SE1250810A1 - Pulled heat treated steel wire for high strength spring use and preferred steel wire for high strength spring use - Google Patents

Pulled heat treated steel wire for high strength spring use and preferred steel wire for high strength spring use Download PDF

Info

Publication number
SE1250810A1
SE1250810A1 SE1250810A SE1250810A SE1250810A1 SE 1250810 A1 SE1250810 A1 SE 1250810A1 SE 1250810 A SE1250810 A SE 1250810A SE 1250810 A SE1250810 A SE 1250810A SE 1250810 A1 SE1250810 A1 SE 1250810A1
Authority
SE
Sweden
Prior art keywords
less
steel wire
drawn
carbides
strength
Prior art date
Application number
SE1250810A
Other languages
Swedish (sv)
Other versions
SE537538C2 (en
Inventor
Masayuki Hashimura
Tetsushi Chida
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of SE1250810A1 publication Critical patent/SE1250810A1/en
Publication of SE537538C2 publication Critical patent/SE537538C2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/02Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for springs
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Heat Treatment Of Articles (AREA)
  • Springs (AREA)
  • Metal Extraction Processes (AREA)

Abstract

lO _65_ ABSTRACT Drawn heat treated steel wire for high strengthspring use is provided containing, by mass%, C: 0.67% toless than 0.9%, Si: 2.0 to 3.5%, Mn: 0.5 to l.2%, Cr: l.3to 2.5%, N: 0.003 to 0.007%, and Al: 0.0005% to 0.003%,having Si and Cr satisfying the following formula: 0.3%SSi-Cršl.2%,and having a balance of iron and unavoidable impurities,having as impurities, P: 0.025% or less and S: 0.025% orless, furthermore having a circle equivalent diameter ofundissolved spherical carbides of less than 0.2 um,further having, as a metal structure, at least residualaustenite in a volume rate of over 6% to l5%, having aprior austenite grain size number of #10 or more, and having a circle equivalent diameter of undissolved spherical carbides of less than 0.2 um.

Description

1 BESKRIVNING Teknikomrade 1 DESCRIPTION Technical area

[0001]FOreliggande uppfinningen avser dragen varmebehandlad staltrad, for 5 hOghallfasthetsfjaderanvandning, vilken kan anvandas som material fOr hOghallfasthetsfjadrar, tillverkade genom kallindning, och till fOrdragen staltrad. The present invention relates to drawn heat-treated steel wire, for high-strength spring application, which can be used as a material for high-strength springs, made by cold winding, and to the preferred steel wire.

Teknikens standpunkt The state of the art

[0002]Fjadrar vilka anvands for motorfordonsmotorer, kopplingar, etc. 10 beheiver erbjuda mer avancerad prestanda och hogre hallbarhet for att klara av utvecklingen mot lattare vikt och hOgre prestanda hos motorfordon. Av den anledningen behtiver fjadrarnas material, det vill saga, dragen varmebehandlad staltrad for haghallfasthetsfjaderanvandning, aven ha hog materialhallfasthet. Vanligen vid tillverkning av sadana sma, hOghallfasthetsfjadrar, ar materialet hos den 15 dragna varmebehandlade staltraden for hOghallfasthetsfjaderanvandning, seghardat for aft ge hOgre materialstyrka, hos den dragna varmebehandlade staltraden for hOghallfasthetsfjaderanvandning, darefter kallindat for aft erhalla en spiralfjaderform. Dessutom utfOrs spanningsavlastande glOcIgning eller annan varmebehandling och nitrering fOr att erhalla en fardig spiralfjader. Av den anledningen behover dragen 20 varmebehandlad staltrad, for hOghallfasthetsfiaderanvandning, inte bara ha hog hallfasthet, utan ocksa tillrackligt hog bearbetningsfOrmaga sa att den inte bryts vid kallindning och for att dampa mjukning tillfOljd av glOcIgning, nitrering och annan varmebehandling utfOrd efter lindning, det viii saga, att ha motstand mot varmerelaterad avmjukning. Springs used for motor vehicle engines, clutches, etc. tend to offer more advanced performance and higher durability to cope with the trend towards lighter weight and higher performance of motor vehicles. For this reason, the material of the springs, that is to say, drawn heat-treated steel row for pasture strength spring use, also has a high material half-strength. Usually in the manufacture of such small, high-strength springs, the material of the drawn heat-treated steel wire for high-strength spring application is toughened to give higher material strength, in the drawn heat-treated steel wire for high-strength spring use, it is then called a spiral spring. In addition, stress-relieving glazing or other heat treatment and nitriding is performed to obtain a finished coil spring. For this reason, the features of heat-treated steel line, for high-strength fiber application, need not only high high-strength, but also sufficiently high working capacity so that it does not break during cold winding and to vaporize softening due to glazing, nitriding and other heat treatment performed. , to resist heat-related softening.

[0003]En fjader behOver ha goda utmattningsegenskaper, darfOr anvands dragen varmebehandlad staltrad avsedd for hoghallfasthetsfjaderanvandning, t material, vilket vidare nitreras eller kulbombas for aft Oka hkdheten hos fjaderns ytskikt. Hallbarheten hos en fjader omfattar utmattningsegenskaper och en 30 eftergivningsegenskap. Utmattningsegenskaperna paverkas av ythardheten. Eftergivningsegenskapen (egenskapen hos fjadern resulterande i plastisk deformation i belastningsriktningen under anvandning) paverkas mycket av, inte bara av ythardheten, utan ocksa hardheten hos grundmaterialet i fjadern. Av den anledningen, är ythkdheten efter nitrering och motstand mot varmerelaterad 1 2 avmjukning pa insidan, dar kvave inte är introducerat genom nitrering, viktiga hos staltraden, for htighallfasthetsfjaderanvandning. [0003] A spring needs to have good fatigue properties, therefore the drawn heat-treated steel row is used intended for high-strength spring use, t material, which is further nitrided or ball-bombed to increase the height of the surface layer of the spring. The durability of a spring includes fatigue properties and a resilience property. The fatigue properties are affected by the surface hardness. The resilience property (the property of the spring resulting in plastic deformation in the load direction during use) is greatly affected, not only by the surface hardness, but also the hardness of the base material in the spring. For this reason, the surface strength after nitriding and resistance to heat-related softening on the inside, where nitrogen is not introduced by nitriding, are important in the stable line, for high-strength spring application.

[0004]Dessutom, vid fjadertillverkning genom kallindning, kan anlOpning i olja, induktionshardningsbehandling etc., dar snabb varmning och snabb kylning är mojlig, anvandas vid tillverkning av materialet hos den dragna varmebehandlade staltraden, for htighallfasthetsfjaderanvandning. Av den anledningen, kan den dragna varmebehandlade staltraden for heighallfasthetsfjaderanvandning minskas i tidigare austenit kornstorlek, sã att en fjader med utmarkta frakturegenskaper kan erhallas. 10 Men om dragen varmebehandlad staltrad for hOghallfasthetsfjaderanvandning far hOgre hallfasthet, vid kallindning, kan brott uppsta och fjaderformen kan eventuellt inte bildas. In addition, in the case of spring production by cold winding, tempering in oil, induction hardening treatment, etc., where rapid heating and rapid cooling are possible, can be used in the manufacture of the material of the drawn heat-treated steel row, for high-strength spring application. For this reason, the drawn heat-treated steel row for high-strength spring application can be reduced to previous austenite grain size, so that a spring with excellent fracture properties can be obtained. 10 However, if the drawn heat-treated stable line for high-strength spring use has a higher half-strength, during cold winding, breakage can occur and the spring shape may not be formed.

[0005]For att hantera problemet fOreslog nagra av uppfinnarna att karbiderna 15 bOr styras, vilket Or den tidigare austeniten finare, pa detta sat kan bade styrka och kallindningsfOrmaga (PLT 1) hos dragen varmebehandlad staltrad, for hOghallfasthetsfjaderanvandning uppnas. Vidare fOreslog uppfinnarna styrning av restaustenit och kvarvarande karbider, fOrfining av tidigare austenit, for att uppna bade styrka och kallindningsformaga (PLT 2 till PLT 4), hos dragen varmebehandlad staltrad, for hOghallfasthetsfjaderanvandning. I synnerhet undertrycks startpunkterna for brott orsakade av bildandet av grova oxider och karbider, och distributionen av fina karbider av cementit vilka kravs fOr att sakra att styrkan blir uniform i syfte att dampa fOrsamring av utmattningsegenskaperna och bearbetbarheten av den dragna varmebehandlade staltraden for hOghallfasthetsfjaderanvandning. In order to deal with the problem, some of the inventors suggested that the carbides 15 should be controlled, which would make the previous austenite finer, in this way both the strength and cold winding capacity (PLT 1) of the drawn heat-treated steel row, for high-strength spring use. Furthermore, the inventors proposed control of residual austenite and residual carbides, invention of prior austenite, to achieve both strength and cold winding shape (PLT 2 to PLT 4), of the drawn heat treated steel row, for high strength spring application. In particular, the starting points are suppressed for fractures caused by the formation of coarse oxides and carbides, and the distribution of fine carbides of cementite which are required to ensure that the strength becomes uniform in order to vaporize the fatigue properties and machinability of the drawn heat treated steel fiber.

[0006]PLT 2 fokuserar pa det faktum att omraden av glest fbrdelade sfariska karbider, med en cirkelekvivalent diameter om 2 pm eller mer, i omraden med gles fOrdelning av fina sfariska karbider (i synnerhet, cementit), paverkar de dynamiska egenskaperna och definierar det omradet. PLT 2 focuses on the fact that the areas of sparsely distributed spherical carbides, with a circle equivalent diameter of 2 μm or more, in the areas with sparse distribution of fine spherical carbides (in particular, cementite), affect the dynamic properties and define it the area.

[0007]PLT 3 och PLT 4 noterar effekten av utfallning av fina karbider pa grund av tillsatsen av legeringsamnet V, och begransar kvave (N) innehallet for att undertrycka oupplOsta sfariska karbider. Det vill saga, de anvander effekten av utfallning av karbider, nitrider, och kolnitrider av V Mr att mOjliggOra tillgodogOrande 2 3 av hardning av staltraden, vid anlOpningstemperaturen eller hardning av ytskiktet vid nitrering. Dessutom, har de ocksa effekten aft dampa fOrgrovning av austenitkornstorleken, pa grund av bildandet av utfallning. Effekten av tillsats av V ar anmarkningsvard. Trots detta, bildas oupplOsta sfariska karbider eller nitrider iatt, sa 5 aven om kvave (N) undertrycks, behover styrning av utfallningen gOras exakt. PLT 3 and PLT 4 note the effect of precipitation of fine carbides due to the addition of the alloying substance V, and limit the nitrogen (N) content to suppress undissolved spherical carbides. That is to say, they use the effect of precipitation of carbides, nitrides, and carbon nitrides of V Mr to allow the assimilation of hardening of the steel row, at the annealing temperature or hardening of the surface layer during nitriding. In addition, they also have the effect of vapor coarsening of the austenite grain size, due to the formation of precipitate. The effect of adding V is remark value. Despite this, undissolved spherical carbides or nitrides are formed at night, so even if nitrogen (N) is suppressed, control of the precipitation needs to be done precisely.

[0008]Daft'. jamfOr PLT 4 kvantitativt oupplOsta sfariska karbider och utfallda karbider och definierar mangden for att fà sa mycket utfallda V karbider som mOjligt, vilka inverkar pa den slutliga fjaderprestandan. I synnerhet fared& PLT 4 aft vaga fallningen av V karbider i den elektrolytiska lOsningen, vid konstant potential, och jamfOra mangden med mangden V som passerar genom filtret (mangden av utralld V). Daft '. compares PLT 4 quantitatively undissolved spherical carbides and precipitated carbides and defines the amount to obtain as much precipitated V carbides as possible, which affect the final spring performance. In particular, the & PLT 4 aft vague fall of V carbides in the electrolytic solution, at constant potential, and compare the amount with the amount V passing through the filter (the amount of excreted V).

Referenslista 15 Patentlitteratur Reference list 15 Patent literature

[0009]PLT 1: Japansk patentpublikation (A) No. 2002-180198 PLT 2: Japansk patentpublikation (A) No. 2006-1 831 37 PLT 3: Japansk patentpublikation (A) No. 2006-342400 PLT 4: Internationell publikation W02007/114491 20 Sammanfattning av uppfinningen Tekniskt problem PLT 1: Japanese Patent Publication (A) No. 2002-180198 PLT 2: Japanese Patent Publication (A) No. 2006-1 831 37 PLT 3: Japanese Patent Publication (A) No. 2006-342400 PLT 4: International Publication WO2007 / 114491 Summary of the Invention Technical Problem

[0010]Under senare ar har ythardning genom nitrering blivit ett konventionellt fOrfarande, fOr att Oka hallbarheten hos heighallfasthetsfjadrar. Vidare har Okning av nitreringsdjupet och fOrkortning av nitreringstiden, genom okning av 25 behandlingstemperaturen, studerats. Av den anledningen behOver dragen varmebehandlad staltrad, for heghallfasthetsfjader, ytterligare forbattrat motstand mot varmerelaterad avmjukning. In recent years, surface hardening by nitriding has become a conventional method for increasing the durability of high strength springs. Furthermore, increasing the nitriding depth and shortening the nitriding time, by increasing the treatment temperature, have been studied. For this reason, the drawn heat-treated steel row, for high-strength springs, needs further improved resistance to heat-related softening.

Det vill saga nar det eftersOks ytterligare battre kallindningsfOrmaga an till och medkonventionelldragenvarmebehandladstaltrad,for 30 hOghallfasthetsfjaderanvandning, utmarkt motstand mot varmerelaterad avmjukning 3 4 aven efter uppehallstid pa 1 timme vid 500 °C, minimal internmjukning, och stOrre hardhet hos det yttersta ytlagret. That is to say, when further improved cold winding ability is sought than even conventionally drawn heat treated steel, for 30 high strength spring application, excellent resistance to heat related softening 3 4 even after a residence time of 1 hour at 500 ° C, minimal internal softening, and greater surface softness.

[0011]Ovanstaende konventionella dragna varmebehandlade staltrad, for hOghallfasthetsfjaderanvandning, sakrar en viss grad av uniform spridning av fina karbider for fOrbattrade utmattningsegenskaper och bearbetningsfOrmaga. Men for all forbattra motstand mot varmerelaterad avmjukning, ar ytterligare spridning nOdvandig. I synnerhet har tillsatsen av V, fOreslagen i PLT 3 och PLT 4, i hog grad effekten att harda staltraden vid anlOpningstemperaturen, harda ytskiktet vid nitrering, och fOrfining av austeniten. Emellertid, är styrningen av kvaveinnehallet (N) inte enkel. Som ett resultat falls grova karbider, nitrider, och kolnitrider ut och orsakar fOrsamring av utmattningshallbarheten. The above conventional drawn heat-treated steel row, for high-strength spring use, ensures a certain degree of uniform dispersion of fine carbides for improved fatigue properties and workability. But for all the improved resistance to heat-related softening, further spreading is necessary. In particular, the addition of V, proposed in PLT 3 and PLT 4, has the effect of hardening the steel row at the annealing temperature, hardening the surface layer during nitriding, and refining the austenite. However, the control of the nitrogen content (N) is not simple. As a result, coarse carbides, nitrides, and carbon nitrides fall out, causing deterioration in fatigue durability.

[0012]PLT 3 tillsatter Nb och Ti, med effekten att fanga Overskottskvave (N), som mai. Aven om tillsats Ors är styrning av lamplig mangd N fortfarande inte enkel. PLT 3 adds Nb and Ti, with the effect of capturing Excess Nitrogen (N), as mai. Even with added Ors, controlling the appropriate amount of N is still not easy.

[0013]PLT 4 tar prov pa kvarvarande oupplOsta sfariska karbider, erhallna som ett resultat, och jamfOr med de upplOsta karbiderna. Darfor styr PLT4 inte proaktivt uniform spridning av fina karbider. PLT 4 takes samples of remaining undissolved spherical carbides, obtained as a result, and compares with the dissolved carbides. Therefore, PLT4 does not proactively control the uniform distribution of fine carbides.

Pa grund av det som namnts ovan, har fOreliggande uppfinning som syfte att halla tillsatsen av V och andra legeringsamnen till ett minimum, det vill saga, utan all 20 precist styra N-innehallet, utveckla dragen varmebehandlad staltrad for hOghallfasthetsfjaderanvandning, vilken har utmarkt strackgrans och hardhet och utmarkt bearbetningsfOrmaga och vilken har Overlagsen ythardhet och innerhardhet aven efter nitrering. In view of the above, the present invention aims to keep the addition of V and other alloying substances to a minimum, that is to say, without all precisely controlling the N content, to develop drawn heat-treated stable line for high-strength spring application, which has excellent tensile strength and hardness and excellent machining ability and which has superior surface hardness and inner hardness even after nitriding.

[0014]Vidare, som beskrivet i PLT 3 och PLT 4, fOr aft erhalla utmarkt 25 strackgrans och hardhet och utmarkt bearbetningsfOrmaga, skall storleken pa de oupplOsta sfariska karbiderna i stalet vara liten. Effektiv storlek är fOretradesvis 0,1 pm eller mindre. Om storleken är Over 1 pm, gar bidraget till hallfasthet och bearbetningsfOrmaga fOrlorat och en fOrsamring av deformationsegenskaperna erhalls endast. Av den anledningen, blir narvarodensiteten av oupplOsta sfariska karbider med en cirkelekvivalent diameter cm 0,2 pm eller mer en viktig indikator. Furthermore, as described in PLT 3 and PLT 4, in order to obtain excellent tensile strength and hardness and excellent machining ability, the size of the undissolved spherical carbides in the steel should be small. Effective size is preferably 0.1 μm or less. If the size is Over 1 pm, the contribution to the hall strength and machining capacity is lost and a deterioration of the deformation properties is obtained only. For this reason, the grain density of undissolved spherical carbides with a circle equivalent diameter of 0.2 μm or more becomes an important indicator.

DarfOr har fOreliggande uppfinning som syfte att inte tillata forekomsten av oupplosta 4 sfariska karbider med en cirkelekvivalent diameter om 0,2 pm eller mer, vid fOrbattring av staltrad kir hOghallfasthetsfjaderanyandning. Therefore, the present invention has for its object not to allow the occurrence of undissolved 4 spherical carbides with a circle equivalent diameter of 0.2 .mu.m or more, when improving the shape of the half-strength spring spring.

Losning pa problemet Solution to the problem

[0015]Uppfinnarna bedrev intensiv forskning for att losa ovanstaende problem och erholl som ett resultat fOljande upptackter: (a)De upptackte aft genom aft noggrant styra innehallet av C, Si, Mn, och Cr i staltraden, for att dampa bildandet av sfariska karbider och genom all tillgodogOra sig restaustenit, aven utan tillsats av legeringsamnen sa som V, har dragen varmebehandlad staltrad kir hOghallfasthetsfjaderanvandning fOrbattrad hallfasthet och kallindningsfOrmaga jamfOrt med konventionell staltrad. The inventors conducted intensive research to solve the above problems and as a result obtained the following discoveries: (a) They discovered aft by aft carefully controlling the content of C, Si, Mn, and Cr in the steel row, to vaporize the formation of spherical carbides and by all means assimilating residual austenite, even without the addition of alloying substances such as V, the drawn heat-treated stable spring high-strength spring use has improved half-strength and cold-winding ability compared with conventional stable row.

[0016](b)Det upptacktes ocksa att genom tillsats av bade Cr och Si i lampliga mangder till staltraden, dampas bildandet av oupplOsta sfariska karbider och mjukningen vid glodgning eller nitrering efter lindning, och dessutom kan hOgre 15 hardhet hos det nitrerade lagret uppnas. (B) It was also found that by adding both Cr and Si in appropriate amounts to the steel row, the formation of undissolved spherical carbides and the softening on annealing or nitriding after winding is vaporized, and in addition, higher hardness of the nitrated layer can be achieved.

Det vill saga, for all Oka styrkan i utmattningsegenskaperna, ar tillsats av Cr effektiv, men Cr ar ett amne vilket iatt lamnar kvar oupplosta sfariska karbider, vilka har en negativ effekt pa kallindningsformagan. Av den anledningen behOyde mangden tillsatt Cr begransas. Uppfinningarna noterade ocksa aft Si dampar 20 tillvaxten av oupplOsta sfariska karbider och bildandet av cementit. Uppfinnarna upptackte att om Si tillsatts tillsammans med Okad tillsats av Cr, sá kan hallfastheten fOr dragen varmebehandlad staltrad Oka. Kvantitativt ar det tillrackligt att tillsatta en stor mangd av bade Si och Cr, eftersom fOrhallandet mellan dem styr skillnaden i mangd tillsatt Si och mangd tillsatt Cr, det vill saga, (Si-Cr) %. That is to say, for all the increasing strength in the fatigue properties, the addition of Cr is effective, but Cr is a substance which still leaves undissolved spherical carbides, which have a negative effect on the cold winding capacity. For this reason, the amount of Cr added should be limited. The inventions also noted that Si vaporizes the growth of undissolved spherical carbides and the formation of cementite. The inventors discovered that if Si was added together with Okad addition of Cr, then the half-strength of the drawn heat-treated stable Oka. Quantitatively, it is sufficient to add a large amount of both Si and Cr, since the ratio between them controls the difference in the amount of added Si and the amount of added Cr, that is, (Si-Cr)%.

[0017](c)Vidare upptacktes aft genom aft varma Wen till 1250 °C eller mer, ar det mojligt all Ora Cr och andra legeringsamnen i stalmaterialet uniformt spridda och dampa bildningen av grova oupplosta sfariska karbider och dessutom Ora fina karbider uniformt spridda. (C) Furthermore, it was again discovered by heating Wen to 1250 ° C or more, it is possible that all Ora Cr and other alloying substances in the steel material are uniformly dispersed and vaporize the formation of coarse undissolved spherical carbides and also Ora fine carbides uniformly dispersed.

Oupplbsta sfariska karbider ar narvarande i stalmaterialet direkt efter gjutning och blir orsaken till, inte bara dalig lindningsfOrmaga, utan ocksa till brott vid valsning och dragning. Av den anledningen ar det effektivt att Oka varmningstemperaturen vid vane steg och konstant dampa oupplOsta sfariska karbider, fOr aft forhindra en 6 negativ effekt i gOten efter gjutning, valstradsvalsning, patentering, slackning, och dragning. Undissolved spherical carbides are present in the steel material immediately after casting and become the cause, not only of poor winding capacity, but also of breakage during rolling and drawing. For this reason, it is effective to increase the heating temperature at normal steps and constantly vaporize undissolved spherical carbides, to prevent a negative effect in the cast after casting, wire rod rolling, patenting, slackening, and drawing.

[0018](d)Vidare upptacktes att tillsatsen av V har en skadlig effekt pa de 5 mekaniska egenskaperna och utmattningsstyrkan hos staltraden, for fjaderanvandning. (D) Furthermore, it was discovered that the addition of V has a detrimental effect on the mechanical properties and fatigue strength of the stable row, for spring use.

Det viii saga fran direkt efter gjutning till dess aft det bearbetas till en fjader, varms stalmaterial upprepade ganger. Vanligtvis, ar de oupplOsta sfariska karbiderna huvudsakligen cementit (Fe3C). Men genom upprepad varmning inkluderar de oupplOsta sfariska karbider ofta Cr, V etc. Det har fOrstatts aft det inte bara ar sá att Cr, V och andra legeringsamnen konsumeras slOsaktigt, utan att det aven ar mOjligt aft fOrsamra de mekaniska egenskaperna efter nitrering (ythardhet, inre hardhet, etc.) Vidare som fOrklarats ovan, vid tillsats av V, ar styrning av kvaveinnehall (N) inte iatt. Som ett resultat, bildar grova karbider, nitrider och kolnitrider, utfallningar 15 och orsakar fOrsamrad utmattningsstyrka. It viii saga from immediately after casting until it aft it is processed into a spring, hot steel material repeatedly. Usually, the undissolved spherical carbides are mainly cementite (Fe3C). However, by repeated heating, the undissolved spherical carbides often include Cr, V, etc. It has been understood that not only is Cr, V and other alloying substances consumed in a waste manner, but it is also possible to reduce the mechanical properties after nitriding (surface hardness, internal hardness, etc.) Furthermore, as explained above, when adding V, control of nitrogen content (N) is not possible. As a result, coarse carbides, nitrides and carbon nitrides form precipitates and cause impaired fatigue strength.

[0019]Av dessa fakta upptackte uppfinnarna aft det ar mOjligt aft dampa fOrgrovning av oupplosta sfariska karbider, genom aft inte tillsatta V, eller genom aft tillsatta en extremt liten mangd, och vidare, som fOrklarat ovan, styra mangden Cr i 20 jamvikt med mangden Si. From these facts, the inventors discovered that it is possible to vaporize coarsening of undissolved spherical carbides, by not adding V, or by adding an extremely small amount, and further, as explained above, controlling the amount Cr in 20 equilibrium with the amount Si.

[0020]Har betyder "oupplOsta sfariska karbider" oupplOsta karbider med ett fOrhallande mellan den maximala storleken (langsta storlek) och den minimala storleken (kortaste storlek) (sidoforhallande) av 2 eller mindre. Egentligen ar 25 "karbider" och "sfariska karbider" ocksa oupplOsta. For aft understryka kallas dessa ocksa "oupplOsta karbider" respektive "oupplOsta sfariska karbider trots aft de ar synonyma. Trots aft de ar synonyma ar respektive ocksa kallade "oupplOsta karbider" och "oupplOsta sfariska karbider", fOr all betona. Has means "undissolved spherical carbides" undissolved carbides with a ratio between the maximum size (longest size) and the minimum size (shortest size) (side ratio) of 2 or less. In fact, "carbides" and "spherical carbides" are also undissolved. To emphasize, these are also called "undissolved carbides" and "undissolved spherical carbides, even though they are synonymous. Despite being synonymous, they are also called" undissolved carbides "and" undissolved spherical carbides ", respectively.

FOreliggande uppfinning gjordes utifran dessa upptackter. Kontentan av uppfinningen ar som fOljer: The present invention was made on the basis of these discoveries. The content of the invention is as follows:

[0021] (1) FOrdragen staltrad for hoghallfasthetstjaderanvandning, kannetecknad av innehall i mass % av, C: 0,67 % till 0,9 %, 6 7 Si: 2,0 till 3,5 %, Mn: 0,5 till 1,2 %, Cr: 1,3 till 2,5 %, N: 0,003 till 0,007 %, och Al: 0,0005 % till 0,003 %, varvid Si och Cr uppfyller fOljande uttryck: 0,3 %sSi-Crs1,2 %, med balans av jarn och oundvikliga fOroreningar, varvid P och S som fOroreningar innefattande 10 P: 0,025 % eller mindre och S: 0,025 cl%o eller mindre, och vidare, varvid en cirkelekvivalent diameter fOr oupplOsta sfariska karbider är cm mindre an 0,2 pm. (2)FOrdragen staltrad fOr hOghallfasthetsfjaderanvandning, sasom framlagd i (1), dartill kannetecknad av innehall i mass %, av en eller flera av, V: 0,03 till 0,10 %, Nb: 0,015 % eller mindre, Mo: 0,05 till 0,30 %, W: 0,05 till 0,30 %, Mg: 0,002 % eller mindre, Ca: 0,002 % eller mindre, och Zr: 0,003 % eller mindre, vid innehall av V 25 uppfylls 1,4 %sCr+V52,6 % och 0,70 %sMn+Vs1,3 %, och, vid innehall av Mo och W, uppfylls 0,05 %sMo+Ws0,5 %. (3) Dragen varmebehandlad staltrad fOr hOghallfasthetsfjaderanvandning, 30 kannetecknad innehall i mass % av, C: 0,67 % till 0,9 %, Si: 2,0 till 3,5 %, Mn: 0,5 till 1,2 %, Cr: 1,3 till 2,5 %, 7 8 N: 0,003 till 0,007 %, och Al: 0,0005 % till 0,003 %, varvid Si och Cr uppfyller fOljande uttryck: 0,3 °A)Si-Cr1,2 %, och 5 med balans av jam och oundvikliga fOroreningar, med P och S som fOroreningar innefattande P: 0,025 % eller mindre och S: 0,025 °A) eller mindre, och vidare, med en metallstruktur innefattande minst restaustenit av ett volymsmatt pa Over 6 % till 15 %, med ett tidigare austenit kornstorleksnummer #10 eller mer, och vidare varvid en cirkelekvivalent diameter fOr oupplOsta sfariska karbider ar mindre an 0,2 pm. (4) Dragen varmebehandlad staltrad fOr hOghallfasthetsfjaderanvandning, enligt(3), kannetecknad av innehall i mass °/0, av en eller flera av, 0,03 till 0,10 %, Nb: 0,015 % eller mindre Mo: 0,05 till 0,30 %, 0,05 till 0,30 % Mg: 0,002 % eller mindre, Ca: 0,002 % eller mindre, och Zr: 0,003 % eller mindre, 25 vid innehall av V uppfylls 1,4 °/0Cri-V52,613/0 och 0,70 %5Mn+V51,3 %, och, vid innehall av Mo och W, uppfylls 0,05 % Oilo+W5_0,5 %. 30 (5)Dragen varmebehandlad staltrad for hOghallfasthetsfjaderanvandning, enligt (3) eller (4), kannetecknad av att den dragna varmebehandlade staltraden, fOr hOghallfasthetsfiaderanvandning, har en draghallfasthet 2100 till 2400 MPa. 8 9 (6)Dragen varmebehandlad staltrad for hoghallfasthetsfjaderanvandning, enligt nagot av (3) till (5), kannetecknad av att den dragna varmebehandlade staltraden, kir hOghallfasthetsfjaderanvandning, har en strackgrans 1600 till 1980 MPa. (7)Dragen varmebehandlad staltrad for hOghallfasthetsfjaderanvandning, enligt nagon av (3) till (6), kannetecknad av att den dragna varmebehandlade staltraden, for hOghallfasthetstjaderanvandning, har ythardhet HV750 eller mer enligt Vickersskalan, och inre hardhet HV570 eller mer enligt Vickersskalan, efter varsam nitrering vid 500 °C i 1 timme. (1) Preferred stable line for high semi-solid state use, can be characterized by content in mass% of, C: 0.67% to 0.9%, 6 Si: 2.0 to 3.5%, Mn: 0.5 to 1.2%, Cr: 1.3 to 2.5%, N: 0.003 to 0.007%, and Al: 0.0005% to 0.003%, Si and Cr having the following expression: 0.3% sSi-Crs1, 2%, with a balance of iron and unavoidable impurities, wherein P and S as impurities comprising P: 0.025% or less and S: 0.025 cl% o or less, and further, wherein a circle equivalent diameter for undissolved spherical carbides is cm less than 0.2 pm. (2) Preferred design for high-strength spring use, as set forth in (1), therefor can be drawn from content in mass%, of one or more of, V: 0.03 to 0.10%, Nb: 0.015% or less, Mo: 0 .05 to 0.30%, W: 0.05 to 0.30%, Mg: 0.002% or less, Ca: 0.002% or less, and Zr: 0.003% or less, when content of V is satisfied 1.4 % sCr + V52.6% and 0.70% sMn + Vs1.3%, and, when containing Mo and W, 0.05% sMo + Ws0.5% is satisfied. (3) Drawn heat-treated stable row for high-strength spring use, can be drawn content in mass% of, C: 0.67% to 0.9%, Si: 2.0 to 3.5%, Mn: 0.5 to 1.2% , Cr: 1.3 to 2.5%, N: 0.003 to 0.007%, and Al: 0.0005% to 0.003%, Si and Cr satisfying the following expression: 0.3 ° A) Si-Cr1, 2%, and 5 with balance of jam and unavoidable impurities, with P and S as impurities comprising P: 0.025% or less and S: 0.025 ° A) or less, and further, with a metal structure comprising at least residual austenite of a volume mat of Over 6% to 15%, with a previous austenitic grain size number # 10 or more, and further wherein a circle equivalent diameter for undissolved spherical carbides is less than 0.2 μm. (4) Drawn heat-treated stable row for high-strength spring application, according to (3), can be characterized by content in mass ° / 0, of one or more of, 0.03 to 0.10%, Nb: 0.015% or less Mo: 0.05 to 0.30%, 0.05 to 0.30% Mg: 0.002% or less, Ca: 0.002% or less, and Zr: 0.003% or less, when content of V is satisfied 1.4 ° / 0Cri-V52, 613/0 and 0.70% 5Mn + V51.3%, and, when containing Mo and W, 0.05% Oilo + W5_0.5% is met. (5) Drawn heat-treated steel line for high-strength spring use, according to (3) or (4), characterized in that the drawn heat-treated steel line, for high-strength spring use, has a tensile strength of 2100 to 2400 MPa. 8 9 (6) Drawn heat-treated steel line for high-strength spring use, according to any of (3) to (5), may be characterized by the fact that the drawn heat-treated steel line, called high-strength spring use, has a yield strength of 1600 to 1980 MPa. (7) Drawn heat-treated steel line for high-strength spring application, according to any one of (3) to (6), characterized in that the drawn heat-treated steel line, for high-strength spring use, has surface hardness HV750 or more according to the Vickers scale, and internal hardness according to VV nitration at 500 ° C for 1 hour.

Produktionsforfarande for fOrdragenstaltradkir hOghallfasthetsfjaderanvandning kannetecknad av att en got innehallande i mass %, C: 0,67 % till 0,9 %, Si: 2,0 till 3,5 %, Mn: 0,5 till 1,2%, Cr: 1,3 till 2,5 %, N: 0,003 till 0,007 %, och Al: 0,0005 % till 0,003 %, med Si och Cr som uppfyller fOljande uttryck: 0,3 %5Si-Cr51,2 (Yo, med balans av jam och oundvikliga fororeningar, med P och S som fOroreningar innefattande P: 0,025 % eller mindre och S: 0,025 % eller mindre, varvid gOten varms till 1250°C eller mer, darefter varmvalsas 25 goten for tillverkande av ett valsamne och varmning av valsamnet till 1200°C eller mer, med efterfOljande varmvalsning for tillverkande av en ford ragen staltrad. Production Procedure for Prefabricated Stable High Strength Spring Application Can be characterized by the fact that a good containing in mass%, C: 0.67% to 0.9%, Si: 2.0 to 3.5%, Mn: 0.5 to 1.2%, Cr: 1.3 to 2.5%, N: 0.003 to 0.007%, and Al: 0.0005% to 0.003%, with Si and Cr satisfying the following terms: 0.3% 5Si-Cr51.2 (Yo, with balance of jams and unavoidable impurities, with P and S as impurities comprising P: 0.025% or less and S: 0.025% or less, the ingot being heated to 1250 ° C or more, then the ingot is hot rolled to produce a roll and heat the roll. to 1200 ° C or more, with subsequent hot rolling to produce a preferred steel line.

ProduktionsfOrfarandefor fOrdragenstaltradfor hOghallfasthetsfjaderanvandning, enligt (8), kannetecknad av aft goten dessutom innehaller, i mass %, en eller flera av 0,03 till 0,10 %, Nb: 0,015 % eller mindre Mo: 0,05 till 0,30 %, 0,05 till 0,30 % 9 Mg: 0,002 % eller mindre, Ca: 0,002 % eller mindre, och Zr: 0,003 % eller mindre, vid innehall av V 5 uppfylls 1,4 %5Cr+Vs2,6 % och 0,70 %sMn+V51,3 %, och, vid innehall av Mo och W, uppfylls 0,05 % 5Mo+W50,5 %. The production process for the preferred stage of high-strength spring application, according to (8), may be characterized by the carcass also containing, in mass%, one or more of 0.03 to 0.10%, Nb: 0.015% or less Mo: 0.05 to 0.30%, 0.05 to 0.30% 9 Mg: 0.002% or less, Ca: 0.002% or less, and Zr: 0.003% or less, when containing V 5, 1.4% 5Cr + Vs2.6% and 0 are met. 70% sMn + V51.3%, and, when containing Mo and W, 0.05% 5Mo + W50.5% is satisfied.

ProduktionsfOrfarandeforfOrdragenstaltradfor 10 hOghallfasthetsfjaderanvandning, kannetecknad vidare av varmning av fOrdragen staltrad enligt (8) eller (9), till 900 °C eller mer, varefter den patenteras vid 600 °C eller mindre. Production Procedure for Prefabricated Stable Row 10 High-strength spring application, further characterized by heating the preferred stall row according to (8) or (9), to 900 ° C or more, after which it is patented at 600 ° C or less.

ProduktionsfOrfarandeforvarmebehandladstaltradfOr 15 hOghallfasthetsfjaderanvandning, kannetecknat av dragning av den fOrdragna staltraden vilken tillverkats genom produktionsfOrfarandet fOr fOrdragen staltrad, enligt (8) till (10), varmning av traden i en takt av 10°C/ sek eller mer upp till temperaturen A3, bibehallande av temperaturen A3 eller mer i 1 minut till 5 minuter, darefter kylning i en takt av 50°C/sek eller mer ner till 100°C eller mindre. Production process Preheated treated wire for 15 high strength spring application, characterized by drawing the preferred steel wire which is manufactured by the production method for the preferred steel wire, according to (8) to (10), heating the wire at a rate of 10 ° C / A or at a temperature of 10 ° C / sec. A3 or more for 1 minute to 5 minutes, then cooling at a rate of 50 ° C / sec or more down to 100 ° C or less.

ProduktionsfOrfarande fOr produktion av varmebehandlad staltrad fOr htighallfasthetsfjaderanvandning, enligt (11), kannetecknad av vidare bibehallning och anlOpning vid 400 till 500°C i 15 minuter eller mindre. Production process for the production of heat-treated stable line for high-strength spring use, according to (11), characterized by further maintenance and annealing at 400 to 500 ° C for 15 minutes or less.

Fordelaktiga effekter av uppfinningen Beneficial effects of the invention

[0022]Enligt Vireliggande uppfinning, i synnerhet, kan dragen varmebehandlad staltrad, for hOghallfasthetsfjaderanvandning, med en hog ytskiktshardhet och en innerhardhet, och dessutom hOghallfasthetsfjader med utmarkt hallbarhet, erhallas, pa grund av den utmarkta kallindningsfOrmagan och motstandet mot avmjukning, aven vid nitrering vid 500 °C i 1 timme. Bidraget till industrin ar extremt stort. According to the present invention, in particular, the drawn heat-treated steel row, for high-strength spring application, with a high surface layer hardness and an inner hardness, and also high-strength spring with excellent durability, can be obtained, due to the excellent cold winding resistance and resistance to resistance. 500 ° C for 1 hour. The contribution to industry is extremely large.

Kort beskrivning av ritningarna 11 Brief description of the drawings 11

[0023]FIG. 1 ar ett mikrofoto av metallstrukturen som visar ett exempel pa sfariska karbider, i den dragna varmebehandlade staltraden, fOr hOghallfasthetsfjaderanvandning, i den fOreliggande uppfinningen. Vid spetsarna pa pilarna i figuren ses oupplOsta sfariska karbider. FIG. 1 is a photomicrograph of the metal structure showing an example of spherical carbides, in the drawn heat treated steel row, for high strength spring application, in the present invention. Undissolved spherical carbides are seen at the tips of the arrows in the figure.

FIG. 2 visar en vy av formen av en stans fOr skapandet av ett spar i ett teststycke. FIG. 2 shows a view of the shape of a punch for creating a groove in a test piece.

FIG. 3 visar en vy av stegen for all skapa eft spar i ett provstycke. FIG. 3 shows a view of the steps for all create eft savings in one test piece.

FIG. 4 visar en vy av en oversikt Over ett bOjprov av sparet. FIG. 4 shows a view of an overview of a buoy test of the spar.

FIG. 5 är en vy som visar ett fOrfarande fOr matning av sparets bejningsvinkel. FIG. 5 is a view showing a method of feeding the beet angle of the spare.

Beskrivning av utfOrningsformer Description of embodiments

[0024]Allmant, tillverkas en valstrad fOr fjader enligt fOljande: Sjalvfallet är tillverkningen av fjadrar inte begransat till det beskrivna fOrfarandet. Della beskriver 15 endast ett exempel. In general, a coiled spring is manufactured as follows: Of course, the manufacture of springs is not limited to the method described. Della describes only one example.

Got gjord av stal innehallande forutbestamd kemisk sammansattning, valsas for att erhalla ett valsamne. Darefter valsas valsamnet fOr all tillverka staltrad av fOrbestamd diameter. Staltraden som tillverkas i detta steg kallas "fordragen staltrad". Staltraden vilken tillverkas med valsning patenteras och dras for all erhalla en 20 annu finare staltrad, varefter arbetsspanningen i ytlagret avlagsnas och efterfOljande kallindningsfOrmaga erhalls genom varmebehandling (seghardning), som tillverkas efter valsning, patenteras och dras fOr all erhalla annu finare staltrad, darefter avlagsnas arbetsspanningen vid ytskiktet och kallindningsbearbetningsfOrmaga erhalls genom varmebehandling (seghardning). Staltraden som tillverkas vid detta 25 steg kallas "dragen varmebehandlad staltrad". Goods made of steel containing predetermined chemical composition, rolled to obtain a rolling stock. Thereafter, the roll is rolled for all manufactures formed of predetermined diameter. The stalt line produced in this step is called the "preferred stalt line". The steel row which is manufactured by rolling is patented and drawn to obtain an even finer steel row, after which the working stress in the surface layer is removed and the subsequent cold winding capacity is obtained by heat treatment (toughening), which is produced after rolling, patented and drawn for all the other working coils. at the surface layer and cold winding processing ability is obtained by heat treatment (toughening). The stalt line manufactured at this stage is called the "drawn heat treated stalt line".

[0025]Darefter bearbetas fjadern genom kallindning for fOrbattrad styrka och nitrering for forbattrad ythardhet. Pa sá satt är en "fjader" tillverkad som en slutgiltig prod ukt. Thereafter, the spring is machined by cold winding for improved strength and nitriding for improved surface hardness. In this way, a "spring" is manufactured as a final product.

FOrst kommer den kemiska sammansattningen av den dragna varmebehandlade staltraden, fOr hoghallfasthetsfjaderanvandning, i den foreliggande uppfinningen och dess material, det vill saga fOrdragen staltrad, for hoghallfasthetsfjaderanvandning, all fOrklaras. Har betyder "%" i den kemiska sammansattningen mass %, om inte annat anges. 11 12 First, the chemical composition of the drawn heat-treated steel row, for high-strength spring use, in the present invention and its material, that is, the preferred steel row, for high-strength spring use, will all be explained. Has means "%" in the chemical composition mass%, unless otherwise stated. 11 12

[0026]C: 0,67 % till mindre an 0,9 % C ar ett viktigt amne vilket har star effekt pa styrkan hos stalmaterialet och C bidrar ocksa till bildandet av restaustenit. I foreliggande uppfinning har den lagre gransen fOr mangden C satts till 0,67 % eller mer fc5r aft erhalla tillracklig styrka. For att Oka styrkan, utgOrs mangden C av 0,70 % eller mer, fOretradesvis 0,75 % eller mer. C: 0.67% to less than 0.9% C is an important substance which has a strong effect on the strength of the steel material and C also contributes to the formation of residual austenite. In the present invention, the lower limit of the amount C has been set to 0.67% or more to obtain sufficient strength. To increase the strength, the amount C is 0.70% or more, preferably 0.75% or more.

Daremot om mangden C blir 0,9 % eller mer, resulterar det i Overdriven samuffallning, att en stor mangd grov cementit uffalls och att segheten avtar 10 anmarkningsvart. Vidare am mangden C ar Overdriven bildas grova sfariska karbider och ringlingsfOrmagan blir nedsatt. Dad& ar den ovre gransen for mangden C satt till mindre an 0,9 %. Med syftet att dampa bildandet av sfariska karbider ar den Ovre gransen for mangden C fOretradesvis 0,85 °A), mer foredraget 0,80 %. On the other hand, if the amount C becomes 0.9% or more, it results in Excessive coincidence, that a large amount of coarse cementite falls off and that the toughness decreases remarkably black. Furthermore, the amount C is Excessive, coarse spherical carbides are formed and the curvature is reduced. Therefore, the upper limit for the amount C is set to less than 0.9%. In order to vaporize the formation of spherical carbides, the upper limit of the amount C is preferably 0.85 ° A), more preferably 0.80%.

[0027]Si:2,Otill3,5% Si ar ett viktigt amne for aft fOrbattra motstandet mot varmerelaterad avmjukning has stalet och eftergivningsegenskaperna hos fjadern. For aft erhalla dessa effekter, behOver 2,0 % eller mer Si tillsattas. Vidare ar Si effektiv for sfaroidisering och fOrfining av cementiten. For att dampa bildandet av grova sfariska karbider, tillsatts fOretradesvis 2,1 % eller mer av Si. For aft Oka den innerh6rdheten, efter nitrering och andra behandlingar, for aft Ora ytskiktet hardare, tillsatts fOretradesvis 2,2 % eller mer av Si. Vidare fran balansen med Cr, ar Si mer fOrdelaktigt satt till 2,3 % eller mer. Si satts ibland till 3,0 % eller mer. Si: 2, In addition to 3.5% Si is an important substance for improving the resistance to heat-related softening of the steel and the resilience properties of the spring. To obtain these effects, 2.0% or more Si needs to be added. Furthermore, Si is effective for spheroidization and refining of the cementite. To vaporize the formation of coarse spherical carbides, 2.1% or more of Si is preferably added. To increase the inner hardness, after nitriding and other treatments, to increase the surface layer harder, 2.2% or more of Si is preferably added. Furthermore, from the balance sheet with Cr, Si is more advantageously set at 2.3% or more. Si is sometimes set to 3.0% or more.

Daremot, vid Overdriven tillsattning av Si hardnar staltraden och blir sprOd, 25 darmed utgOrs c5vre gransen av Si till 3,5 % eller mindre. Med syfte aft fOrhindra fOrsprOdning, sails den Owe gransen fOretradesvis till 3,4 °A, mer fOredraget 3,3 % eller mindre. On the other hand, with excessive addition of Si, the steel line hardens and becomes scattered, thus making the upper limit of Si 3.5% or less. In order to prevent proliferation, the Owe border is preferably reduced to 3.4 ° A, more preferably 3.3% or less.

[0028]Mn: 0,5 till 1,2 % Mn ar ett amne som ar viktigt fOr att Oka slackningsfOrmagan och for aft stabilt sakra mangden restaustenit. I den fOreliggande uppfinningen, har Mn tillsats i 0,5 % eller mer, mer fOredraget 0,65 % eller mer, annu mer fOredraget 0,70 % eller mer, for att Oka strackgransen hos stalet samt fOr aft sakra restaustenit. 12 13 Daremot, vid Overdriven tillsattning av Mn Okar mangden restaustenit. Vid bearbetning, bildas bearbetningsinducerad martensit och kallindningsfOrmagan fOrsamras. FOr att fOrhindra fOrsprOdning pa grund av Overdriven tillsats av Mn, ar den Ovre gransen for Mn satt till 1,2 % eller mindre, fOretradesvis 1,1 % eller mindre, 5 mer foredraget 1,0 % eller mindre. Mn: 0.5 to 1.2% Mn is a substance that is important for increasing the slackening capacity and for stably securing the amount of residual austenite. In the present invention, Mn has been added in 0.5% or more, more preferably 0.65% or more, even more preferably 0.70% or more, to increase the yield strength of the steel and to secure residual austenite. 12 13 On the other hand, in case of excessive addition of Mn Okar the amount of residual austenite. During machining, machining-induced martensite is formed and the cold winding forearm is assembled. To prevent proliferation due to Excessive addition of Mn, the Upper Limit for Mn is set at 1.2% or less, preferably 1.1% or less, more preferably 1.0% or less.

[0029]Cr: 1,3 till 2,5 % Cr ar ett amne vilket ar effektivt for att fOrbattra slackningssformagan och motstandet mot varmerelaterad avmjukning. For att erhalla dessa effekter, behOver 1,3 % eller mer Cr tillsattas. Vid nitrering, ar det mojligt aft Ora det hardade skiktet, 10 som erhallits genom nitrering, tjockare genom tillsats av Cr. DarfOr tillsatt fOretradesvis mer an 1,5 % av Cr, for aft astadkomma hardning genom nitrering och mjukningsmotstand vid nitreringstemperaturen. Mer fOrdelaktigt tillsatts 1,7 % eller mer av Cr. Cr: 1.3 to 2.5% Cr is a substance which is effective in improving the slackening shape and the resistance to heat-related softening. To obtain these effects, 1.3% or more Cr needs to be added. Upon nitration, it is possible to thicken the hardened layer obtained by nitration by adding Cr. Therefore, preferably more than 1.5% of Cr is added, in order to achieve hardening by nitration and softening resistance at the nitration temperature. More advantageously 1.7% or more of Cr.

Daremot, om mangden Cr ar Overdriven, blir tillverkningskostnaden hOgre. lnte bara det utan upplOsning av karbider fOrsamras, oupplOsta sfariska karbider blir fler, och lindningsfiirmagan blir fOrsamrad, sa den Ovre gransen kir Cr satts till 2,5 % eller mindre. Vidare, om mangden Cr ar stor, ar mangden Cr fOretradesvis undertryckt till 2 % eller mindre, for aft dampa bildandet av grova cementiter. Vidare, fOr aft erhalla bade hallfasthet och form barhet utgOrs den Ovre gransen for mangden Cr till 1,8 % eller mindre. On the other hand, if the quantity Cr is Exaggerated, the manufacturing cost will be higher. Not only that without the dissolution of carbides is dissolved, undissolved spherical carbides become more numerous, and the winding capacity is increased, so the Upper boundary kir Cr is set at 2.5% or less. Furthermore, if the amount of Cr is large, the amount of Cr is preferably suppressed to 2% or less, in order to vaporize the formation of coarse cementites. Furthermore, in order to obtain both hall strength and formability, the upper limit for the amount of Cr is 1.8% or less.

[0030]N: 0,003 till 0,007 % N ar eft amne, vilket bildar nitrider med Al etc. inkluderade som fOrorening i stalet, i den forefiggande uppfinningen. For att anvanda fina nitrider och fOrfina restaustenit, ska 0,003 % eller mer av N inkluderas. Daremot, om mangden N ar 25 Overdriven, fOrgrovas nitriderna och kallindningsformagan och utmattningsegenskaperna avtar. Darr& ar den Ovre gransen for mangden N gjord 0,007 % eller mindre. Vidare med hansyn taget till fOrmagan till varmebehandling etc., ar fOretradesvis mangden N 0,005 % eller mindre. N: 0.003 to 0.007% N is the substance, which forms nitrides with Al, etc., included as impurities in the steel, in the present invention. To use fine nitrides and fine residual austenite, 0.003% or more of N must be included. On the other hand, if the amount N is 25 Excessive, the nitrides are overgrown and the cold winding shape and fatigue properties decrease. If the upper limit for the amount N is 0.007% or less. Furthermore, with regard to the capacity for heat treatment etc., the amount N is preferably 0.005% or less.

[0031]P: 0,025 % eller mindre P ar en fOrorening. P fOrorsakar att stalet hardnar, bildar segregationer, och orsakar forsprOdning, sá den Ovre gransen av P ar satt till 0,025 % eller mindre. Vidare orsakar P, som segregerat vid tidigare austenitkorngranserna, segheten och 13 14 motstandet mot fOrdrOjda frakturer etc. aft avta, sa den Ovre gransen for mangden P ar fOretradesvis satt till 0,015 % eller mindre. Dessutom, ar mangden P fOretradesvis begransad till mindre an 0,010 %, nar strackgransen hos staltraden Overskrider 2150 MPa. P: 0.025% or less P is a contaminant. Causes the steel to harden, form segregations, and cause proliferation, so the Upper limit of P is set at 0.025% or less. Furthermore, P, which has segregated at previous austenitic grain boundaries, causes the toughness and resistance to delayed fractures, etc. to decrease, so the upper limit for the amount of P is preferably set at 0.015% or less. In addition, the amount of P is preferably limited to less than 0.010% when the yield strength of the steel row exceeds 2150 MPa.

[0032]S: 0,025 % eller mindre S ar ocksa en fororening. Om S ar narvarande i stal, orsakar den att stalet bli sprOtt, sá den Ovre gransen for mangden S ar satt till 0,025 % eller mindre. For aft dampa effekten av S, ar tillsats av Mn effektiv. Trots det ar MnS en inneslutning. I synnerhet i hOghallfasthets stal, blir MnS ibland bOrjan till brott. DarfOr for aft dampa 10 fOrekomsten av frakturer, har den Ovre gransen for mangden av S fOretradesvis satts till 0,015 % eller mindre. Vidare, ar mangden S fOretradesvis begransad till mindre an 0,01 %, nar strackgransen, hos den dragna varmehenadlade staltraden, for hOghallfasthetsfjaderanvandning, kommer aft Overstiga 2150 MPa. S: 0.025% or less S is also an impurity. If S is present in steel, it causes the steel to crack, so the Upper limit of the amount S is set to 0.025% or less. To dampen the effect of S, the addition of Mn is effective. Nevertheless, MnS is an inclusion. Especially in the case of high-strength strength, MnS sometimes becomes the beginning of crime. Therefore, in order to reduce the incidence of fractures, the upper limit for the amount of fractures has been set at 0.015% or less. Furthermore, the amount S is preferably limited to less than 0.01%, when the yield strength of the drawn heat-treated steel row, for high-strength spring application, will exceed 2150 MPa.

[0033]Al: 0,0005 till 0,003% Al ar ett deoxiderande amne. Det paverkar bildandet av oxider. Om det bildas harda oxider avtar utmattningshallbarheten. I synnerhet om Al tillsatts i Nefflode blir utmattningshallfastheten skiftande och stabiliteten fOrsamrad, i hoghallfasthetsfjadrar. Om mangden Al Overskrider 0,003 %, blir fOrekomsten av brott till WO av 20 inneslutningar store, sá mangden Al ar begransad till 0,003 % eller mindre i den dragna varmebehandlade staltraden fOr hOghallfasthetsfjaderanvandning, i fOreliggande uppfinning. Det Owe gransvardet av mangden Al ar fOretradesvis 0,0028 %, mer fOredraget 0,0025 %. Al: 0.0005 to 0.003% Al is a deoxidizing agent. It affects the formation of oxides. If hard oxides are formed, the fatigue durability decreases. In particular, if Al is added in Nefflode, the fatigue strength becomes variable and the stability is impaired, in high-strength springs. If the amount of Al exceeds 0.003%, the incidence of fractures to WO of 20 inclusions becomes large, so that the amount of Al is limited to 0.003% or less in the drawn heat-treated steel row for high-strength spring use, in the present invention. The Ore spansvardet of the amount Al is preferably 0.0028%, more the preference 0.0025%.

[0034]Daremot, om mangden Al blir mindre an 0,0005 %, bildas iatt kiselbaserade harda oxider. Av den anledningen ar mangden Al satt till 0,0005 % eller mer. Den lagre gransen for mangden Al ar fOretradesvis 0,0007 %, mer fOredraget 0,0008 %, annu mer fOredraget 0,001 % eller mer. [0034] On the other hand, if the amount of Al becomes less than 0.0005%, silicon-based hard oxides are formed. For this reason, the amount of Al is set at 0.0005% or more. The lower limit for the quantity Al is preferably 0.0007%, more preferred 0.0008%, even more preferred 0.001% or more.

[0035]Harnast kommer, standpunkten for fOreliggande uppfinning, det vill saga, fOrhallandet mellan Si och Cr, att fOrklaras. Det ar redan kant aft bade Si och Cr ar viktiga for Okad styrka i fjaderstal. Most recently, the standpoint of the present invention, that is, the relationship between Si and Cr, will be explained. It is already clear that both Si and Cr are important for increased strength in spring numbers.

Trots detta orsakar Overdriven tillsats problem. 14 Despite this, Excessive additive causes problems. 14

[0036]0,3 % 5Si-Cr1 ,2 % Om mangden av Si overstiger den fOreskrivna mangden, blir forsprOdningen extern och bearbetningsfOrmagan vid lindning fOrsamras. lnte bara det utan 5 avkolning i Overgangsprocessen blir uppseendevackande. Av den anledningen blir ytskiktshardheten lagre och hallbarheten avtar, i den slutgiltiga fjaderprodukten. Vidare bildas avkolade delar slumpmassigt, vilket gor att varaktigheten hos hallfastheten, hos den tillverka fjadern, fOrsamras. Nar mangden Si ar mindre an den fOreskrivna mangden, avtar hdllfastheten. Vidare ar eftergivningsegenskapen otillracklig. Det Ors ocksa tydligt i hardheten after nitrering. Tillracklig hardhet kan varken sakras vid ytskiktet eller inuti. 0.3% 5Si-Cr1, 2% If the amount of Si exceeds the prescribed amount, the dispersion becomes external and the processing capacity during winding is reduced. Not only that without 5 decarburization in the Transition process will be startling. For this reason, the surface layer hardness becomes lower and the durability decreases, in the final spring product. Furthermore, charred parts are formed randomly, which causes the duration of the half-strength, of the manufactured spring, to be reduced. When the quantity Si is less than the prescribed quantity, the strength decreases. Furthermore, the forgiveness property is insufficient. This is also evident in the hardness after nitriding. Sufficient hardness can not be ensured either at the surface layer or inside.

[0037]Trotts detta, ar fOrhallandet mellan Si och Cr, i cementiten, i stalet viktigt. Det viii saga, Si ar ett amne vilket destabiliserar cementit. Om en stor mangd Cr tillsatts eller andra amnen vilka stabiliserar cementit vid varmning, far det effekten aft bildandet av en fast lOsning av cementit framjas. DarfOr blir mangden av oupplost sfarisk karbider stare och bearbetningsfOrmagan minskar anmarkningsvart, om mangden Si ar liten, oavsett om stor mangd Cr tillsatts. Uppfinnarna upptackte att det ar mOjligt aft anvanda skillnaden mellan Si-innehallet (mass %) och Cr-innehallet (mass %) i stalet, det viii saga, Si-Cr mangden, som en mattstock. Det viii saga, nar vardet av Si-Cr är mindre an 0,3 %, blir mangden av Cr relativt stor och oupplOsta sfariska karbider kvarstar lath Daremot, om Si-Cr ar Over 1,2 % blir Si fOrhallandevis OverflOdig, vilket Iatt orsakar forsprOdning, avkolning eller andra problem. DarfOr skall vardet av Si-Cr sattas till 0,3 till 1,2 %. 25 [0038]Med avsikt att dampa bildandet av karbider, melligger en stor mangd Si-Cr aft oupplOsta karbider undertrycks, men industriellt, om Si fOrekommer i for stor mangd, blir tjockleken av det hardade lagret genom nitrering Iatt tunt. Av den anledningen ar fOretradesvis Si-Cr 50,9 %, mer fOredraget Si-Cr 50,75 %, med tanke pa beteendet hos oupplOsta sfariska karbider och det hardade lagret, bildat genom 30 nitrering. Vidare med avsikt aft, minska mangden Cr och minska den kvarvarande fOrekomsten av oupplOsta sfarisk karbider, jamfOrelsevis, ar den lagre gransen fOrdelaktig 0,35 %5Si-Cr, mer fordelaktigt 0,4 %5 Si-Cr. 16 Nevertheless, the ratio of Si to Cr, in the cementite, in the steel is important. The viii saga, Si is a substance which destabilizes cementite. If a large amount of Cr is added or other substances which stabilize cementite on heating, the effect of the formation of a solid solution of cementite is promoted. Therefore, the amount of undissolved spherical carbides becomes larger and the processing power decreases remarkably, if the amount Si is small, regardless of whether a large amount of Cr is added. The inventors discovered that it is possible to use the difference between the Si content (mass%) and the Cr content (mass%) in the steel, that is to say, the Si-Cr amount, as a carpet. The viii saga, when the value of Si-Cr is less than 0.3%, the amount of Cr becomes relatively large and undissolved spherical carbides remain lath However, if Si-Cr is Over 1.2%, Si becomes relatively redundant, which causes proliferation, decarburization or other problems. Therefore, the value of Si-Cr should be set to 0.3 to 1.2%. [0038] In order to vaporize the formation of carbides, a large amount of Si-Cr of undissolved carbides is suppressed, but industrially, if Si is present in an excessive amount, the thickness of the hardened layer by nitration becomes thin. For this reason, Si-Cr is preferably 50.9%, more preferably Si-Cr is 50.75%, in view of the behavior of undissolved spherical carbides and the hardened layer formed by nitration. Furthermore, with the intention of reducing the amount of Cr and reducing the residual occurrence of undissolved spherical carbides, respectively, the lower limit is advantageously 0.35% 5Si-Cr, more advantageously 0.4% Si-Cr. 16

[0039]Harnast kommer den selektivt tillsatta kemiska sammansattningen aft fc5rklaras. Most recently, the selectively added chemical composition will be explained.

[0040]V: 0,03 till 0,10 % V ar ett amne vilket bildar nitrider, karbider, och kolnitrider. Fina V nitrider, karbider, och kolnitrider med en cirkelekvivalent diameter av mindre an 0,2 pm ar effektiva for fOrfining av restaustenit. Vidare kan dessa aven anvandas for hardning av ytskiktet genom nitrering. Daremot, är det nodvandigt aft precist styra utfallningen, da oupplOsta karbider och nitrider iatt bildas, aven cm kvave (N) undertrycks. V: 0.03 to 0.10% V is a substance which forms nitrides, carbides, and carbon nitrides. Fine V nitrides, carbides, and carbon nitrides with a circle equivalent diameter of less than 0.2 microns are effective for the invention of residual austenite. Furthermore, these can also be used for hardening the surface layer by nitration. On the other hand, it is necessary to precisely control the precipitation, as undissolved carbides and nitrides are formed, even if nitrogen (N) is suppressed.

Av den anledningen, enligt fOreliggande uppfinning, ar V inte avsiktligt tillsatt. For that reason, according to the present invention, V is not intentionally added.

For att erhalla sadan effekt kan en fin mangd V tillsattas. FOr all erhalla effekten, skall V tillsattas i 0,03 % eller mer, fOretradesvis 0,035 % eller mer, mer fOrdelaktigt 0,04 % eller mer. To obtain such an effect, a fine amount of V can be added. For all the effect to be obtained, V should be added in 0.03% or more, preferably 0.035% or more, more advantageously 0.04% or more.

[0041]Daremot, om V tillsats till mer an 0,10 %, bildas grova sfariska karbider 15 och kallindningsfbrmagan och fjader utmattningsegenskaperna fOrsamras. DarfOr skall V innehallet sattas till 0,1 % eller mindre. Vidare genom aft tillsatta V, fore dragning, bildas 'all en underkyld struktur som orsakar sprickor och brott vid dragning. Av den anledningen ar den ovre gransen for mangden V fOretradesvis satt till 0,09 % eller mindre, mer fOredraget 0,08 % eller mindre, mest fOredraget 0,05 % eller mindre. I synnerhet, i fallet vid tillsats av en liten mangd Nb, ar mangden av tillsats av V fOretradesvis satt till 0,05 % eller mindre. Vidare, ar V ett amne vilket kraftigt paverkar bildandet av kvarvarande austenit pa samma satt som Mn, sa mangden av V maste styras noggrant tillsammans med mangden Mn. On the other hand, if V is added to more than 0.10%, coarse spherical carbides are formed and the cold winding and spring fatigue properties are compromised. Therefore, the V content should be set to 0.1% or less. Furthermore, by adding V, pre-drawing, all of the subcooled structure is formed which causes cracks and fractures during drawing. For this reason, the upper limit for the amount V is preferably set at 0.09% or less, more preferably 0.08% or less, most preferably 0.05% or less. In particular, in the case of the addition of a small amount of Nb, the amount of addition of V is preferably set to 0.05% or less. Furthermore, V is a substance which strongly affects the formation of residual austenite in the same way as Mn, so the amount of V must be carefully controlled together with the amount of Mn.

[0042]Nb: 0,015 % eller mindre Nb ar ett amne vilket bildar nitrider, karbider och kolnitrider i stal. Dessa uffallningar anvands ibland for aft styra austenit komstorleken etc. Men samtidigt ger Overdriven tillsats minskad duktilitet och resulterar i aft sprickor lattare bildas under valsning och varmformning. Av den anledningen skall Overdriven tillsats av Nb 30 undvikas. Nb: 0.015% or less Nb is a substance which forms nitrides, carbides and carbon nitrides in steel. These precipitates are sometimes used to control the austenite grain size, etc. But at the same time, excessive addition gives reduced ductility and results in crack cracking forming more easily during rolling and thermoforming. For this reason, Excessive addition of Nb 30 should be avoided.

[00043]Nb tillatts med syftet aft styra mangden N. Utfallningarna inte anvands direkt for aft styra kvaliteten. Ventilfjadrar och andra fjadrar tillverkas genom 16 17 slackning, anlOpning, darefter kallindning, men vid den tidpunkten, hindrar upplOst kvave fargdeformationen och minskar spanningsgransen. Av den anledningen ar kallindningsfOrmagan fOrsamrad. DarfOr blir effekten genom tillsats av Nb och bilning av nitrider vid hog temperatur, att upplost kvave i stalmatrisen minskar och att kallindningsfOrmagan fOrbattras. Nb is allowed for the purpose of controlling the quantity N. The precipitates are not used directly to control the quality. Valve springs and other springs are manufactured by slackening, tempering, then cold winding, but at that time, dissolved nitrogen prevents the color deformation and reduces the stress limit. For this reason, the cold winding stock is mixed. Therefore, the effect is through the addition of Nb and the formation of nitrides at high temperature, that dissolved nitrogen in the steel matrix is reduced and that the cold winding stomach is improved.

[0044]Vidare, ar tillsats av en liten mangd Nb ocksa effektiv fOr att dampa V och andra oupplOsta sfariska karbider inblandade som oundvikliga fOroreningar. V ar ett amne vilket ar effektivt for att forbattra motstandet mot varmerelaterad avmjukning 10 vid nitrering och det yt-narmsta lagrets hardhet. Men om mangden tillsatt V blir stiirre, ar V-nitrider, V karbider, och V kolnitrider ofta inte tillrackligt losta, aven vid patentering, slackning och andra varmningar, som Ors for att fa en austeniffas, fOr tillverkning av dragen varmebehandlad staltrad fOr hOghallfasthetsfjaderanvandning. OupplOsta sfariska karbider av V vaxer frail karnorna av det V-baserade nitriderna, bildade vid tiden av normal hog temperatur. Som ett resultat, kvarstar oupplOsta sfariska karbider och lindningsfOrmagan fOrsamras. Av den anledningen, ar det nodvandigt att dampa mangden tillsatt V, nar oupplOsta sfariska karbider undertrycks. I den foreliggande uppfinningen var V inte ett nodvandigt amne. Furthermore, the addition of a small amount of Nb is also effective in vaporizing V and other undissolved spherical carbides involved as unavoidable impurities. Is a substance which is effective in improving the resistance to heat-related softening during nitriding and the hardness of the outermost layer. However, if the amount of added V becomes larger, V-nitrides, V-carbides, and V-carbon nitrides are often not sufficiently loose, even in patenting, slackening, and other heatings, such as Ors to obtain an austeniphase, for the manufacture of heat-treated drawn steel for high-strength spring use. Undissolved spherical carbides of V wax frail the nuclei of the V-based nitrides, formed at the time of normal high temperature. As a result, undissolved spherical carbides remain and the winding belly accumulates. For this reason, it is necessary to vaporize the amount of added V when undissolved spherical carbides are suppressed. In the present invention, V was not a necessary substance.

[0045]Som motsats till detta, bildar Nb-nitrider vid hc3gre temperatur an V. Av den anledningen undertrycker Nb bildandet av V nitrider i staltillverkningsfOrfarandet. Det vill saga, Nb bildar nitrider i hOgtemperatur regionen, dar V upplOses och inte bildar nitrider. Vidare vid hog temperatur dar V nitrider bildas konsumerar Nb kvave, sa all bildandet av V nitrider fOrsvaras, aven vid kylning. Av den anledningen ar 25 tillsats av en liten mangd Nb synnerligen effektiv for att dampa oupplOsta sfariska karbider och sakra lindningsformagan vid tillsats av stor mangd V. In contrast, Nb nitrides form at a higher temperature than V. For this reason, Nb suppresses the formation of V nitrides in the steelmaking process. That is to say, Nb forms nitrides in the high temperature region, where V dissolves and does not form nitrides. Furthermore, at high temperatures where V nitrides are formed, Nb consumes nitrogen, so all the formation of V nitrides is justified, even when cooling. For this reason, the addition of a small amount of Nb is particularly effective in vaporizing undissolved spherical carbides and securing the winding capacity when adding a large amount of V.

[0046]Om mangden tillsatt Nb ar stOrre an 0,015 %, blir varmduktiliteten fOrsamrad och defekter och andra problem vid valsning framtrader lattare. Av den anledningen, ar mangden tillsatt Nb satt till 0,015 % eller mindre, fOretradesvis 0,0 % eller mindre, mer fOredraget 0,005 % eller mindre, mest fOredraget mindre an 0,001 %. If the amount of Nb added is greater than 0.015%, the hot ductility is impaired and defects and other problems during rolling appear more easily. For this reason, the amount of Nb added is set to 0.015% or less, preferably 0.0% or less, more preferably 0.005% or less, most preferably less than 0.001%.

Daremot, syns effekten av Nb vid styrning av mangden N i fjaderstalet fran 0,0005 %, sa vid tillsatts av Nb, ar 0,0005 % eller mer att foredra. Vidare nar V etc. 17 18 tillsatts, ar tillsats av en liten mangd Nb mer effektivt. Ett interval' om 0,003 till 0,012 % ar att fOredra. Vidare, ar ett intervall om 0,005 till 0,009 % mer fOrdelaktigt. Effekten uppnas aven vid 0,005 till 0,001 %. On the other hand, the effect of Nb in controlling the amount of N in the spring number from 0.0005% is seen, so when Nb is added, 0.0005% or more is preferable. Furthermore, when V etc. 17 18 is added, the addition of a small amount of Nb is more efficient. A range of 0.003 to 0.012% is preferable. Furthermore, a range of 0.005 to 0.009% is more advantageous. The effect is also achieved at 0.005 to 0.001%.

[0047]1,4 % 5Cr+V ?. 2,6 % I den fOreliggande uppfinningen, ar V inte avsiktligt tillsatt. Men, som fOrklarats ovan, har tillsats av en liten mangd V effekt pa forfiningen av den tidigare austeniten och bildandet av restaustenit. Genom aft noggrant styra summan av mangden tillsatt Cr och V med avseende pa V, ar det mojligt att Oka hallfastheten fOr att Ora 10 ytskiktshardheten efter nitrering och den innerhardheten lamplig for hOghallfasthetsfjadrar. 1.4% 5Cr + V 2. 2.6% In the present invention, V is not intentionally added. However, as explained above, the addition of a small amount of V has an effect on the refinement of the previous austenite and the formation of residual austenite. By carefully controlling the sum of the amount of Cr and V added with respect to V, it is possible to increase the hall strength to increase the surface layer hardness after nitriding and the inner hardness suitable for high strength springs.

[0048]Cr och V ar bada amnen som fOrhindrar mjukning vid varmning genom glodgning eller nitrering etc. utfOrd efter fjaderlindning, det viii saga delvis sa kallat varmerelaterat motstand mot avmjukning. I synnerhet nitrering orsakar, nitrider att falla ut vid den nitrerade delen av ytskiktet for att darigenom fOrbattra ythardheten och Oka nitreringseffekten. Vidare aven vid insidan, dar nitrering inte sprider sig, dampas sonderfall av karbider. Daremot ar Cr och V bada amnen som underlattar bildandet av oupplesta sfariska karbider. Cr upplbses i cementiten for att Oka 20 bestandigheten, sá att upplOsningen av cementit dampas i varmningssteget kir upplOsning av cementit (varmning vid tiden for patentering och varmning vid tiden for slackning), kvarstar ofta som oupplOsta sfariska karbider. Vidare, har V ocksa en upplOsningstemperatur fOr uffallningarna, som ar hOgre an A3 punkten for stal, sá V kvarstar iatt som oupplOsta sfariska karbider. Cr and V are both substances which prevent softening when heated by annealing or nitriding etc. performed after spring winding, the viii saga partly so-called heat-related resistance to softening. In particular, nitriding causes nitrides to precipitate at the nitrided part of the surface layer, thereby improving the surface hardness and increasing the nitriding effect. Furthermore, even at the inside, where nitriding does not spread, carbide probes are steamed. On the other hand, Cr and V are both substances which facilitate the formation of unread spherical carbides. Cr is dissolved in the cementite to increase the resistance, so that the solution of the cementite is vaporized in the heating step kir dissolution of the cementite (heating at the time of patenting and heating at the time of slackening), often remaining as undissolved spherical carbides. Furthermore, V also has a dissolution temperature for the precipitates, which is higher than the A3 point for steel, so that V remains as undissolved spherical carbides.

[0049]Om det totala innehallet av Cr och V, det vill saga, Cr+V, ar mindre an 1,4 6)/0, avtar ythardheten av hOghallfasthetsfjadern under HV750 och den innerhallfastheten avtar under HV570. Av den anledningen, ar Cr+V fOretradesvis 1,4 % eller mer. Vidare, ar 1,5 % eller mer all fOredra. Daremot, lamnar Overdriven tillsats Cr+V, av mer an 2,6 %, stora mangder oupplOsta sfariska karbider, vilket leder till att lindningsfbrmagan forsamras. Darfor, ar 2,6 % satt till den Ovre gransen. Vidare, ar Cr+V fOretradesvis 2 % eller mindre, mer fOredraget 1,8 % eller mindre. If the total content of Cr and V, that is, Cr + V, is less than 1.4 6) / 0, the surface hardness of the high-strength spring decreases below HV750 and the inner-half-strength decreases below HV570. For that reason, Cr + V is preferably 1.4% or more. Furthermore, 1.5% or more are all preferred. On the other hand, Excessive additive Cr + V, of more than 2.6%, leaves large amounts of undissolved spherical carbides, which leads to the winding capacity being condensed. Therefore, 2.6% is set to the Upper border. Furthermore, Cr + V is preferably 2% or less, more preferably 1.8% or less.

[0050]0,7% 5Mn+V% 18 19 Mn och V ar amnen vilka forbattrar slackningsfOrmagan och vilka dessutom har en stor effekt pa bildandet av restaustenit. Om mangden Mn är stare an den fOreskrivna mangden, Okar mangden av restaustenit. DarfOr, har summan av bade Mn och V, vilka fOrekommer som oundvikliga fOroreningar, en direkt pAverkan pa 5 austenits beteende. Det ar inte bara bearbetningsfbrmagan som paverkas, utan aven strackgransen paverkas kraftigt. Tillracklig hallbarhet kan inte sakras. 0.7% 5Mn + V% 18 19 Mn and V are the substances which improve the quenching capacity and which in addition have a great effect on the formation of residual austenite. If the amount Mn is greater than the prescribed amount, the amount of residual austenite increases. Therefore, the sum of both Mn and V, which occur as unavoidable pollutants, has a direct effect on the behavior of austenite. It is not only the working capacity that is affected, but also the stretch limit is strongly affected. Sufficient durability cannot be ensured.

[0051]Av den anledningen, ar det totala innehallet av Mn och V, det viii saga Mn+V, satt till 0,7 till 1,3 % i den fOreliggande uppfinningen. For aft sakra ett 10 volymsmatt pa Over 6 % av restaustenit, maste den lagre grAnsen for Mn+V sattas till 0,7 % eller mer. For this reason, the total content of Mn and V, the so-called Mn + V, is set at 0.7 to 1.3% in the present invention. In order to secure a volume mat of more than 6% of residual austenite, the lower limit for Mn + V must be set to 0.7% or more.

[0052]Som fOljd orsakar transformationsinducerad plasticitet aft segheten fOrbattras och mOjliggor aft kallindningsfOrmagan sakras. Daremot maste den Ovre 15 gransen av Mn+V sattas till 1,3 % eller mindre, for aft Ora restaustenit volymsmatt 15 % eller mindre. PA grund av detta Ar bildandet av bearbetningsinducerade martensit, som en RV av slagmarken vid kallindning, undertryckt och lokal fOrsprOdning kan fOrhindras. As a result, transformation-induced plasticity causes the toughness to improve and the possibilities of cold winding to sag are sacrificed. On the other hand, the Upper limit of Mn + V must be set to 1.3% or less, for aft Ora residual austenite volume mat 15% or less. Due to this, the formation of processing-induced martensite, as an RV of the impact field during cold winding, suppressed and local propagation can be prevented.

[0053]Mo: 0,05 till 0,30 % Mo ar ett amne vilket fOrbAttrar slackningsformagan. Vidare ar Mo ocksa extremt effektiv for aft forbattra motstandet mot varmerelaterad avmjukning. I synnerhet i den fareliggande uppfinningen kan 0,05 % eller mer av Mo tillsattas, for att ytterligare fOrbattra motstandet mot varnnerelaterad avmjukning. Vidare ar Mo ett 25 amne vilket bildar Mo-baserade karbider i stalet. Temperaturen vid vilken de Mobaserade karbiderna faller ut ar lagre an temperaturen vid vilken V-karbider etc. faller ut. Av den anledningen ar tillsats av en lamplig mangd Mo ocksa effektiv for aft dampa fergrovning av karbider. Tillsats av 0,10 % eller mer av Mo ar aft fOredra. Daremot cm mangden tillsatt Mo ar mer an 0,30 %, bildas iatt en underkyld struktur, 30 vid varmvalsning, och patentering fore dragning etc. Darfor for aft dampa bildandet av en underkyld struktur, orsakande sprickbildning eller tradbrott vid dragning, ar den ovre gransen av mangden Mo satt till 0,30 % eller mindre, fOretradesvis 0,25 % eller mindre. Vidare om mangden Mo ar stor, vid patentering, blir tiden fram till slutet pa perlitOvergangen langre, sa mangden Mo satts fOretradesvis till 0,20 % eller mindre. 19 Dessutom fOr aft fOrkorta patenteringstiden och stabilt stoppa perlitOvergangen ar 0,15% eller mindre aft fOredra. Mo: 0.05 to 0.30% Mo is a substance which improves the slackening ability. Furthermore, Mo is also extremely effective in improving resistance to heat-related softening. In particular in the present invention, 0.05% or more of Mo may be added, to further improve the resistance to warning-related softening. Furthermore, Mo is a substance which forms Mo-based carbides in the steel. The temperature at which the Mobasated carbides precipitate is lower than the temperature at which V-carbides etc. precipitate. For this reason, the addition of an appropriate amount of Mo is also effective in vapor deposition of carbides. Addition of 0.10% or more of Mo ar aft fOredra. On the other hand, if the amount added Mo is more than 0.30%, a supercooled structure is formed, during hot rolling, and patenting drawing, etc. Therefore, to vaporize the formation of a subcooled structure, causing cracking or wire breakage during drawing, the upper limit is of the amount Mo was set at 0.30% or less, preferably 0.25% or less. Furthermore, if the amount of Mo is large, in the case of patenting, the time until the end of the perlite transition becomes longer, so the amount of Mo is preferably set to 0.20% or less. 19 In addition, to shorten the patenting period and stably stop the perlite transition is 0.15% or less.

[0054]W: 0,05 till 0,30 % W i likhet med Mo ar ett amne vilket ar effektivt fOr all forbattra slackningsfOrmagan och motstandet mot varmerelaterad avmjukninng och ar ett amne vilket utfalls i stalet som karbider. I synnerhet i den foreliggande uppfinningen tillsatts 0,05 % eller mer W for aft fOrbattra motstandet mot varmerelaterad avmjukning. W: 0.05 to 0.30% W, similar to Mo, is a substance which is effective in improving the sagging capacity and the resistance to heat-related softening and is a substance which precipitates in the steel as carbides. In particular, in the present invention, 0.05% or more W is added to improve the resistance to heat-related softening.

[0055]Daremot om W tillsants i (WeltOd bildas en underkyld struktur vilken orsakar sprickbildning eller tradbrott vid dragning, sa mangden W maste sattas till 0,30 °A) eller mindre. On the other hand, if W is added (WeltOd forms a supercooled structure which causes cracking or wire breakage during drawing, then the amount W must be set to 0.30 ° A) or less.

[0056]Dessutom med tanke pa enkelheten vid varmebehandling etc. ar mangden W fOretradesvis 0,1 till 0,2 %, mer fOredraget 0,13 till 0,18%. In addition, in view of the simplicity of heat treatment, etc., the amount W is preferably 0.1 to 0.2%, more preferably 0.13 to 0.18%.

[0057]0,05 % sMo+M 0,5 % Mo och W ar amnen vilka ar effektiva for all fOrbattra motstandet mot 20 varmerelaterad avmjukning. Om !Dada tillsants i kombination med varandra dampas tillvaxten av karbider och motstandet mot varmerelaterad avmjukning kan anmarkningsvart farbattras jamfort med vid tillsats av enbart Mo eller W. I synnerhet fOr att forbattra motstandet mot varmerelaterad avmjukning vid varmning till 500 °C maste Mo+W sattas till 0,05 % eller mer, fOretradesvis 0,15 % eller mer. 0.05% sMo + M 0.5% Mo and W are the substances which are effective in improving the resistance to heat-related softening. If! Dada tilsants in combination with each other vaporizes the growth of carbides and the resistance to heat-related softening can be remarkably black compared with the addition of only Mo or W. In particular to improve the resistance to heat-related softening when heated to 500 ° C must Mo + W be set to 0.05% or more, preferably 0.15% or more.

Daremot om Mo+W ar Over 0,5 %, vid varmvalsning och patentering fore dragning etc., bildas en sa kallad underkyld struktur av martensit, bainit, etc. For aft dampa bildandet av en underkyld struktur som orsakar sprickor och tradbratt vid dragning, ar den Ovre gransen av MO+W satt till 0,5 % eller mindre, fOretradesvis 0,35 °A eller mindre. On the other hand, if Mo + W is more than 0.5%, in hot rolling and patenting pre-drawing, etc., a so-called subcooled structure of martensite, bainite, etc. is formed to evaporate the formation of a subcooled structure which causes cracks and steepness during drawing, the Upper limit of MO + W is set to 0.5% or less, preferably 0.35 ° A or less.

[0058]Harnast kommer Mg, Ca, och Zr all fOrklaras. Most recently, Mg, Ca, and Zr will all be explained.

Mg: 0,002 % eller mindre Mg bildar oxider i smalt stal vid hOgre temperatur an temperaturen for bildandet av MnS. Vid tidpunkten for bildandet av MnS, ar den redan narvarande i 21 det smalta stalet. Darfor kan Mg anvandas som karna for uffallning av MnS. Detta har tillfoljd att fordelningen av MnS kan styras. Vidare ar Mg-baserade oxider trotts alit fint fOrdelade i fOrdelningsantal i det smalta stet, pa sa satt att MnS som bildas runt karnor av de Mg-baserade oxiderna ar fint fOrdelade i stalet, jamfOrt med Si- och 5 Al-baserade oxider vilka ofta framtrader i konventionellt stal. DarfOr varierar MnS fordelningen beroende pa narvaron av M, aven om S innehallet ar det samma. Tillsats av dessa gar MnS korsstorleken finare. Genom aft Ora MnS fint fardelad ar det majligt aft betrakta MnS som harmlas vad galler MnS som utgangspunkt for utmattning. Tillracklig effekt uppnas vid sma mangder. FOretradesvis skall Mg 0,0002 % eller mer, mer fOredraget 0,0005 % eller mer, tillsattas. Mg: 0.002% or less Mg forms oxides in narrow steel at a higher temperature than the temperature for the formation of MnS. At the time of the formation of MnS, it is already present in 21 the narrow steel. Therefore, Mg can be used as the nuclei for precipitation of MnS. This has resulted in the distribution of MnS being controlled. Furthermore, Mg-based oxides are nevertheless finely distributed in the number of distributions in the narrow state, in the sense that MnS formed around nuclei of the Mg-based oxides are finely distributed in the steel, compared with Si- and Al-based oxides which are often appears in conventional steel. Therefore, the MnS distribution varies depending on the presence of M, even if the S content is the same. Addition of these makes the MnS cross size finer. Due to the fact that Ora MnS is nicely divided, it is possible to consider MnS as harmed by what applies to MnS as a starting point for fatigue. Sufficient effect is achieved with small amounts. Preferably Mg 0.0002% or more, more preferably 0.0005% or more, should be added.

[0059]Med tillsats av mer an 0,001 %, ar det dock svart for Mg att kvarsta i det smalta stalet, det ar en effekt av oxid kompositionen och mangden framtradande oxider som utgOr utgangspunkter for utmattning blir stOrre, sa 0,002 % Mg ar den Ovre gransen. DarfOr, sattes den c5vre gransen av mangden tillsatt Mg till 0,002 %, faretradesvis 0,0015 % eller mindre. Vidare nar det galler fjaderstal jamfOrt med annat stal for konstruktionsanvandning, ar mangden av tillsatt S undertryckt, med tanke pa utbytet etc., ar 0,001 % eller mindre aft fOredra. Vidare, vid anvandning fOr hOghallfasthetsventilfjader, ar inneslutningskansligheten hog, sa Mg har effekten av 20 aft farbattra korrosionsmotstandet och motstandet fOr aft skjuta upp frakturferebyggande valsnings sprickor pa grund av effekten av fOrdelningen av MnS etc. Tillsatts av sa sma mangder som mOjligt i det extremt snava intervallet 0,0002 till 0,001 ar aft fOredra. With the addition of more than 0.001%, however, it is black for Mg to remain in the molten steel, it is an effect of the oxide composition and the amount of emerging oxides that form the starting point for fatigue becomes larger, so 0.002% Mg is the Upper the border. Therefore, the upper limit of the amount of Mg added was set to 0.002%, preferably 0.0015% or less. Furthermore, when it comes to spring numbers compared to other steels for construction use, the amount of added S is suppressed, considering the yield, etc., is 0.001% or less. Furthermore, when used for high-strength valve springs, the containment probability is high, so Mg has the effect of improving the corrosion resistance and the resistance to postpone fracture-preventing rolling cracks due to the effect of the distribution of MnS, etc.. the range 0.0002 to 0.001 is still preferred.

[0060]Ca: 0,002 % eller mindre Ca ar ett oxid- och sulfidbildande amne. I fjaderstal Or Ca, sa aft MnS blir sfarisk och darigenom dampas utstrackningen av MnS, som tjanar som initierande stallen for utmattning och andra frakturer, vilket gor MnS harmlOs. Effekten liknar effekten av Mg. Tillsats av 0,0002 % eller mer ar aft fOredra. Vidare ar inte bara 30 utbytet daligt, aven om mer an 0,002 % tillsatts, utan oxider och CaS och andra sulfider bildas dessutom och problem vid tillverkning och fOrsamring av fjaderutmattningshallbarhetsegenskaperna faljer, sa mangden sattes till 0,002 % eller mindre. Med tanke pa mangden tillsatt, cla inneslutningskansligheten ar hog vid 21 22 anvandning kir hOghallfasthetsventil, ar den fOrdelaktiga mangden fOretradesvis 0,0015 % eller mindre, mer fOredraget 0,001 %. Ca: 0.002% or less Ca is an oxide and sulfide-forming substance. In spring figures Or Ca, so often MnS becomes spherical and thereby the extent of the MnS is steamed, which serves as the initiating place for fatigue and other fractures, which makes MnS harmless. The effect is similar to the effect of Mg. Addition of 0.0002% or more is preferred. Furthermore, not only the yield is poor, even if more than 0.002% is added, but oxides and CaS and other sulfides are also formed and problems in manufacturing and preserving the spring fatigue durability properties fall, so the amount was set to 0.002% or less. In view of the amount added, if the inclusion probability is high for use with a high-strength valve, the advantageous amount is preferably 0.0015% or less, more preferably 0.001%.

[0061]Zr: 0,003 % eller mindre Zr ar ett oxid-, sulfid-, och nitridbildande amne. I fjaderstal ar oxiderna fint fordelade, och pa samma satt som med Mg bildar de karnor for utfallning av MnS, och kan pa sá satt Ora MnS fint fordelad. Till fOljd av detta ar det mOjligt all fOrbattra utmattningshallbarheten och vidare Oka duktiliteten for aft darigenom fOrbattra lindningsfOrmagan. Foretradesvis tillsatts 0,0002 % eller mer. Vidare aven om mer an 0,003 % tillsatts ar inte bara utbytet lagt, utan oxider och ZrN, ZrS, och andra nitrider och sulfider bildas och problem vid produktion eller nedbrytning av fjader hallbarhetsegenskaperna fbranleds, sa mangden ar satt till 0,003 % eller mindre. Tillsatt mangd ar ftiretradesvis 0,0025 % eller mindre. Dessutom har Zr effekten aft fOrbattra lindningsformagan genom styrning av sulfiderna, sá tillsatsen ar fOrdelaktig kir hOghallfasthetsventilfjadrar, men for aft minimera effekten av inneslutningar, ar undertryckning till 0,0015 °A eller mindre aft foredra. Zr: 0.003% or less Zr is an oxide, sulfide, and nitride-forming substance. In spring numbers, the oxides are finely distributed, and in the same way as with Mg, they form nuclei for precipitation of MnS, and in this way Ora MnS can be finely distributed. As a result, it is possible to all improve the fatigue durability and further increase the ductility and thereby improve the winding capacity. Preferably 0.0002% or more is added. Furthermore, even if more than 0.003% is added, not only the yield is added, but oxides and ZrN, ZrS, and other nitrides and sulfides are formed and problems in the production or degradation of the spring durability properties are burned, so the amount is set to 0.003% or less. The amount added is approximately 0.0025% or less. In addition, Zr has the effect of improving the winding capacity by controlling the sulphides, so the addition is advantageous to maintain high-strength valve springs, but to minimize the effect of inclusions, suppression to 0.0015 ° A or less is preferred.

[0062]Noter att ovan frivilligt tillsatta kemiska sammansattningar, om den innehaller sma mangder, inte forsamrar effekten hos staltradens som innefattar den 20 kemiska grundsammansattningen i fOreliggande uppfinning. Notes that the above voluntarily added chemical compositions, if they contain small amounts, do not detract from the effect of the stable radicals comprising the basic chemical composition of the present invention.

[0063]Harnastkommermetallstrukturenhosstaltraden,for hOghallfasthetsfjaderanvandning i den fOreliggande uppfinningen, aft fOrklaras. The resin structure metal structure of the steel wire, for high strength spring use in the present invention, is explained.

[0064]Oupplosta sfariska karbider OupplOsta sfariska karbider utgOr en viktig roll nar det galler all sakra hallfastheten hos staltraden for hoghallfasthetsfjaderanvandning. Daremot orsakar narvaron av oupplOsta sfariska karbider aft lindningsfOrmagan fOrsamras. Vidare orsakar grova karbider dessutom aft utmattningsegenskaperna fOrsamras. Darfor ar det nOdvandigt aft dampa oupplOsta sfariska karbider vid lindning och efter slutgiltig nitrering skapa en uniform spridning av fina karbider for aft losa problemet i fOreliggande uppfinning. 22 23 [0064] Undissolved spherical carbides Undissolved spherical carbides play an important role when it comes to all the safe half-strength of the stable line for high-strength spring use. On the other hand, the presence of undissolved spherical carbides causes the winding force to contract. Furthermore, coarse carbides also cause the fatigue properties to deteriorate. Therefore, it is necessary to vaporize undissolved spherical carbides on winding and, after final nitriding, to create a uniform distribution of fine carbides in order to solve the problem of the present invention. 22 23

[0065]Staltraden for haghallfasthetsfjaderanvandning i fareliggande uppfinningen har en lang storlek av oupplasta sfariska karbider av 0,2 pm eller mindre som undertryckts vid fargrovning. De oupplasta sfariska karbiderna ar redan narvarande efter valstrads valsning (det viii saga fardragen staltrad). The stall row for haghall strength spring use in the present invention has a long size of unplastic spherical carbides of 0.2 μm or less which are suppressed during color roughening. The unresolved spherical carbides are already present after the rolling of the wire rod (the viii saga fardragen staltrad).

Oupplasta sfariska karbider ar svara att fa aft overga i lesning i den senare varmebehandlingen (patentering, bildande av bearbetningsvarme vid dragning, och seghardning, till exempel). lbland vaxer de snarare under dessa varmebehandlingssteg och fargrovas. Det viii saga ibland agerar oupplasta sfariska karbider i fardragen staltrad karnor far fargrovning av sig sjalva. Uncharged spherical carbides are responsible for being read in the latter heat treatment (patenting, formation of processing heat during drawing, and toughening, for example). sometimes they rather wax during these heat treatment steps and are dyed. The viii saga sometimes acts as unloaded spherical carbides in the lined sternrad karnor father color excavation by themselves.

Av den anledningen ar det viktigt att i sa stor utstrackning som majligt minska oupplosta sfariska karbider vilka ar narvarande i den fardragna staltraden for att begransa fargrovningen av oupplasta sfariska karbider hos staltraden efter varmebehandling (varmebehandlad staltrad). Pa grund av det ovanstaende har definitionen "oupplasta sfariska karbider" en viktig mening inte bara for fardragen staltrad far haghallfasthetsfjaderanvandning enligt fareliggande uppfinning, utan ocksa for dragen varmebehandlad staltrad for haghallfasthetsfjaderanvandning. For this reason, it is important to reduce as much as possible undissolved spherical carbides which are present in the drawn steel row in order to limit the color roughening of unsplastic spherical carbides in the steel row after heat treatment (heat-treated steel row). In view of the above, the definition of "unloaded spherical carbides" has an important meaning not only for coated steel springboard spring use according to the present invention, but also for heat-treated steel springboard steel.

[0066]Styrkan i staltraden for hoghallfasthetsfjaderanvandning i fareliggande uppfinning akar genom tillsatts av C, tillsats av Mn och Cr, vidare tillsats av Mo, W, 20 och andra sá kallade legeringsamnen. Nar stora mangder C och i synnerhet Cr och andra legeringsamnen, vilka bildar nitrider, karbider, och kolnitrider, tillsatts kvarstar sfariska cementitkarbider och legeringsbaserade karbider läft i stalet. Sfarisk cementitkarbid och legeringsbaserade karbider ar oupplasta sfariska karbider som inte loses upp i stalet under varmning vid varmvalsning. The strength in the stable line for high-strength spring use in the present invention increases by the addition of C, the addition of Mn and Cr, further the addition of Mo, W, 20 and other so-called alloying elements. When large amounts of C and in particular Cr and other alloying substances, which form nitrides, carbides, and carbon nitrides, are added, spherical cementite carbides and alloy-based carbides remain in the steel. Spherical cementite carbide and alloy-based carbides are unplastic spherical carbides that do not dissolve in the steel during heating during hot rolling.

[0067]Notera aft i foreliggande uppfinning kommer bade sfariska legeringsbaserade karbider och sfariska cementitkarbider att refereras till som sfariska karbider. I stalet finns nalformade karbider motsvarande nalformsstrukturen hos anlapt martensit, men dessa nalformade karbider inkluderas inte i de sfariska 30 karbiderna i den fareliggande uppfinningen. Nalformade karbider finns inte narvarande direkt efter slackning utan faller ut under valsningsforfarandet. Den anlepta martensitstrukturen ar en struktur lamplig far aft uppna bade styrka och seghet och bearbetningsformaga. Nalform ar i viss mening den ideala formen for karbider. 23 24 It is noted that in the present invention, both spherical alloy-based carbides and spherical cementite carbides will be referred to as spherical carbides. The steel contains nal-shaped carbides corresponding to the nal-shaped structure of tempered martensite, but these nal-shaped carbides are not included in the spherical carbides of the present invention. Squeegee-shaped carbides are not present immediately after slackening but fall out during the rolling process. The tempered martensite structure is a structure suitable for achieving both strength and toughness and machining ability. Nalform is in a sense the ideal form of carbides. 23 24

[0068]Strangt draget kan bearbetningsfOrmagan ocksa fOrsamras om karbider med en del andel av 2 eller mer (nalformade karbider) fOrgrovas. Men i sjalva verket blir nalformade karbider fOrgrovade nar anlOpningstemperaturen ar hog eller nar bibehallningstiden vid anlOpning ar extremt lang. Effekten hos prestandan ar att styrkan och hardheten blir otillracklig. Problem uppstar i andra omraden an med oupplOsta sfariska karbider. FOrgrovade nalformade karbider bildas inte i den 2100 MPa eller sa starka staltraden, innefattad i den fOreliggande uppfinningen. DarfOr omfattas inte nal-formade karbider i den fOreliggande uppfinningen. Som forklarats ovan ar de uffallda karbiderna normalt oupplOsta, men i fOreliggande uppfinning har termen "oupplOst" lagts till. Detta betonar bara deras oupplOsta karaktar. I den fOreliggande uppfinningen ar "oupplOsta sfariska karbider" och "sfariska karbider" synonyma. Strictly speaking, the machining capacity can also be compromised if carbides with a proportion of 2 or more (nal-shaped carbides) are coarse. But in fact, needle-shaped carbides become coarse when the annealing temperature is high or when the annealing time at annealing is extremely long. The effect of the performance is that the strength and hardness become insufficient. Problems arise in other areas with undissolved spherical carbides. Coarse-grained nal-shaped carbides are not formed in the 2100 MPa or so strong steel row included in the present invention. Therefore, nal-shaped carbides are not included in the present invention. As explained above, the precipitated carbides are normally undissolved, but in the present invention the term "undissolved" has been added. This only emphasizes their unresolved character. In the present invention, "undissolved spherical carbides" and "spherical carbides" are synonymous.

[0069]OupplOsta sfariska karbider kan observeras med svekelektronmikroskop (SEM) genom polering av ett prov erhallet fran fOrdragen staltrad eller dragen varmebehandlad staltrad, for hOghallfasthetsfjaderanvandning, till spegelglans och etsning av provet genom pikral- eller elektrolytisketsning. Vidare kan sfariska karbider observeras genom modellfOrfarande med 20 transmissionselektronmikroskopi (TEM). Undissolved spherical carbides can be observed with a tracer electron microscope (SEM) by polishing a sample obtained from a preferred steel line or a heat-treated steel line, for high-strength spring application, to mirror gloss and etching the sample by picral or electrolytic etching. Furthermore, spherical carbides can be observed by model procedure by transmission electron microscopy (TEM).

[0070]Figur 1 visar ett exempel av en strukturell SEM-bild av ett prov efter elektrolytisketsning. I den strukturella bilden i figur 1 observeras att stalets matris har tva typer av strukturer, det vill saga, nalformade strukturer och sfariska strukturer. 25 Bland dessa ar de nalformade strukturerna anlOpt martensit bildad genom seghardning. Daremot ar de sfariska strukturerna karbider 1 som har fatt sin sfariska form genom att de inte har lOsts upp i stalet genom att dessutom goras sfariska genom seghardning genom anlOpning i olja eller induktionshardningsbehandling (oupplOsta sfariska karbider) pa grund av varmning genom varmvalsning. Sfariska 30 karbider kan observeras vid framre anden av pilen i figur 1. Figure 1 shows an example of a structural SEM image of a sample after electrolytic sketching. In the structural picture in Figure 1, it is observed that the matrix of the steel has two types of structures, that is to say, squeegee-shaped structures and spherical structures. Among these, the needle-shaped structures are called martensite formed by toughening. On the other hand, the spherical structures are carbides 1 which have taken their spherical shape in that they have not been dissolved in the steel by also being made spherical by toughening by annealing in oil or induction hardening treatment (undissolved spherical carbides) due to heating by hot rolling. Spherical carbides can be observed at the front of the arrow in Figure 1.

[0071]Oupplosta sfariska karbider med en cirkelekvivalent diameter av mindre an 0,2 pm 24 I fOreliggande uppfinning paverkar oupplOsta sfariska karbider egenskaperna hos den dragna varmebehandlade staltraden for hOghallfasthetsfjaderanvandning och styrs darfOr i storlek enligt fOljande: Notera att jamfort med tidigare kand teknik ar finare sfariska karbider dessutom definierade for aft uppna hOgre prestanda och 5 bearbetningsfOrmaga, i fOreliggande uppfinning. Sfariska karbider men en cirkelekvivalent diameter av mindre an 0,2 pm ar extremt effektiva kir aft sakerstalla styrkan och motstand mot varmerelaterad avmjukning hos stalet. Undissolved spherical carbides with a circle equivalent diameter of less than 0.2 μm 24 In the present invention, undissolved spherical carbides affect the properties of the drawn heat-treated steel row for high-strength spring use and are therefore controlled in size according to the following: Note that the prior art is as follows. Spherical carbides further defined to achieve higher performance and machining ability, in the present invention. Spherical carbides with a circle equivalent diameter of less than 0.2 μm are extremely effective in maintaining the strength and resistance to heat-related softening of the steel.

[0072]Daremot bidrar sfariska karbider med en cirkelekvivalent diameter om 10 0,2 pm eller mer inte till att fOrbattra styrkan och motstand mot varmerelaterad avmjukning och graden av kallindningsfOrmaga. Av den anledningen ar fOreliggande uppfinning kannetecknad av att inte tillata bildandet av sfariska karbider med en cirkelekvivalent diameter om 0,2 pm eller mer. In contrast, spherical carbides with a circle equivalent diameter of 0.2 μm or more do not contribute to improving the strength and resistance to heat-related softening and the degree of cold winding capacity. For this reason, the present invention is characterized by not allowing the formation of spherical carbides with a circle equivalent diameter of 0.2 μm or more.

FOrdragen staltrad och dragen varmebehandlad staltrad, i fOreliggande 15 uppfinning, ar kannetecknade av aft oupplOsta sfariska karbider har en cirkelekvivalent diameter av mindre an 0,2 pm. Till foljd av detta ar det mOjligt att sakra styrka och samtidigt sakra bearbetningsfOrmaga. Preferred stable row and drawn heat treated stable row, in the present invention, are characterized by undissolved spherical carbides having a circle equivalent diameter of less than 0.2 microns. As a result, it is possible to secure strength and at the same time secure processing ability.

Som forklarats ovan maste fOrdragen staltrad patenteras, dras och varmas, seghardas, eller pa annat satt varmebehandlas, sa att oupplOsta sfariska karbider 20 kan vaxa och fOrgrovas. Av den anledningen ar den cirkelekvivalenta diametern hos oupplOsta sfariska karbider i fOrdragen staltrad foretradesvis gjord mindre an 0,2 pm. Fran resultaten av uppfinnarnas experiment har den cirkelekvivalenta diametern av oupplOsta sfariska karbider, hos fOrdragen staltrad, bekraftats kunna minskas till 0,18 pm eller mindre. Vidare ar det ocksa bekraftat aft om valsamnets tillverkningstemperatur satts till 1250 °C eller mer, kan diametern goras 0,15 pm eller mindre. As explained above, the compositions must be patented, drawn and heated, toughened, or otherwise heat treated so that undissolved spherical carbides can wax and coarse. For this reason, the circle equivalent diameter of undissolved spherical carbides in the preferred steel row is preferably made less than 0.2 microns. From the results of the inventors' experiments, the circle equivalent diameter of undissolved spherical carbides, in the preferred embodiment, has been confirmed to be able to be reduced to 0.18 μm or less. Furthermore, it is also confirmed that if the rolling stock manufacturing temperature is set to 1250 ° C or more, the diameter can be made 0.15 μm or less.

[0073]Har kommer fOrfarandet fOr matning av den cirkelekvivalenta diametern och densiteten, av foreliggande sfariska karbider, aft forklaras. Eft prov som har tags fran staltraden, for hOghallfasthetsfjaderanvandning, poleras och etsas elektrolytiskt. The method for feeding the circle equivalent diameter and the density of the present spherical carbides will be explained. After samples taken from the stable row, for high-strength spring application, are polished and electrolytically etched.

Notera att det observerade omradet ar slumpmassigt utvalt nara mitten av radien hos den varme behandlade valstraden (staltraden), det vill saga, den sa kallade "1/2Rdelen", fOr att undanrOja speciella forhallanden sa som avkolning och segregation i mitten. Vidare ar matarean 300 pm2 eller mer. Vid elektrolytisketsning ar ytan av 26 provet korroderat genom elektrolys i en elektrolytisklOsning (en blandning av acetylaceton 10 mass %, tetametylammoniumklorid 1 mass %, och en jamvikt av metylalkohol) dar provet anvands som anod och platina som katod och dar en strOmgenerator med en lagre potential anvands. Potentalen blir konstant vid en potential som ar lamplig for provet i intervallet -50 till -200 mV vs SCE. Det är aft fOredra att potentialen blir konstant vid -100 mV vs SCE, for staltraden i den foreliggande uppfinningen. Note that the observed area is randomly selected near the center of the radius of the heat treated roll line (steel line), that is, the so-called "1 / 2R part", to eliminate special conditions such as decarburization and segregation in the middle. Furthermore, the feed area is 300 pm2 or more. In electrolytic sketching, the surface of the 26 sample is corroded by electrolysis in an electrolytic solution (a mixture of acetylacetone 10% by mass, tetamethylammonium chloride 1% by mass, and an equilibrium of methyl alcohol) where the sample is used as anode and platinum as cathode and has a current generator used. The potential becomes constant at a potential that is suitable for the test in the range -50 to -200 mV vs SCE. It is preferred that the potential be constant at -100 mV vs SCE, for the steel line of the present invention.

[0074]Mangden anvand strOmstyrka kan bestammas av den totala ytarean av 10 provet x 0,133 [c/cm2]. Notera aft inte bara den polerade ytan utan ocksa ytan av provet inbaddat i harts laggs till den totala ytarean av provet. The amount of current used can be determined by the total surface area of the sample x 0.133 [c / cm 2]. Note that not only the polished surface but also the surface of the sample embedded in resin is added to the total surface area of the sample.

Strommen slas pa och provet bibehalls i 10 sekunder sedan slas strOmmen av och provet rengOrs. The power is turned on and the sample is maintained for 10 seconds then the power is turned off and the sample is cleaned.

[0075]Efter det observeras provet med SEM och en strukturellbild av de sfariska karbiderna tags. I SEM:en fOrefaller strukturen av de sfariska karbiderna relativt vit, och har en andel (del andel) av stOrsta storlek (rang storlek) och en minsta storlek (kort storlek) av 2 eller minde, sfariska karbider. Forstoringen av bilden tagen med SEM är X1000 eller mer, varvid X5000 till X20000 att fOredra. Som matningspositioner valdes 10 fait siumpmassigt ut vid en tjocklek av omkring 0,5 till 1 mm fran ytan av valstraden, de segregerade mittendelarna undviks. SEMstrukturbilden behandlades med bildbehandling for aft mata den minsta storleken (kort storlek) och den stOrsta storleken (langstorlek) av de sfariska karbiderna observerade i matomradet och den cirkelekvivalenta diametern beraknas. Den 25 cirkelekvivalenta diametern är diametern nar arean, beraknad genom bildbehandling, hos en oupplOst karbid i ett omrade vidare konverterad till en cirkel med samma area. Vidare är det ocksa mOjligt att mata densiteten av narvarande sfariska karbider med en cirkelekvivalent diameter av 0,2 pm eller mer observerade i matomradet. After that, the sample is observed with SEM and a structural image of the spherical carbides is tagged. In the SEM, the structure of the spherical carbides appears relatively white, and has a proportion (partial proportion) of largest size (rank size) and a minimum size (short size) of 2 or smaller, spherical carbides. The magnification of the image taken with SEM is X1000 or more, with X5000 to X20000 to be preferred. As feeding positions, the solids were selected at a thickness of about 0.5 to 1 mm from the surface of the rolling bar, the segregated middle portions being avoided. The SEM structure image was processed with image processing to feed the smallest size (short size) and the largest size (long size) of the spherical carbides observed in the feed area and the circle equivalent diameter is calculated. The circle equivalent diameter is the diameter near the area, calculated by image processing, of an undissolved carbide in an area further converted to a circle of the same area. Furthermore, it is also possible to feed the density of present spherical carbides with a circle equivalent diameter of 0.2 μm or more observed in the feed area.

[0076]MetalstrukturhosfOrdragenstaltradfor hOghallfasthetsfjaderanvandning och dragen varmebehandlad staltrad Metal strukturen hos dragen varmebehandlad staltrad for haghallfasthetsfjaderanvandning, enligt fOreliggande uppfinning, innefattar i volymsmatt Over 6 % till 15 % av restaustenit och en balans av anlOpt martensit. Fina 26 27 inneslutningar är tillatna. De "fina inneslutningarna" är oxider och sulfider. Oxiderna ar deoxidationsprodukter av Al och Si etc., varvid sulfiderna motsvara MnS, CaS, etc. Vidare innehaller jamvikten av den anlOpta martensitstrukturen ocksa oupplOsta sfariska karbider i sma mangder. The metal structure of the drawn heat treated spring use and drawn heat treated steel line The metal structure of the drawn heat treated steel line for high strength spring use, according to the present invention, comprises in volume mat over 6% to 15% of residual austenite and a balance of residual anlite. Fine 26 27 inclusions are allowed. The "fine inclusions" are oxides and sulfides. The oxides are deoxidation products of Al and Si, etc., the sulphides corresponding to MnS, CaS, etc. Furthermore, the balance of the molten martensite structure also contains undissolved spherical carbides in small amounts.

[0077]Den tidigare austenit kornstorleken i strukturen är #10 eller mer, varvid den cirkelekvivalenta diametern av de sfariska karbiderna ar mindre an 0,2 pm. Vidare utgOr perlitstrukturen 90 % eller mer, foretradesvis 95 % eller mer, mer foredraget 98 % eller mer, av metall strukturen hos ferdragen staltrad, for hOghallfasthetsfjaderanvandning, enligt fOreliggande uppfinning. En signifikant 100 % perlitstruktur är ideal. The previous austenite grain size in the structure is # 10 or more, with the circle equivalent diameter of the spherical carbides being less than 0.2 μm. Furthermore, the perlite structure constitutes 90% or more, preferably 95% or more, more preferably 98% or more, of the metal structure of the coated steel wire, for high strength spring application, according to the present invention. A significant 100% perlite structure is ideal.

[0078]Tidigare austenit kornstorleksnummer: #10 eller mer StrukturenhosdragenvarmebehandladstaltradfOr 15 hOghallfasthetsfjaderanvandning i den threliggande uppfinningen innefattas huvudsakligen av anlOpt martensit. Tidigare austenit kornstorlek har stor effekt pa egenskaperna. Det vill saga utmattningsegenskapema och formbarheten fOrbattras till WO av fOrfining av den tidigare austenit kornstorleken som en effekt av kornstorleksminskning. I den fOreliggande uppfinningen ar den tidigare austenit kornstorleken gjord #10, for att uppna tillrackliga utmattningsegenskaper och formbarhet. Previous austenite grain size number: # 10 or more The structure has been heat treated for high spring strength application in the present invention is mainly comprised of tempered martensite. Previous austenite grain size has a large effect on the properties. That is, the fatigue properties and formability are improved to WO by the invention of the previous austenite grain size as an effect of grain size reduction. In the present invention, the previous austenite grain size is made # 10, in order to achieve sufficient fatigue properties and formability.

[0079]FOrfining av tidigare austenit ar synnerligen effektivt fOr all fOrbattra egenskapernahosdragenvdrmebehandladstaltradfor 25 hOghallfasthetsfjaderanvandning. Det tidigare austenit kornstorleksnumret ar foretradesvis gjord #11, mer foredraget #12. For all fOrfina kornstorleken av tidigare austenit, ar det effektivt att minska varmningstemperaturen vid slackning. Notera att "tidigare austenit kornstorleksnummer" ar baserat pa JIS G 0551. Om slackning utfOrs genom minskning av varmningstemperaturen och fOrkortning av tiden kan den tidigare austenit kornstorleken fOrfinas, men orimligt lag temperatur och kort behandlingstid Okar inte bara mangden oupplOsta sfariska karbider, utan resulterar ibland ocksa i otillrdcklig austenit omvandling i sig och slackning i tva faser. Motsatt minskas ibland formbarheten och utmattningsegenskaperna. Av den anledningen ar vanligtvis #13,5 den Ovre gransen. 27 28 The invention of prior austenite is particularly effective for all the improved properties of the heat treated steel for high strength spring application. The previous austenite grain size number is preferably made # 11, more preferably # 12. For all the refined grain size of previous austenite, it is effective to reduce the heating temperature at slackening. Note that "previous austenite grain size number" is based on JIS G 0551. If slackening is performed by reducing the heating temperature and shortening the time, the previous austenite grain size can be refined, but unreasonably low temperature and short treatment time increases not only the amount of undissolved spherical carbides, also in insufficient austenite transformation per se and slackening in two phases. Conversely, the formability and fatigue properties are sometimes reduced. For that reason, # 13.5 is usually the upper limit. 27 28

[0080]Restaustenit: Over 6 % till 15 % (volymenhet) MikrostrukturenhosdragenvarmebehandladstaltradfOr hOghallfasthetsfjaderanvandning innefattar efter seghardning, anlept martensit, restaustenit, och en liten volymsfraktion av inneslutningar (har ar de beskrivna utfallningarna ocksa inkluderade i inneslutningarna). Restaustenit ar effektiv for att fbrbattra kallindningsformagan. Volymenheten av restaustenit ar gjord 6 %, fOretradesvis 7 % eller mer, mer fOredraget 8 % eller mer, for att sakra kallindningsfOrmagan, i fOreliggande uppfinning. Residual austenite: Over 6% to 15% (unit by volume) The microstructure which is heat-treated is designed for high-strength spring application after toughening, tempered martensite, residual austenite, and a small volume fraction of inclusions (the precipitates described are also included). Residual austenite is effective in improving cold winding ability. The volume unit of residual austenite is made 6%, preferably 7% or more, more preferably 8% or more, to ensure cold winding capacity, in the present invention.

[0081]Daremot om restaustenit Overskrider volymsmattet 15 %, orsakar martensit, vilken bildats till fOljd av arbetsinducerad omvandling, att kallindningsegenskaperna avtar. DarfOr ar volymsmattet av restaustenit satt till 15 % eller mindre, fOretradesvis 14 % eller mindre, mer fbredraget 12 % eller mindre. On the other hand, if residual austenite exceeds the volume mat 15%, martensite, which is formed as a result of work-induced conversion, causes the cold winding properties to decrease. Therefore, the volume content of residual austenite is set at 15% or less, preferably 14% or less, more preferably 12% or less.

Volymsmattetavrestaustenitkanbestammasmed rOntgendiffraktionsfOrfaranden och magnetiska matfOrfaranden. De magnetiska maffOrfarandena mOjliggor enkel matning av volymsmattet restaustenit, sá det ar det fOredragna mafferfarandet. Har ar volymsmattet matt, men de erhallna uppgifterna ar de samma som mattet pa arean. The volume mat of the most austenitic can be determined by X-ray diffraction procedures and magnetic food procedures. The magnetic mapping procedures allow easy feeding of the volume mat residual austenite, so this is the preferred mapping procedure. If the volume mat is math, but the information obtained is the same as the math on the area.

[0082]Noter att restaustenit ar mjukare an anlOpt martensit, vilket minskar strackgransen. Vidare ar den omvandlingsinducerade plasticiteten anvand for att fOrbattra formbarheten, vilket bidrar anmarkningsvart till att fOrbattra kallformbarheten. Daremot kvarstar ofta restaustenit i de segregerade delarna, 25 tidigare austenit korgranser, och omraden klamda av hangkornen, sá att martensit vilken bildas genom arbetsinducerad fasomvandling (arbetsinducerad martensit) blir utgangspunkten for brott. Vidare, om restaustenit Mar, avtar anlOpt martensit proportionellt. 30 [0083]Av den anledningen har tidigare minskning i styrka och kallindningsfOrmaga, till fbljd av restaustenit, betraktats som ett problem. Men i haghallfasthets staltradar pa Over 2000 MPa, blir mangden tillsatt C, Si, Mn, Cr, etc. stOrre vilket gbr nyttjande av restaustenit extremt effektivt for att forbattra kallindningsfOrmagan. Vidare har ny hog prestanda fjaderbearbetningsteknologi gjort 28 29 det mOjligt att dampa fOrsamringen av formbarhetsegenskaperna aven om delar med hog hardhet bildas lokalt pa grund av bildandet av bearbetningsinducerade martensit vid form ning av fjadern. Note that residual austenite is softer than annealed martensite, which reduces the yield strength. Furthermore, the transformation-induced plasticity is used to improve the formability, which contributes remarkably to improving the cold formability. On the other hand, residual austenite often remains in the segregated parts, 25 former austenite basket boundaries, and areas clamped by the grains, so that martensite which is formed by work-induced phase transformation (work-induced martensite) becomes the starting point for crime. Furthermore, if residual austenite Mar, anlOpt martensite decreases proportionally. For this reason, previous decreases in strength and cold winding ability, due to residual austenite, have been considered a problem. But in haghall strength steel radar of Over 2000 MPa, the amount added C, Si, Mn, Cr, etc. becomes larger, which makes the use of residual austenite extremely efficient to improve cold winding capacity. Furthermore, new high performance spring machining technology has made it possible to vaporize the deterioration of the formability properties even if high hardness parts are formed locally due to the formation of machining induced martensite in forming the spring.

[0084]Harnast kommer de mekaniska egenskaperna hos dragen varmebehandlad staltrad for hOghallfasthetsfjaderanvandning aft fOrklaras. Most recently, the mechanical properties of the drawn heat-treated steel row for high-strength spring use will be explained.

For att minska storleken och for att Ora fjadern lattare ar det effektivt aft Ora den mer hallfast. Vidare kravs att fjadern har Overlagsen utmattningshallfasthet. I den fOreliggande uppfinningen tillverkas hOghallfasthetsfjader genom bojning av materialet hos dragen varmebehandlad staltrad, for hOghallfasthetsfjaderanvandning, till Onskad form darefter nitreras, kulbombas, eller pa annat sail hardas ytan. Vid nitrering ar fjadern varmd till 500 °C eller sa, vilket gOr all fjadern ibland ar mer uppmjukad an materialet hos dragen varmebehandlad staltrad, for hOghallfasthetsfjaderanvandning. In order to reduce the size and to make the spring lighter, it is effective to make the ear more durable. Furthermore, it is required that the spring has Overlagsen fatigue resistance. In the present invention, high-strength spring is manufactured by bending the material of the drawn heat-treated steel row, for high-strength spring application, to the desired shape, then nitriding, ball-bombing, or on another sail hardened surface. During nitration, the spring is heated to 500 ° C or so, which means that all the spring is sometimes softer than the material of the drawn heat-treated steel row, for high-strength spring use.

[0085]DarfOr ar det nOdvandigt aft sakerstalla strackgranserna for material hos dragen varmebehandlad trad, for hOghallfasthetsfjaderanvandning, for aft Oka hallfastheten hos fjadern och fOrbattra utmattningsegenskaparna. Vidare kravs kallindningsfOrmaga Mr aft dragen varmebehandlad staltrad, for hOghallfasthetsfjaderanvandning, skall kunna bearbetas till Onskad form, sa den Ovre gransen for strackgransen maste begransas. Therefore, it is necessary to ensure the straight limits for material of the drawn heat-treated wire, for high-strength spring application, to increase the half-strength of the spring and to improve the fatigue properties. Furthermore, the requirement for cold-wrapping capacity. If the drawn heat-treated steel row, for high-strength spring use, must be able to be processed to the desired shape, the upper limit for the stretch limit must be limited.

[0086]Strackgrans: 2100 till 2400 MPa Om fOrdragen varmebehandlad staltrad, kir hoghallfasthetsfjaderanvandning, hardad vid ytan genom nitrering etc., har stor strackgrans ar det mOjligt aft fOrbattra utmattningsegenskaperna och eftergivningsegenskapen hos fjadem. I den fOreliggande uppfinningen ar strackgransen hos dragen varmebehandlad staltrad for hOghallfasthetsfjaderanvandning gjord 2100 MPa eller mer, fbr aft fOrbattra fjaderns utmattningsegenskaper och eftergivningsegenskap. Strain limit: 2100 to 2400 MPa If the preferred heat-treated stable line, such as high-strength spring application, hardened at the surface by nitriding, etc., has a large stretch limit, it is possible to improve the fatigue properties and the resilience property of the spring. In the present invention, the yield strength of the drawn heat-treated steel row for high-strength spring use is made 2100 MPa or more, in order to improve the fatigue properties and resilience of the spring.

Vidare desto stOrre strackgrans dragen varmebehandlad staltrad for heighallfasthetsfjaderanvandning har, desto battre utmattningsegenskaper far fjadem, sa dragen varmebehandlad staltrad for hOghallfasthetsfjaderanvandning har en strackgrans pa foretradesvis 2200 MPa eller mer, mer fOredraget 2250 MPa eller mer. 29 Furthermore, the larger the stretch limit drawn heat-treated steel row for high-strength spring use has, the better the fatigue properties of the spring, so the drawn heat-treated steel row for high-strength spring use has a stretch limit of preferably 2200 MPa or more, more preferred. 29

[0087]DaremotomdragenvarmebehandladstaltradfOr hOghallfasthetsfjaderanvandning har fOr stor strackgrans avtar kallindningsformagan sá strackgransen sails till 2400 MPa eller mindre. On the other hand, the heat treatment provided for high-strength spring application has too large a stretch limit, the cold winding shape decreases so that the stretch limit sails to 2400 MPa or less.

[0088]Strackgrans (om strackgrans inte kan observeras, pavisar 0,2 % provspanning): 1600 till 1980 MPa I den foreliggande uppfinningen betyder strackgransen eller strackpunkten av dragen varmebehandlad staltrad, fOr hoghallfasthetsfjaderanvandning, den hOgsta 10 strackgransen nar en strackpunkt ses pa spannings/tOjningskurvan i ett en-axligt draghallfasthetstest och 0,2 % pavisar spanning nar ingen strackpunkt syns. FOr att sakra styrkan och eftergivningsmotstandet hos fjadern, vilken elastiskt deformeras genom upprepad spanning, ar okad strackgrans att fOredra. For att Oka strackgransen hos fjadern ar det att fOredra att Oka strackgransen hos materialet det 15 viii saga dragen varmebehandlad staltrad, fOr heighallfasthetsfjaderanvandning. In the present invention, the yield strength or yield point of drawn heat-treated steel row, for high-strength spring application, means the highest yield strength when a yield point is seen on stress / strength. - If yield strength cannot be observed, 0.2% test stress indicates: 1600 to 1980 MPa. The elongation curve in a one-axis tensile strength test and 0.2% shows tension when no tensile point is visible. To ensure the strength and resilience of the spring, which is elastically deformed by repeated tensioning, increased tensile strength is preferable. In order to increase the yield strength of the spring, it is preferable to increase the yield strength of the material which has been heat-treated steel-treated steel, for high-strength spring use.

[0089]Daremot,omdragenvarmebehandladstaltradfor hOghallfasthetsfjaderanvandning far stor strack grans blir kallindningsfOrmagan ibland forsamrad. DarfOr har dragen varmebehandlad staltrad fOr 20 hOghallfasthetsfjaderanvandning fOretradesvis en strackgrans pa 1600 MPa eller mer, for all sakra fjaderns styrka och eftergivningsegenskap. [0089] On the other hand, if heat-treated steel is used for high-strength spring application, it will sometimes be cold-rolled. For this purpose, the heat-treated steel line has been drawn for 20 high-strength spring applications, preferably a yield strength of 1600 MPa or more, for all the strength and resilience of the spring.

[0090]FOr all ge ytterligare hOgre hallbarhet ar 1700 MPa eller mer att fOredra. For all give further higher durability, 1700 MPa or more is preferable.

Daremot om strackgransen Overskrider 1980 MPa, ar kallindningsfOrmagan ibland forsamrad sá strackgransen ar fOretradesvis satt till 1980 MPa eller mindre. On the other hand, if the yield strength exceeds 1980 MPa, the cold winding capacity is sometimes reduced so that the yield strength is preferably set at 1980 MPa or less.

Notera all det ar att fOredra all minska volymsmattet av restaustenit fOr aft Oka strackgransen hos materialet med samma strackgrans direkt efter snabb seghardningavdragenvarmebehandladstaltradfOr htighallfasthetsfjaderanvandning. Note that it is preferable to reduce the volume mat of residual austenite in order to increase the yield strength of the material with the same yield strength immediately after rapid toughening of the heat-treated plant for high-strength spring application.

[0091]Vickers hardhet efter nitrering genom bibehallning vid 500 °C i 1 timme: Ytskiktshardhet HW750, innerhardhet HW.570 En hOghallfasthetsfjader forbattras i ytskiktshardhet vid nitrering, van/id insidan uppmjukas. Till exempel vid tau gasnitrering vid 500 °C var det svart att 31 dampa uppmjukning av insidan av dragen varmebehandlad staltrad, for hOghallfasthetsfjaderanvandning, om den konventionella varmningstemperaturen blir 500 °C. Dragen varmebehandlad staltrad for hUghallfasthetsfjaderanvandning, i den fc5religgande uppfinningen, har utmarkt motstand mot varmerelaterad avmjukning och 5 mOjliggiir sakerstallande av fjaderns utmattningsegenskaper och eftergivningsegenskapen efter varmning vid 500 C. Vickers hardness after nitriding by maintaining at 500 ° C for 1 hour: Surface hardness HW750, inner hardness HW.570 A high-strength spring is improved in surface hardness during nitriding, the inside is softened. For example, when tau gas nitriding at 500 ° C, it was black to vaporize softening of the inside of the drawn heat-treated steel row, for high-strength spring use, if the conventional heating temperature becomes 500 ° C. The drawn heat-treated stable line for high-strength spring use, in the present invention, has excellent resistance to heat-related softening and allows for substantial proofing of the spring fatigue properties and the resilience property after heating at 500 ° C.

I den fOreliggande uppfinningen ar ytskiktshardheten och den innerhardheten efter mjuk gasnitrering definierad. In the present invention, the surface hardness and the inner hardness after soft gas nitriding are defined.

[0092]Ytskiktshardheten satts till mikro Vickershardheten vid ett djup av 50 till 100 pm fran ytskiktet med Vickershardheten 750 eller mer. Om Vickershardheten ar 750 eller mer, blir ytskiktshardheten otillracklig och utmattningshallbarhet blir dessutom fOrsamrad, vilket gor aft kvarvarande spanning efter kulbombningen inte minskas tillrackligt. FOretradesvis ar ytskiktshardheten 780 eller mer. The surface layer hardness is set to the micro Vickers hardness at a depth of 50 to 100 μm from the surface layer with the Vickers hardness 750 or more. If the Vickers hardness is 750 or more, the surface layer hardness becomes insufficient and fatigue durability is also compromised, which means that the remaining stress after the ball bombing is not sufficiently reduced. Preferably, the surface layer hardness is 780 or more.

[0093]Daremot mats innerhardhet Vickershardheten ibland vid slackning, nar temperaturen vid ytskiktet pa staltraden ar hOgre an inuti, vilket gor aft matning av den innerhardheten fOretradesvis gOrs vid en position av 500 m djup frail ytan. For aft sakerstalla eftergivningshallfasthetsegenskaperna och eftergivningsegenskapen, 20 skall Vickershardheten efter varmebehandling bibehallande traden vid 500 °C i 1 timme vara 570 eller mer. Vidare, ar 575 eller mer fOredraget. On the other hand, the inner hardness is sometimes measured. The Vickers hardness is sometimes measured during slackening, when the temperature at the surface layer of the steel row is higher than inside, which means that feeding of the inner hardness is preferably done at a position of 500 m deep in the surface. In order to ensure the yield strength and yield properties, the Vickers hardness after heat treatment maintaining the range at 500 ° C for 1 hour should be 570 or more. Furthermore, 575 or more are the Lecture.

Notera aft, den Ovre gransen for Vickershardheten efter bibehallning vid 500 °C i 1 timme for varmebehandling ar inte sarskilt definierat, men for aft fOrsakra att Vickershardheten fore varmebehandling inte Overskrids, satts den vanligtvis till 783 eller mindre. Note that the upper limit of Vickers hardness after maintaining at 500 ° C for 1 hour for heat treatment is not specifically defined, but to cause the Vickers hardness before heat treatment not to be exceeded, it is usually set to 783 or less.

[0094]Vidare är ytskiktet hos dragen varmebehandlad staltrad for hoghallfasthetsfjaderanvandningsomanvandssommaterialfor hOghallfasthetsfjadrar, hardat med kulbombning, nitrering, etc. Daremot ar 30 Vickershardheten vid en position av 500 pm djup fran ytan av hoghallfasthetsfjadern (innerhardhet) paverkad av varmning vid nitrering. Darfor kommer den innerhardheten aft variera beroende pa nitrerings temperatur vid verklig produktion av en fjader. 31 32 Furthermore, the surface layer of the drawn heat-treated steel row for high-strength spring application is used as a material for high-strength springs, hardened by ball bombardment, nitriding, etc. Therefore, the inner hardness will vary depending on the nitriding temperature during actual production of a spring. 31 32

[0095] Notera att nar dragen varmebehandlad staltrad for hOghallfasthetsfjaderanvandning, i den treliggande uppfinningen, anvands som ett material fOr produktion av hiighallfasthetsfjader, är den kallindad och nitrerad. Av den anledningen, avtar restaustenit nagot, vid ett djup av 500 pm fran ytan av 5 hOghallfasthetsfjadern, jamtrt med materialet fOr dragen varmebehandlad staltrad for hOghallfasthetsfjaderanvandning. Note that when drawn heat-treated steel line for high-strength spring use, in the three-pronged invention, is used as a material for the production of high-strength spring, it is cold-wound and nitrided. For this reason, residual austenite decreases somewhat, at a depth of 500 μm from the surface of the high-strength spring, compared with the material for the drawn heat-treated steel line for high-strength spring use.

Men den kemiska sammansattningen sfariska karbider och tidigare austenit kristallkornstorlek trutsatts vara lite paverkad av kallindning och nitrering. Dartr är den kemiska sammansattningen sfariska karbider och tidigare austenit 10 kristallkornstorlek hos htighallfasthets stal, tillverkad anvandande dragen varmebehandlad stAltrad for hoghdllfasthetsfjaderanvandning, i den framlagda uppfinningen, som ett material är samma kemiska komposition, sfariska karbider, och tidigare austenit kristall kornstorlek av dragen varmebehandlad staltra'd for hOghallfasthetsfjaderanvandning, i treliggande uppfinning. However, the chemical composition of spherical carbides and former austenite crystal grain size has been found to be slightly affected by cold winding and nitriding. There, the chemical composition is spherical carbides and former austenite crystal grain size of high strength steel, made using drawn heat treated steel used for high strength spring use, in the present invention, as a material is the same chemical composition, spherical thermocarbons of carbon d for high-strength spring use, in the three-pronged invention.

[0096]Flarnast kommer trfarandet for produktion av dragen varmebehandlad staltrad for hOghallfasthetsfjaderanvandning, i foreliggande uppfinning, aft trklaras. En stalgOt anpassad enligt trutbestamd kemisk sammansattning valsas for aft producera ett stalvalsamne av minskad storlek. Vidare varms valsamnet upp 20 varefter det varmvalsas for att erhalla fOrdragen staltrad for hOghallfasthetsfjaderanvandning.Dentrdragnastaltradenfor hOghallfasthetsfjaderanvandning patenteras, formas och dessutom glOdgas den for aft Ora den harda ytan mjuk. Darefter dras, slacks och antps staltraden tr aft producera dragen varmebehandlad staltrad for hoghallfasthetsfjaderanvandning. 25 "Patenteringen" innebar varmebehandling for att Ora strukturen av stalet efter varmvalsning feint och perlit och Ors fOr mjukning av staltraden fore dragning. Efter dragning genomtrs anlOpning i olja, induktionshardningsbehandling, och seghardning for att justera staltradens struktur och egenskaper. Next, the process for producing the drawn heat-treated steel row for high-strength spring use, in the present invention, will be explained. A steel roll adapted to a trout-determined chemical composition is rolled to produce a steel roll blank of reduced size. Furthermore, the roll assembly is heated, after which it is hot-rolled to obtain the preferred steel line for high-strength spring use. The wire-drawn wire line for high-strength spring use is patented, shaped and, in addition, the hard surface is softened. Thereafter, the steel row is drawn, slacks and antps the steel line to produce the drawn heat-treated steel line for high-strength spring use. The "patenting" involved heat treatment in order to fine-tune the structure of the steel after hot rolling and perlite and to soften the steel row before drawing. After drawing, annealing in oil, induction hardening treatment, and toughening are carried out to adjust the structure and properties of the stable line.

[0097]FOrfarandet fOr att forhindra trgrovning av sfariska karbider är viktigt vid produktion av trdragen staltrad for hOghallfasthetsfjaderanvandning, i den treliggande uppfinningen. 32 33 The method of preventing wood digging of spherical carbides is important in the production of wire rods designed for high strength spring use, in the three present invention. 32 33

[0098]I synnerhet nar innehallet av C och Cr ar hOgt, i den fOreliggande uppfinningen, ar det extremt viktigt att varma gOten eller valsamnet tillrackligt fore valsning i det stadiet och forenkla uffallning inne i stalet och att upplOsa de interna grova karbiderna (legeringskarbider och cementiter) och gOra materialet homogent. In particular, when the content of C and Cr is high, in the present invention, it is extremely important to heat the grout or roll sufficiently pre-rolling at that stage and to simplify precipitation inside the steel and to dissolve the internal coarse carbides (alloy carbides and cementites) and make the material homogeneous.

For att fOrhindra bildandet av grova karbider, maste grova karbider vilka bildas i gOten eller valsamnet, upplOsas i stalet. Vidare, ar det nodvandigt att skapa uniform spridning stalet. Av den anledningen ar Okad varmningstemperatur att fOredra. In order to prevent the formation of coarse carbides, coarse carbides which are formed in the ingot or rolling stock must be dissolved in the steel. Furthermore, it is necessary to create uniform spreading steel. For this reason, increased heating temperature is preferable.

[0099]DarfOr ar gOten eller valsamnet gjord fOrst efter gjutning vid en 10 varmningstemperatur av 1250 °C eller mer. Till NA av det ar det mdjligt att Ora de oupplOsta sfariska karbiderna tillrackligt upplOsta. Av den anledningen, varmningstemperaturen och varmningstiden otillracklig vid varmningen efter efterfdljande valsning, patentering och slackning, sa oupplOsta sfariska karbider kvarstar lam men for att mOjliggora tillracklig upplOsning fran berjan, kan 15 dimensionerna hos de oupplosta sfariska karbiderna styras till mindre an 0,2 pm. Gotens varmningstemperatur skall vara 1270 °C eller mer. Therefore, the casting or rolling stock is made only after casting at a heating temperature of 1250 ° C or more. To NA of this it is possible to Ora the undissolved spherical carbides sufficiently dissolved. For this reason, the heating temperature and the heating time are insufficient during the heating after subsequent rolling, patenting and slackening, so undissolved spherical carbides remain intact, but in order to allow sufficient dissolution from the brine, the dimensions of the undissolved spherical minor carbides can be controlled. The warming temperature of the litter must be 1270 ° C or more.

[0100]Darefter ar valsamnet, vilket tillverkats genom valsning av gesten, vidare varmvalsat (valstrad ar valsad) for att tillverka fOrdragen staltrad fOr 20 hOghallfasthetsfjaderanvandning. Vid denna tid ar varmningstemperaturen av valsamnet satt till 1200 °C eller mer. FOretradesvis ska varmningstemperaturen av valsamnet sattas till 1250 °C eller mer. Thereafter, the roll assembly, which is manufactured by rolling the gesture, is further hot-rolled (rolled-rolled is rolled) to manufacture the contracts designed for high-strength spring application. At this time, the heating temperature of the roll is set to 1200 ° C or more. Preferably, the heating temperature of the roll should be set to 1250 ° C or more.

Efter stalet utvunnits fran varmningsugnen, sjunker temperaturen och uffallningar tilltar. Av den anledningen ar det att fOredra att varmvalsning avslutas 25 inom 5 minuter, efter det at stalet utvunnits fran varmningsugnen. Genom ovan varmning av got och valsamne, ar de grova karbiderna i stalet homogent spridna och upplOsta och karbiderna kan uniformt fint fallas ut vid den senare uffallningen. After the steel has been extracted from the heating furnace, the temperature drops and precipitation increases. For this reason, it is preferable that hot rolling be completed within 5 minutes, after the steel has been extracted from the heating furnace. Due to the above heating of the grout and rolling stock, the coarse carbides in the steel are homogeneously dispersed and dissolved and the carbides can uniformly precipitate on the later precipitation.

Notera att vid valsning av gOten till staltrad, utan att fOrst Ora ett valsamne, skall varmningstemperaturen fore valsning av goten sattas till 1250 °C eller mer, 30 fOretradesvis 1270 °C eller mer. Note that when rolling the ingot into a stable row, without first making a rolling stock, the heating temperature before rolling the ingot should be set to 1250 ° C or more, preferably 1270 ° C or more.

[0101]I ovanstaende fOrfarande ar det nOdvandigt att Ora storleken mindre for att undvika fOrgrovning for att dampa fOrgrovning av oupplOsta sfariska karbider hos staltraden efter varmebehandling aven om de oupplOsta sfariska karbidema, 33 34 vilka ar narvarande fore dragning (det viii saga, efter valstrads valsning), reduceras kraftigt eller om till exempel oupplosta karbider ar narvarande. In the above process, it is necessary to reduce the size to avoid coarsening in order to vaporize the coarseness of undissolved spherical carbides in the steel row after heat treatment of the undissolved spherical carbides, 33 34 which are presently preferred (as shown). rolling), is greatly reduced or if, for example, undissolved carbides are present.

DarfOr ar det viktigt att Ora gOtvarmningstemperaturen och valsamnesvarmningstemperaturen tillrackligt hOg i valsningssteget for varmning fore dragning fOr att upplOsa karbider. Till fOljd av det kan storleken pa de sfariska karbiderna hallas liten. Valsningen av fjaderstal till en storlek av materialet fore dragning om cirka (1) 10 mm, slutfors flera minuter efter utvinning av valsamnet fran varmningsugnen. Av den anledningen, ar det viktigt att varma till 1200 °C eller mer nar effekten av valsamnets varmningstemperatur ar stor. Varmning till 1250 °C eller mer ar att fOredra. Varmning till 1270 °C eller mer ar mer fOredraget. Therefore, it is important that the heating temperature and the rolling stock heating temperature be sufficiently high in the rolling step for heating before dissolving carbides. As a result, the size of the spherical carbides can be kept small. The rolling of spring figures to a size of the material preference of about (1) 10 mm, is completed several minutes after extraction of the roll stock from the heating furnace. For this reason, it is important to heat to 1200 ° C or more when the effect of the rolling stock's heating temperature is large. Heating to 1250 ° C or more is preferable. Heating to 1270 ° C or more is more preferred.

[0102]Efter valsning tags frac] upp i en spole och luftkyls enligt konventionellt fOrfarande. Av denna anledning innefattar vanligtvis mikrostrukturen av fordragen staltrad (staltrad efter valsning av valstrad), ferrit och perlit eller perlit med en hog perlitstruktur fraktion, eftersom mangden C ar hog. OupplOsta sfariska karbider ar narvarande i grundmaterialet. After rolling, the frac is taken up in a coil and air cooled according to a conventional method. For this reason, the microstructure of the preferred staltra (staltra after rolling of roll) usually comprises ferrite and perlite or perlite with a high perlite structure fraction, since the amount C is high. Undissolved spherical carbides are present in the base material.

[0103]Oupplosta sfariska karbider kan observeras genom all eft polerat och etsat detektionsprov observeras med SEM. OupplOsta karbider kan klart sarskiljdas 20 fran laminarcementit innesluten i perlitstrukturen hos grundmaterialet eftersom de ar sfariska. Naturligtvis kan storleken ocksa matas. Undissolved spherical carbides can be observed by any polished and etched detection sample observed by SEM. Undissolved carbides can be clearly distinguished from laminar cementite enclosed in the perlite structure of the base material because they are spherical. Of course, the size can also be fed.

Pa grund av ovan namnda steg ar fOrdragen staltrad for fjaderanvandning (valsad valstrad) observerad. Due to the above-mentioned steps, the Treaties stable for spring use (rolled rolled row) are observed.

[0104]Efter varmvalsning patenteras fOrdragen staltrad for fjaderanvandning. After hot rolling, the preferred steel row is patented for spring use.

Varmningstemperaturen vid patenteringen kan sattas till 900 °C eller mer for att underlatta upplOsning av karbider. En hOgre temperatur av 930 °C eller mer ar att foredra. Vidare ar 950 °C eller mer att foredra. Darefter kan traden patenteras vid 600 °C eller mindre. I fOrdragen staltrad for fjaderanvandning, i enlighet med fOreliggande 30 uppfinning, ar fOrfarandena for patentering och dragning inte begransade. Om konventionell patentering och dragningsfOrfarande for staltrad, kan samma behandling som vanligt ufforas. The heating temperature during patenting can be set to 900 ° C or more to facilitate dissolution of carbides. A higher temperature of 930 ° C or more is preferred. Furthermore, 950 ° C or more is preferred. The trade can then be patented at 600 ° C or less. In the Treaties Designed for Spring Use, in accordance with the present invention, the procedures for patenting and drawing are not limited. If conventional patenting and drawing procedure for staltrad, the same treatment as usual can be performed.

Nar dragning av trad diametern och fordrad precision utesluts, kan patenteringssteget fore dragning uteslutas. I detta fall kan upplOsning av de 34 oupplOsta sfariska karbiderna framjas genom att varmningstemperaturen, i den senare fOrklarade slackning, gars Nig (till exempel, 970 °C eller mer). When drawing the wire diameter and required precision are excluded, the patenting step of drawing can be excluded. In this case, dissolution of the 34 undissolved spherical carbides can be promoted by gars Nig (for example, 970 ° C or more) in the warming temperature, in the later explained slackening.

[0105]Slackningen efter dragning utfOrs genom varmning till en temperatur av A3 punkten eller mer. FOr att framja upplosning av karbider, ar det att fOredra att Oka varmningstemperaturen vid slackningen. Vid slackningen satts varmningstakten fOretradesvis till 10 °C/ sek eller mer och bibehallningstiden vid temperaturen for A3- punketen eller mer ar fOretradesvis till 1 min till 5 min, for att dampa tillvaxten av karbider. For att dampa korntillvaxt av austenit, ar det att fOredra att fOrkorta bibehallningstiden. For att framja slackningen och martensit transformation Ors kylningstakten fOretradesvis 50 °C/sek till 100 C. The slackening after drawing is carried out by heating to a temperature of A3 point or more. To promote the dissolution of carbides, it is advisable to increase the heating temperature during slackening. At slackening, the heating rate is preferably set to 10 ° C / sec or more and the retention time at the temperature of the A3 point or more is preferably to 1 minute to 5 minutes, to vaporize the growth of carbides. In order to dampen the growth of grain from austenite, it is preferable to shorten the retention time. To promote slackening and martensite transformation, the cooling rate is preferably 50 ° C / sec to 100 ° C.

[0106]Kylmedlet vid slackningsforfarandet salts fOretradesvis till 100 °C eller mindre, mer fOredraget en lag temperatur om 80 °C eller mindre, for all exakt styra 15 mangden restaustenit, Ors kylvatsketemperaturen 40 °C eller mer i den fOreliggande uppfinningen. Valet av kylmedel ar inte sarskilt begransat sá lange som det ar en olja, ett vattenlOsligt slackningsmedel eller annat kylmedel som framjar slackning. Vidare kan kyltiden kortas pa samma salt som vid anlOpning i olja och induktionshardningsbehandling. Del ar att fOredra att undvika fOrlangd bibehallningstid vid lag temperatur for att kraftig minska restaustenit och sanka kylmedelstemperaturen till 30 °C eller mindre. Det vill saga det ar att fOredra att slackningen avslutas inom 5 minuter. The refrigerant in the quenching process is preferably salted to 100 ° C or less, more preferably a low temperature of 80 ° C or less, for all precisely controlling the amount of residual austenite, or the coolant temperature is 40 ° C or more in the present invention. The choice of coolant is not particularly limited as long as it is an oil, a water-soluble quencher or other coolant that promotes quenching. Furthermore, the cooling time can be shortened to the same salt as when tempering in oil and induction hardening treatment. Parts are preferred to avoid prolonged retention time at low temperature to greatly reduce residual austenite and lower the refrigerant temperature to 30 ° C or less. That is to say, it is preferable that the slacking is completed within 5 minutes.

[0107]Efter slackning utfers anlOpning. Anlopning undertrycker tillvaxten av 25 karbider, sa det ar att fOredra all varmningstakten ar 10 °C/sek eller mer och att bibehallningstiden ar 15 minuter eller mindre. Bibehallningstemperaturen varierar pa grund av den kemiska sammansattningen och malet for hallfastheten, men materialet ar vanligtvis bibehallet vid 400 till 500 C. [0107] After slackening, annealing is performed. Tempering suppresses the growth of 25 carbides, so it is preferable to all the heating rate is 10 ° C / sec or more and that the retention time is 15 minutes or less. The retention temperature varies due to the chemical composition and the target for the half strength, but the material is usually maintained at 400 to 500 ° C.

[0108]FOrdragen staltrad for hOghallfasthetsfjaderanvandning ar kallindad for att bearbetas till Onskade fjaderform, befriad fran spanning och nitrerad och kulbombning for att tillverka fjadern. 36 The preferred shapes for high strength spring use are cold wound to be processed into the desired spring shape, relieved of tension and nitrided and ball bombing to make the spring. 36

[0109]Den kallindade staltraden ateruppvarms genom spanningsavlastande glOdgning, nitrering, etc. Vid denna tidpunkt är insidan uppmjukad vilket medfOr att prestandan has fjadern avtar. I synnerhet i fOreliggande uppfinningen är tillracklig hardhet bevarad aven am nitrering utfors vid en hog temperatur av omkring 500 C. 5 Som ett resultat är det mOjligt att gOra mikro Vickershardheten vid ett djup av 500 pm fan ytskiktet av hoghallfasthetsfjadrar HV575 eller mer, for fOrdragen staltrad for hoghallfasthetsfjaderanvandning. Notera att mikro Vickeshardheten mats vid ett djup av 500 pm fran ytskiktet av fjadern for aft utvardera Vickershardhet has grundmaterialet som inte paverkats av nitrering och kulbombning vid hardning. The cold-wound steel row is reheated by stress-relieving annealing, nitriding, etc. At this time, the inside is softened, which means that the performance of the spring decreases. In particular, in the present invention, sufficient hardness is preserved even when nitriding is carried out at a high temperature of about 500 ° C. As a result, it is possible to make the micro Vickers hardness at a depth of 500 .mu.m from the surface layer of high-strength springs HV575 or more. for high-strength spring use. Note that the micro Vickers hardness is fed at a depth of 500 μm from the surface layer of the spring in order to evaluate Vickers hardness has the basic material which is not affected by nitriding and ball bombing during curing.

Exempel Example

[0110]Stal med den kemiska sammansattningen som visas i tabell 1-1 till 1-4 smalts i en 10 kg vakuumsmaltugn och gjuts for att erhalla got eller valsamne. Dessa vakuum smalta material varmpressades upp till (1)8 mm. Darefter varmdes materialen 15 som ar varmpressande upp till 8 mm, vid 1270 °Cx4 timmar. Vidare fOrfinas en del av provet i en 250 ton omvandlare, kontinuerligt gjutna for att farbereda gOten, sedan varmda vid 1270 °Cx4 timmar eller mer, sedan gjord till valsamnen med tvarsnitt 160mmx160 mm. Vidare valsas dessa fOr aft erhalla c1)8 mm valsad valstrad. Varmningstemperaturen av valsamnet fOre valsning sattes till 1200 °C eller mer. Steels with the chemical composition shown in Tables 1-1 to 1-4 are melted in a 10 kg vacuum malting furnace and cast to obtain a cast or roll blank. These vacuum narrow materials were hot pressed up to (1) 8 mm. Then the materials which are hot pressing up to 8 mm were heated at 1270 ° Cx4 hours. Furthermore, a part of the sample is refined in a 250 ton converter, continuously cast to color the goth, then heated at 1270 ° Cx4 hours or more, then made into rolls with a cross section of 160 mm x 160 mm. Furthermore, these are rolled to obtain c1) 8 mm rolled rolled wire. The heating temperature of the rolling stock before rolling was set to 1200 ° C or more.

[0111]En diameter av 8 mm av fOrdragen staltrad (valsad valstrad) Ors fOretradesvis till en enkelt dragen struktur genom patentering fore dragning. Varmningstemperaturen vid patentering är foretradesvis 900 °C eller mer sá tillracklig upplOsning av karbider etc. astadkoms. Patentering utfOrs genom varmning vid 9 25 °C darefter matas provet in i en strOmmande badd vid 600 °C. Efter patentering är staltraden dragen for aft erhalla en 4 mm diameter dragen valstrad. Pa detta satt genom varmning av gOten vid hOr temperatur varefter temperaturen i valsningsfOrfarande, patentering, och slackning Ors sa hog som mojligt ar det mOjligt aft dampa tillvaxt av oupplosta sfariska karbider och halla dimensionerna nere till 0,2 pm eller mindre. A diameter of 8 mm of the preferred steel row (rolled rolled bar) is preferably formed into a single drawn structure by patenting the drawing. The heating temperature during patenting is preferably 900 ° C or more so that sufficient dissolution of carbides etc. is achieved. Patenting is performed by heating at 9 25 ° C then the sample is fed into a flowing bath at 600 ° C. After patenting, the steel wire is drawn to obtain a 4 mm diameter wire rolled wire. In this way, by heating the cast iron at a high temperature, after which the temperature in rolling process, patenting, and slackening is as high as possible, it is possible to vaporize the growth of undissolved spherical carbides and keep the dimensions down to 0.2 microns or less.

[0112]For att anpassa strackgransen hos den patenterade och dragna staltraden, seghardas staltraden fOr att tillverka fOrdragen staltrad for fjaderanvandning. Notera aft det prov som brast under dragning inte var seghardat. 36 37 Seghardning gjordes genom varmning av dragen staltrad vid en varmningstakt av 10 °C/sek eller mer vid 950 °C eller 1100 °C (temperatur vid A3 punkt eller mer), bibehallning vid varmningstemperaturens topp under 4 minuter till 5 minuter, sedan placeras stalet i en rumstempererad vattentank sa att kylningstakten blir 50 °C/ sek eller mer och nedkylningen Ors till 100 °C eller mindre. In order to adapt the stretch boundary of the patented and drawn steel wire, the steel wire is hardened to manufacture the preferred steel wire for spring use. Note that the sample that broke during drawing was not toughened. 36 37 Toughening was done by heating the drawn stalks at a heating rate of 10 ° C / sec or more at 950 ° C or 1100 ° C (temperature at A3 point or more), maintaining at the peak of the heating temperature for 4 minutes to 5 minutes, then placing the steel in a room temperature water tank said that the cooling rate will be 50 ° C / sec or more and the cooling Ors to 100 ° C or less.

[0113]Resultaten av utvarderingen visar tillstandet av tradbrott, tidigare austenit kornstorleksnummer, restaustenitmangd (vol%), cirkelekvivalentdiameter och densitet av narvaro av karbider, strackgrans, provspanning 0,2 %, 10 sparbijjningsvinkel, medelutmatningsstyrkan, Vickershardheten efter varsam gasnitrering. The results of the evaluation show the state of the fracture, previous austenite grain size number, residual austenite quantity (vol%), circle equivalent diameter and density of carbide presence, yield strength, sample stress 0.2%, saving bend angle, average discharge strength after Vickers hardness strength.

Malvardena som skulle uppnas sattes enligt fOljande med hanvisning till konventionell staltrad fOr hOghallfasthetsfjaderanvandning. The templates to be obtained were set as follows with male reference to conventional stable line for high strength spring use.

Tidigare austenit kornstorleksnummer: 10 grader eller mer Mangd restaustenit (vol %): 20 % eller mindre Cirkel ekvivalent diameter av sfariska karbider: 0,2 pm eller mindre Strackgrans: 2100 MPa eller mer 0,2 % provspanning 1800 MPa eller mer Utbytesforhallande: 75 % till 95 % Sparets bOjningsvinkel: 28 grader eller mer Genomsnittlig utmattningshallfasthet (Nakamura typ av roterande bojningshallfasthet): 900 MPa eller mer Internhardhet via Vickershardhet efter gasnitrering: 590 HV eller mer Nitrerad skikthardhet via Vickershardhet efter gasnitrering: 750 HV eller mer Notera att bade styrka och bearbetningsfOrmaga (lindningsfOrmaga) maste uppnas i staltraden, enligt foreliggande uppfinning, for om utbytesfOrhallandet är alltfOr hog, fOrsamras bearbetningsfOrmagan. DarfOr är den Ovre gransen fOr 30 utbytesfOrhallandet faretradesvis 90 %, mer att fOredraget 88 % eller mindre. Previous austenite grain size number: 10 degrees or more Amount of residual austenite (vol%): 20% or less Circle equivalent diameter of spherical carbides: 0.2 μm or less Strain strength: 2100 MPa or more 0.2% test stress 1800 MPa or more Yield ratio: 75 % to 95% Spare bending angle: 28 degrees or more Average fatigue strength (Nakamura type of rotating bending strength): 900 MPa or more Internal hardness via Vickers hardness after gas nitriding: 590 HV or more Nitrated layer hardness via Vickers hardness after Vickers hardness After gas nitriding: 750 HV or more and working capacity (winding capacity) must be obtained in the stable line, according to the present invention, because if the exchange ratio is too high, the processing capacity is reduced. Therefore, the upper limit for the exchange ratio is dangerously 90%, more that the preference is 88% or less.

[0114]Ett prov taget fran den erhallna dragna varmebehandlade staltraden for fjaderanvandning, utvarderad fOr tidigare austenit kornstorlek, volymsandel av restaustenit, och karbider, darefter utsatt provet for ett dragprov, bojningsprov av 37 38 sparet, och mikro Vickers hardhetsprov. Notera all utmattningsegenskaperna utvarderades genom simulerande behandling och produktion av fjadern (nedan, refererad till som "fjaderproduktion och behandling") innefattande gasnitrering, simulerande nitrering utford pa en fjader efter bearbetning (500 °C, 60 minuter), 5 kulbombning (diameter av skuren trad 0,6 mm, 20 minuter), och avstressningsbehandling vid rang temperatur (180 °C, 20 minuter). A sample taken from the obtained drawn heat-treated steel row for spring use, evaluated for previous austenite grain size, volume fraction of residual austenite, and carbides, then subjected to the tensile test, bending test of the 37 38 spar, and micro Vickers hardness test. Note all fatigue properties were evaluated by simulating treatment and production of the spring (hereinafter, referred to as "spring production and treatment") including gas nitriding, simulating nitriding challenge on a spring after processing (500 ° C, 60 minutes), ball bombing (diameter of the cut wire 0.6 mm, 20 minutes), and de-stressing treatment at range temperature (180 ° C, 20 minutes).

[0115]Tidigare austenit kornstorleksnummer uppmattes baserade pa JIS G 0551. Karbidernas cirkelekvivalenta diameter och densitet mattes genom att ett elektroniskt etsat prov anvands fOr att erhalla en SEM strukturellavbildning, och genom aft bilden analyseras. Vidare mats volymsmattet av restaustenit med det magnetiska matfOrfarandet. Previous austenite grain size numbers were measured based on JIS G 0551. The circle equivalent density and density of the carbides were measured by using an electronically etched sample to obtain a SEM structural image, and by analyzing the image. Furthermore, the volume mat of residual austenite is fed by the magnetic feeding method.

[0116] Utmattningsprovet ar ett Nakamura typ av roterande 15 bOjningsutmattningsprov (utmattningsprov bOjning genom tva-punkter skids vikt och svarvning av motorn all tillampa tryck- och dragspanning till ytan av traden). Den hOgsta belastningskraften sattes till den genomsnittliga utmattningshallfastheten for 10 prover, uppvisande en livslangd av 7 cykler eller mer med en sannolikhet av 50 % eller mer. BOjningsprovet vid sparet ar ett test for all utvardera kallindningsfOrmagan och utfors enligt fOljande. The fatigue test is a Nakamura type of rotary bending fatigue test (fatigue test bending through two-point skid weight and turning the motor all apply compressive and tensile stress to the surface of the wire). The highest loading force was set at the average fatigue strength for 10 samples, having a life of 7 cycles or more with a probability of 50% or more. The bending test at the save is a test for all evaluating the cold winding capacity and is performed as follows.

[0117]En stans 2 med en vinkel av spetsen som visas i figur 2 pa 120° anvandes fOr att astadkomma ett spar (hack) av eft maximalt djup av 30 pm i ett provstycke. Notera all som visas i figur 3 astadkommes sparet 4 vid en ratvinkel i 25 fOrhallande till langsgaende riktingen i mitten av provstycket 3 i den langsgaende riktningen. Darefter som visas i figur 4 fran den motsatta sidan av hacket 4, anvandes en stans 5 fOr all applicera en last P av en hOgsta draghallfasthetsspanning genom an lastanvandningsanordning 6 och provstycket deformerades genom trepunktsbOjning. Notera aft krOkningsradien r av spetsen av 30 lastanvandningsanordning 6 gjordes 4,0 mm, varvid skillnaden L mellan forstarkningar gjordes L=2r+3D. Dar D ar diametern pa provstycket. A punch 2 with an angle of the tip shown in Figure 2 of 120 ° was used to provide a notch (notch) of a maximum depth of 30 μm in a specimen. Note all that is shown in Figure 3, the groove 4 is provided at a steering angle in relation to the longitudinal direction in the middle of the test piece 3 in the longitudinal direction. Then, as shown in Figure 4 from the opposite side of the notch 4, a punch 5 was used to apply a load P of a maximum tensile strength stress through a load applying device 6 and the specimen was deformed by three-point bending. Note that the radius of curvature of the tip of load loading device 6 was made 4.0 mm, the difference L between reinforcements being made L = 2r + 3D. Where D is the diameter of the specimen.

[0118]Bojningsdeformeringen tillampades till dess att delen med sparet brots. The bending deformation was applied until the part with the spare was broken.

BOjningsvinkeln vid tiden for brottet (sparbOjningsvinkel) mattes sa som visas i figur 38 39 5. Notera att efter att provstycket brutits sonder placerades de brutna delarna tillsammans für att mata sparets bojningsvinkel e. I den fdreliggande uppfinningen har ett prov med en sparbOjningsvinkel pa 28° eller mer beclOrnts ha utmarkt kallindningsfOrmaga. The bending angle at the time of the fracture (saving bending angle) was measured as shown in Figure 38 39 5. Note that after the specimen was broken, the broken parts were placed together to feed the bending angle of the spar e. In the present invention, a sample having a saving bending angle of 28 ° or more beclOrnts have excellent cold-winding Ability.

[0119]Mikro Vickershardhet efter nitrering utvarderades vid ett djup av 500 pm eller mer fran ytskiktet eftersom den innerhardhet definierades som "nitrerad skikthardher av mikro Vickers hardhet vid ett djup av 50 pm fran ytskiktet. Matningsvikten var 10 gram. Micro Vickers hardness after nitriding was evaluated at a depth of 500 μm or more from the surface layer because the inner hardness was defined as "nitrated layer hardness of micro Vickers hardness at a depth of 50 μm from the surface layer. The feed weight was 10 grams.

[0120]Resultatet av dessa tester visas i tabellerna 1-5 till 1-8. Notera all i tabellerna 1-5 till 1-8 innefattar metallstrukturen restaustenit (y) samt anlOpt martensit samt vissa inneslutningar. Vidare var jam och oundvikliga fOroreningar jamvikten av de kemiska sammansattningarna. The results of these tests are shown in Tables 1-5 to 1-8. Note all in Tables 1-5 to 1-8, the metal structure includes residual austenite (y) and anlOpt martensite as well as certain inclusions. Furthermore, jam and unavoidable impurities were the weight of the chemical compositions.

FOrdragen staltrad (staltrad efter valsning valstrad) utvarderades endast utifran den cirkelekvivalenta diametern av oupplosta sfarisk karbider. Della beror pa all det har sker fOre varmebehandlingen, och att det da inte ar sa mycket mening med bilderna, trots all mekaniska egenskaper eller austenit kornstorlek etc. mats. Preferred stable row (stable row after rolling rolled) was evaluated only on the basis of the circle equivalent diameter of undissolved spherical carbides. Part of this is due to everything that has happened before the heat treatment, and that it then does not make much sense with the images, despite all the mechanical properties or austenite grain size etc. are fed.

[0121]Exemplen 1 till 47, i fOreliggande uppfinning, visar alla kallindningsfOrmaga, det viii saga, sparets bejningsvinkel, av en god 28° eller mer och ar en utmarkt indikation pa fjaderhallfasthet, det viii saga, Nakamura typ av roterande bOjningsutmattningsstyrka (harifran och framat enkelt refererad till som "utmattningshallfastheten") och en utmarkt indikation pa eftergivningsegenskapen och motstand mot varmerelaterad avmjukning, det vill saga, nitridskikthardheten. Examples 1 to 47, in the present invention, show all the cold winding ability, the viii saga, the bending angle of the spade, of a good 28 ° or more and are an excellent indication of spring half strength, the viii saga, Nakamura type of rotary bending fatigue strength and hairline. simply referred to as the "fatigue strength") and an excellent indication of the resilience and resistance to heat-related softening, that is, the nitride layer hardness.

[0122]Jamforande exempel 48 och 49 ar exempel dar mangden tillsatt C ligger utanfOr intervallet i patentkraven. Om nnangden C tillsatts Over fOreskriven mangd (jamfOrande exempel 48), blir de oupplOsta sfariska karbiderna stOrre och 30 fOrsamring av kallindningsfOrmagan och sparets bOjningsvinkel indikeras. Daremot om C fOreligger i mindre mangd an fOreskriven mangd (jamfOrande exempel 49), forsamras seghardningsegenskapen vilket gor att tillracklig hallfasthet inte kan sakras. I synnerhet blir den innerhardheten efter nitrering och fjader hallfastheten 39 (NakamuratypavroterandebOjningsutmattningshallfasthet)och eftergivningsegenskapen (intern hardhet efter nitrering) lagre. Comparative Examples 48 and 49 are examples where the amount of added C is outside the range of the claims. If the amount C is added above the prescribed amount (comparative example 48), the undissolved spherical carbides become larger and the convergence of the cold winding forceps and the bending angle of the spar are indicated. On the other hand, if C is present in a smaller amount than the prescribed amount (comparative example 49), the toughening property deteriorates, which means that sufficient half-strength cannot be ensured. In particular, the inner hardness after nitriding and spring spring strength 39 (Nakamura type rotating bending fatigue strength) and the resilience property (internal hardness after nitriding) are lower.

[0123]JamfOrande exempel 50 och 51 är exempel dar mangden tillsatt Si ligger utanfOr intervallet i patentkraven. Om mangden Si Overskrider foreskriven mangd fiirsprOdas matrisen och bearbetningsfOrmagan fOrsamras, det viii saga, sparets bejningsvinkel ar lag. Daremot om Si fOrekommer i mindre mangd an foreskriven, forsamras seghardningsegenskaperna, vilket gor att tillracklig hallfasthet inte kan sakras, efter varmning genom nitrering. I synnerhet blir den innerhardheten efter nitrering och det nitrerade skiktets hardhet lag. Comparative Examples 50 and 51 are examples where the amount of Si added is outside the range of the claims. If the quantity Si Exceeds the prescribed quantity, the matrix is propagated and the working capacity is assumed, that is to say, the turning angle of the saving is law. On the other hand, if Si occurs to a lesser extent than prescribed, the toughening properties deteriorate, which means that sufficient half-strength cannot be sacrificed, after heating by nitration. In particular, the inner hardness after nitriding and the hardness of the nitrided layer become law.

[0124]JamfOrande exempel 52 och 53 ar exempel dar mangden tillsatt Mn ligger utanfOr det foreskrivna intervallet i patentkraven. Om Mn fOreligger i stOrre mangd an i det fOreskrivna intervallet, blir restaustenit grOvre, strackgransen avtar, 15 och utmattningshallfastheten (Nakamura typ av roterande bejningsutmattningshallfasthet) ar underordnad. Daremot nar Mn fOreligger i mindre mangd an den fOreskrivna mangden, avtar restaustenit kir mycket och bearbetningsfOrmagan fOrsamras, vilket har till fOljd att sparets bOjningsvinkel avtar. Comparative Examples 52 and 53 are examples where the amount of added Mn is outside the prescribed range in the claims. If Mn is present in a larger amount than in the prescribed interval, the residual austenite becomes coarser, the yield strength decreases, and the fatigue strength (Nakamura type of rotary pickling fatigue strength) is subordinate. On the other hand, when Mn is present in a smaller amount than the prescribed amount, residual austenite decreases a lot and the working capacity is reduced, which has the consequence that the bending angle of the saving decreases.

[0125]Jamforande exempel 54 och 55 ar exempel dar mangden av tillsatt Cr ligger utanfOr intervallet i patentkraven. Om mangden Cr bverskrider det forskrivna intervallet, stabiliseras cementit och aven vid varmning av Viten eller valsamnet till hog temperatur, seghardning etc., Okar oupplOsta karbider och fjaderns bearbetningsfOrmaga reduceras kraftigt. Av denna anledning avtar sparets 25 bOjningsvinkel. Daremot om Cr foreligger i mindre mangd an den fOreskrivna mangden, mjukas stalet upp vid varmebehandling vid nitrering etc. och det sa kallade motstandet mot varmerelaterad avmjukning blir otillrackligt vilket gor att det nitrerade skiktets hardhet avtar. Comparative Examples 54 and 55 are examples where the amount of Cr added is outside the range of the claims. If the amount Cr exceeds the prescribed interval, the cementite and even when heating the Viten or the roll is stabilized to high temperature, toughening, etc., unresolved carbides and the working capacity of the spring are greatly reduced. For this reason, the bending angle of the spar decreases. On the other hand, if Cr is present in a smaller amount than the prescribed amount, the steel is softened during heat treatment during nitration, etc., and the so-called resistance to heat-related softening becomes insufficient, which causes the hardness of the nitrated layer to decrease.

[0126]JamfOrande exempel 56, 57, och 58 ar exempel dar mangden tillsatt Mo, W, and Mo+W ar stOrre an intervallet i patentkraven. Om mangden Mo och W Overskrider de fOreskrivna mangderna, bildas en underkyld struktur av martensit, bainit etc., vid valsning och kylning och efter patentering och annan varmebehandling 41 vilket har till fOljd all traden bryts vid transport eller vid dragningsfOrfarandet, och all matningstestet inte kan utfOras. Comparative Examples 56, 57, and 58 are examples where the amount of Mo, W, and Mo + W added is greater than the range of the claims. If the quantity Mo and W exceeds the prescribed quantities, a supercooled structure of martensite, bainite etc. is formed, during rolling and cooling and after patenting and other heat treatment 41 which has the consequence that all the wire is broken during transport or during the drawing process, and all the feed test can not utfOras.

[0127]JamfOrande exempel 59 ar ett exempel pa Overdriven tillsats av V. V ar ett amne som bildar karbider i stalet. Overdriven tillsats orsakar oupplosta karbider att bildas runt V, bearbetningsfOrmagan fOrsamras och spArets bOjningsvinkel avtar. Comparative Example 59 is an example of Excessive addition of V. It is a substance which forms carbides in the steel. Excessive addition causes undissolved carbides to form around the V, the machining force is reduced and the bending angle of the groove decreases.

[0128]JamfOrande exempel 60 och 61 ar fall dar mangden N ar Overdriven jamfort med intervallet i patentkraven. Den overdrivna mangden N fOrhOjer temperaturen RN- bildandet av nitrider och kolnitrider av V, Nb, etc. och fitirorsakar forgrovning av karbider och andra fallningar som anvander dessa som karnor. Vidare Ulises nitrider, kolnitrider och karbider upp ofullstandigt och en stor mangd grova oupplosta sfariska karbider kvarstar nar upprepad varmning, sasom i fOreliggande uppfinning anvands. Som ett resultat av detta ar bearbetningsfOrmagan 15 fOrsamrad. Della ar ett exempel dar sparets bOjningsvinkel avtar. Comparative Examples 60 and 61 are cases where the amount N is Exaggerated compared to the range of claims. The excessive amount of N raises the temperature RN- the formation of nitrides and carbon nitrides of V, Nb, etc. and causes the coarsening of carbides and other precipitates which use these as nuclei. Furthermore, Ulysses nitrides, carbon nitrides and carbides are incomplete and a large amount of coarse undissolved spherical carbides remains when repeated heating, as used in the present invention. As a result, the processing capacity is compromised. Della is an example where the saving angle of bending decreases.

[0129]JamfOrande exempel 62 och 63 ar exempel dar mangden tillsatt Nb ligger utanfor intervallet i patentkraven. Om Nb overstiger den fOreskrivna mangden, ar den varma formbarheten anmarkningsvart fOrsamrad, ett flertal ytbristningar intraffade hos det valsade materialet, tradbratt intraffade under dragning, och ett matningstest kunde inte utfOras. Comparative Examples 62 and 63 are examples where the amount of Nb added is outside the range of the claims. If Nb exceeds the prescribed quantity, the hot formability is noticeably blackened, a number of surface cracks occurred in the rolled material, wire steeply occurred during drawing, and a feed test could not be performed.

[0130]Jamfarande exempel 64 ar det fall dar summan av mangden tillsatt Mn och V ar mer an intervallet enligt i fOreliggande uppfinning. Mangden av restaustenit i staltraden blir da stOrre an det fOreskrivna vardet. I bOjningstestet av sparet avtar hardheten hos delen med sparet till foljd av stress framkallad fasomvandling och bearbetningsfOrmagan avtar. Delia ar ett exempel dar sparets bOiningsvinkel avtar. Upprepande ass sjalva ar V inte tillsatt i den framlagda uppfinning, men ibland ingar V som en oundviklig fOrorening vilket gOr all V inte kan fOrklaras ovidkommande. Comparative Example 64 is the case where the sum of the amount added Mn and V is more than the range according to the present invention. The amount of residual austenite in the stable row then becomes greater than the prescribed value. In the bending test of the groove, the hardness of the part decreases with the groove due to stress-induced phase transformation and the machining capacity decreases. Delia is an example where the savings' living angle decreases. Repeatedly, V itself is not added in the present invention, but sometimes V occurs as an unavoidable contaminant, which means that all V cannot be declared irrelevant.

[0131]Jamtrande exempel 65 ar det fall dar summan av mangderna tillsatt Mn och V ar lagre an intervallet enligt fOreliggande uppfinning. Mangden restaustenit ar mindre an det optimala intervallet, vilket gOr att bearbetningsfOrmagan det vill saga sparets bOjningsvinkel avtar. 41 42 Comparative Example 65 is the case where the sum of the amounts added Mn and V is lower than the range of the present invention. The amount of residual austenite is less than the optimal range, which means that the working capacity, ie the bending angle of the saving, decreases. 41 42

[0132]JamfOrande exempel 66 ar det fall dar summan av mangderna tillsatt Cr och V ar sterre an innehallet fOrklarat i framlagd uppfinning. OupplOsta sfariska karbider kvarstar i Overdriven mangd och bearbetningsfOrmagan, det viii saga, sparets bOjningsvinkel avtar. Comparative Example 66 is the case where the sum of the amounts added Cr and V is greater than the content explained in the present invention. Undissolved spherical carbides remain in Excessive quantity and machining capacity, the viii saga, the bending angle of the spar decreases.

[0133]Jamforande exempel 67 ar det fall dar summan av mangden tillsatt Cr och V ar mindre an intervallet fOrklarat i fOreliggande uppfinning. BearbetningsfOrmagan ar utmarkt, men den innerhardheten efter nitrering och det nitrerade skiktets hardhet ar otillracklig och fjaderns prestanda ar otillracklig. Comparative Example 67 is the case where the sum of the amount of Cr added and V is less than the range explained in the present invention. The working capacity is excellent, but the inner hardness after nitriding and the hardness of the nitrided layer is insufficient and the performance of the spring is insufficient.

[0134]JamfOrande exempel 68 till 70 ar fall dar skillnaden mellan mangden Si och mangden Cr ([Si %]-[Cr %]) skiljer sig fran innehallet i patentkraven och mangden Cr ar stOrre an mangden Si. Om mangden Cr ar Overdriven i fOrhallande till 15 mangden Si, kvarstar oupplOsta sfariska karbider och bearbetningsfOrmagan ar nedsatt, det viii saga sparets bojningsvinkel avtar. Comparative Examples 68 to 70 are cases where the difference between the amount of Si and the amount of Cr ([Si%] - [Cr%]) differs from the content of the claims and the amount of Cr is greater than the amount of Si. If the amount of Cr is Excessive in relation to the amount of Si, undissolved spherical carbides remain and the working capacity is reduced, the bending angle of the sai sag decreases.

[0135]Pa samma satt ar jamfOrande exempel 71 och 72 fall dar skillnaden i mangden Si och mangden Cr ([Si `)/0]-[Cr %]) ar storm an den &re gransen for intervallet i patentkraven. Mangden Si ar mycket Overdriven i fOrhallande till mangden Cr. I dessa fall vaxer ytskiktets avkolade skikt hos det valsade materialet kraftigt och kan inte avlagsnas i tillracklig utstrackning genom ytskiktsrakning i liten mangd. Av denna anledning var utmattningshallfastheten (Nakamura typ av roterande bOjningsutmattningshallfasthet) ovidkommande. In the same way, Comparative Examples 71 and 72 are cases where the difference between the amount Si and the amount Cr ([Si `) / 0] - [Cr%]) is a storm at the other limit of the range of the claims. The quantity Si is very Exaggerated in relation to the quantity Cr. In these cases, the charred layer of the rolled material of the rolled material grows strongly and cannot be removed to a sufficient extent by shaving the surface layer in a small amount. For this reason, the fatigue strength (Nakamura type of rotary bending fatigue strength) was irrelevant.

[0136]Jamforande exemplen 73 och 74 ar respektive exempel 1 och exempel 23 av uppfinningen, dar stalet valsas vid valsamnets varmningstemperatur 1100 °C. I berjan av valsningen kvarstar oupplOsta sfariska karbider. Effekterna kvarstar sa bearbetningsfermagan fOrsamras slutligen, det viii saga sparets bOjningsvinkel avtar. Comparative Examples 73 and 74 are Example 1 and Example 23, respectively, of the invention, in which the steel is rolled at the heating temperature of the rolling stock 1100 ° C. At the beginning of the rolling, undissolved spherical carbides remain. The effects remain so that the working capacity is finally collected, the bending angle of the saw blade decreases.

[0137]Exemplen 101 till 109 ar exempel av uppfinningen av fordragna staltradar av exempel 1 till 5 och 20 till 23 av uppfinningen. JamfOrande exempel 110 och 111 ar exempel 101 och 106 av uppfinningen, dar valsamnets varmningstemperatur Ors 1100 C. 42 43 FOrdragen staltrad utvarderas pa sa satt att endast den hOgsta cirkelekvivalenta diametern av oupplOsta sfariska karbider granskas. Om valsamnets varmningstemperatur ar hog har det framgatt aft den cirkelekvivalenta diametern av upplasta sfariska karbider blir mindre. 43 Examples 101 to 109 are examples of the invention of preferred steel radars of Examples 1 to 5 and 20 to 23 of the invention. Comparative Examples 110 and 111 are Examples 101 and 106 of the invention, where the heating temperature of the roll is Ors 1100 C. 42 43 The preferred shapes are evaluated in such a way that only the highest circle equivalent diameter of undissolved spherical carbides is examined. If the heating temperature of the roll is high, it has been found that the circle equivalent diameter of dissolved spherical carbides becomes smaller. 43

[0138]Tabell 1-1Kemiska sammansittningar (mass %) Ex. Table 1-1Chemical compositions (mass%) Ex.

C Si Mn P S Cr Al N V Nb Mo W Mg Zr Ca Mn+V Cr+V Si-Cr Mo+W 1 Inv.ex. 0.78 2.48 0.68 0.0076 0.001.57 0.0022 0.0031 - - - 0.90 2 Inv.ex. 0.77 2.41 0.68 0.0034 0.0047 2.00.0011 0.0042 - - - 0. 3 Inv.ex. 0.68 2.38 0.87 0.000.0061 1.53 0.0013 0.0033 - - - 0.8 4 Inv.ex. 0.88 2.0.87 0.0063 0.0071 1.71 0.0018 0.00- - - 0.79 Inv.ex. 0.78 2.11 0.84 0.0057 0.0039 1.0.000.0031 - - 0.61 6 Inv.ex. 0.72 2.62 0.62 0.0054 0.0031 1.96 0.0022 0.0038 - - 0.66 7 Inv.ex. 0.72 2.67 0.58 0.0037 0.001.51 0.000.0032 - - 1.16 8 Inv.ex. 0.76 2.28 1.02 0.0067 0.0069 1.82 0.0028 0.0031 - - 0.46 - 9 Inv.ex. 0.73 2.23 0.73 0.0054 0.0077 1.53 0.000.0058 - 0.70 Inv.ex. 0.77 2.0.80 0.0041 0.0047 1.52 0.0019 0.0032 - 0.83 11 Inv.ex. 0.77 2.59 0.83 0.0060 0.0074 1.53 0.0012 0.0063 - 0.008 - 1.07 12 Inv.ex. 0.72.52 0.68 0.0054 0.0056 1.67 0.0013 0.0039 0.06 0.74 1.74 0.84 13 Inv.ex. 0.72.33 0.83 0.0066 0.0060 2.00 0.000.0037 0.09 0.001 - 0.93 2.0.32 14 Inv.ex. 0.72 2.41 0.86 0.000.0068 1.77 0.0013 0.0033 - 0.12 0.64 0.12 Inv.ex. 0.77 2.57 0.70.0078 0.0071.91 0.0018 0.0043 - - 0.0.66 0. 16 Inv.ex. 0.72 2.42 0.84 0.0044 0.0053 1.90 0.0019 0.0056 - 0.12 0.16 - 0.52 0.27 17 Inv.ex. 0.76 2.53 0.67 0.0061 0.0076 1.60.0028 0.0039 - - 0.000- 0.87 18 Inv.ex. 0.73 2.46 0.66 0.0051 0.0060 1.60 0.0023 0.00- - 0.0002 - 0.86 19 Inv.ex. 0.73 2.34 0.70.0039 0.0071 1.97 0.0028 0.0032 - 0.0011 0.37 Inv.ex. 0.73 2.0.70 0.0046 0.0033 1.91 0.0016 0.0034 0.0.008 0.12 0.17 0.0002 0.0003 0.0011 0.79 2.00 0.44 0.28 21 Inv.ex. 0.77 2.46 0.71 0.0031 0.0054 1.90.0013 0.0038 0.03 0.003 0.0.16 0.0003 0.0002 0.0003 0.74 1.98 0.51 0.31 22 Inv.ex. 0.76 2.0.64 0.0051 0.0072 1.72 0.0016 0.0044 0.07 0.007 0.11 0.17 0.0000.0003 0.0006 0.71 1.79 0.64 0.28 23 Inv.ex. 0.73 2.36 0.73 0.0033 0.0073 1.80 0.0019 0.0033 0.08 0.006 0.11 0.0.0004 0.0001 0.0012 0.81 1.88 0.56 0.27 24 Inv.ex. 0.76 3.0.72 0.0076 0.0038 2.0.000.0037 0.06 - 0.0.77 2.16 1.0. C Si Mn P S Cr Al N V Nb Mo W Mg Zr Ca Mn + V Cr + V Si-Cr Mo + W 1 Inv.ex. 0.78 2.48 0.68 0.0076 0.001.57 0.0022 0.0031 - - - 0.90 2 Inv.ex. 0.77 2.41 0.68 0.0034 0.0047 2.00.0011 0.0042 - - - 0. 3 Inv.ex. 0.68 2.38 0.87 0.000.0061 1.53 0.0013 0.0033 - - - 0.8 4 Inv.ex. 0.88 2.0.87 0.0063 0.0071 1.71 0.0018 0.00- - - 0.79 Inv.ex. 0.78 2.11 0.84 0.0057 0.0039 1.0.000.0031 - - 0.61 6 Inv.ex. 0.72 2.62 0.62 0.0054 0.0031 1.96 0.0022 0.0038 - - 0.66 7 Inv.ex. 0.72 2.67 0.58 0.0037 0.001.51 0.000.0032 - - 1.16 8 Inv.ex. 0.76 2.28 1.02 0.0067 0.0069 1.82 0.002 0.0028 0.0031 - - 0.46 - 9 Inv.ex. 0.73 2.23 0.73 0.0054 0.0077 1.53 0.000.0058 - 0.70 Inv.ex. 0.77 2.0.80 0.0041 0.0047 1.52 0.0019 0.0032 - 0.83 11 Inv.ex. 0.77 2.59 0.83 0.0060 0.0074 1.53 0.0012 0.0063 - 0.008 - 1.07 12 Inv.ex. 0.72.52 0.68 0.0054 0.0056 1.67 0.0013 0.0039 0.06 0.74 1.74 0.84 13 Inv.ex. 0.72.33 0.83 0.0066 0.0060 2.00 0.000.0037 0.09 0.001 - 0.93 2.0.32 14 Inv.ex. 0.72 2.41 0.86 0.000.0068 1.77 0.0013 0.0033 - 0.12 0.64 0.12 Inv.ex. 0.77 2.57 0.70.0078 0.0071.91 0.0018 0.0043 - - 0.0.66 0. 16 Inv.ex. 0.72 2.42 0.84 0.0044 0.0053 1.90 0.0019 0.0056 - 0.12 0.16 - 0.52 0.27 17 Inv.ex. 0.76 2.53 0.67 0.0061 0.0076 1.60.0028 0.0039 - - 0.000- 0.87 18 Inv.ex. 0.73 2.46 0.66 0.0051 0.0060 1.60 0.0023 0.00- - 0.0002 - 0.86 19 Inv.ex. 0.73 2.34 0.70.0039 0.0071 1.97 0.0028 0.0032 - 0.0011 0.37 Inv.ex. 0.73 2.0.70 0.0046 0.0033 1.91 0.0016 0.0034 0.0.008 0.12 0.17 0.0002 0.0003 0.0011 0.79 2.00 0.44 0.28 21 Inv.ex. 0.77 2.46 0.71 0.0031 0.0054 1.90.0013 0.0038 0.03 0.003 0.0.16 0.0003 0.0002 0.0003 0.74 1.98 0.51 0.31 22 Inv.ex. 0.76 2.0.64 0.0051 0.0072 1.72 0.0016 0.0044 0.07 0.007 0.11 0.17 0.0000.0003 0.0006 0.71 1.79 0.64 0.28 23 Inv.ex. 0.73 2.36 0.73 0.0033 0.0073 1.80 0.0019 0.0033 0.08 0.006 0.11 0.0.0004 0.0001 0.0012 0.81 1.88 0.56 0.27 24 Inv.ex. 0.76 3.0.72 0.0076 0.0038 2.0.000.0037 0.06 - 0.0.77 2.16 1.0.

[0139] Tabell 1-2Kemiska sammansattningar (mass %) Ex. Table 1-2 Chemical compositions (mass%) Ex.

C Si Mn P S Cr Al N V Nb Mc W Mg Zr Ca Mn+V Cr+V Si-Cr Mo+W Inv.ex. 0.73 2.00.80 0.0062 0.0052 1.71 0.0011 0.0033 0.08 0.009 0.0.16 0.88 1.79 0.34 0.31 26 Inv.ex. 0.76 2.52 0.71 0.0069 0.0080 1.69 0.0024 0.0039 0.00.28 - 0.0002 0.0003 0.000.76 1.74 0.84 0.28 27 Inv.ex. 0.72.0.82 0.0074 0.0051.73 0.0018 0.0038 0.08 0.00.13 0.0.0004 0.0001 0.0000.91 1.82 0.56 0.28 28 Inv.ex. 0.73 2.24 1.0.0052 0.0074 1.52 0.0027 0.0033 0.09 0.11 - 0.0003 0.0001 0.0011 1.29 1.62 0.72 0.11 29 Inv.ex. 0.73 2.44 0.74 0.0076 0.0046 1.73 0.0024 0.0032 0.00.00.12 0.0.0001 0.0003 0.0013 0.79 1.78 0.71 0.27 Inv.ex. 0.74 2.24 0.76 0.0052 0.0076 1.41 0.0016 0.000.00.000.11 0.16 0.0003 0.0001 0.0011 0.81 1.46 0.83 0.27 31 Inv.ex. 0.72.28 0.89 0.0060.0043 1.70 0.0011 0.0043 0.03 0.00.14 0.16 0.0004 0.0002 0.0012 0.93 1.73 0.58 0.31 32 Inv.ex. 0.74 2.23 0.89 0.0043 0.0049 1.0.0022 0.0032 0.04 0.11 - 0.0001 0.0001 0.0002 0.93 1.54 0.73 0.11 33 Inv.ex. 0.77 2.86 0.77 0.0057 0.0057 2.48 0.000.000.09 0.000.11 0.16 0.0002 0.0002 0.0000.86 2.57 0.38 0.27 34 Inv.ex. 0.77 2.29 0.79 0.0050.0072 1.80.0016 0.0032 0.09 0.004 0.23 0.0.0004 0.0003 0.0006 0.88 1.93 0.0.38 Inv.ex. 0.73 2.52 0.76 0.0078 0.0067 2.00 0.0022 0.0036 0.09 0.009 0.18 0.28 0.0000.0001 0.0000.84 2.09 0.52 0.46 36 Inv.ex. 0.77 2.31 0.89 0.0046 0.0080 1.91 0.0021 0.0032 0.06 0.000 0.13 0.0.0001 0.0002 0.0006 0.91.97 0.0.28 37 Inv.ex. 0.73 2.53 0.69 0.0046 0.0060 2.01 0.0022 0.0042 - 0.000.14 0.17 0.0000.0002 0.0006 0.52 0.31 38 Inv.ex. 0.76 2.0.81 0.0034 0.0036 1.80 0.0016 0.000.04 0.006 0.12 0.09 0.0004 0.0001 0.0009 0.81.84 0.50.21 39 Inv.ex. 0.74 2.38 0.72 0.0031 0.0064 1.82 0.000.0043 0.07 0.009 0.11 0.28 0.0002 0.0002 0.0007 0.80 1.89 0.50.39 Inv.ex. 0.72.32 0.72 0.0034 0.0038 1.56 0.0017 0.0033 0.09 0.002 0.13 0.0.0004 0.0002 0.0012 0.81 1.60.76 0.28 41 Inv.ex. 0.76 2.37 0.69 0.0056 0.0067 1.63 0.0028 0.0041 0.04 0.14 0.17 0.0002 0.0002 0.0008 0.73 1.67 0.74 0. 42 Inv.ex. 0.76 2.48 0.73 0.000.001.97 0.0016 0.0034 0.09 0.0.16 0.82 2.06 0.51 0.26 43 Inv.ex. 0.72 2.26 0.68 0.0053 0.0043 1.51 0.0027 0.0032 0.00.14 0.14 0.0002 0.0003 0.0002 0.73 1.56 0.70.29 44 Inv.ex. 0.76 2.38 0.86 0.0077 0.0039 1.61 0.000.0052 - 0.14 0.0.77 0.28 Inv.ex. 0.77 2.23 0.76 0.0060 0.0061 1.69 0.0029 0.0053 0.00.006 0.11 0.0.81 1.74 0.54 0.26 46 Inv.ex. 0.76 2.0.86 0.0060 0.0067 1.87 0.000.000.00.00.0.0.0000.0003 0.000.90 1.92 0.48 0. 47 Inv.ex. 0.71 2.28 0.77 0.000.0058 1.88 0.000.0033 0.07 0.003 0.0.17 0.0000.0003 0.0006 0.84 1.90.41 0.27 C Si Mn P S Cr Al N V Nb Mc W Mg Zr Ca Mn + V Cr + V Si-Cr Mo + W Inv.ex. 0.73 2.00.80 0.0062 0.0052 1.71 0.0011 0.0033 0.08 0.009 0.0.16 0.88 1.79 0.34 0.31 26 Inv.ex. 0.76 2.52 0.71 0.0069 0.0080 1.69 0.0024 0.0039 0.00.28 - 0.0002 0.0003 0.000.76 1.74 0.84 0.28 27 Inv.ex. 0.72.0.82 0.0074 0.0051.73 0.0018 0.0038 0.08 0.00.13 0.0.0004 0.0001 0.0000.91 1.82 0.56 0.28 28 Inv.ex. 0.73 2.24 1.0.0052 0.0074 1.52 0.0027 0.0033 0.09 0.11 - 0.0003 0.0001 0.0011 1.29 1.62 0.72 0.11 29 Inv.ex. 0.73 2.44 0.74 0.0076 0.0046 1.73 0.0024 0.0032 0.00.00.12 0.0.0001 0.0003 0.0013 0.79 1.78 0.71 0.27 Inv.ex. 0.74 2.24 0.76 0.0052 0.0076 1.41 0.0016 0.000.00.000.11 0.16 0.0003 0.0001 0.0011 0.81 1.46 0.83 0.27 31 Inv.ex. 0.72.28 0.89 0.0060.0043 1.70 0.0011 0.0043 0.03 0.00.14 0.16 0.0004 0.0002 0.0012 0.93 1.73 0.58 0.31 32 Inv.ex. 0.74 2.23 0.89 0.0043 0.0049 1.0.0022 0.0032 0.04 0.11 - 0.0001 0.0001 0.0002 0.93 1.54 0.73 0.11 33 Inv.ex. 0.77 2.86 0.77 0.0057 0.0057 2.48 0.000.000.09 0.000.11 0.16 0.0002 0.0002 0.0000.86 2.57 0.38 0.27 34 Inv.ex. 0.77 2.29 0.79 0.0050.0072 1.80.0016 0.0032 0.09 0.004 0.23 0.0.0004 0.0003 0.0006 0.88 1.93 0.0.38 Inv.ex. 0.73 2.52 0.76 0.0078 0.0067 2.00 0.0022 0.0036 0.09 0.009 0.18 0.28 0.0000.0001 0.0000.84 2.09 0.52 0.46 36 Inv.ex. 0.77 2.31 0.89 0.0046 0.0080 1.91 0.0021 0.0032 0.06 0.000 0.13 0.0.0001 0.0002 0.0006 0.91.97 0.0.28 37 Inv.ex. 0.73 2.53 0.69 0.0046 0.0060 2.01 0.0022 0.0042 - 0.000.14 0.17 0.0000.0002 0.0006 0.52 0.31 38 Inv.ex. 0.76 2.0.81 0.0034 0.0036 1.80 0.0016 0.000.04 0.006 0.12 0.09 0.0004 0.0001 0.0009 0.81.84 0.50.21 39 Inv.ex. 0.74 2.38 0.72 0.0031 0.0064 1.82 0.000.0043 0.07 0.009 0.11 0.28 0.0002 0.0002 0.0007 0.80 1.89 0.50.39 Inv.ex. 0.72.32 0.72 0.0034 0.0038 1.56 0.0017 0.0033 0.09 0.002 0.13 0.0.0004 0.0002 0.0012 0.81 1.60.76 0.28 41 Inv.ex. 0.76 2.37 0.69 0.0056 0.0067 1.63 0.0028 0.0041 0.04 0.14 0.17 0.0002 0.0002 0.0008 0.73 1.67 0.74 0. 42 Inv.ex. 0.76 2.48 0.73 0.000.001.97 0.0016 0.0034 0.09 0.0.16 0.82 2.06 0.51 0.26 43 Inv.ex. 0.72 2.26 0.68 0.0053 0.0043 1.51 0.0027 0.0032 0.00.14 0.14 0.0002 0.0003 0.0002 0.73 1.56 0.70.29 44 Inv.ex. 0.76 2.38 0.86 0.0077 0.0039 1.61 0.000.0052 - 0.14 0.0.77 0.28 Inv.ex. 0.77 2.23 0.76 0.0060 0.0061 1.69 0.0029 0.0053 0.00.006 0.11 0.0.81 1.74 0.54 0.26 46 Inv.ex. 0.76 2.0.86 0.0060 0.0067 1.87 0.000.000.00.00.0.0.0000.0003 0.000.90 1.92 0.48 0. 47 Inv.ex. 0.71 2.28 0.77 0.000.0058 1.88 0.000.0033 0.07 0.003 0.0.17 0.0000.0003 0.0006 0.84 1.90.41 0.27

[0140]Tabell 1-3Kemiska sammansattningar (mass%) Ex. Table 1-3Chemical compositions (mass%) Ex.

C Si Mn P S Cr Al N V Nb Mo W Mg Zr Ca Mn+V Cr+V Si-Cr Mo+W 48 Comp.ex. 0.92.47 0.61 0.0033 0.0078 1.54 0.0022 0.0043 0.09 0.006 0.12 0.14 0.0004 0.0001 0.0013 0.70 1.63 0.93 0.26 49 Comp.ex. 0.58 2.59 0.62 0.0079 0.0057 1.81 0.0021 0.0066 0.09 0.000.0.0.0003 0.0001 0.0014 0.71 1.90 0.77 0.29 Comp.ex. 0.71 3.80 0.80.0049 0.002.03 0.0017 0.0032 0.00.002 0.14 0.16 0.0002 0.0003 0.0008 0.90 2.09 1.77 0.31 51 Comp.ex. 0.73 1.86 0.83 0.0034 0.0060 1.32 0.0013 0.0031 0.09 0.004 0.14 0.14 0.0004 0.0003 0.0000.92 1.41 0.54 0.29 52 Comp.ex. 0.72 2.46 1.54 0.0076 0.0066 2.02 0.0024 0.0043 0.06 0.008 0.14 0.0.0003 0.0003 0.0014 1.60 2.08 0.44 0.29 53 Comp.ex. 0.72 2.22 0.21 0.0057 0.0064 1.58 0.0024 0.0036 0.09 0.000.0.17 0.0001 0.0002 0.0011 0.1.67 0.64 0.31 54 Comp.ex. 0.73 3.13 0.71 0.0048 0.002.72 0.0014 0.000.04 0.007 0.14 0.0.0003 0.0002 0.0011 0.72.76 0.41 0.29 5Comp.ex. 0.78 2.21 0.68 0.0051 0.0041 1.02 0.0013 0.0031 0.09 0.011 0.14 0.17 0.0002 0.0001 0.0012 0.77 1.11 1.19 0.31 56 Comp.ex. 0.72.42 0.74 0.0034 0.0067 1.78 0.0017 0.0033 0.09 0.000.42 0.07 0.0004 0.0003 0.0000.83 1.87 0.63 0.49 57 Comp.ex. 0.73 2.0.81 0.0046 0.0061 1.70.0027 0.0046 0.11 0.00.12 0.0.0003 0.0001 0.0008 0.92 1.86 0.70 0.62 58 Comp.ex. 0.73 2.0.64 0.0044 0.0034 1.80 0.0011 0.0037 - 0.00_ 0.26 0.2/ 0.0000.0002 0.0007 0.0.53 59 Comp.ex. 0.74 2.23 0.80 0.0060 0.0046 1.72 0.0026 0.0032 0.46 0.007 0.11 0.16 0.0004 0.0001 0.001.26 2.18 0.51 0.27 60 Comp.ex. 0.77 2.43 0.83 0.0062 0.0072 1.96 0.000.0076 0.08 0.0.17 0.0002 0.0001 0.0004 0.91 2.04 0.47 0.32 61 Comp.ex. 0.72.26 0.78 0.0069 0.0058 1.99 0.0013 0.0080.07 0.00.0.16 0.0003 0.0002 0.0000.82.06 0.27 0.27 62 Comp.ex. 0.73 2.0.62 0.0049 0.0062 1.73 0.000.0053 0.00.00.13 0.17 0.67 1.78 0.77 0.29 63 Comp.ex. 0.72 2.21 0.72 0.0074 0.0051 1.86 0.0026 0.0036 - 0.024 0.12 0.17 0.0002 0.0001 0.0012 0.34 0.29 64 Comp.ex. 0.74 2.1.18 0.0053 0.0056 2.02 0.0022 0.0042 0.09 0.006 0.0.16 - - 1.27 2.11 0.48 0.26 6Comp.ex. 0.74 2.52 0.51 0.0064 0.0046 1.73 0.0019 0.0039 0.06 0.003 0.12 0.16 0.0004 0.0002 0.0007 0.57 1.79 0.79 0.28 66 Comp.ex. 0.72.76 0.72 0.0048 0.0058 2.0.0014 0.0032 0.09 0.004 0.11 0.0.0002 0.0002 0.000.81 2.54 0.31 0.26 67 Comp.ex. 0.77 2.0.79 0.0059 0.0059 1.31 0.0016 0.000.03 0.002 0.14 0.16 0.0003 0.0001 0.0011 0.82 1.34 0.89 0. 68 Comp.ex. 0.76 2.12 0.66 0.0068 0.0072.31 0.0026 0.0033 0.09 0.0.16 0.0003 0.0001 0.0013 0.72.-0.19 0.31 69 Comp.ex. 0.74 2.0.88 0.0056 0.0056 2.23 0.0023 0.0043 0.06 0.000.14 0.16 0.94 2.29 -0.13 0. 70 Corp.ex. 0.78 2.23 0.73 0.0067 0.0072.41 0.0023 0.0048 0.11 0.000 0.12 0.17 0.0004 0.0003 0.0013 0.84 2.52 -0.18 0.28 71 Comp.ex. 0.71 3.12 0.76 0.0068 0.0044 1.54 0.0021 0.000.07 0.000.12 0.0.84 1.61 1.58 0.26 72 Comp.ex. 0.76 3.0.66 0.0071 0.0052 1.66 0.0017 0.0036 0.04 0.000.11 0.16 0.0004 0.0002 0.0002 0.70 1.70 1.79 0.26 73 Comp.ex. 0.78 2.48 0.68 0.0076 0.001.57 0.0022 0.0031 - 0.90 74 Comp.ex. 0.73 2.36 0.73 0.0033 0.0073 1.80 0.0019 0.0033 0.08 0.006 0.11 0.0.0004 0.0001 0.0012 0.81 1.88 0.56 0.27 C Si Mn P S Cr Al N V Nb Mo W Mg Zr Ca Mn + V Cr + V Si-Cr Mo + W 48 Comp.ex. 0.92.47 0.61 0.0033 0.0078 1.54 0.0022 0.0043 0.09 0.006 0.12 0.14 0.0004 0.0001 0.0013 0.70 1.63 0.93 0.26 49 Comp.ex. 0.58 2.59 0.62 0.0079 0.0057 1.81 0.0021 0.0066 0.09 0.000.0.0.0003 0.0001 0.0014 0.71 1.90 0.77 0.29 Comp.ex. 0.71 3.80 0.80.0049 0.002.03 0.0017 0.0032 0.00.002 0.14 0.16 0.0002 0.0003 0.0008 0.90 2.09 1.77 0.31 51 Comp.ex. 0.73 1.86 0.83 0.0034 0.0060 1.32 0.0013 0.0031 0.09 0.004 0.14 0.14 0.0004 0.0003 0.0000.92 1.41 0.54 0.29 52 Comp.ex. 0.72 2.46 1.54 0.0076 0.0066 2.02 0.0024 0.0043 0.06 0.008 0.14 0.0.0003 0.0003 0.0014 1.60 2.08 0.44 0.29 53 Comp.ex. 0.72 2.22 0.21 0.0057 0.0064 1.58 0.0024 0.0036 0.09 0.000.0.17 0.0001 0.0002 0.0011 0.1.67 0.64 0.31 54 Comp.ex. 0.73 3.13 0.71 0.0048 0.002.72 0.0014 0.000.04 0.007 0.14 0.0.0003 0.0002 0.0011 0.72.76 0.41 0.29 5Comp.ex. 0.78 2.21 0.68 0.0051 0.0041 1.02 0.0013 0.0031 0.09 0.011 0.14 0.17 0.0002 0.0001 0.0012 0.77 1.11 1.19 0.31 56 Comp.ex. 0.72.42 0.74 0.0034 0.0067 1.78 0.0017 0.0033 0.09 0.000.42 0.07 0.0004 0.0003 0.0000.83 1.87 0.63 0.49 57 Comp.ex. 0.73 2.0.81 0.0046 0.0061 1.70.0027 0.0046 0.11 0.00.12 0.0.0003 0.0001 0.0008 0.92 1.86 0.70 0.62 58 Comp.ex. 0.73 2.0.64 0.0044 0.0034 1.80 0.0011 0.0037 - 0.00_ 0.26 0.2 / 0.0000.0002 0.0007 0.0.53 59 Comp.ex. 0.74 2.23 0.80 0.0060 0.0046 1.72 0.0026 0.0032 0.46 0.007 0.11 0.16 0.0004 0.0001 0.001.26 2.18 0.51 0.27 60 Comp.ex. 0.77 2.43 0.83 0.0062 0.0072 1.96 0.000.0076 0.08 0.0.17 0.0002 0.0001 0.0004 0.91 2.04 0.47 0.32 61 Comp.ex. 0.72.26 0.78 0.0069 0.0058 1.99 0.0013 0.0080.07 0.00.0.16 0.0003 0.0002 0.0000.82.06 0.27 0.27 62 Comp.ex. 0.73 2.0.62 0.0049 0.0062 1.73 0.000.0053 0.00.00.13 0.17 0.67 1.78 0.77 0.29 63 Comp.ex. 0.72 2.21 0.72 0.0074 0.0051 1.86 0.0026 0.0036 - 0.024 0.12 0.17 0.0002 0.0001 0.0012 0.34 0.29 64 Comp.ex. 0.74 2.1.18 0.0053 0.0056 2.02 0.0022 0.0042 0.09 0.006 0.0.16 - - 1.27 2.11 0.48 0.26 6Comp.ex. 0.74 2.52 0.51 0.0064 0.0046 1.73 0.0019 0.0039 0.06 0.003 0.12 0.16 0.0004 0.0002 0.0007 0.57 1.79 0.79 0.28 66 Comp.ex. 0.72.76 0.72 0.0048 0.0058 2.0.0014 0.0032 0.09 0.004 0.11 0.0.0002 0.0002 0.000.81 2.54 0.31 0.26 67 Comp.ex. 0.77 2.0.79 0.0059 0.0059 1.31 0.0016 0.000.03 0.002 0.14 0.16 0.0003 0.0001 0.0011 0.82 1.34 0.89 0. 68 Comp.ex. 0.76 2.12 0.66 0.0068 0.0072.31 0.0026 0.0033 0.09 0.0.16 0.0003 0.0001 0.0013 0.72.-0.19 0.31 69 Comp.ex. 0.74 2.0.88 0.0056 0.0056 2.23 0.0023 0.0043 0.06 0.000.14 0.16 0.94 2.29 -0.13 0. 70 Corp.ex. 0.78 2.23 0.73 0.0067 0.0072.41 0.0023 0.0048 0.11 0.000 0.12 0.17 0.0004 0.0003 0.0013 0.84 2.52 -0.18 0.28 71 Comp.ex. 0.71 3.12 0.76 0.0068 0.0044 1.54 0.0021 0.000.07 0.000.12 0.0.84 1.61 1.58 0.26 72 Comp.ex. 0.76 3.0.66 0.0071 0.0052 1.66 0.0017 0.0036 0.04 0.000.11 0.16 0.0004 0.0002 0.0002 0.70 1.70 1.79 0.26 73 Comp.ex. 0.78 2.48 0.68 0.0076 0.001.57 0.0022 0.0031 - 0.90 74 Comp.ex. 0.73 2.36 0.73 0.0033 0.0073 1.80 0.0019 0.0033 0.08 0.006 0.11 0.0.0004 0.0001 0.0012 0.81 1.88 0.56 0.27

[0141]Tabell 1-4Kemiska sammansittningar (mass %) Ex. Table 1-4 Chemical compositions (mass%) Ex.

C Si Mn P S Cr Al N V Nb Mo W Mg Zr Ca Mn+V Cr+V Si-Cr Mo+W 101 Inv.ex. 0.78 2.48 0.68 0.0076 0.001.57 0.0022 0.0031 - - 0.90 102 Inv.ex. 0.77 2.41 0.68 0.0034 0.0047 2.00.0011 0.0042 - 0. 103 Inv.ex. 0.68 2.38 0.87 0.000.0061 1.53 0.0013 0.0033 - - 0.8 104 Inv.ex. 0.88 2.0.87 0.0063 0.0071 1.71 0.0018 0.00- - 0.79 10Inv.ex. 0.78 2.11 0.84 0.0057 0.0039 1.0.000.0031 - - - 0.61 106 Inv.ex. 0.73 2.0.70 0.0046 0.0033 1.91 0.0016 0.0034 0.0.008 0.12 0.17 0.0002 0.0003 0.0011 0.79 2.00 0.44 0.28 107 Inv.ex. 0.77 2.46 0.71 0.0031 0.0054 1.90.0013 0.0038 0.03 0.003 0.0.16 0.0003 0.0002 0.0003 0.74 1.98 0.51 0.31 108 Inv.ex. 0.76 2.0.64 0.0051 0.0072 1.72 0.0016 0.0044 0.07 0.007 0.11 0.17 0.0000.0003 0.0006 0.71 1.79 0.64 0.28 109 Inv.ex. 0.73 2.36 0.73 0.0033 0.0073 1.80 0.0019 0.0033 0.08 0.006 0.11 0.0.0004 0.0001 0.0012 0.81 1.88 0.56 0.27 1Comp.ex. 0.78 2.48 0.68 0.0076 0.001.57 0.0022 0.0031 - 0.90 ,111 Comp.ex. 0.73 2.36 0.73 0.0033 0.0073 1.80 0.0019 0.0033 0.08 0.006 0.11 0.0.0004 0.0001 0.0012 0.81 1.88 0.56 0.27 C Si Mn P S Cr Al N V Nb Mo W Mg Zr Ca Mn + V Cr + V Si-Cr Mo + W 101 Inv.ex. 0.78 2.48 0.68 0.0076 0.001.57 0.0022 0.0031 - - 0.90 102 Inv.ex. 0.77 2.41 0.68 0.0034 0.0047 2.00.0011 0.0042 - 0. 103 Inv.ex. 0.68 2.38 0.87 0.000.0061 1.53 0.0013 0.0033 - - 0.8 104 Inv.ex. 0.88 2.0.87 0.0063 0.0071 1.71 0.0018 0.00- - 0.79 10Inv.ex. 0.78 2.11 0.84 0.0057 0.0039 1.0.000.0031 - - - 0.61 106 Inv.ex. 0.73 2.0.70 0.0046 0.0033 1.91 0.0016 0.0034 0.0.008 0.12 0.17 0.0002 0.0003 0.0011 0.79 2.00 0.44 0.28 107 Inv.ex. 0.77 2.46 0.71 0.0031 0.0054 1.90.0013 0.0038 0.03 0.003 0.0.16 0.0003 0.0002 0.0003 0.74 1.98 0.51 0.31 108 Inv.ex. 0.76 2.0.64 0.0051 0.0072 1.72 0.0016 0.0044 0.07 0.007 0.11 0.17 0.0000.0003 0.0006 0.71 1.79 0.64 0.28 109 Inv.ex. 0.73 2.36 0.73 0.0033 0.0073 1.80 0.0019 0.0033 0.08 0.006 0.11 0.0.0004 0.0001 0.0012 0.81 1.88 0.56 0.27 1Comp.ex. 0.78 2.48 0.68 0.0076 0.001.57 0.0022 0.0031 - 0.90, 111 Comp.ex. 0.73 2.36 0.73 0.0033 0.0073 1.80 0.0019 0.0033 0.08 0.006 0.11 0.0.0004 0.0001 0.0012 0.81 1.88 0.56 0.27

[0142] Tabell 1- Ex. ValsAmnestemperatur (°C) Patenteringstemperatur (°C) SlAckningstemperatur (°C) Tridbrott etc. Table 1- Ex. Roller Item temperature (° C) Patenting temperature (° C) Extinguishing temperature (° C) Wood breakage etc.

[Bra ingen abnormitet] Maximal sfArisk karbiddiameter Tidigare austenitkornstor- lek (V) Restaustenit (vol %) DraghAllfasthet (MPa) 0,2 % provspAnning Dtbytesforhillande (%) Spirbedning grader (grader) Makamuratyp av roterande bedning (MPa) Inre hArdhet efter nitrering (HY) Hardhet nitrerat skikt (HIT) 1 Inv.ex. 12990.06 9 2214 1887 836 927 597 788 2 Inv.ex. 12990.13 12 9 2288 1939 839 918 638 787 3 Inv.ex. 12990.06 11 8 2383 1982 37 924 599 819 4 Inv.ex. 12990.09 12 13 2217 1811 82 39 9621 799 Inv.ex. 12990.13 13 11 2301844 80 36 918 627 817 6 Inv.ex. 12990.12 2241 1899 839 918 623 816 7 Inv.ex. 1200 990.08 2243 1978 88 39 911 618 793 8 Inv.ex. 12990.02 6 2301 1811 79 38 914 600 789 9 Inv.ex. 12990.07 13 11 2293 1880 82 928 607 806 Inv.ex. 1200 9100.11 13 9 2263 1801 80 37 912 612 79 11 Inv.ex. 129100.13 2283 1939 837 929 608 808 12 Inv.ex. 129100.12 7 231844 79 38 913 616 780 13 Inv.ex. 1299.a I 0.13 13 2169 1904 88 39 9627 819 14 Inv.ex. 12990.07 13 2346 1854 79 919 612 808 Inv.ex. 12990.11 12 2189 1917 88 36 924 599 804 16 Inv.ex. 12990.01 12 9 2281822 80 38 916 680 17 Inv.ex. 12990.12 11 13 2248 1987 929 59787 18 Inv.ex. 12990.09 12 9 2193 1904 87 38 9616 804 19 Inv.ex. 12990.11 7 2180 1949 89 36 928 598 786 Inv.ex. 12990.09 8 2374 1891 80 39 924 612 817 21 Inv.ex. 12990.04 12 12 2368 1846 78 36 911 638 806 22 Inv.ex. 12970 0.04 12 2254 1853 82 914 629 79 23 Inv.ex. 12990.06 12 11 2311 1852 80 39 923 6783 24 Inv.ex. 1200 990.11 11 221956 87 911 616 793 [Good no abnormality] Maximum spherical carbide diameter Previous austenite grain size (V) Residual austenite (vol%) Tensile strength (MPa) 0.2% Sample voltage Dtbytesfor relating (%) Sprout bedding degrees (degrees) Macamura type of rotary bedding (MPa) Internal hardening ( HY) Hardness nitrided layer (HIT) 1 Inv.ex. 12990.06 9 2214 1887 836 927 597 788 2 Inv.ex. 12990.13 12 9 2288 1939 839 918 638 787 3 Inv.ex. 12990.06 11 8 2383 1982 37 924 599 819 4 Inv.ex. 12990.09 12 13 2217 1811 82 39 9621 799 Inv.ex. 12990.13 13 11 2301844 80 36 918 627 817 6 Inv.ex. 12990.12 2241 1899 839 918 623 816 7 Inv.ex. 1200 990.08 2243 1978 88 39 911 618 793 8 Inv.ex. 12990.02 6 2301 1811 79 38 914 600 789 9 Inv.ex. 12990.07 13 11 2293 1880 82 928 607 806 Inv.ex. 1200 9100.11 13 9 2263 1801 80 37 912 612 79 11 Inv.ex. 129100.13 2283 1939 837 929 608 808 12 Inv.ex. 129100.12 7 231844 79 38 913 616 780 13 Inv.ex. 1299.a I 0.13 13 2169 1904 88 39 9627 819 14 Inv.ex. 12990.07 13 2346 1854 79 919 612 808 Inv.ex. 12990.11 12 2189 1917 88 36 924 599 804 16 Inv.ex. 12990.01 12 9 2281822 80 38 916 680 17 Inv.ex. 12990.12 11 13 2248 1987 929 59787 18 Inv.ex. 12990.09 12 9 2193 1904 87 38 9616 804 19 Inv.ex. 12990.11 7 2180 1949 89 36 928 598 786 Inv.ex. 12990.09 8 2374 1891 80 39 924 612 817 21 Inv.ex. 12990.04 12 12 2368 1846 78 36 911 638 806 22 Inv.ex. 12970 0.04 12 2254 1853 82 914 629 79 23 Inv.ex. 12990.06 12 11 2311 1852 80 39 923 6783 24 Inv.ex. 1200 990.11 11 221956 87 911 616 793

[0143]Tabell 1-6 Ex. valsamnestemperatur (°C) Patenteringstemperatur (°C) ^ 02 o 0 a. — n N. 0 I-- P (0 0 Am 0 M 0 m 0 m Tradbrott etc. Table 1-6 Ex. rolling stock temperature (° C) Patenting temperature (° C) ^ 02 o 0 a. - n N. 0 I-- P (0 0 Am 0 M 0 m 0 m Tradbrott etc.

[Bra = ingen abnormitet] Maximal sfarisk karbiddiameter AM Tidigare austenitkornstorlek (y#) Restaustentit (vol %) Draghallfasthet (MPa) 0,2 % provspinning Utbytesforhillande (%) Sparbajning grader (grader) Nakamuratyp av roterande b8jning (MPa) Inre hardhet after nitreroing (HV) Hardhet hoe nitrerat skikt (HV) Inv.ex. 12990.8 2357 1953 83 39 916 619 792 26 Inv.ex. 12990.12 11 13 21918689628 794 27 Inv.ex. 12990.11 11 12 2226 1872 84 38 922 592 79 28 Inv.ex. 1200 990.011 13 2181 1854 838 9631 784 29 Inv.ex. 12990.09 13 9 2277 1890 83 37 916 6786 Inv.ex. 12990.04 11 7 231938 83 37 922 593 798 31 Inv.ex. 12990.07 12 2301867 81 38 921 6791 32 Inv.ex. 12990.01 11 12 2216 1880 8919 592 813 33 Inv.ex. 1200 990.02 2281929 84 39 911 597 797 34 Inv.ex. 12990.03 11 11 2329 1944 83 39 916 601 794 Inv.ex. 12990.01 12 9 231824 79 911 609 793 36 Inv.ex. 12990.012 13 2153 1951 91 37 927 68 37 Inv.ex. 12970 0.01 9 221904 86 919 606 816 38 Inv.ex. 12990.07 11 6 2178 1971 91 38 921 60803 39 Inv.ex. 12990.12 6 2268 1880 39 9590 784 Inv.ex. 12990.06 13 8 2302 1860 81 39 919 604 814 41 Inv.ex. 12990.01 8 2190 1896 87 37 924 611 806 42 Inv.ex. 12990.06 13 6 2218 1893 837 927 639 787 43 Inv.ex. 12990.08 12 12 2382 1949 82 929 624 819 44 Inv.ex. 12990.06 12 8 2269 1369 82 918 618 806 Inv.ex. 12990.09 12 6 2151880 87 37 919 627 782 46 Inv.ex. 12990.13 12 12 2314 1964 838 912 639 813 47 Inv.ex. 12990.03 11 7 221892 837 919 6798 [Good = no abnormality] Maximum spherical carbide diameter AM Previous austenite grain size (y #) Residual austenite (vol%) Tensile strength (MPa) 0.2% Test spinning Yield ratio (%) Saving bending degrees (degrees) Nakamura type of rotating bending (MPa) Internal hardness after rivets (HV) Hardness hoe nitrated layer (HV) Inv.ex. 12990.8 2357 1953 83 39 916 619 792 26 Inv.ex. 12990.12 11 13 21918689628 794 27 Inv.ex. 12990.11 11 12 2226 1872 84 38 922 592 79 28 Inv.ex. 1200 990.011 13 2181 1854 838 9631 784 29 Inv.ex. 12990.09 13 9 2277 1890 83 37 916 6786 Inv.ex. 12990.04 11 7 231938 83 37 922 593 798 31 Inv.ex. 12990.07 12 2301867 81 38 921 6791 32 Inv.ex. 12990.01 11 12 2216 1880 8919 592 813 33 Inv.ex. 1200 990.02 2281929 84 39 911 597 797 34 Inv.ex. 12990.03 11 11 2329 1944 83 39 916 601 794 Inv.ex. 12990.01 12 9 231824 79 911 609 793 36 Inv.ex. 12990.012 13 2153 1951 91 37 927 68 37 Inv.ex. 12970 0.01 9 221904 86 919 606 816 38 Inv.ex. 12990.07 11 6 2178 1971 91 38 921 60803 39 Inv.ex. 12990.12 6 2268 1880 39 9590 784 Inv.ex. 12990.06 13 8 2302 1860 81 39 919 604 814 41 Inv.ex. 12990.01 8 2190 1896 87 37 924 611 806 42 Inv.ex. 12990.06 13 6 2218 1893 837 927 639 787 43 Inv.ex. 12990.08 12 12 2382 1949 82 929 624 819 44 Inv.ex. 12990.06 12 8 2269 1369 82 918 618 806 Inv.ex. 12990.09 12 6 2151880 87 37 919 627 782 46 Inv.ex. 12990.13 12 12 2314 1964 838 912 639 813 47 Inv.ex. 12990.03 11 7 221892 837 919 6798

[0144]Tabell 1-7 Ex. '0< 2 1 ..; . . 0 4 m . 0 " m H Patenteringstemperatur . (°C) Slackningstemperatur (°C) Tridbrott etc. Table 1-7 Ex. '0 <2 1 ..; . . 0 4 m. 0 "m H Patent temperature. (° C) Slackening temperature (° C) Wood breakage etc.

(Bra = ingen abnormitet] Maximal sfixisk karbiddiameter (gm) Tidigare austenitkornstor- lek(y1) Restaustenit (vol%) Draghillfasthet (MPa) 0,2 % provningsspanning Utbytesforhallande (%) Spfirbojning grader (grader) Nakamuratyp av roterande bojning (MPa) Inre hirdhet efter nitrering (HV) Hardhet nitrerat skikt (MN) 48 Comp.ex. 12990.31 12 9 231857 80 24 9617 807 49 Comp.ex. 1299 0.02 13 7 2002 1806 90 39 812 554 813 Comp.ex. 1299 0.04 13 8 2338 1841 79 23 926 612 812 51 Comp.ex. 1299Bra 0.12 11 7 2236 1954 87 36 9568 728 52 Comp.ex. 1299 0.08 12 21 2318 1680 737 8612 816 53 Comp.ex. 1299 0.11 2 2391971 82 923 637 801 54 Comp.ex. 1299 0.26 13 2363 1909 81 23 9629 79 5Comp.ex. 1299 0.03 7 2382 1877 39 919 608 731 56 Corrp.ex. 1299. 57 Comp. (Good = no abnormality] Maximum spherical carbide diameter (gm) Previous austenite grain size (y1) Residual austenite (vol%) Tensile strength (MPa) 0.2% Test stress Yield ratio (%) Spire bending degrees (degrees) Nakamura type of rotating bending (MPa) hardness after nitriding (HV) Hardness nitrated layer (MN) 48 Comp.ex. 12990.31 12 9 231857 80 24 9617 807 49 Comp.ex. 1299 0.02 13 7 2002 1806 90 39 812 554 813 Comp.ex. 1299 0.04 13 8 2338 1841 79 23 926 612 812 51 Comp.ex. 1299Bra 0.12 11 7 2236 1954 87 36 9568 728 52 Comp.ex. 1299 0.08 12 21 2318 1680 737 8612 816 53 Comp.ex. 1299 0.11 2 2391971 82 923 637 801 54 Comp .ex 1299 0.26 13 2363 1909 81 23 9629 79 5Comp.ex 1299 0.03 7 2382 1877 39 919 608 731 56 Corrp.ex 1299. 57 Comp.

Cop.ex. 1299Tra I I - 58 Comp.ex. 1299brott 59 Comp.ex. 12990.42 12 7 2227 188821 929 68 60 Comp.ex. 1299Bra I1 0.12 8 221881 84 17 914 6816 61 Comp.ex. 1299 0.13 12 6 2384 1877 17 916 606 817 62 Comp.ex. 12990 I I - - - - - 63 Comp.ex. 1299Tradbr. - - - - - 64 Comp.ex. 12990.03 11 17 2233 1560 70 21 786 561 783 6Comp.ex. 1299 0.11 11 3 2232 1860 83 24 911 606 8 66 Comp.ex. 1299 0.33 11 2311 1838 80 21 916 613 783 67 Comp.ex. 1299Bra 0.03 9 2276 1977 87 43 789 561 732 68 Comp.ex. 1299 0.28 12 11 2297 1934 84 24 923 612 809 69 Comp.ex. 1299 0.22 13 6 2243 1838 82 22 914 629 813 70 Comp.ex. 1299 0.26 12 8 2329 1813 78 21 922 596 787 71 Comp.ex. 1299* I 12 9 2359 1898 80 43 774 609 780 72 Comp.ex. 1299 12 2371 1877 43 781 631 797 73 Comp.ex. 1100 990.26 9 2114 1827 86 911 591 793 74 Comp.ex. 1100 99* * 0.28 6 2251 1822 81 22 9602 751 * dekarburiserad ** Bra Tabell 1-8 51 Hirdhet nitrerat skikt (HV) 11111111111 Intre hardhet after nitrering (MV) 11 111 1 111 1 Nakamuratyp av roterande bajning Ili! It ti i I I SpArbojning grader (grader) IIIIIIII(It Utbytesfdrhallande (%) IIIIIIII pp 0,2 % provspinning 11111111111 Draghillfasthet (MPa) 11111111 1 1 Restaustennit (%) IIIIIIIIIII Tidigare austenitkornstor- lek(14) IIIIIIIIIII Maximal sfirisk karbiddiameter 03I 08 04 03I 02 03 22 0 0 CO Tridbrott etc. Cop.ex. 1299Tra I I - 58 Comp.ex. 1299brott 59 Comp.ex. 12990.42 12 7 2227 188821 929 68 60 Comp.ex. 1299Bra I1 0.12 8 221881 84 17 914 6816 61 Comp.ex. 1299 0.13 12 6 2384 1877 17 916 606 817 62 Comp.ex. 12990 I I - - - - - 63 Comp.ex. 1299Tradbr. - - - - - 64 Comp.ex. 12990.03 11 17 2233 1560 70 21 786 561 783 6Comp.ex. 1299 0.11 11 3 2232 1860 83 24 911 606 8 66 Comp.ex. 1299 0.33 11 2311 1838 80 21 916 613 783 67 Comp.ex. 1299Bra 0.03 9 2276 1977 87 43 789 561 732 68 Comp.ex. 1299 0.28 12 11 2297 1934 84 24 923 612 809 69 Comp.ex. 1299 0.22 13 6 2243 1838 82 22 914 629 813 70 Comp.ex. 1299 0.26 12 8 2329 1813 78 21 922 596 787 71 Comp.ex. 1299 * I 12 9 2359 1898 80 43 774 609 780 72 Comp.ex. 1299 12 2371 1877 43 781 631 797 73 Comp.ex. 1100 990.26 9 2114 1827 86 911 591 793 74 Comp.ex. 1100 99 * * 0.28 6 2251 1822 81 22 9602 751 * decarburised ** Good Table 1-8 51 Hardness nitrided layer (HV) 11111111111 Internal hardness after nitriding (MV) 11 111 1 111 1 Nakamura type of rotating bending Ili! It ti i II SpArbojning grader (grader) IIIIIIII (It Utbytesfdrhallande (%) IIIIIIII pp 0,2% provspinning 11111111111 Draghillfastthet (MPa) 11111111 1 1 Restaustennit (%) IIIIIIIIIII Tidigare austenitkornstor- lek (14) IIIIIIIIIII 08iam siddisk 03I 02 03 22 0 0 CO Tridbrott etc.

[Bra . ingen abnormitet] 1 11111 III SlAckningstemperatur (°C) IIIIIIIIIII Patenteringstemperatur (°C) IIIIIIII1 It Valsamnestamperatur (o C) 0 1.0 Ln 117 00000 1,7 L,1 ,n o 00 o N rH ZT ,-I ,-, -i -■ NNNNN . [Th 12 ,-I e, X X X X X X X X 1Comp. ex .1 CD (t) (I) (1) (1.7 (1) 1) 0.) > > > > > > > > C G C HHH N N HHH NINM,C LID 1.0 f--COMO N • X r-1 c--1 =1 r-1 000000000.-1,-1 I-1 W 51 52 IndustrieII tillampbarhet [Good. no abnormality] 1 11111 III Extinguishing temperature (° C) IIIIIIIIIII Patenting temperature (° C) IIIIIIII1 It Roll sample temperature (o C) 0 1.0 Ln 117 00000 1.7 L, 1, no 00 o N rH ZT, -I, -, -i - ■ NNNNN. [Th 12, -I e, X X X X X X X X 1Comp. ex .1 CD (t) (I) (1) (1.7 (1) 1) 0.)>>>>>>>>> CGC HHH NN HHH NINM, C LID 1.0 f - COMO N • X r-1 c - 1 = 1 r-1 000000000.-1, -1 I-1 W 51 52 IndustrieII applicability

[0146]FOreliggande uppfinning kan anvandas fOr produktion av staltrad fOr htighallfasthetsfjaderanvandning. FlOghallfasthetsfjadermaterialet kan anvandas inom manga industriella omraden utgaende ifran bilindustrin. The present invention can be used for the production of staltra for high-strength spring use. The fluff resistance spring material can be used in many industrial areas based on the automotive industry.

Lista Over hanvisningsbeteckningar List of male designation designations

[0147]1 sfariska karbider 2 stans 10 3 provstycke 4 spar 5 inmatare 6 stativ anvant fOr last P last L distans mellan stOd 0 sparets bOjningsvinkel 52 53 1 spherical carbides 2 punch 10 3 test piece 4 groove 5 feeder 6 stand used for load P load L distance between supports 0 spar bending angle 52 53

Claims (14)

1. Claim lPre-drawn steel wire for high strength spring use characterized by containing, by mass%, C: 0.67% to less than 0.9%, Si: 2.0 to 3.5%, Mn: 0.5 to l.2%, Cr: l.3 to 2.5%, N: 0.003 to 0.007%, and Al: 0.0005% to 0.003%, having Si and Cr satisfying the following formula:0.3%SSi-CrSl.2%, having a balance of iron and unavoidable impurities,having P and S as impurities comprising P: 0.025% or less and S: 0.025% or less, and, furthermore, having a circle equivalent diameter of undissolvedspherical carbides of less than 0.2 um.
2. Claim 2 Pre-drawn steel wire for high strength spring use as set forth in claim l characterized by, further,containing, by mass%, one or more of V: 0.03 to 0.l0%, Nb: 0.0l5% or less Mo: 0.05 to 0.30%, W: 0.05 to 0.30% Mg: 0.002% or less, Ca: 0.002% or less, and Zr: 0.003% or less, when containing V satisfying l.4%SCr+VS2.6% and 0.70%SMn+Všl.3%, and,when containing Mo and W, satisfying 0.05%SMo+Wš0.5%.
3. Claim 3 Drawn heat treated steel wire for high strength lO _6]__ spring use characterized by containing, by mass%, C: 0.67% to less than 0.9%, Si: 2.0 to 3.5%, Mn: 0.5 to l.2%, Cr: l.3 to 2.5%, N: 0.003 to 0.007%, and Al: 0.0005% to 0.003%, having Si and Cr satisfying the following formula:0.3%šSi-Cršl.2%, and having a balance of iron and unavoidable impurities,having P and S as impurities comprising P: 0.025% or less and S: 0.025% or less, furthermore, having a metal structure comprised of at least residualaustenite in a volume rate of over 6% to l5%, having prior austenite grain size number of #10 or more,and having a circle equivalent diameter of undissolvedspherical carbides of less than 0.2 um.
4. Claim 4 Drawn heat treated steel wire for high strength spring use as set forth in claim 3 characterized by,further, containing, by mass%, one or more of V: 0.03 to 0.l0%, Nb: 0.0l5% or less Mo: 0.05 to 0.30%, W: 0.05 to 0.30% Mg: 0.002% or less, Ca: 0.002% or less, and Zr: 0.003% or less, when containing V satisfying l.4%SCr+VS2.6% and 0.70%šMn+Všl.3%, and,when containing Mo and W, satisfying 0.05%SMo+Wš0.5%.
5. Claim 5 _62_ Drawn heat treated steel wire for high strengthspring use as set forth in claim 3 or 4 characterized inthat said drawn heat treated steel wire for high strengthspring use has a tensile strength of 2100 to 2400 MPa.
6. Claim 6 Drawn heat treated steel wire for high strengthspring use as set forth in any one of claims 3) to 5characterized in that said drawn heat treated steel wirefor high strength spring use has a yield strength of 1600to 1980 MPa.
7. Claim 7 Drawn heat treated steel wire for high strengthspring use as set forth in any one of claims 3 to 6characterized said drawn heat treated steel wire for highstrength spring use has a a surface Vicker's hardness of HV750 or more and an internal Vicker's hardness of HV570 or more aftersoft nitriding of keeping at 500°C for 1hour.
8. Claim 8 A method of production of pre-drawn steel wire for high strength spring use characterized by taking a bloomcontaining, by mass%, C: 0.67% to less than 0.9%, Si: 2.0 to 3.5%, Mn: 0.5 to 1.2%, Cr: 1.3 to 2.5%, N: 0.003 to 0.007%, and Al: 0.0005% to 0.003%, having Si and Cr satisfying the following formula:0.3%SSi-CrS1.2%, having a balance of iron and unavoidable impurities,having P and S as impurities comprising P: 0.025% or less and S: 0.025% or less, heating the bloom to 1250°C or more, then hot rolling the bloom to produce a billet and heating the billet to 1200°C lO _63_ or more, then hot rolling to produce pre-drawn steelwire.
9. Claim 9 A method of production of pre-drawn steel wire for high strength spring use as set forth in claim 8characterized by the bloom further, containing, by mass%,one or more of V: 0.03 to 0.l0%, Nb: 0.0l5% or less Mo: 0.05 to 0.30%, W: 0.05 to 0.30% Mg: 0.002% or less, Ca: 0.002% or less, and Zr: 0.003% or less, when containing V satisfying l.4%SCr+VS2.6% and 0.70%šMn+Všl.3%, and,when containing Mo and W, satisfying 0.05%SMo+Wš0.5%.
10. Claim l0 A method of production of pre-drawn steel wire for high strength spring use characterized by further heating pre-drawn steel wire as set forth in claim 8 or 9 to 900°C or more, then patenting it at 600°C or less.
11. Claim llA method of production of heat treated steel wire for high strength spring use characterized by drawing said pre-drawn steel wire which was produced bythe method of production of pre-drawn steel wire as setforth in any one of claim 8 or 9, heating it by a heating rate of l0°C/sec or more up to anA3 point, holding it at a temperature of the A3 point or more for lminute to 5 minutes, then cooling it by a cooling rate of 50°C/sec or more down to l00°C or less.
12. Claim l2 lO _64_ A method of production of heat treated steel wire for high strength spring use characterized by drawing said pre-drawn steel wire which was produced bythe method of production of pre-drawn steel wire as setforth in any one of claim l0, heating it by a heating rate of l0°C/sec or more up to anA3 point, holding it at a temperature of the A3 point or more for lminute to 5 minutes, then cooling it by a cooling rate of 50°C/sec or more down to l00°C or less.
13. Claim l3 A method of production of heat treated steel wirefor high strength spring use as set forth in claim llcharacterized by further holding and tempering it at 400to 500°C for l5 minutes or less.
14. Claim l4 A method of production of heat treated steel wirefor high strength spring use as set forth in claim l2 characterized by further holding and tempering it at 400 to 500°C for l5 minutes or less.
SE1250810A 2010-07-06 2011-07-05 Wire heat treated steel wire for high strength spring use, preferred steel wire for high strength spring use and methods for making these threads SE537538C2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010154030 2010-07-06
PCT/JP2011/065749 WO2012005373A1 (en) 2010-07-06 2011-07-05 Drawn and heat-treated steel wire for high-strength spring, and undrawn steel wire for high-strength spring

Publications (2)

Publication Number Publication Date
SE1250810A1 true SE1250810A1 (en) 2013-03-20
SE537538C2 SE537538C2 (en) 2015-06-09

Family

ID=45441342

Family Applications (1)

Application Number Title Priority Date Filing Date
SE1250810A SE537538C2 (en) 2010-07-06 2011-07-05 Wire heat treated steel wire for high strength spring use, preferred steel wire for high strength spring use and methods for making these threads

Country Status (6)

Country Link
US (1) US20120291927A1 (en)
JP (1) JP4980496B2 (en)
KR (1) KR20120040728A (en)
CN (1) CN102482747B (en)
SE (1) SE537538C2 (en)
WO (1) WO2012005373A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013024876A1 (en) * 2011-08-18 2013-02-21 新日鐵住金株式会社 Spring steel and spring
JP2016014169A (en) * 2014-07-01 2016-01-28 株式会社神戸製鋼所 Wire rod for steel wire and steel wire
JP2017532450A (en) * 2014-09-04 2017-11-02 ティッセンクルップ フェダーン ウント スタビリサトーレン ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for manufacturing a hot-formed steel spring
JP6453138B2 (en) * 2015-03-31 2019-01-16 株式会社神戸製鋼所 Heat-treated steel wire with excellent bending workability
JP7044109B2 (en) * 2017-05-19 2022-03-30 住友電気工業株式会社 Oil temper wire
WO2019010661A1 (en) * 2017-07-13 2019-01-17 田圣林 High toughness and high strength corrosion resistant spring
MX2020009592A (en) * 2018-03-29 2020-10-05 Nippon Steel Corp Hot-stamped formed product.
MX2021008968A (en) * 2019-02-26 2021-08-24 Bekaert Sa Nv Helical compression spring for an actuator for opening and closing a door or a tailgate of a car.
WO2020233872A1 (en) * 2019-05-20 2020-11-26 Nv Bekaert Sa Method of making a spring core for a mattress or for seating products
WO2021002074A1 (en) * 2019-07-01 2021-01-07 住友電気工業株式会社 Steel wire and spring
MX2022010291A (en) * 2020-02-21 2022-10-13 Nippon Steel Corp Steel wire.
CN112427484B (en) * 2020-11-11 2022-07-26 南京工程学院 Method for manufacturing stainless spring steel wire through recrystallization annealing regulation and control
KR102492641B1 (en) * 2020-12-17 2023-01-30 주식회사 포스코 Wire rod and steel wire for spring, spring with improved fatigue resistance and nitriding properties, and the method for manufacturing the same
CN113416834A (en) * 2021-01-26 2021-09-21 陈冬英 Steel wire heat treatment quenching process
KR20220163153A (en) * 2021-06-02 2022-12-09 주식회사 포스코 Wire rod and steel wire for spring, spring with improved strength and fatigue limit, and the method for manufacturing the same
SE545660C2 (en) * 2021-10-28 2023-11-28 Suzuki Garphyttan Ab Flat wire and method for production thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4555768B2 (en) * 2004-11-30 2010-10-06 新日本製鐵株式会社 Steel wire for high strength spring
JP4478072B2 (en) * 2005-06-09 2010-06-09 新日本製鐵株式会社 High strength spring steel
JP4486040B2 (en) * 2005-12-20 2010-06-23 株式会社神戸製鋼所 Steel wire for cold forming springs with excellent cold cutability and fatigue characteristics and manufacturing method thereof
CN101321885B (en) * 2006-03-31 2012-05-23 新日本制铁株式会社 Heat-treatment steel for high-strength spring
JP4868935B2 (en) * 2006-05-11 2012-02-01 株式会社神戸製鋼所 High strength spring steel wire with excellent sag resistance

Also Published As

Publication number Publication date
CN102482747B (en) 2014-03-05
US20120291927A1 (en) 2012-11-22
JP4980496B2 (en) 2012-07-18
WO2012005373A1 (en) 2012-01-12
SE537538C2 (en) 2015-06-09
KR20120040728A (en) 2012-04-27
CN102482747A (en) 2012-05-30
JPWO2012005373A1 (en) 2013-09-05

Similar Documents

Publication Publication Date Title
SE1250810A1 (en) Pulled heat treated steel wire for high strength spring use and preferred steel wire for high strength spring use
JP6791371B2 (en) High-strength cold-rolled steel sheet and its manufacturing method
JP5135563B2 (en) Carburizing steel, carburized steel parts, and manufacturing method thereof
CN108431279A (en) Automotive part with high intensity and excellent durability and its manufacturing method
EP1820869A1 (en) Steel and steel wire for high strength spring
JP4478072B2 (en) High strength spring steel
US9593389B2 (en) Steel wire rod for bearing steel, manufacturing method of steel wire rod for bearing steel, heat treatment method of steel bearing, steel bearing and soaking method of bearing steel
WO2012108461A1 (en) Steel for carburizing, carburized steel component, and method for producing same
WO2001079567A1 (en) Method for manufacturing high strength bolt excellent in resistance to delayed fracture and to relaxation
KR20140095099A (en) Steel for mechanical structure for cold working, and method for manufacturing same
WO2007058364A1 (en) Steel for warm working, method of warm working of the steel, and steel material and steel part obtained by the same
WO2019131188A1 (en) High-strength cold rolled steel sheet and method for manufacturing same
TW202039881A (en) Steel sheet, manufacturing method thereof, and formed product
JP5152441B2 (en) Steel parts for machine structure and manufacturing method thereof
JP2018178248A (en) High strength cold rolled steel sheet and method for producing the same
WO2012161321A1 (en) Steel component for mechanical structural use and manufacturing method for same
CN106133170B (en) High-carbon hot-rolled steel sheet and its manufacture method
UA124482C2 (en) Steel section having a thickness of at least 100mm and method of manufacturing the same
RU2751718C1 (en) Cold-rolled and heat-treated sheet steel, method of its production and use of such steel for production of vehicle parts
CN106133169B (en) High-carbon hot-rolled steel sheet and its manufacture method
CN103025904A (en) Spring and manufacture method thereof
CN108138250A (en) High-strength steel sheet and its manufacturing method
JP5679455B2 (en) Spring steel, spring steel wire and spring
JP2018003106A (en) Steel for machine structural use for cold working and production method therefor
JP7401826B2 (en) Steel plate and method for manufacturing steel plate

Legal Events

Date Code Title Description
NUG Patent has lapsed