EP2855725B1 - Low-density hot- or cold-rolled steel, method for implementing same and use thereof - Google Patents

Low-density hot- or cold-rolled steel, method for implementing same and use thereof Download PDF

Info

Publication number
EP2855725B1
EP2855725B1 EP13732225.1A EP13732225A EP2855725B1 EP 2855725 B1 EP2855725 B1 EP 2855725B1 EP 13732225 A EP13732225 A EP 13732225A EP 2855725 B1 EP2855725 B1 EP 2855725B1
Authority
EP
European Patent Office
Prior art keywords
sheet
steel sheet
rolled
temperature
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13732225.1A
Other languages
German (de)
French (fr)
Other versions
EP2855725A1 (en
Inventor
Ian Alberto ZUAZO RODRIGUEZ
Astrid Perlade
Xavier Garat
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ArcelorMittal SA
Original Assignee
ArcelorMittal SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ArcelorMittal SA filed Critical ArcelorMittal SA
Publication of EP2855725A1 publication Critical patent/EP2855725A1/en
Application granted granted Critical
Publication of EP2855725B1 publication Critical patent/EP2855725B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/46Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting
    • B21B1/463Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting in a continuous process, i.e. the cast not being cut before rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/02Winding-up or coiling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention relates to a rolled steel sheet having a mechanical strength greater than or equal to 600 MPa and an elongation at break greater than or equal to 20% and its manufacturing method.
  • the patent application JP2006118000 is a lightweight steel with high strength and good ductility.
  • the composition of the proposed steel contains in weight percentage: 0.1 to 1.0% C, less than 3.0% Si, 10.0 to 50.0% Mn, less than 0.01 % P, less than 0.01% S, 5.0 to 15.0% Al and 0.001 to 0.05% N, the remainder being iron and unavoidable impurities, equation (1) below in front of be satisfied, the steel will have a density less than or equal to 7.0.
  • the patent application WO2007 / 024092 is intended to provide easily rolled hot-rolled sheet.
  • This application relates to a sheet containing 0.2-1% C, 8-15% Mn, with a product of mechanical strength by elongation of 24000 MPa. It appears that this application is a totally austenitic structure, but this type of microstructure is particularly difficult to roll.
  • One of the aims of the invention is also to provide a method of manufacturing these sheets that is compatible with usual industrial applications while being insensitive to manufacturing conditions.
  • the invention firstly relates to a rolled steel sheet whose density is less than or equal to 7.3 and whose composition comprises, the contents being expressed by weight: 0 , 10 ⁇ VS ⁇ 0 , 30 % 6 , 0 ⁇ mn ⁇ 15 , 0 % 6 , 0 ⁇ al ⁇ 15 , 0 % and optionally, one or more elements selected from: Yes ⁇ 2 , 0 % Ti ⁇ 0 , 2 % V ⁇ 0 , 6 % Nb ⁇ 0 , 3 % the remainder of the composition being composed of iron and unavoidable impurities resulting from the elaboration, the ratio of the weight of manganese to that of aluminum being such that mn al > 1 , 0 , the microstructure of the sheet consisting of ferrite, austenite and up to 5% Kappa precipitates in surface fraction.
  • the composition comprises, the content being expressed by weight: 0 , 18 ⁇ VS ⁇ 0 , 21 %
  • the composition comprises, the content being expressed by weight: 7 , 0 ⁇ mn ⁇ 10 , 0 %
  • the composition comprises, the content being expressed by weight: 6 , 0 ⁇ al ⁇ 12 , 0 %
  • the composition comprises, the content being expressed by weight: 6 , 0 ⁇ al ⁇ 9 , 0 %
  • the composition comprises, the content being expressed by weight: Yes ⁇ 1 %
  • the ratio of the weight of manganese to that of aluminum is such that: mn al ⁇ 1 , 1 , even more preferably, the ratio is such that mn al ⁇ 1 , 5 , even more preferably, the ratio is such that mn al ⁇ 2 , 0.
  • the sheet according to the invention is such that the tensile strength is greater than or equal to 600 MPa and the elongation at break is greater than or equal to 20%.
  • the invention also relates to a method of manufacturing a rolled sheet such that said semi-finished product is cast directly in the form of thin slabs or thin strips.
  • the end of rolling temperature T FL is between 900 and 980 ° C.
  • the cooling rate V ref1 is less than or equal to 55 ° C / s.
  • the winding temperature is between 450 and 550 ° C.
  • the temperature T m is between 800 and 900 ° C.
  • the cooling rate V ref2 is greater than or equal to 30 ° C / s.
  • the cooling rate V ref2 is maintained up to a temperature of between 500 ° C and 460 ° C.
  • the cooled sheet is coated with zinc, a zinc alloy or a zinc-based alloy.
  • the steel sheets according to the invention may be used for the manufacture of structural parts or skin parts for motorized land vehicles.
  • the present invention relates to hot-rolled or cold-rolled steel sheets having a reduced density relative to conventional steels and less than or equal to 7.3, while retaining mechanical properties of shaping, of mechanical strength. , weldability and satisfactory coating.
  • the invention also relates to a manufacturing method for hot or cold rolling the steel of the invention to obtain a hot or cold sheet having a microstructure comprising ferrite, austenite and up to to 5% of Kappa precipitates in surface fraction.
  • the surface density of the Kappa precipitates can be up to 5% because above 5%, the ductility drops and the 20% breaking elongation of the invention is not reached.
  • less than 2% Kappa precipitates are contemplated. It is specified that the microstructure being uniform, the surface fraction is equal to the volume fraction.
  • the reheating temperature is between 1150 and 1280 ° C.
  • composition of the steels shown in Table 1 consists of iron and unavoidable impurities resulting from processing.
  • the sheets I1 and I2 are sheets whose chemical composition and the method of implementation are according to the invention.
  • the two chemical compositions are different and have different Mn / Al ratios.
  • the sheets referenced R1, R2 and R3 have chemical compositions which do not satisfy the conditions according to the invention respectively for the content of Mn, for the contents of C and Mn or for the Mn / Al ratio.
  • R2a and R2b are two tests from the same grade R2 in Table 1.
  • the hot rolling was carried out with at least one rolling pass in the presence of ferrite.
  • Air cooling has a cooling rate of less than 55 ° C / sec.
  • the two steel sheets I1 and I2 correspond to the sheets according to the invention.
  • the microstructure of the sheet I1 is illustrated by the figure 1 . None of these sheets has crack after rolling.
  • the mechanical strengths are greater than 600 MPa, their elongation at break is well above 20% and they are weldable and can be coated.
  • the presence of ferrite and austenite was confirmed by a scanning electron microscope and the presence of Kappa precipitates was confirmed by the indexing of the diffraction pattern. obtained after observation with a transmission electron microscope (cf. figure 6 ).
  • the sheet R1 has an Mn content of less than 6%, an Mn / Al ratio of less than 1 and a reheat temperature of greater than 1280 ° C.
  • the letter "X" means that there has been no traction test.
  • the sheets R2a and R2b come from the sheet R2 and have an Mn / Al ratio of less than 1 and a manganese content of less than 6%.
  • R2a was coiled at a temperature above 600 ° C which led to a decomposition of the austenite into Kappa and ferrite as illustrated by the figure 4 . The lengthening does not reach the necessary 20%.
  • the sheet R2b has undergone rolling conditions according to the invention but the chemical composition does not satisfy the conditions referred to, that is to say that the Mn / Al ratio is below 1, the elongation of 20% n is not reached.
  • Sheet R3 has an Mn / Al ratio of less than 1.0; despite rolling conditions according to the invention and alloying elements in the ranges covered by the invention, cracks appeared during hot rolling.
  • Example 2 Cold-rolled and annealed sheets
  • composition of the steels in Table 4 consists of iron and unavoidable impurities resulting from processing.
  • Table 4: Composition of steel (% weight) .I invention VS mn al Yes Ti V Nb Mn / Al Density measured by pycnometry I3 0.21 8.2 7.4 0.26 ⁇ 0.030 ⁇ 0.030 ⁇ 0.030 1.11 7.04 I4 0.21 8.6 6.1 0 ⁇ 0.030 ⁇ 0.030 ⁇ 0.030 1.41 7.17 I5 0.2 8.6 6.1 0.89 ⁇ 0.030 ⁇ 0.030 0.1 1.41 7.12 I6 0.19 8.7 7.2 0 ⁇ 0.030 ⁇ 0.030 ⁇ 0.030 1.21 not measured
  • the density of I6 was estimated at 7.1 thanks to the curve of the figure 8 .
  • the sheets I3a, I3b, I4, I5 and I6 are sheets whose chemical composition and the method of implementation are according to the invention.
  • the cold-rolled steel sheets of Table 7 correspond to sheets according to the invention.
  • the microstructure of the sheet I3a is illustrated by the figure 5 . None of these sheets has crack after rolling.
  • the mechanical strengths are greater than 600 MPa, their elongation at break is greater than 20% and they are weldable and the I3a sheet was coated with Zn by a quenching process in a Zn bath at 460 ° C, called the galvanizing process by soaking.
  • the sheet, both bare and coated, has good weldability.
  • the steels according to the invention thus have good continuous galvanizing properties, in particular.
  • the steels according to the invention have a good combination of properties of interest for structural or skin parts in the automobile (low density, good deformability, good mechanical properties, good weldability and good resistance to corrosion with coating).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Description

La présente invention concerne une tôle d'acier laminée possédant une résistance mécanique supérieure ou égale à 600 MPa et un allongement à rupture supérieur ou égal à 20% ainsi que son procédé de fabrication.The present invention relates to a rolled steel sheet having a mechanical strength greater than or equal to 600 MPa and an elongation at break greater than or equal to 20% and its manufacturing method.

Les contraintes environnementales poussent, de manière continue, les constructeurs automobiles à abaisser les émissions de CO2 de leurs véhicules. Pour y parvenir, ces derniers ont plusieurs options parmi les quelles les principales consistent soit à diminuer le poids des véhicules soit à améliorer le rendement de leur motorisation. Les avancées se font souvent de manière combinée. La présente invention concerne la première option, à savoir la réduction du poids des véhicules motorisés. Dans ce domaine bien précis, il existe une alternative à deux voies:

  • La première consiste à diminuer les épaisseurs des aciers tout en augmentant leurs niveaux de résistance mécanique. Hélas, cette solution trouve ses limites à cause d'une diminution de rigidité rédhibitoire à certaines pièces automobiles, et de l'apparition de problèmes acoustiques nuisibles au confort sonore du passager, sans compter l'incontournable perte de ductilité associée à la hausse de résistance mécanique.
  • La seconde voie consiste à diminuer la densité des aciers en les alliant à d'autres métaux plus légers. Parmi ces alliages, ceux à basse densité dits Fer-Aluminium présentent des propriétés mécaniques et physiques intéressantes tout en permettant d'abaisser considérablement le poids. On entendra par faible ou basse densité, une densité inférieure ou égale à 7,3.
Ainsi, l'addition d'aluminium au fer, du fait de sa faible densité par rapport à ce dernier, a permis d'espérer de substantielles réductions de poids pour les pièces de structure automobile. C'est dans cette optique que la demande de brevet EP2128293 décrit une tôle laminée à chaud ou à froid de composition 0,2-0,8%C, 2-10%Mn, 3-15%Al, et une structure contenant moins de 99% de ferrite et plus d'1% d'austénite résiduelle. La tôle présente une résistance mécanique comprise dans l'intervalle 600-1000MPa et une densité inférieure à 7,2 et est revêtable. Le procédé de fabrication de la tôle à chaud consiste à réchauffer entre 1000 et 1200°C, laminer avec une température de fin de laminage comprise entre 700 et 850°C et à bobiner à une température inférieure à 600°C. Pour la tôle à froid, on lamine à froid la tôle à chaud avec une réduction comprise entre 40 et 90%, on réchauffe à une vitesse comprise entre 1 et 20°C/s à une température comprise entre la température de recristallisation et 900°C pendant 10 à 180 secondes. Cette demande de brevet vise à éviter le chiffonnage et l'apparition de criques au laminage en limitant le rapport Mn/AI à une valeur comprise entre 0,4 et 1,0. Il y apparait qu'au-delà d'un rapport de 1,0, la laminabilité à froid mène à l'apparition de fissures.Environmental constraints continuously drive car manufacturers to lower CO 2 emissions from their vehicles. To achieve this, they have several options among which the main consist either to reduce the weight of vehicles or to improve the performance of their engine. Advances are often made in a combined way. The present invention relates to the first option, namely the reduction of the weight of motorized vehicles. In this very specific area, there is a two-way alternative:
  • The first is to reduce the thicknesses of the steels while increasing their levels of mechanical resistance. Unfortunately, this solution finds its limits because of a reduction in rigidity unacceptable to certain auto parts, and the appearance of acoustic problems harmful to the passenger's comfort, not to mention the unavoidable loss of ductility associated with the increase in resistance mechanical.
  • The second way is to reduce the density of steels by combining them with other lighter metals. Among these alloys, the low-density iron-aluminum alloys have interesting mechanical and physical properties while at the same time weight. Low or low density means a density of less than or equal to 7.3.
Thus, the addition of aluminum to iron, because of its low density relative to the latter, has allowed to expect substantial weight reductions for automotive structural parts. It is in this context that the patent application EP2128293 discloses a hot rolled or cold rolled sheet of composition 0.2-0.8% C, 2-10% Mn, 3-15% Al, and a structure containing less than 99% ferrite and more than 1% d residual austenite. The sheet has a mechanical strength in the range 600-1000 MPa and a density less than 7.2 and is coated. The method of manufacturing the hot-rolled sheet consists of heating at 1000 ° to 1200 ° C., rolling at a rolling end temperature of between 700 and 850 ° C and winding at a temperature below 600 ° C. For the cold-rolled sheet, the hot-rolled sheet is cold-rolled with a reduction of between 40 and 90%, and is heated at a rate of between 1 and 20 ° C./s at a temperature between the recrystallization temperature and 900.degree. C for 10 to 180 seconds. This patent application is intended to prevent creasing and the appearance of cracks rolling by limiting the ratio Mn / AI to a value between 0.4 and 1.0. It appears that beyond a ratio of 1.0, the cold laminability leads to the appearance of cracks.

La demande de brevet JP2006118000 vise un acier léger et présentant une haute résistance ainsi qu'une bonne ductilité. Pour ce faire, la composition de l'acier proposé contient en pourcentage de poids : 0,1 à 1,0% C, moins de 3,0% Si, 10,0 à 50,0% Mn, moins de 0,01% P, moins de 0,01% S, 5,0 à 15,0% Al et 0,001 à 0,05% N, le reste étant du fer et d'inévitables impuretés, l'équation (1) ci-dessous devant être satisfaite, l'acier présentera une densité inférieure ou égale à 7,0. C 0 , 020 XMn + AI / 15 + 0 , 53

Figure imgb0001
The patent application JP2006118000 is a lightweight steel with high strength and good ductility. To do this, the composition of the proposed steel contains in weight percentage: 0.1 to 1.0% C, less than 3.0% Si, 10.0 to 50.0% Mn, less than 0.01 % P, less than 0.01% S, 5.0 to 15.0% Al and 0.001 to 0.05% N, the remainder being iron and unavoidable impurities, equation (1) below in front of be satisfied, the steel will have a density less than or equal to 7.0. VS - 0 , 020 XMN + HAVE / 15 + 0 , 53
Figure imgb0001

Il aura une microstructure contenant de la ferrite et de l'austénite. Le produit de la résistance mécanique par l'allongement total satisfaisant l'inéquation suivante: TSxEI ≥20000 (MPa x %). La laminabilité des aciers avec de si forts taux d'alliage en Mn et Al est connue pour être sujette à des forts risques d'apparition de criques.It will have a microstructure containing ferrite and austenite. The product of the mechanical strength by the total elongation satisfying the following inequality: TSxEI ≥20000 (MPa x%). The laminability of steels with such high alloy levels in Mn and Al is known to be subject to high risk of occurrence of cracks.

La demande de brevet WO2007/024092 vise à fournir des tôles laminées à chaud facilement emboutissables. Cette demande concerne une tôle contenant 0,2-1%C, 8-15%Mn, avec un produit de résistance mécanique par allongement de 24000MPa%. Il apparait que cette demande vise une structure totalement austénitique, or ce type de microstructure est particulièrement difficile à laminer.The patent application WO2007 / 024092 is intended to provide easily rolled hot-rolled sheet. This application relates to a sheet containing 0.2-1% C, 8-15% Mn, with a product of mechanical strength by elongation of 24000 MPa. It appears that this application is a totally austenitic structure, but this type of microstructure is particularly difficult to roll.

L'invention vise à résoudre ces difficultés en proposant des tôles d'acier laminé à chaud ou à froid présentant simultanément :

  • Une densité inférieure ou égale à 7,3
  • Une résistance mécanique supérieure ou égale à 600 MPa
  • Un allongement à rupture supérieur ou égal à 20%
  • Une bonne aptitude au formage, particulièrement au laminage
  • Une bonne soudabilité et une bonne revêtabilité
The invention aims to solve these difficulties by proposing hot-rolled or cold-rolled steel sheets simultaneously presenting:
  • A density less than or equal to 7.3
  • Mechanical strength greater than or equal to 600 MPa
  • An elongation at break greater than or equal to 20%
  • Good formability, especially rolling
  • Good weldability and good coating

Un des buts de l'invention est également de fournir un procédé de fabrication de ces tôles qui soit compatible avec les applications industrielles usuelles tout en étant peu sensible aux conditions de fabrication.One of the aims of the invention is also to provide a method of manufacturing these sheets that is compatible with usual industrial applications while being insensitive to manufacturing conditions.

L'invention a pour premier objet une tôle d'acier laminée dont la densité est inférieure ou égale à 7,3 et dont la composition comprend, les teneurs étant exprimées en poids : 0 , 10 C 0 , 30 %

Figure imgb0002
6 , 0 Mn 15 , 0 %
Figure imgb0003
6 , 0 Al 15 , 0 %
Figure imgb0004
et à titre optionnel, un ou plusieurs éléments choisis parmi : Si 2 , 0 %
Figure imgb0005
Ti 0 , 2 %
Figure imgb0006
V 0 , 6 %
Figure imgb0007
Nb 0 , 3 %
Figure imgb0008
le reste de la composition étant composé de fer et d'impuretés inévitables résultant de l'élaboration, le rapport du poids du manganèse sur celui d'aluminium étant tel que Mn Al > 1 , 0 ,
Figure imgb0009
la microstructure de la tôle étant constituée de ferrite, d'austénite et jusqu'à 5% de précipités Kappa en fraction surfacique.The invention firstly relates to a rolled steel sheet whose density is less than or equal to 7.3 and whose composition comprises, the contents being expressed by weight: 0 , 10 VS 0 , 30 %
Figure imgb0002
6 , 0 mn 15 , 0 %
Figure imgb0003
6 , 0 al 15 , 0 %
Figure imgb0004
and optionally, one or more elements selected from: Yes 2 , 0 %
Figure imgb0005
Ti 0 , 2 %
Figure imgb0006
V 0 , 6 %
Figure imgb0007
Nb 0 , 3 %
Figure imgb0008
the remainder of the composition being composed of iron and unavoidable impurities resulting from the elaboration, the ratio of the weight of manganese to that of aluminum being such that mn al > 1 , 0 ,
Figure imgb0009
the microstructure of the sheet consisting of ferrite, austenite and up to 5% Kappa precipitates in surface fraction.

Dans un mode de réalisation préféré de l'invention, la composition comprend, la teneur étant exprimée en poids: 0 , 18 C 0 , 21 %

Figure imgb0010
In a preferred embodiment of the invention, the composition comprises, the content being expressed by weight: 0 , 18 VS 0 , 21 %
Figure imgb0010

Dans un autre mode de réalisation préféré de l'invention, la composition comprend, la teneur étant exprimée en poids: 7 , 0 Mn 10 , 0 %

Figure imgb0011
In another preferred embodiment of the invention, the composition comprises, the content being expressed by weight: 7 , 0 mn 10 , 0 %
Figure imgb0011

Dans un autre mode de réalisation préféré de l'invention, la composition comprend, la teneur étant exprimée en poids: 6 , 0 Al 12 , 0 %

Figure imgb0012
In another preferred embodiment of the invention, the composition comprises, the content being expressed by weight: 6 , 0 al 12 , 0 %
Figure imgb0012

Dans un autre mode de réalisation préféré de l'invention, la composition comprend, la teneur étant exprimée en poids: 6 , 0 Al 9 , 0 %

Figure imgb0013
In another preferred embodiment of the invention, the composition comprises, the content being expressed by weight: 6 , 0 al 9 , 0 %
Figure imgb0013

Dans un autre mode de réalisation préféré de l'invention, la composition comprend, la teneur étant exprimée en poids: Si 1 %

Figure imgb0014
In another preferred embodiment of the invention, the composition comprises, the content being expressed by weight: Yes 1 %
Figure imgb0014

De manière préférentielle, le rapport du poids du manganèse sur celui d'aluminium est tel que: Mn Al 1 , 1 ,

Figure imgb0015
de manière encore préférée, le rapport est tel que Mn Al 1 , 5 ,
Figure imgb0016
voire de manière encore plus préférée, le rapport est tel que Mn Al 2 , 0.
Figure imgb0017
Preferably, the ratio of the weight of manganese to that of aluminum is such that: mn al 1 , 1 ,
Figure imgb0015
even more preferably, the ratio is such that mn al 1 , 5 ,
Figure imgb0016
even more preferably, the ratio is such that mn al 2 , 0.
Figure imgb0017

De manière encore préférentielle, la tôle selon l'invention est telle que la résistance mécanique en traction est supérieure ou égale à 600 MPa et l'allongement à rupture est supérieur ou égal à 20%.In a still preferred manner, the sheet according to the invention is such that the tensile strength is greater than or equal to 600 MPa and the elongation at break is greater than or equal to 20%.

L'invention a pour second objet un procédé de fabrication d'une tôle d'acier laminée ayant une densité inférieure ou égale à 7,3 qui comprend les étapes consistant à :

  • Approvisionner un acier dont la composition est conforme à l'invention,
  • Couler ledit acier pour former un demi produit,
  • Réchauffer ledit demi-produit à une température Trech comprise entre 1000°C et 1280°C,
  • laminer à chaud ledit demi-produit réchauffé avec au moins une passe en présence de ferrite pour obtenir une tôle,
  • La dernière passe de laminage se fera à une température de fin de laminage TFL supérieure ou égale à 850°C.
  • Refroidir ladite tôle à une vitesse de refroidissement Vref1 jusqu'à la température de bobinage Tbob inférieure ou égale à 600°C,
  • Puis, bobiner ladite tôle refroidie jusque Tbob,
The subject of the invention is a method for manufacturing a rolled steel sheet having a density of less than or equal to 7.3, which comprises the steps of:
  • Supply a steel whose composition is in accordance with the invention,
  • Pouring said steel to form a half product,
  • Heating said half-product to a temperature of between 1000 ° C. and 1280 ° C.,
  • hot rolling said half-heated product with at least one pass in the presence of ferrite to obtain a sheet,
  • The last rolling pass will be at an end temperature of TFL rolling greater than or equal to 850 ° C.
  • Cooling said sheet at a cooling rate Vref1 to the winding temperature Tbob less than or equal to 600 ° C,
  • Then, winding said cooled sheet until Tbob,

L'invention a également pour objet un procédé de fabrication d'une tôle laminée tel que ledit demi-produit est coulé directement sous forme de brames minces ou de bandes minces.The invention also relates to a method of manufacturing a rolled sheet such that said semi-finished product is cast directly in the form of thin slabs or thin strips.

De manière préférentielle, la température de fin de laminage TFL est comprise entre 900 et 980°C.Preferably, the end of rolling temperature T FL is between 900 and 980 ° C.

De manière préférentielle, la vitesse de refroidissement Vref1 est inférieure ou égale à 55°C/s.Preferably, the cooling rate V ref1 is less than or equal to 55 ° C / s.

De manière préférée, la température de bobinage est comprise entre 450 et 550°C.Preferably, the winding temperature is between 450 and 550 ° C.

L'invention a également pour objet un procédé de fabrication d'une tôle d'acier laminée à froid et recuite avec une densité inférieure ou égale à 7,3 qui comprend les étapes consistant à :

  • Approvisionner une tôle d'acier laminée, puis
  • Laminer à froid ladite tôle laminée avec un taux de réduction compris entre 35 et 90% de façon à obtenir une tôle à froid, puis
  • Chauffer ladite tôle avec une vitesse Vc jusqu'à une température de maintien Tm comprise entre 800 et 950°C pendant un temps tm inférieur à 600 secondes, puis
  • Refroidir ladite tôle à vitesse Vref2 jusqu'à une température inférieure ou égale à 500°C.
The invention also relates to a method for manufacturing a cold-rolled and annealed steel sheet with a density of less than or equal to 7.3, which comprises the steps of:
  • Supply a rolled steel sheet, then
  • Cold rolling said laminated sheet with a reduction rate of between 35 and 90% so as to obtain a cold sheet, then
  • Heat said sheet with a speed V c to a holding temperature T m of between 800 and 950 ° C for a time t m of less than 600 seconds, then
  • Cool said sheet at speed V ref2 to a temperature of less than or equal to 500 ° C.

De manière préférée, la température Tm est comprise entre 800 et 900°C.Preferably, the temperature T m is between 800 and 900 ° C.

De manière préférée, la vitesse de refroidissement Vref2 est supérieure ou égale à 30°C/s.Preferably, the cooling rate V ref2 is greater than or equal to 30 ° C / s.

De manière préférée, la vitesse de refroidissement Vref2 est maintenue jusqu'à une température comprise entre 500°C et 460°C.Preferably, the cooling rate V ref2 is maintained up to a temperature of between 500 ° C and 460 ° C.

De manière préférée, la tôle refroidie est revêtue de zinc, d'un alliage de zinc ou d'un alliage à base zinc.Preferably, the cooled sheet is coated with zinc, a zinc alloy or a zinc-based alloy.

Les tôles d'acier selon l'invention pourront être utilisées pour la fabrication de pièces de structures ou de pièces de peau pour véhicules terrestres à moteur.The steel sheets according to the invention may be used for the manufacture of structural parts or skin parts for motorized land vehicles.

D'autres caractéristiques et avantages de l'invention apparaîtront au travers de la présente description. Les figures annexées ci-jointes sont données à titre d'exemple et de manière non limitative, elles sont telles que:

  • La figure 1 illustre la microstructure d'une tôle d'acier laminée à chaud selon l'invention.
  • La figure 2 illustre la microstructure d'une tôle d'acier laminée à chaud ne satisfaisant pas aux conditions selon l'invention.
  • La figure 3 présente le comportement mécanique en traction à chaud représentant la laminabilité à chaud en fonction de la température de traction en °C.
  • La figure 4 illustre la microstructure d'une tôle d'acier laminée à chaud ne satisfaisant pas aux conditions selon l'invention.
  • La figure 5 illustre la microstructure d'une tôle d'acier laminée à froid selon l'invention.
  • La figure 6 présente un cliché de diffraction en axe de zone [110] ayant permis d'identifier le précipité Kappa sur une tôle d'acier laminée à chaud selon l'invention.
  • La figure 7 illustre une microstructure de tôle à froid ne satisfaisant pas aux conditions de l'invention.
  • La figure 8 illustre l'évolution de la densité en fonction de la teneur en aluminium.
Other features and advantages of the invention will become apparent through the present description. The attached figures attached are given by way of example and in a nonlimiting manner, they are such that:
  • The figure 1 illustrates the microstructure of a hot-rolled steel sheet according to the invention.
  • The figure 2 illustrates the microstructure of a hot-rolled steel sheet not satisfying the conditions according to the invention.
  • The figure 3 presents the mechanical behavior in hot tension representing the hot rollability as a function of the tensile temperature in ° C.
  • The figure 4 illustrates the microstructure of a hot-rolled steel sheet only not satisfying the conditions according to the invention.
  • The figure 5 illustrates the microstructure of a cold-rolled steel sheet according to the invention.
  • The figure 6 presents a zone-axis diffraction pattern [110] having made it possible to identify the Kappa precipitate on a hot-rolled steel sheet according to the invention.
  • The figure 7 illustrates a microstructure of cold sheet that does not meet the conditions of the invention.
  • The figure 8 illustrates the evolution of the density as a function of the aluminum content.

La présente invention est relative à des tôles d'acier laminées à chaud ou à froid présentant une densité réduite par rapport aux aciers conventionnels et inférieure ou égale à 7,3, et ce en conservant des caractéristiques mécaniques de mise en forme, de résistance mécanique, de soudabilité et de revêtabilité satisfaisante. L'invention est aussi relative à un procédé de fabrication permettant de laminer à chaud ou à froid l'acier de l'invention pour obtenir une tôle à chaud ou à froid ayant une microstructure comprenant de la ferrite, de l'austénite et jusqu'à 5% de précipités Kappa en fraction surfacique.The present invention relates to hot-rolled or cold-rolled steel sheets having a reduced density relative to conventional steels and less than or equal to 7.3, while retaining mechanical properties of shaping, of mechanical strength. , weldability and satisfactory coating. The invention also relates to a manufacturing method for hot or cold rolling the steel of the invention to obtain a hot or cold sheet having a microstructure comprising ferrite, austenite and up to to 5% of Kappa precipitates in surface fraction.

Pour ce faire, la composition chimique de l'acier est très importante aussi bien pour le comportement mécanique de la tôle que pour son élaboration. Les teneurs en éléments de composition chimique qui vont suivre sont donnés en pourcentage du poids.
-Selon l'invention, la teneur en carbone est comprise entre 0,10 et 0,30%. Le carbone est un élément gammagène. Il favorise, avec le Mn, l'apparition de l'austénite et, avec l'aluminium, la formation des précipités Kappa basés sur la stoechiométrie (Fe,Mn)3AlCx, où x est strictement inférieur à 1. En dessous de 0,10%, la résistance mécanique de 600 MPa n'est pas atteinte. Si la teneur en carbone est supérieure à 0,30%, la formation de précipités Kappa sera excessive car au dessus de 5% et le laminage de la tôle d'acier va mener à des fissures. De manière préférentielle, on limitera la teneur en carbone à 0,21% inclus afin de minimiser les risques d'apparition de criques au laminage. Préférentiellement, la teneur minimale en carbone sera aussi supérieure ou égale à 0,18% pour atteindre plus aisément la résistance mécanique de 600 MPa.

  • Le manganèse doit voir sa teneur comprise entre 6,0% et 15,0%. Cet élément est, lui aussi, gammagène. L'ajout du manganèse servira donc essentiellement à l'obtention d'une structure contenant de l'austénite en plus de la ferrite. Il a aussi un effet durcissant en solution solide et stabilisant sur l'austénite. Le ratio de la teneur en manganèse sur celle de l'aluminium aura une forte influence sur les structures obtenues en fin de laminage. Pour une teneur en Mn inférieure à 6,0%, l'allongement à rupture de 20% n'est pas atteint, en outre l'austénite sera insuffisamment stabilisée avec le risque de se transformer prématurément en martensite lors d'un refroidissement rapide, aussi bien en sortie de laminage à chaud que sur une ligne de recuit. Au dessus de 15,0%, du fait de son effet gammagène, le Mn augmente de manière excessive la fraction volumique d'austénite, réduisant de fait la concentration en carbone de la phase austénitique, ce qui empêcherait d'atteindre les 600 MPa de résistance. De manière préférée, on limitera l'addition de Mn à 10,0%. Pour la limite inférieure, de manière préférée, la teneur en Mn sera de 7,0% afin d'atteindre l'allongement de 20% plus facilement.
  • En ce qui concerne l'aluminium, sa teneur doit aussi être comprise entre 6,0% et 15,0%. L'aluminium est un élément alphagène, il diminue donc le domaine austénitique et cet élément tend à promouvoir la formation de précipités Kappa en se combinant avec le carbone. L'aluminium présente une densité de 2,7 et influe fortement sur les propriétés mécaniques. Quand la teneur en aluminium augmente, la résistance mécanique et la limite élastique augmentent, alors que l'allongement à rupture diminue, ce qui s'explique par une diminution de la mobilité des dislocations. En dessous de 6,0%, l'effet de réduction de densité dû à la présence d'aluminium perd de son intérêt. Au dessus de 15,0%, une précipitation incontrôlée de Kappa avec une densité surfacique supérieure à 5% apparaît et nuit à la ductilité du matériau. On souhaite limiter, de manière préférentielle, la teneur en aluminium à strictement moins de 9,0% afin d'éviter une précipitation d'intermétalliques fragiles. La figure 7 illustre une microstructure dans laquelle les précipités Kappa se sont formés de manière incontrôlée.
  • Le rapport de la teneur pondérale du manganèse sur celle de l'aluminium est primordial car il gouverne la stabilité de l'austénite et la nature des structures formées lors du cycle de fabrication. En dessous d'un rapport égal à 1,0 inclus, la nature des phases formées dépend trop fortement de la vitesse de refroidissement, aussi bien après le laminage à chaud qu'après le recuit de recristallisation pour la tôle à froid. On risque ainsi de former de la martensite à partir de l'austénite voire de voir disparaître cette dernière au profit de la ferrite et de précipités Kappa tel qu'illustré dans la figure 7. La microstructure de la tôle de l'invention écarte la présence de la martensite et assure la présence d'austénite stable. Ainsi, on ne souhaite pas avoir un rapport Mn Al 1 , 0
    Figure imgb0018
    pour s'assurer d'avoir une bonne laminabilité et une tôle peu sensible aux conditions de fabrication.
To do this, the chemical composition of the steel is very important both for the mechanical behavior of the sheet as for its development. The contents of chemical composition elements which follow are given as a percentage of the weight.
According to the invention, the carbon content is between 0.10 and 0.30%. Carbon is a gamma element. It favors, with Mn, the appearance of austenite and, with aluminum, the formation of Kappa precipitates based on stoichiometry (Fe, Mn) 3 AlC x , where x is strictly less than 1. Below of 0.10%, the mechanical strength of 600 MPa is not reached. If the carbon content is greater than 0.30%, the formation of Kappa precipitates will be excessive because above 5% and the rolling of the steel sheet will lead to cracks. Preferably, it will limit the carbon content to 0.21% included to minimize the risk of occurrence of cracks rolling. Preferably, the minimum carbon content will also be greater than or equal to 0.18% to more easily reach the mechanical strength of 600 MPa.
  • Manganese content should be between 6.0% and 15.0%. This element is also gamma. The addition of manganese will therefore essentially serve to obtain a structure containing austenite in addition to ferrite. It also has a hardening effect in solid solution and stabilizing on the austenite. The ratio of the manganese content to that of aluminum will have a strong influence on the structures obtained at the end of rolling. For an Mn content of less than 6.0%, the elongation at break of 20% is not reached, in addition the austenite will be insufficiently stabilized with the risk of prematurely turning into martensite during rapid cooling, both hot roll output and a annealing line. Above 15.0%, due to its gammagenic effect, Mn excessively increases the volume fraction of austenite, effectively reducing the carbon concentration of the austenitic phase, which would prevent reaching the 600 MPa of resistance. Preferably, the addition of Mn to 10.0% will be limited. For the lower limit, preferably, the Mn content will be 7.0% in order to reach the elongation of 20% more easily.
  • As regards aluminum, its content must also be between 6.0% and 15.0%. Aluminum is an alphagene element, so it decreases austenitic domain and this element tends to promote the formation of Kappa precipitates by combining with carbon. Aluminum has a density of 2.7 and strongly influences the mechanical properties. As the aluminum content increases, the mechanical strength and the yield point increase, while the elongation at break decreases, which is explained by a decrease in the mobility of the dislocations. Below 6.0%, the density reduction effect due to the presence of aluminum loses its interest. Above 15.0%, an uncontrolled Kappa precipitation with a surface density greater than 5% appears and adversely affects the ductility of the material. It is desired to limit, preferably, the aluminum content to strictly less than 9.0% in order to avoid a precipitation of fragile intermetallics. The figure 7 illustrates a microstructure in which Kappa precipitates formed uncontrollably.
  • The ratio of the weight content of manganese to that of aluminum is essential because it governs the stability of the austenite and the nature of the structures formed during the manufacturing cycle. Below a ratio equal to 1.0 inclusive, the nature of the phases formed depends too much on the cooling rate, both after the hot rolling and after the recrystallization annealing for the cold-rolled sheet. It is thus possible to form martensite from austenite or even to see the latter disappear in favor of ferrite and Kappa precipitates as illustrated in FIG. figure 7 . The microstructure of the sheet of the invention eliminates the presence of martensite and ensures the presence of stable austenite. So, we do not want to have a report mn al 1 , 0
    Figure imgb0018
    to ensure good laminability and a sheet that is not sensitive to manufacturing conditions.

Au dessus d'un rapport de la teneur pondérale en manganèse sur celle de l'aluminium égal à 1,0, la tôle produite est peu sensible aux conditions de fabrication tout en étant aisément laminable aussi bien à chaud qu'à froid. Cette baisse de sensibilité est améliorée en augmentant le rapport, ainsi il est préféré un rapport supérieur ou égal respectivement à 1,1, de manière préférentielle, un rapport supérieur ou égal à 1,5 voire de manière encore plus préférée, un rapport supérieur ou égal à 2,0.

  • Au même titre que l'aluminium, le silicium est un élément permettant de réduire la densité de l'acier et réduit l'énergie de défaut d'empilement. Cette réduction permet d'obtenir un effet TRIP connu de l'homme de métier. Néanmoins sa teneur est limitée à 2,0%, car au-delà, cet élément a tendance à former des oxydes fortement adhérents générant des défauts de surface. En effet, la présence d'oxydes de surface mène à des défauts de mouillabilité lors d'une éventuelle opération de dépôt de zinc au trempé par exemple. Préférentiellement, on limitera le Si à 1%.
  • des éléments de micro alliages tels que le titane, le vanadium et le niobium peuvent être ajoutés en quantité respectivement inférieures à 0,2%, 0,6% et 0,3% afin d'obtenir un durcissement supplémentaire par précipitation. En particulier le titane et le niobium permettent de contrôler la taille de grain au cours de la solidification. Une limitation est cependant nécessaire car au-delà, on obtient un effet de saturation.
Above a ratio of the weight content of manganese to that of the aluminum equal to 1.0, the sheet produced is insensitive to the manufacturing conditions while being easily laminated both hot and cold. This decrease in sensitivity is improved by increasing the ratio, so it is preferred a ratio greater than or equal to 1.1, preferably, a ratio greater than or equal to 1.5 or even more preferably, a higher ratio or equal to 2.0.
  • Similar to aluminum, silicon is an element that reduces the density of steel and reduces stacking fault energy. This reduction makes it possible to obtain a TRIP effect known to those skilled in the art. Nevertheless its content is limited to 2.0%, because beyond this element tends to form strongly adherent oxides generating surface defects. Indeed, the presence of surface oxides leads to wettability defects during a possible zinc deposition operation by dipping, for example. Preferably, the Si will be limited to 1%.
  • micro alloy elements such as titanium, vanadium and niobium may be added in amounts of less than 0.2%, 0.6% and 0.3%, respectively, in order to obtain additional hardening by precipitation. In particular, titanium and niobium make it possible to control grain size during solidification. A limitation is however necessary because beyond this, one obtains a saturation effect.

D'autres éléments tels que le cérium, le bore, le magnésium, ou le zirconium peuvent être ajoutés seuls ou en combinaison dans les proportions suivantes: Ce ≤ 0,1%, B ≤ 0.01, Mg ≤ 0,010, et Zr ≤ 0,010. Jusqu'aux teneurs maximum indiquées, ces éléments permettent d'affiner le grain ferritique lors de la solidification.Other elements such as cerium, boron, magnesium, or zirconium can be added alone or in combination in the following proportions: Ce ≤ 0.1%, B ≤ 0.01, Mg ≤ 0.010, and Zr ≤ 0.010. Up to the maximum levels indicated, these elements make it possible to refine the ferritic grain during solidification.

Le reste de la composition est constitué de fer et d'impuretés inévitables résultant de l'élaboration.

  • La microstructure de la tôle selon l'invention est constituée de ferrite, d'austénite et jusqu'à 5% de précipités Kappa en fraction surfacique. La ferrite présente une solubilité du carbone croissante avec la température. Or, le carbone en solution solide est très fragilisant pour les aciers à basse densité, car il réduit davantage la mobilité des dislocations déjà basse du fait de la présence de l'aluminium. Une saturation de carbone dans la ferrite peut donc conduire à l'activation d'un mécanisme de maclage au sein de cette dernière. Ainsi, sans être lié par cette théorie, les inventeurs avancent que l'austénite et les précipités servent de pièges à carbone efficaces et facilitent le laminage dans le domaine intercritique. Cette approche est surprenante car on pourrait croire qu'il faudrait éviter de former ces phases dures pour faciliter le laminage mais la solubilité du carbone dans l'austénite et dans les précipités est plus élevée que dans la ferrite. Cette combinaison de structure contenant de la ferrite, de l'austénite jusqu'à 5% de précipités Kappa en fraction surfacique confère donc à la tôle la ductilité nécessaire autant à sa laminabilité lors du laminage que lors de fabrication de pièces de structure. Il est précisé que le taux de recristallisation de la ferrite après le recuit ou après le bobinage sera supérieur à 90% et idéalement égal à 100%. Si la fraction recristallisée de ferrite est inférieure à 90%, la tôle obtenue ne présentera pas les 20% d'allongement requis par l'invention.
The rest of the composition consists of iron and unavoidable impurities resulting from the elaboration.
  • The microstructure of the sheet according to the invention consists of ferrite, austenite and up to 5% of Kappa precipitates in surface fraction. Ferrite exhibits increasing carbon solubility with temperature. However, carbon in solid solution is very weak for low-density steels because it further reduces dislocation mobility already low due to the presence of aluminum. A saturation of carbon in the ferrite can therefore lead to the activation of a twinning mechanism within the latter. Thus, without being bound by this theory, the inventors argue that austenite and precipitates serve as effective carbon traps and facilitate rolling in the intercritical domain. This approach is surprising because one might think that it would be necessary to avoid forming these hard phases to facilitate the rolling but the solubility of the carbon in the austenite and in the precipitates is higher than in the ferrite. This combination of structure containing ferrite, austenite up to 5% of Kappa precipitates in surface fraction thus confers on the sheet the ductility necessary as much for its laminability during rolling as during the manufacture of structural parts. It is specified that the recrystallization rate of the ferrite after annealing or after winding will be greater than 90% and ideally equal to 100%. If the recrystallized fraction of ferrite is less than 90%, the resulting sheet will not have the 20% elongation required by the invention.

De nombreuses expériences et études métallographiques ont permis aux inventeurs de mettre en évidence que la présence localisée de précipités de type Kappa en forme de liseré autour des joints de grain ferritique réduit, quant à elle, la laminabilité de la tôle.Numerous experiments and metallographic studies have enabled the inventors to demonstrate that the localized presence of Kappa type precipices in the form of a border around the ferritic grain boundaries reduces the laminability of the sheet.

La densité surfacique des précipités Kappa peut aller jusque 5% car au dessus de 5%, la ductilité chute et on n'atteint pas les 20% d'allongement à rupture de l'invention. En outre, on risque aussi d'avoir une précipitation incontrôlée de Kappa autour des joints de grain ferritique, ce qui augmenterait les efforts de laminage de la tôle de l'invention avec les outils usuels de laminage d'acier à l'échelle industrielle. Ainsi de manière préférentielle, on envisage moins de 2% de précipités Kappa. Il est précisé que la microstructure étant uniforme, la fraction surfacique est égale à la fraction volumique.The surface density of the Kappa precipitates can be up to 5% because above 5%, the ductility drops and the 20% breaking elongation of the invention is not reached. In addition, there is also a risk of precipitation uncontrolled Kappa around the ferritic grain seals, which would increase the rolling forces of the sheet of the invention with the usual tools of steel rolling on an industrial scale. Thus, preferably, less than 2% Kappa precipitates are contemplated. It is specified that the microstructure being uniform, the surface fraction is equal to the volume fraction.

La mise en oeuvre du procédé de fabrication d'une tôle laminée à chaud selon l'invention est la suivante :

  • On approvisionne un acier de composition selon l'invention
  • On procède à la coulée d'un demi-produit à partir de cet acier. La coulée peut s'effectuer soit en lingot, soit en continu soit sous forme de brames minces ou bandes minces. C'est-à-dire avec une épaisseur allant d'environ 220 mm pour les brames et pouvant aller jusque quelques dizaines de mm pour les bandes minces.
  • Les demi-produits coulés sont ensuite réchauffés à une température comprise entre 1000°C et 1280°C afin d'avoir en tout point une température favorable aux fortes déformations de laminage. Au-delà de 1280°C, on risque de former des grains ferritiques particulièrement grossiers, les nombreux essais des inventeurs ont indiqué une corrélation entre la taille de grain ferritique initiale et la capacité de ces derniers à recristalliser lors du laminage à chaud. Plus la taille de grain ferritique initiale est grande, moins il recristallise facilement, ainsi on évite des températures de réchauffage au-delà de 1280°C car celles-ci sont industriellement couteuses et peu favorables à la recristallisation de la ferrite. Cela peut, d'autre part, amplifier le phénomène de chiffonnage (encore appelé « roping »). Il est précisé que le chiffonnage est dû à un ensemble de grains de petite taille, faiblement désorientés, au sein de grains de plus grande taille. Ce phénomène est visible par une localisation préférentielle des déformations au sein de bandes dans la direction de laminage. Il est dû à la présence de grains non recristallisés restaurés. On le mesure par un faible allongement réparti dans la direction transverse.
The method of manufacturing a hot-rolled sheet according to the invention is implemented as follows:
  • A composition steel is supplied according to the invention
  • A semi-finished product is cast from this steel. The casting can be carried out either in ingot, or continuously or in the form of slabs or thin strips. That is to say with a thickness ranging from about 220 mm for slabs and up to a few tens of mm for thin strips.
  • The cast semi-finished products are then heated to a temperature of between 1000 ° C. and 1280 ° C. in order to have at all points a temperature favorable to the large rolling deformations. Above 1280 ° C., it is possible to form particularly coarse ferritic grains, the numerous tests of the inventors have indicated a correlation between the initial ferritic grain size and the capacity of these latter to recrystallize during hot rolling. The larger the initial ferritic grain size, the less it recrystallizes easily, thus reheating temperatures above 1280 ° C are avoided because they are industrially expensive and unfavorable for the recrystallization of ferrite. This can, on the other hand, amplify the phenomenon of ragging (also called "roping"). It is specified that the crimping is due to a set of small grains, weakly disoriented, within grains of larger size. This phenomenon is visible by a preferential localization of the deformations within strips in the rolling direction. It is due to the presence of restored non-recrystallized grains. It is measured by a small elongation distributed in the transverse direction.

En dessous de 1000°C, il devient de plus en plus difficile d'avoir une température de fin de laminage au dessus de 850°C. De manière préférée, la température de réchauffage est comprise entre 1150 et 1280°C.Below 1000 ° C., it becomes increasingly difficult to have an end-of-rolling temperature above 850 ° C. Preferably, the reheating temperature is between 1150 and 1280 ° C.

Les étapes suivantes permettent d'éviter le phénomène de chiffonnage et d'avoir une bonne ductilité et une bonne emboutissabilité :

  • Il est nécessaire d'effectuer le laminage avec une moins une passe de laminage en présence de ferrite, c'est-à-dire dans le domaine partiellement ou totalement ferritique. Ceci afin d'éviter une saturation de carbone dans la ferrite pouvant mener au maclage. L'austénite sert ainsi de pièges à carbone efficace car la solubilité du carbone dans l'austénite est plus élevée que dans la ferrite.
  • La dernière passe de laminage est effectuée à une température supérieure à 850°C car en dessous de cette température, la tôle d'acier selon l'invention présente une chute notable de laminabilité comme le montre la figure 3 qui présente la striction d'éprouvettes soumises à une traction à chaud à différentes températures. Une température de fin de laminage comprise entre 900 et 980°C est préférée afin d'avoir une structure propice à la recristallisation et laminable.
  • On refroidit ensuite la tôle obtenue à une vitesse de refroidissement jusqu'à la température de bobinage Tbob. De manière préférentielle, on préférera une vitesse de refroidissement Vref1 inférieure ou égale à 55°C/s afin de mieux contrôler la précipitation des kappa.
  • On bobine ensuite la tôle à une température de bobinage inférieure à 600°C car au dessus, on risque de ne pas pouvoir contrôler la précipitation de kappa, et d'avoir plus de 5% de ce dernier suite à une décomposition importante l'austénite tel qu'illustré dans les figures 2 et 4. De manière préférentielle, on bobine la tôle à une température comprise entre 450 et 550°C.
The following steps prevent the phenomenon of crumpling and have good ductility and good drawability:
  • It is necessary to perform the rolling with at least one rolling pass in the presence of ferrite, that is to say in the partially or totally ferritic domain. This is to avoid carbon saturation in the ferrite that can lead to twinning. Austenite thus serves as effective carbon traps because the solubility of carbon in austenite is higher than in ferrite.
  • The last rolling pass is carried out at a temperature above 850 ° C because below this temperature, the steel sheet according to the invention has a notable drop in laminability as shown in FIG. figure 3 which exhibits the necking of specimens subjected to hot tension at different temperatures. An end-of-rolling temperature of between 900 and 980 ° C is preferred in order to have a structure that is suitable for recrystallization and laminatable.
  • The sheet obtained is then cooled at a cooling rate to the winding temperature T bob . Preferably, a cooling rate V ref1 of less than or equal to 55 ° C / s will be preferred in order to better control the kappa precipitation.
  • The sheet is then reeled at a winding temperature of less than 600 ° C because above, there is a risk of not being able to control the kappa precipitation, and to have more than 5% of the latter following a decomposition important austenite as illustrated in the figures 2 and 4 . Preferably, the sheet is reeled at a temperature between 450 and 550 ° C.

A ce stade, on obtient une tôle laminée à chaud et si on souhaite obtenir une tôle laminée à froid avec une épaisseur inférieure par exemple à 5 mm, on procède aux étapes suivantes :

  • On effectue un laminage à froid avec une réduction d'épaisseur comprise entre 35 et 90%.
  • On chauffe ensuite la tôle laminée à froid à une vitesse de chauffe Vc que l'on préfère supérieure à 3°C jusqu'à une température de maintien Tm comprise entre 800 et 950°c pendant un temps inférieur à 600 secondes afin de s'assurer d'un taux de recristallisation supérieur à 90% de la structure initiale fortement écrouie.
  • On refroidit ensuite la tôle à une vitesse Vref2 jusqu'à une température inférieure ou égale à 500°C, on préfère une vitesse de refroidissement supérieure à 30°C/s pour mieux contrôler la formation des précipités Kappa et ne pas dépasser les 5% en teneur surfacique. En dessous de 500°C, un traitement thermique supplémentaire afin de faciliter un dépôt de revêtement au trempé avec par exemple du zinc ne changera pas les propriétés mécaniques de la tôle de l'invention. Les inventeurs ont pu montrer qu'en arrêtant le refroidissement à la vitesse Vref2 entre 500 et 460°C, pour effectuer un maintien avant trempe dans un bain de zinc, les propriétés visées par la tôle de l'invention restent inchangées. A titre illustratif et non limitatif, les essais suivants vont montrer les caractéristiques avantageuses pouvant émaner de la mise en oeuvre de tôles d'acier selon l'invention.
At this stage, a hot-rolled sheet is obtained and if it is desired to obtain a cold-rolled sheet with a thickness of less than 5 mm, the following steps are carried out:
  • Cold rolling is carried out with a thickness reduction of between 35 and 90%.
  • The cold-rolled sheet is then heated to a heating rate V c which is greater than 3 ° C. up to a holding temperature T m of between 800 and 950 ° C. for a time of less than 600 seconds in order to ensure a recrystallization rate greater than 90% of the initially hardened initial structure.
  • The sheet is then cooled at a speed V ref2 to a temperature of less than or equal to 500 ° C., a cooling rate of greater than 30 ° C./s is preferred to better control the formation of the Kappa precipitates and not to exceed 5 ° C. % in surface content. Below 500 ° C, additional heat treatment to facilitate a dip coating deposit with for example zinc will not change the mechanical properties of the sheet of the invention. The inventors have been able to show that by stopping the cooling at the speed V ref2 between 500 and 460 ° C., to carry out a maintenance before quenching in a zinc bath, the properties targeted by the sheet of the invention remain unchanged. By way of illustration and not limitation, the following tests will show the advantageous characteristics that can emanate from the implementation of steel sheets according to the invention.

Exemple 1 : Tôles laminées à chaudExample 1: Hot-rolled sheets

Des demi-produits ont été élaborés à partir de coulées d'acier. Les compositions des demi-produits, exprimées en pourcentage pondéral, figurent dans le tableau 1 ci-dessous :Semi-finished products have been developed from steel castings. The compositions of the semi-finished products, expressed in percentage by weight, are shown in Table 1 below:

Le reste de la composition des aciers figurant dans le tableau 1 est constitué de fer et d'impuretés inévitables résultant de l'élaboration. Tableau 1 : Composition d'aciers (%poids). C Mn Al Si Ti V Nb Mn/Al I1 0,193 14,9 6,52 <0,030 0,096 <0,030 <0,030 2,29 I2 0,188 8,28 7,43 <0,030 <0,030 <0,030 <0,030 1,11 R1 0,186 3,4 9,7 <0,030 <0,030 <0,030 <0,030 0,35 R2 0,117 4,78 7,6 <0,030 <0,030 <0,030 <0,030 0,63 R3 0,2 7,01 8,07 0,25 <0,030 <0,030 <0,030 0,87 I=invention / R=Référence / les valeurs soulignées sont non-conformes à l'invention. The remainder of the composition of the steels shown in Table 1 consists of iron and unavoidable impurities resulting from processing. Table 1: Composition of steels (% weight). VS mn al Yes Ti V Nb Mn / Al I1 0,193 14.9 6.52 <0.030 0.096 <0.030 <0.030 2.29 I2 0.188 8.28 7.43 <0.030 <0.030 <0.030 <0.030 1.11 R1 0,186 3.4 9.7 <0.030 <0.030 <0.030 <0.030 0.35 R2 0.117 4.78 7.6 <0.030 <0.030 <0.030 <0.030 0.63 R3 0.2 7.01 8.07 0.25 <0.030 <0.030 <0.030 0.87 I = invention / R = Reference / the underlined values are not in accordance with the invention.

Les produits ont été laminés à chaud afin d'obtenir des tôles laminées à chaud et les conditions de fabrication figurent dans le tableau 2 ci-dessous avec les abréviations suivantes :

  • Trech : est la température de réchauffage
  • TFL : est la température de fin de laminage
  • Vref1 : est la température de refroidissement après la dernière passe de laminage.
  • Tbob : est la température de bobinage
Tableau 2 : Conditions de fabrication des tôles laminées à chaud à partir des demi-produits. Trech (°C) TFL (°C) Vref1 Tbob (°C) I1 1180 950 air 500 I2 1230 964 air 500 R1 1300 950 air 500 R2a 1230 975 air 700 R2b 1150 954 eau ambiante R3 1220 927 50°C/s 500 I=invention / R=Référence / les valeurs soulignées sont non-conformes à l'invention. The products have been hot-rolled to obtain hot-rolled sheets and the manufacturing conditions are shown in Table 2 below with the following abbreviations:
  • T rech : is the reheat temperature
  • T FL : is the end of rolling temperature
  • V ref1 : is the cooling temperature after the last rolling pass.
  • T bob : is the winding temperature
Table 2: Conditions of manufacture of hot-rolled sheet from semi-finished products T rech (° C) T FL (° C) V ref1 T bob (° C) I1 1180 950 air 500 I2 1230 964 air 500 R1 1300 950 air 500 2a 1230 975 air 700 2b 1150 954 water ambient R3 1220 927 50 ° C / s 500 I = invention / R = Reference / the underlined values are not in accordance with the invention.

Les tôles I1 et I2 sont des tôles dont la composition chimique et le procédé de mise en oeuvre sont selon l'invention. Les deux compositions chimiques sont différentes et présentent des rapports Mn/AI différents. Les tôles référencées R1, R2 et R3 présentent des compositions chimiques ne satisfaisant pas aux conditions selon l'invention respectivement soit pour la teneur en Mn, soit pour les teneurs en C et en Mn soit pour le rapport Mn/AI. R2a et R2b sont deux essais issus de la même nuance R2 dans le tableau 1. Le laminage à chaud a été effectué avec au moins une passe de laminage en présence de ferrite. Le refroidissement à l'air présente une vitesse de refroidissement inférieure à 55°C/seconde.The sheets I1 and I2 are sheets whose chemical composition and the method of implementation are according to the invention. The two chemical compositions are different and have different Mn / Al ratios. The sheets referenced R1, R2 and R3 have chemical compositions which do not satisfy the conditions according to the invention respectively for the content of Mn, for the contents of C and Mn or for the Mn / Al ratio. R2a and R2b are two tests from the same grade R2 in Table 1. The hot rolling was carried out with at least one rolling pass in the presence of ferrite. Air cooling has a cooling rate of less than 55 ° C / sec.

Le tableau 3 présente les caractéristiques suivantes :

  • Ferrite : désigne la présence ou non de ferrite recristallisée avec un taux de recristallisation supérieur à 90% dans la microstructure de la tôle après le bobinage.
  • Austénite : désigne la présence ou non de d'austénite dans la microstructure de la tôle après le bobinage.
  • K : désigne la présence de précipités Kappa dans la microstructure avec une fraction surfacique inférieure à 5 %. Cette mesure est effectuée grâce à un microscope électronique à balayage.
  • Rm (MPa) : la résistance mécanique dans un essai de traction en sens longitudinal par rapport à la direction de laminage.
  • Atot(%) : désigne l'allongement à rupture dans un essai de traction en sens longitudinal par rapport à la direction de laminage.
  • Densité estimée : sur la base de la figure 8 selon la teneur en Al.
  • Fissure : Désigne si une fissure clairement visible à l'oeil nu est apparue après le laminage à chaud sur la tôle.
  • X : Indique que la mesure n'a pas été faite.
Tableau 3 : Propriétés des tôles laminées à chaud. Ferrite Austenite K Rm (MPa) Atot (%) Densité mesurée Fissure I1 OUI OUI OUI 647 41 <7,3 NON I2 OUI OUI OUI 683 34,1 <7,3 NON R1 OUI OUI OUI X X <7,3 OUI R2a OUI OUI OUI 560 2,9 <7,3 NON R2b OUI OUI OUI 664 13 <7,3 NON R3 OUI OUI OUI 810 14,1 <7,3 OUI I=invention / R=Référence / les valeurs soulignées sont non-conformes à l'invention Table 3 has the following characteristics:
  • Ferrite: refers to the presence or not of recrystallized ferrite with a recrystallization rate greater than 90% in the microstructure of the sheet after winding.
  • Austenite: refers to the presence or absence of austenite in the microstructure of the sheet after winding.
  • K: denotes the presence of Kappa precipitates in the microstructure with a surface fraction less than 5%. This measurement is made using a scanning electron microscope.
  • Rm (MPa): the mechanical strength in a longitudinal tensile test with respect to the rolling direction.
  • Atot (%): denotes the elongation at break in a longitudinal tensile test with respect to the rolling direction.
  • Estimated density: based on the figure 8 according to the Al content.
  • Crack: Designates if a crack clearly visible to the naked eye appeared after hot rolling on the sheet.
  • X: Indicates that the measurement has not been made.
Table 3: Properties of hot-rolled sheets. Ferrite austenite K Rm (MPa) Atot (%) Density measured Rift I1 YES YES YES 647 41 <7.3 NO I2 YES YES YES 683 34.1 <7.3 NO R1 YES YES YES X X <7.3 YES 2a YES YES YES 560 2.9 <7.3 NO 2b YES YES YES 664 13 <7.3 NO R3 YES YES YES 810 14.1 <7.3 YES I = invention / R = Reference / the underlined values are not in accordance with the invention

Les deux tôles d'acier I1 et I2 correspondent aux tôles selon l'invention. La microstructure de la tôle I1 est illustrée par la figure 1. Aucune de ces tôles ne présente de fissure après le laminage. Les résistances mécaniques sont supérieures à 600 MPa, leur allongement à rupture est largement supérieur à 20% et elles sont soudables et revêtables. La présence de ferrite et d'austénite a été confirmée au microscope électronique à balayage et la présence de précipités Kappa l'a été par l'indexation du cliché de diffraction de obtenu suite à des observations au microscope électronique à transmission (cf. figure 6).The two steel sheets I1 and I2 correspond to the sheets according to the invention. The microstructure of the sheet I1 is illustrated by the figure 1 . None of these sheets has crack after rolling. The mechanical strengths are greater than 600 MPa, their elongation at break is well above 20% and they are weldable and can be coated. The presence of ferrite and austenite was confirmed by a scanning electron microscope and the presence of Kappa precipitates was confirmed by the indexing of the diffraction pattern. obtained after observation with a transmission electron microscope (cf. figure 6 ).

La tôle R1 présente une teneur en Mn inférieure à 6%, un rapport Mn/AI inférieur à 1 et une température de réchauffage supérieure à 1280°C. La tôle, après le laminage à chaud a présenté des fissures. La laminabilité de cet acier est insuffisante. La lettre « X » signifie qu'il n'y a pas eu de test de traction.The sheet R1 has an Mn content of less than 6%, an Mn / Al ratio of less than 1 and a reheat temperature of greater than 1280 ° C. The sheet, after hot rolling, showed cracks. The laminability of this steel is insufficient. The letter "X" means that there has been no traction test.

Les tôles R2a et R2b sont issues de la tôle R2 et présentent un rapport Mn/AI inférieur à 1 et une teneur en manganèse inférieure à 6%. R2a a subi un bobinage à une température supérieure à 600°C ce qui a mené à une décomposition de l'austénite en Kappa et en ferrite comme illustré par la figure 4. L'allongement n'atteint pas les 20% nécessaires.The sheets R2a and R2b come from the sheet R2 and have an Mn / Al ratio of less than 1 and a manganese content of less than 6%. R2a was coiled at a temperature above 600 ° C which led to a decomposition of the austenite into Kappa and ferrite as illustrated by the figure 4 . The lengthening does not reach the necessary 20%.

La tôle R2b a subi des conditions de laminage selon l'invention mais la composition chimique ne satisfaisant pas aux conditions visées, c'est-à-dire que le rapport Mn/AI est en dessous de 1, l'allongement de 20% n'est pas atteint.The sheet R2b has undergone rolling conditions according to the invention but the chemical composition does not satisfy the conditions referred to, that is to say that the Mn / Al ratio is below 1, the elongation of 20% n is not reached.

La tôle R3 présente un rapport Mn/AI inférieur à 1,0 ; malgré des conditions de laminage selon l'invention et des éléments d'alliage dans les fourchettes visées par l'invention, des fissures sont apparues lors du laminage à chaud.Sheet R3 has an Mn / Al ratio of less than 1.0; despite rolling conditions according to the invention and alloying elements in the ranges covered by the invention, cracks appeared during hot rolling.

Exemple 2 : Tôles laminées à froid et recuitesExample 2: Cold-rolled and annealed sheets

Des demi-produits ont été élaborés à partir d'une coulée d'acier. La composition chimique des demi-produits, exprimée en pourcentage pondéral, figure dans le tableau 4 ci-dessous :Semi-finished products were developed from a steel casting. The chemical composition of the semi-finished products, expressed in percentage by weight, is shown in Table 4 below:

Le reste de la composition des aciers figurant dans le tableau 4 est constitué de fer et d'impuretés inévitables résultant de l'élaboration. Tableau 4 : Composition d'acier (%poids).I=invention C Mn Al Si Ti V Nb Mn/Al Densité mesurée par pycnométrie I3 0,21 8,2 7,4 0,26 <0,030 <0,030 <0,030 1,11 7,04 I4 0,21 8,6 6,1 0 <0,030 <0,030 <0,030 1,41 7,17 I5 0,2 8,6 6,1 0,89 <0,030 <0,030 0,1 1,41 7,12 I6 0,19 8,7 7,2 0 <0,030 <0,030 <0,030 1,21 non mesurée The remainder of the composition of the steels in Table 4 consists of iron and unavoidable impurities resulting from processing. Table 4: Composition of steel (% weight) .I = invention VS mn al Yes Ti V Nb Mn / Al Density measured by pycnometry I3 0.21 8.2 7.4 0.26 <0.030 <0.030 <0.030 1.11 7.04 I4 0.21 8.6 6.1 0 <0.030 <0.030 <0.030 1.41 7.17 I5 0.2 8.6 6.1 0.89 <0.030 <0.030 0.1 1.41 7.12 I6 0.19 8.7 7.2 0 <0.030 <0.030 <0.030 1.21 not measured

La densité d'I6 a été estimée à 7,1 grâce à la courbe de la figure 8.The density of I6 was estimated at 7.1 thanks to the curve of the figure 8 .

Les produits ont tout d'abord été laminés à chaud dans les conditions suivantes : Tableau 5 : Conditions de laminage à chaud Trech (°C) TFL (°C) Vref1 Tbob (°C) I3a 1180 905 50°C/s 500 I3b 1180 964 50°C/s 500 I4 1150 935 55°C/s 450 I5 1150 952 55°C/s 450 I6 1150 944 50°C/s 450 The products were first hot-rolled under the following conditions: Table 5: Hot Rolling Conditions T rech (° C) T FL (° C) V ref1 T bob (° C) i3a 1180 905 50 ° C / s 500 i3b 1180 964 50 ° C / s 500 I4 1150 935 55 ° C / s 450 I5 1150 952 55 ° C / s 450 I6 1150 944 50 ° C / s 450

Les tôles ont ensuite été laminées à froid et recuites. Les conditions de fabrication figurent dans les tableaux 5 et 6 avec les abréviations suivantes :

  • Trech : est la température de réchauffage
  • TFL : est la température de fin de laminage
  • Vref1 : est la température de refroidissement après la dernière passe de laminage.
  • Tbob : est la température de bobinage
  • Taux : est le taux de réduction lors du laminage à froid
  • Vc : est la vitesse de chauffe jusqu'à la température de maintien Tm.
  • Tm : est la température de maintien de recristallisation.
  • tm : est le temps pendant lequel la tôle est maintenue à la température Tm.
  • Vref2 : est la vitesse de refroidissement jusqu'à une température inférieure à 500°C.
Tableau 6 : Conditions de fabrication des tôles laminées à froid et recuites. I=invention Taux (%) Vc (°C/s) Tm (°C) tm (sec) Vref2 I3a 74 15 830 136 50 I3b 74 15 850 136 50 I4 75 15 905 136 55 I5 75 15 910 136 55 I6 75 15 909 136 55 The sheets were then cold rolled and annealed. The manufacturing conditions are shown in Tables 5 and 6 with the following abbreviations:
  • T rech : is the reheat temperature
  • T FL : is the end of rolling temperature
  • V ref1 : is the cooling temperature after the last rolling pass.
  • T bob : is the winding temperature
  • Rate: is the rate of reduction during cold rolling
  • V c : is the heating rate up to the holding temperature T m .
  • T m : is the recrystallization maintenance temperature.
  • t m : is the time during which the sheet is maintained at the temperature T m .
  • V ref2 : is the cooling rate up to a temperature below 500 ° C.
Table 6: Production conditions for cold-rolled and annealed sheets. I = invention Rate (%) V c (° C / s) T m (° C) t m (sec) V ref2 i3a 74 15 830 136 50 i3b 74 15 850 136 50 I4 75 15 905 136 55 I5 75 15 910 136 55 I6 75 15 909 136 55

Les tôles I3a, I3b, I4, I5 et I6 sont des tôles dont la composition chimique et le procédé de mise en oeuvre sont selon l'invention.The sheets I3a, I3b, I4, I5 and I6 are sheets whose chemical composition and the method of implementation are according to the invention.

Le tableau 7 présente les caractéristiques suivantes :

  • Ferrite : désigne la présence ou non de ferrite recristallisée avec un taux de recristallisation supérieur à 90% dans la microstructure de la tôle recuite.
  • Austénite : désigne la présence ou non de d'austénite dans la microstructure de la tôle après le bobinage.
  • K : désigne la présence de précipités Kappa dans la microstructure avec une fraction surfacique inférieure à 5 %. Cette mesure est effectuée grâce à un microscope électronique à balayage. Quand il est écrit « NON », les précipités kappa sont absents.
  • Rm (MPa) : la résistance mécanique dans un essai de traction en sens longitudinal par rapport à la direction de laminage.
  • Atot(%) : désigne l'allongement à rupture dans un essai de traction en sens longitudinal par rapport à la direction de laminage.
  • Densité mesurée: désigne la densité mesurée par pycnométrie et illustrée sur la figure 7.
  • Fissure : Désigne si une fissure clairement visible à l'oeil nu est apparue après laminage sur la tôle.
Tableau 7 : Propriétés des tôles laminées à froid et recuites. I=invention Ferrite Austenite K Rm (MPa) Atot (%) Densité mesurée Fissure I3a OUI OUI NON 831 23 7,04 NON I3b OUI OUI NON 800 26 7,04 NON I4 OUI OUI NON 685 34 7,17 NON I5 OUI OUI NON 742 30 7,12 NON I6 OUI OUI NON 704 22 7,1* NON * la densité d'I6 a été estimée. Table 7 shows the following characteristics:
  • Ferrite: refers to the presence or not of recrystallized ferrite with a recrystallization rate greater than 90% in the microstructure of the annealed sheet.
  • Austenite: refers to the presence or absence of austenite in the microstructure of the sheet after winding.
  • K: denotes the presence of Kappa precipitates in the microstructure with a surface fraction less than 5%. This measurement is made using a scanning electron microscope. When it is written "NO", the kappa precipitates are absent.
  • Rm (MPa): the mechanical strength in a longitudinal tensile test with respect to the rolling direction.
  • Atot (%): denotes the elongation at break in a tensile test in longitudinal direction relative to the rolling direction.
  • Density measured: denotes the density measured by pycnometry and illustrated on the figure 7 .
  • Crack: Designates if a crack clearly visible to the naked eye appeared after rolling on the sheet.
Table 7: Properties of cold-rolled and annealed sheets. I = invention Ferrite austenite K Rm (MPa) Atot (%) Density measured Rift i3a YES YES NO 831 23 7.04 NO i3b YES YES NO 800 26 7.04 NO I4 YES YES NO 685 34 7.17 NO I5 YES YES NO 742 30 7.12 NO I6 YES YES NO 704 22 7.1 * NO * The density of I6 has been estimated.

Les tôles d'acier laminées à froid du tableau 7 correspondent à des tôles selon l'invention. La microstructure de la tôle I3a est illustrée par la figure 5. Aucune de ces tôles ne présente de fissure après laminage. Les résistances mécaniques sont supérieures à 600 MPa, leur allongement à rupture est supérieur à 20% et elles sont soudables et la tôle I3a a été revêtue de Zn par un procédé de trempe dans un bain de Zn à 460°C, appelé procédé de galvanisation au trempé. La tôle, aussi bien nue que revêtue, présente une bonne soudabilité.Les aciers selon l'invention présentent ainsi une bonne aptitude à la galvanisation en continu, en particulier.The cold-rolled steel sheets of Table 7 correspond to sheets according to the invention. The microstructure of the sheet I3a is illustrated by the figure 5 . None of these sheets has crack after rolling. The mechanical strengths are greater than 600 MPa, their elongation at break is greater than 20% and they are weldable and the I3a sheet was coated with Zn by a quenching process in a Zn bath at 460 ° C, called the galvanizing process by soaking. The sheet, both bare and coated, has good weldability. The steels according to the invention thus have good continuous galvanizing properties, in particular.

Les aciers selon l'invention présentent une bonne combinaison de propriétés intéressantes pour les pièces de structures ou de peau dans l'automobile (faible densité, bonne. aptitude à la déformation, bonne propriétés mécaniques, bonne soudabilité et bonne résistance à la corrosion avec un revêtement).The steels according to the invention have a good combination of properties of interest for structural or skin parts in the automobile (low density, good deformability, good mechanical properties, good weldability and good resistance to corrosion with coating).

Claims (22)

  1. Rolled steel sheet having a density of 7.3 or lower and composition, with contents expressed by weight, comprising: 0.10 C 0.30 %
    Figure imgb0051
    Figure imgb0052
    Figure imgb0053
    and optionally one or more elements selected from among: Si 2.0 %
    Figure imgb0054
    Ti 0.2 %
    Figure imgb0055
    V 0.6 %
    Figure imgb0056
    Nb 0.3 %
    Figure imgb0057
    Nb 0.3 %
    Figure imgb0058
    the remainder of the composition being composed of iron and inevitable processing impurities, provided that Mn Al > 1.0 ,
    Figure imgb0059
    the microstructure of the sheet being formed of ferrite, austenite and up to 5 % surface density of Kappa precipitates .
  2. The steel sheet according to claim 1 having a composition, with contents expressed by weight, comprising: 0.18 C 0.21 % .
    Figure imgb0060
  3. The steel sheet according to claims 1 or 2 having a composition, with contents expressed by weight, comprising: 7.0 Mn 10.0 %
    Figure imgb0061
  4. The steel sheet according to any of claims 1 to 3 having a composition, with contents expressed by weight, comprising: 6.0 Al 12.0 % .
    Figure imgb0062
  5. The steel sheet according to any of claims 1 to 4 having a composition, with contents expressed by weight, comprising: 6.0 Al 9.0 % .
    Figure imgb0063
  6. The steel sheet according to any of claims 1 to 5 having a composition, with contents expressed by weight, comprising: Si 1 % .
    Figure imgb0064
  7. The steel sheet according to any of claims 1 to 6 wherein the surface density of Kappa precipitates is 2 % or lower.
  8. The steel sheet according to any of claims 1 to 7 wherein the mechanical tensile strength is 600 MPa or higher and ultimate elongation is 20 % or higher.
  9. The steel sheet according to any of claims 1 to 8 wherein the ratio of Mn content to Al content is such that: Mn Al 1.1.
    Figure imgb0065
  10. The steel sheet according to any of claims 1 to 9 wherein the ratio of Mn content to Al content is such that: Mn Al 1.5.
    Figure imgb0066
  11. The steel sheet according to any of claims 1 to 10 wherein the ratio of Mn content to Al content is such that: Mn Al 2.0.
    Figure imgb0067
  12. A process to manufacture rolled steel sheet having a density of 7.3 or lower, wherein:
    - steel having the composition according to any of claims 1 to 11 is provided;
    - said steel is cast to form a semi-finished product;
    - said semi-finished product is optionally reheated to a temperature Theat of between 1000°C and 1280°C;
    - said heated semi-finished product is rolled with at least one rolling pass in the presence of ferrite to obtain sheet;
    - the finish rolling temperature TFR is 850°C or higher;
    - said sheet is cooled at a cooling rate of Vref1 down to a coiling temperature Tcoil of 600°C or lower;
    - said cooled sheet is coiled.
  13. The process to manufacture rolled sheet according to claim 12 wherein said semi-finished product is cast directly in the form thin slabs or thin strips.
  14. The manufacturing process according to any of claims 11 or 13 wherein the finish rolling temperature TFR is between 900 and 980°C.
  15. The manufacturing process according to any of claims 11 to 14 wherein the cooling rate Vref1 is 55°C/s or lower.
  16. The manufacturing process according to any of claims 11 to 15 wherein the coiling temperature is between 450 and 550°C.
  17. A process to manufacture cold rolled and annealed steel sheet having a density of 7.3 or lower wherein
    - rolled steel sheet according to any of claims 11 to 16 is provided; then
    - said rolled sheet is cold-rolled with a reduction rate of between 35 and 90 % to obtain cold-rolled sheet; then
    - said sheet is heated at a rate Vc up to a hold temperature Thold of between 800 and 950°C for a time thold of less than 600 seconds, then
    - said sheet is cooled at a rate Vref2 down to a temperature of 500°C or lower.
  18. The manufacturing process according to claim 17 wherein the temperature Thold is between 800 and 900°C.
  19. The manufacturing process according to any of claims 16 or 18 wherein the cooling rate Vref2 is 30°C/s or higher.
  20. The manufacturing process according to any of claims 16 to 19 wherein the cooling Vref2 is maintained down to a temperature of between 500°C and 460°C.
  21. The manufacturing process according to any of claims 11 to 20 wherein the sheet is then coated with zinc, a zinc alloy or zinc-based alloy.
  22. The use of steel sheets according to any of claims 1 to 11 or able to be obtained according to any of claims 12 to 21 for the production of structural parts or skin parts for land motor vehicles.
EP13732225.1A 2012-05-31 2013-05-27 Low-density hot- or cold-rolled steel, method for implementing same and use thereof Active EP2855725B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/FR2012/000220 WO2013178887A1 (en) 2012-05-31 2012-05-31 Low-density hot- or cold-rolled steel, method for implementing same and use thereof
PCT/IB2013/001057 WO2013179115A1 (en) 2012-05-31 2013-05-27 Low-density hot- or cold-rolled steel, method for implementing same and use thereof

Publications (2)

Publication Number Publication Date
EP2855725A1 EP2855725A1 (en) 2015-04-08
EP2855725B1 true EP2855725B1 (en) 2016-07-06

Family

ID=48700630

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13732225.1A Active EP2855725B1 (en) 2012-05-31 2013-05-27 Low-density hot- or cold-rolled steel, method for implementing same and use thereof

Country Status (17)

Country Link
US (1) US10900105B2 (en)
EP (1) EP2855725B1 (en)
JP (2) JP6074031B2 (en)
KR (3) KR20160129916A (en)
CN (1) CN104350169B (en)
BR (1) BR112014029177B1 (en)
CA (1) CA2873578C (en)
ES (1) ES2594328T3 (en)
HU (1) HUE028856T2 (en)
IN (1) IN2014DN09576A (en)
MA (1) MA37508B1 (en)
MX (1) MX359361B (en)
PL (1) PL2855725T3 (en)
RU (1) RU2614491C2 (en)
UA (1) UA111285C2 (en)
WO (2) WO2013178887A1 (en)
ZA (1) ZA201408109B (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104928456B (en) * 2015-06-30 2017-08-25 宝山钢铁股份有限公司 A kind of manufacture method for improving general chill ferritic lightweight steel ductility
CN104928568B (en) * 2015-06-30 2017-07-28 宝山钢铁股份有限公司 A kind of ferrite low-density high-strength steel and its manufacture method
WO2017203315A1 (en) * 2016-05-24 2017-11-30 Arcelormittal Cold rolled and annealed steel sheet, method of production thereof and use of such steel to produce vehicle parts
CN106011653B (en) * 2016-07-05 2018-02-06 东北大学 High-intensity high-tenacity low density steel and its manufacture method
CN106756569A (en) * 2016-11-18 2017-05-31 扶绥县科学技术情报研究所 Improve the production method of ferrous materials intensity
CN106756570A (en) * 2016-11-18 2017-05-31 扶绥县科学技术情报研究所 The high-ductility steel iron material production method of ultra-fine grain
CN106636915A (en) * 2016-11-18 2017-05-10 扶绥县科学技术情报研究所 Production method improving mechanical properties of steel material
CN106399841B (en) * 2016-11-18 2018-07-03 扶绥县科学技术情报研究所 The strong anti-corrosion steel material production method of ultra-fine grain
CN106756571A (en) * 2016-11-18 2017-05-31 扶绥县科学技术情报研究所 The High-strength steel material producing method of ultra-fine grain
CN106756478B (en) * 2016-12-07 2018-03-27 钢铁研究总院 A kind of economical seawater corrosion resistance low-density low-alloy steel and preparation method thereof
KR20240050440A (en) * 2016-12-22 2024-04-18 아르셀러미탈 Cold rolled and heat treated steel sheet, method of production thereof and use of such steel to produce vehicle parts
WO2019122960A1 (en) * 2017-12-19 2019-06-27 Arcelormittal Cold rolled and heat treated steel sheet, method of production thereof and use of such steel to produce vehicle parts
CN109694997B (en) * 2019-02-25 2021-08-06 上海大学 Heat treatment process for improving mechanical property of Fe-Mn-Al-C dual-phase steel by utilizing gamma → alpha isomerous transformation
CN110592487B (en) * 2019-10-22 2021-12-10 成都先进金属材料产业技术研究院股份有限公司 700 MPa-grade austenite ferrite dual-phase low-density cast steel and preparation method thereof
KR102415068B1 (en) * 2020-09-07 2022-06-29 주식회사 포스코 High strength and low density steel plate and manufacturing method thereof
CN118369456A (en) * 2021-12-10 2024-07-19 安赛乐米塔尔公司 Low-density hot-rolled steel, method for the production thereof, and use of such steel for producing vehicle components
CN115537660B (en) * 2022-09-30 2023-07-14 武汉钢铁有限公司 Low-density high-strength hot rolled spring flat steel and production method thereof

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU768846A1 (en) 1978-12-13 1980-10-07 Институт Проблем Литья Ан Украинской Сср Iron-based alloy
WO1990000629A1 (en) 1988-07-08 1990-01-25 Famcy Steel Corporation High damping capacity, two-phase fe-mn-al-c alloy
JPH03140439A (en) * 1989-10-27 1991-06-14 Res Inst Electric Magnetic Alloys Vibration absorbing alloy having low specific gravity, high hardness and high damping capacity
JP2849059B2 (en) 1995-09-28 1999-01-20 日鉱グールド・フォイル株式会社 Processing method of copper foil for printed circuit
FR2836930B1 (en) 2002-03-11 2005-02-25 Usinor HOT ROLLED STEEL WITH HIGH RESISTANCE AND LOW DENSITY
WO2003096776A1 (en) 2002-05-13 2003-11-20 Mitsui Mining & Smelting Co.,Ltd. Flexible printed wiring board for chip-on-film
JP2004098659A (en) 2002-07-19 2004-04-02 Ube Ind Ltd Copper-clad laminate and its manufacturing process
DE10259230B4 (en) 2002-12-17 2005-04-14 Thyssenkrupp Stahl Ag Method for producing a steel product
JP4235077B2 (en) 2003-06-05 2009-03-04 新日本製鐵株式会社 High strength low specific gravity steel plate for automobile and its manufacturing method
JP2005120390A (en) 2003-10-14 2005-05-12 Jfe Steel Kk Method of drying steel strip in steel strip production line
JP4084733B2 (en) * 2003-10-14 2008-04-30 新日本製鐵株式会社 High strength low specific gravity steel plate excellent in ductility and method for producing the same
JP2005325388A (en) * 2004-05-13 2005-11-24 Kiyohito Ishida Low specific gravity iron alloy
JP4324072B2 (en) 2004-10-21 2009-09-02 新日本製鐵株式会社 Lightweight high strength steel with excellent ductility and its manufacturing method
KR100711361B1 (en) 2005-08-23 2007-04-27 주식회사 포스코 High strength hot rolled steel sheet containing high Mn with excellent formability, and method for manufacturing the same
JP4654440B2 (en) * 2005-09-22 2011-03-23 国立大学法人東北大学 Low work hardening type iron alloy
EP1995336A1 (en) * 2007-05-16 2008-11-26 ArcelorMittal France Low-density steel with good suitability for stamping
EP2090668A1 (en) * 2008-01-30 2009-08-19 Corus Staal BV Method of producing a high strength steel and high strength steel produced thereby
KR100985298B1 (en) * 2008-05-27 2010-10-04 주식회사 포스코 Low Density Gravity and High Strength Hot Rolled Steel, Cold Rolled Steel and Galvanized Steel with Excellent Ridging Resistibility and Manufacturing Method Thereof
JP5403660B2 (en) * 2009-03-09 2014-01-29 本田技研工業株式会社 High strength steel plate and manufacturing method thereof

Also Published As

Publication number Publication date
MA20150361A1 (en) 2015-10-30
RU2614491C2 (en) 2017-03-28
ES2594328T3 (en) 2016-12-19
UA111285C2 (en) 2016-04-11
MA37508B1 (en) 2016-03-31
US20150147221A1 (en) 2015-05-28
CA2873578C (en) 2017-10-10
CN104350169B (en) 2017-02-22
KR20160129916A (en) 2016-11-09
KR20150003918A (en) 2015-01-09
PL2855725T3 (en) 2016-12-30
CA2873578A1 (en) 2013-12-05
HUE028856T2 (en) 2017-01-30
EP2855725A1 (en) 2015-04-08
MX2014014613A (en) 2015-08-10
WO2013179115A1 (en) 2013-12-05
IN2014DN09576A (en) 2015-07-17
WO2013179115A8 (en) 2014-11-06
US10900105B2 (en) 2021-01-26
JP6074031B2 (en) 2017-02-01
JP2015520298A (en) 2015-07-16
BR112014029177B1 (en) 2019-03-26
CN104350169A (en) 2015-02-11
JP6242990B2 (en) 2017-12-06
RU2014153550A (en) 2016-07-20
MX359361B (en) 2018-09-26
ZA201408109B (en) 2015-11-25
BR112014029177A2 (en) 2017-06-27
KR20170053727A (en) 2017-05-16
WO2013178887A1 (en) 2013-12-05
JP2017106108A (en) 2017-06-15

Similar Documents

Publication Publication Date Title
EP2855725B1 (en) Low-density hot- or cold-rolled steel, method for implementing same and use thereof
EP1913169B1 (en) Manufacture of steel sheets having high resistance and excellent ductility, products thereof
EP2718469B1 (en) Cold-rolled steel plate coated with zinc or a zinc alloy, method for manufacturing same, and use of such a steel plate
EP2689045B1 (en) Hot-rolled steel sheet and associated production method
EP2155916B2 (en) Low density steel with good stamping capability
EP2245203B1 (en) Austenitic stainless steel sheet and method for obtaining this sheet
EP2630269B1 (en) Hot or cold rolled steel sheet, its manufacturing method and its use in the automotive industry
EP2753723B1 (en) Rolled steel that hardens by means of precipitation after hot-forming and/or quenching with a tool having very high strength and ductility, and method for manufacturing same
EP3167091B1 (en) Hot-rolled steel sheet and associated manufacturing method
EP3307921A2 (en) High-strength steel and production method
WO2006056670A2 (en) Method of producing austentic iron/carbon/manganese steel sheets having very high strength and elongation characteristics and excellent homogeneity
JP2015520298A5 (en)
EP1427866B1 (en) Method for making rolled and welded tubes comprising a final drawing or hydroforming step and resulting rolled tube
CA3065036A1 (en) Method for producing high-strength steel parts with improved ductility, and parts obtained by said method
FR2833617A1 (en) PROCESS FOR MANUFACTURING COLD ROLLED SHEATHES WITH HIGH RESISTANCE OF MICRO-ALLOY DUAL PHASE STEELS
EP1099769A1 (en) Process for manufacturing high tensile strength hot rolled steel sheet for forming and especially for deep drawing
EP2103705A1 (en) Method of manufacturing sheets of austenitic stainless steel with high mechanical properties

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150105

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602013009167

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C22C0038020000

Ipc: B21C0047020000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: B21B 45/02 20060101ALI20151214BHEP

Ipc: C22C 38/06 20060101ALI20151214BHEP

Ipc: C21D 6/00 20060101ALI20151214BHEP

Ipc: C21D 8/04 20060101ALI20151214BHEP

Ipc: C22C 38/14 20060101ALI20151214BHEP

Ipc: C21D 9/46 20060101ALI20151214BHEP

Ipc: C22C 38/04 20060101ALI20151214BHEP

Ipc: B21C 47/02 20060101AFI20151214BHEP

Ipc: C21D 8/02 20060101ALI20151214BHEP

Ipc: B21B 1/46 20060101ALI20151214BHEP

Ipc: C22C 38/12 20060101ALI20151214BHEP

Ipc: C22C 38/02 20060101ALI20151214BHEP

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ARCELORMITTAL INVESTIGACION Y DESARROLLO, S.L.

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ZUAZO RODRIGUEZ, IAN, ALBERTO

Inventor name: PERLADE, ASTRID

Inventor name: GARAT, XAVIER

INTG Intention to grant announced

Effective date: 20160121

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ARCELORMITTAL

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 810333

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160715

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013009167

Country of ref document: DE

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2594328

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20161219

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E028856

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161106

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161006

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 22168

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161007

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161107

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013009167

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161006

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

26N No opposition filed

Effective date: 20170407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170527

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 810333

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230427

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240418

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240419

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240418

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240603

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240419

Year of fee payment: 12

Ref country code: CZ

Payment date: 20240423

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20240423

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20240507

Year of fee payment: 12

Ref country code: IT

Payment date: 20240418

Year of fee payment: 12

Ref country code: FR

Payment date: 20240418

Year of fee payment: 12

Ref country code: FI

Payment date: 20240418

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20240418

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240430

Year of fee payment: 12

Ref country code: SE

Payment date: 20240418

Year of fee payment: 12

Ref country code: HU

Payment date: 20240509

Year of fee payment: 12

Ref country code: BE

Payment date: 20240418

Year of fee payment: 12