行った。
(Example) A low alloy steel having the chemical composition shown in Table 1 was melted in a 150 kg vacuum furnace and cast into a mold to produce an ingot.
After heating to a temperature of 900 ℃, hot forging 40mm thick × 80mm
A block having a width of 200 mm and a length of 200 mm was prepared. Using this as a raw material, molding was performed under the hot working and heat treatment conditions shown in Table 2.

熱間加工は第2表に示す加工温度域でロール圧延により
40%の肉厚減少率で加工を行った。また温間加工は同じ
くロール圧延により10%の肉厚減少率で加工を施した。
Hot working is performed by roll rolling in the working temperature range shown in Table 2.
Processing was performed at a wall thickness reduction rate of 40%. The warm working was also performed by roll rolling at a wall thickness reduction rate of 10%.

なお、第2表の成形加工方法の欄に示す「従来法」と
は、添付第4図に示す工程により、「(a)」は第1図
に示す工程により、「(b)」は第2図に示す工程によ
り、「(c)」は第3図に示す工程により、それぞれ成
形加工を施したことを意味する。また、「(a)比較
法」とは第1図に示す工程により成形加工を施したもの
であるが、加熱温度又は加工温度が本発明で規定する範
囲より外れた条件で成形加工を施したことを意味する。
In addition, "conventional method" shown in the column of the forming method in Table 2 means the step shown in FIG. 4 attached, "(a)" means the step shown in FIG. 1, and "(b)" means the step shown in FIG. In the process shown in FIG. 2, “(c)” means that the molding process was performed in the process shown in FIG. Further, the “(a) comparative method” means that the molding process was performed in the step shown in FIG. 1, but the molding process was performed under the condition that the heating temperature or the processing temperature was out of the range specified by the present invention. Means that.

このようにして得られた加工板材の圧延方向肉厚中央部
よりJIS 4号シャルピー衝撃試験片と径6mm×評点距離
(GL)30mmの引張試験片を採取し、常温引張試験、シャ
ルピー衝撃試験および550℃クリープ破断試験を行っ
た。その結果を第3表に示す。また、第5図に従来例に
対するクリープ破断強度をグラフ化したものを示す。
A JIS No. 4 Charpy impact test piece and a tensile test piece with a diameter of 6 mm and a rating distance (GL) of 30 mm were taken from the center portion of the wall thickness in the rolling direction of the processed plate material thus obtained, and subjected to a room temperature tensile test, a Charpy impact test and A 550 ° C creep rupture test was performed. The results are shown in Table 3. Further, FIG. 5 shows a graph of creep rupture strength with respect to the conventional example.

第3表より明らかなように、本発明方法により成形加工
されたものは、焼ならしを行う従来方法により成形加工
されたものと比べて、引張強さ、靱性およびクリープ破
断強度等の特性は同等もしくはそれ以上である。これに
対して、本発明方法と同様の工程により成形加工を施し
たが、加工温度が低い比較例のA3、B3、C3は引張強さが
著しく高い反面、延性、靱性およびクリープ破断強度が
低い。また、加熱温度が低い比較例のA4、B4、C4は組織
と材質が不安定のためにクリープ破断強度が極めて低
い。
As is clear from Table 3, the products formed by the method of the present invention have characteristics such as tensile strength, toughness and creep rupture strength as compared with those formed by the conventional method of normalizing. Equal or better. On the other hand, although the molding process was performed by the same steps as the method of the present invention, the processing temperature is low in Comparative Examples A3, B3, and C3, while the tensile strength is remarkably high, but the ductility, toughness, and creep rupture strength are low. . Moreover, the creep rupture strength of A4, B4, and C4, which are comparative examples with low heating temperatures, are extremely low because the structure and material are unstable.

第5図から明らかなように、クリープ破断強比について
は本発明例のものは従来例と同等かそれ以上であるのに
対し、比較例のものは極めて低い。これは、熱間加工の
前工程の履歴が残存し、かつ微細なV、Nbの炭窒化物が
析出しないか(A3、B3、C3)、加工歪みが高く、かつ健
全なベイナイト組織とならないか(A4、B4、C4)、いず
れかの原因による。
As is clear from FIG. 5, the creep rupture strength ratio of the inventive example is equal to or higher than that of the conventional example, whereas the comparative example is extremely low. Whether the history of the previous step of hot working remains and whether fine V and Nb carbonitrides are not precipitated (A3, B3, C3), high working strain and a sound bainite structure (A4, B4, C4), due to either cause.

なお、本発明方法で得られた加工板材について、抽出し
プリカを電子顕微鏡により観察した結果、いずれのもの
も微細なV、Nb、Crの炭窒化物が点列状に析出し、且つ
健全な組織であった。
The processed plate material obtained by the method of the present invention was extracted and observed with an electron microscope for plica. As a result, fine V, Nb, and Cr carbonitrides were deposited in a point sequence and were sound. It was an organization.

(発明の効果) 以上説明した如く、本発明方法によれば低合金鋼の成形
加工における焼ならし処理を省略することができるの
で、工程の合理化と大幅なコスト低減が達成される。ま
た、焼ならし処理を施さなくても従来と同等もしくはそ
れ以上の特性をもった製品を得ることができる。
(Effects of the Invention) As described above, according to the method of the present invention, the normalizing process in the forming process of the low alloy steel can be omitted, so that the process is rationalized and the cost is significantly reduced. Further, it is possible to obtain a product having characteristics equal to or higher than those of the conventional products without performing the normalizing treatment.

従って、本発明方法はボイラ、原子力、化学工業用等の
板材、管材、鍛造品の製造方法としてその効果は大き
い。
Therefore, the method of the present invention has a great effect as a method for manufacturing plate materials, pipe materials, and forged products for boilers, nuclear power, chemical industries, and the like.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の成形加工方法の工程を示すヒートパ
ターン図 第2図は、本発明の他の成形加工方法の工程を示すヒー
トパターン図、 第3図は、本発明のもう一つの成形加工方法の工程を示
すヒートパターン図、 第4図は、従来の成形加工方法の工程を示すヒートパタ
ーン図、 第5図は、実施例の本発明例および比較例における550
℃×104hクリープ破断強度を従来例との強度比で示し
たグラフ、である。
FIG. 1 is a heat pattern diagram showing the steps of the molding method of the present invention. FIG. 2 is a heat pattern diagram showing the steps of another molding method of the present invention. FIG. 3 is another figure of the present invention. FIG. 4 is a heat pattern diagram showing the steps of the molding method, FIG. 4 is a heat pattern diagram showing the steps of the conventional molding method, and FIG.
5 is a graph showing the creep rupture strength at 10 ° C. × 10 4 h as a strength ratio with respect to the conventional example.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】重量%で、C:0.02〜0.3%、Cr:0.1〜5
%、MoおよびWの1種又は2種を総量で0.2〜4%含有
し、更にVおよびNbの1種又は2種を総量で0.01〜1%
含有する低合金鋼の成形加工方法において、最終の熱間
成形加工をAc3変態点+50℃以上、1150℃以下の温度域
に1分以上加熱して700℃〜1150℃の温度範囲における
加工度を20%以上とする条件で行い、次いで500℃/h以
上の冷却速度で冷却した後、Ac1変態点以下の温度域に
加熱して焼もどしすることを特徴とする高温用低合金鋼
の成形加工方法。
1. By weight%, C: 0.02 to 0.3%, Cr: 0.1 to 5
%, 1 or 2 kinds of Mo and W in a total amount of 0.2 to 4%, and 1 or 2 kinds of V and Nb in a total amount of 0.01 to 1%
In the forming method of the low alloy steel containing, the final hot forming process is heated to a temperature range of Ac 3 transformation point + 50 ° C or more and 1150 ° C or less for 1 minute or more and the working degree in the temperature range of 700 ° C to 1150 ° C Of 20% or more, then cooled at a cooling rate of 500 ° C./h or more, and then heated to a temperature range below the Ac 1 transformation point and tempered. Molding method.
【請求項2】重量%で、C:0.02〜0.3%、N:0.1%以下、
Cr:0.1〜5%、MoおよびWの1種又は2種を総量で0.2
〜4%含有し、更にVおよびNbの1種又は2種を総量で
0.01〜1%含有する低合金鋼を、特許請求の範囲第1項
記載の最終の熱間成形加工、冷却および焼もどしの条件
で加工、冷却および熱処理することを特徴とする高温用
低合金鋼の成形加工方法。
2. By weight%, C: 0.02-0.3%, N: 0.1% or less,
Cr: 0.1-5%, 1 or 2 kinds of Mo and W in a total amount of 0.2
~ 4%, and 1 or 2 of V and Nb in total
A low-alloy steel for high temperature, characterized in that the low-alloy steel containing 0.01 to 1% is subjected to final hot forming, cooling and tempering under the conditions of claim 1, cooling, and heat treatment. Molding processing method.
【請求項3】特許請求の範囲第1項又は第2項記載の方
法におけるAc1変態点以下の焼もどしにかえて、500℃以
上、Ac1変態点以下の温度域に加熱後、温間加工するこ
とを特徴とする高温用低合金鋼の成形加工方法。
3. In place of the tempering below the Ac 1 transformation point in the method according to claim 1 or 2, instead of heating to a temperature range of 500 ° C. or more and below the Ac 1 transformation point, warm A method of forming a low-alloy steel for high temperature, which comprises processing.
【請求項4】特許請求の範囲第3項記載の方法における
温間加工の後に、更にAc1変態点以下の温度域に加熱し
て応力除去焼鈍することを特徴とする高温用低合金鋼の
成形加工方法。
4. A low-alloy steel for high temperature, which is characterized in that after the warm working in the method according to claim 3, the alloy is further heated to a temperature range below the Ac 1 transformation point and stress-relieved and annealed. Molding method.
JP63248417A 1988-09-30 1988-09-30 Forming method of low alloy steel for high temperature Expired - Lifetime JPH079027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63248417A JPH079027B2 (en) 1988-09-30 1988-09-30 Forming method of low alloy steel for high temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63248417A JPH079027B2 (en) 1988-09-30 1988-09-30 Forming method of low alloy steel for high temperature

Publications (2)

Publication Number Publication Date
JPH0297619A JPH0297619A (en) 1990-04-10
JPH079027B2 true JPH079027B2 (en) 1995-02-01

Family

ID=17177808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63248417A Expired - Lifetime JPH079027B2 (en) 1988-09-30 1988-09-30 Forming method of low alloy steel for high temperature

Country Status (1)

Country Link
JP (1) JPH079027B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2967886B2 (en) * 1991-02-22 1999-10-25 住友金属工業 株式会社 Low alloy heat resistant steel with excellent creep strength and toughness
JP3918265B2 (en) * 1997-11-21 2007-05-23 トヨタ自動車株式会社 Manufacturing method of fuel cell
JP4739105B2 (en) * 2006-04-25 2011-08-03 山陽特殊製鋼株式会社 High toughness hot work tool steel and manufacturing method thereof
KR102142782B1 (en) * 2018-11-29 2020-08-10 주식회사 포스코 Chromium-molybdenum steel sheet having excellent creep strength and method of manufacturing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61104022A (en) * 1984-10-27 1986-05-22 Nippon Steel Corp Production of structural steel for high temperature use
JPH062904B2 (en) * 1984-12-04 1994-01-12 新日本製鐵株式会社 High strength low alloy steel Extra thick steel manufacturing method
JPS6267113A (en) * 1985-09-20 1987-03-26 Nippon Chiyuutankou Kk Production of heat resisting steel having excellent creep rupture resistance characteristic

Also Published As

Publication number Publication date
JPH0297619A (en) 1990-04-10

Similar Documents

Publication Publication Date Title
RU2321670C2 (en) Fine-grain martensite stainless steel and method for producing it
US6565682B2 (en) Process for producing high-strength heat-resistant pipe
JP6562476B2 (en) Ferritic heat resistant steel and its manufacturing method
JP5659758B2 (en) TMCP-Temper type high-strength steel sheet with excellent drop weight characteristics after PWHT that combines excellent productivity and weldability
JP2567150B2 (en) Manufacturing method of high strength low yield ratio line pipe material for low temperature
JPH10235447A (en) Manufacture of ferrite plus pearlite type non-heattreated steel forged product having high toughness and high yield strength
JP3738004B2 (en) Case-hardening steel with excellent cold workability and prevention of coarse grains during carburizing, and its manufacturing method
JP2001192730A (en) HIGH Cr FERRITIC HEAT RESISTANT STEEL AND ITS HEAT TREATMENT METHOD
JP3422864B2 (en) Stainless steel with excellent workability and method for producing the same
JP3228986B2 (en) Manufacturing method of high strength steel sheet
JPH079027B2 (en) Forming method of low alloy steel for high temperature
JPH09310121A (en) Production of martensitic seamless heat resistant steel tube
JP2680350B2 (en) Method for producing Cr-Mo steel sheet having excellent toughness
JPH05311345A (en) Ferritic heat resistant steel excellent in high temperature strength and toughness
JPH0699741B2 (en) Processing method of high Cr ferritic steel for high temperature
JPH11117019A (en) Production of heat resistant parts
JPH11117020A (en) Production of heat resistant parts
JP2958816B2 (en) Heat treatment method for heat resistant ferritic steel with excellent toughness and creep strength
JP2581267B2 (en) Method for producing high strength, high ductility 13Cr stainless steel
JP3214068B2 (en) Method for producing high Cr ferritic steel with excellent creep rupture strength and ductility
JP3325146B2 (en) Manufacturing method for high yield strength steel sheet with low yield ratio
JPS6137333B2 (en)
JPH09256038A (en) Heat treatment before stress relieving annealing treatment for thick steel plate
JPH05311344A (en) Ferritic heat resistant steel excellent in high temperature strength and toughness
JPH01205029A (en) Manufacture of high-cr ferritic steel stock for high-temperature use

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080201

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090201

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090201

Year of fee payment: 14