EP3167091B1 - Hot-rolled steel sheet and associated manufacturing method - Google Patents

Hot-rolled steel sheet and associated manufacturing method Download PDF

Info

Publication number
EP3167091B1
EP3167091B1 EP15753985.9A EP15753985A EP3167091B1 EP 3167091 B1 EP3167091 B1 EP 3167091B1 EP 15753985 A EP15753985 A EP 15753985A EP 3167091 B1 EP3167091 B1 EP 3167091B1
Authority
EP
European Patent Office
Prior art keywords
weight
sheet
contents
expressed
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15753985.9A
Other languages
German (de)
French (fr)
Other versions
EP3167091A1 (en
Inventor
Jean-Marc PIPARD
Astrid Perlade
Bastien WEBER
Aurélie MILANI
Florence PECHENOT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ArcelorMittal SA
Original Assignee
ArcelorMittal SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ArcelorMittal SA filed Critical ArcelorMittal SA
Priority to PL15753985T priority Critical patent/PL3167091T3/en
Publication of EP3167091A1 publication Critical patent/EP3167091A1/en
Application granted granted Critical
Publication of EP3167091B1 publication Critical patent/EP3167091B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/02Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing

Definitions

  • the invention mainly relates to a hot-rolled steel sheet.
  • the invention further relates to a method for making such a steel sheet.
  • TRIP Transformation Induced Plasticity
  • multiphase steels with predominantly bainitic structure have been proposed. These steels are used in industry, and particularly in the automotive industry, to produce structural parts.
  • This type of steel is described in the publication EP 2,020,451 .
  • the steels described in this publication include, in addition to the known presence of carbon, manganese and silicon, molybdenum and vanadium.
  • the microstructure of these steels essentially comprises upper bainite (at least 80%) as well as lower bainite, martensite and residual austenite.
  • certain automotive parts such as bumper beams and suspension arms, are manufactured by shaping operations combining different modes of deformation.
  • Certain microstructural characteristics of steel may be well adapted to a mode of deformation, but unfavorable vis-à-vis another mode.
  • Some parts of the parts must have a high resistance to elongation, others must have good aptitude for shaping a cut edge. This latter property is evaluated by the hole expansion method described in ISO 16630: 2009.
  • a type of steel that overcomes these disadvantages is free of molybdenum and vanadium, and comprises titanium and niobium in specific contents, these two elements conferring in particular on the sheet the desired strength, the necessary hardening and the expansion ratio of target hole.
  • the steel sheets which are the subject of the present invention are subjected to a hot winding, this operation notably making it possible to precipitate the titanium carbides and to give the sheet maximum curing.
  • the invention therefore aims to provide a sheet for which the high temperature winding operation does not cause the formation of the aforementioned surface defects.
  • the invention relates to a steel sheet in the uncoated or galvanized state.
  • the composition and mechanical properties of the steel must be compatible with the stresses and thermal cycles of continuous dipping zinc coating processes.
  • the object of the invention is also to propose a process for manufacturing a steel sheet that does not require large rolling forces, which makes it possible to manufacture them in a wide range of thickness, for example between 1.5 and 4.5 millimeters.
  • the invention relates to a hot-rolled steel sheet of economical manufacturing cost, having jointly a yield strength greater than 680 MPa at least in the direction of the rolling direction, and less than or equal to 840 MPa, a mechanical strength of between 780 MPa and 950 MPa, an elongation at break greater than 10% and a hole expansion ratio (Ac) greater than or equal to 45%.
  • the inventors have discovered that the surface defects present on certain sheets wound at high temperatures, especially above a temperature of 570 ° C., are mainly located at the core of the coil. In this region, the turns are contiguous, and the partial pressure of oxygen is such that only elements that are more oxidizable than iron, for example silicon, manganese or chromium, can still oxidize in contact with atoms of oxygen.
  • the 1-atmosphere iron-oxygen phase diagram shows that iron oxide, wustite, formed at high temperatures is no longer stable below 570 ° C and decomposes at thermodynamic equilibrium in two other phases: hematite and magnetite, one of the products of this reaction being oxygen.
  • the inventors have thus identified that the conditions are met so that in the coil core, the oxygen thus released combines with the more oxidizable elements than iron, namely notably manganese, silicon, chromium and aluminum present at the surface of the sheet.
  • the grain boundaries of the final microstructure naturally constitute diffusion short circuits for these elements with respect to homogeneous diffusion in the matrix. This results in more pronounced and deeper oxidation at the grain boundaries.
  • the oxides thus formed are also removed, leaving room for defects (lack of continuity) substantially perpendicular to the skin of the sheet of about 3 to 5 microns.
  • the inventors found a sheet composition which makes it possible to prevent the formation of intergranular oxidation at the coil core at the level of the grains of the final microstructure after pickling, the intergranular oxidation occurring on the grain boundaries of the final microstructure.
  • composition of the sheet must comprise chromium and molybdenum defined in particular contents. Surprisingly, the inventors have demonstrated that such sheets do not have the aforementioned surface defects.
  • the carbon weight content of the sheet is between 0.040% and 0.08%. This range of carbon content makes it possible simultaneously to obtain a high breaking elongation and a mechanical strength Rm greater than 780 MPa.
  • the maximum content by weight of carbon is set at 0.08%, which makes it possible to obtain a hole expansion ratio Ac% greater than or equal to 45%.
  • the content by weight of carbon is between 0.05% and 0.07%.
  • the weight content of manganese is between 1.2% and 1.9%.
  • manganese participates in the strength of the sheet and limits the formation of a central segregation band. It helps to obtain an Ac% hole expansion ratio greater than or equal to 45%.
  • the content by weight of manganese is between 1.4% and 1.6%.
  • An aluminum content by weight of between 0.005% and 0.1% ensures the deoxidation of the steel during its manufacture.
  • the content by weight of aluminum is between 0.01% and 0.07%.
  • Titanium is present in the steel of the sheet of the invention in an amount of between 0.07% and 0.125% by weight.
  • vanadium in an amount of between 0.001% and 0.2% by weight may be provided.
  • An increase in mechanical strength up to 250 MPa can be achieved by refinement of the microstructure and hardening precipitation of carbonitrides.
  • the weight content of nitrogen is between 0.002% and 0.01%. Although the nitrogen content can be extremely low, its limit value is set at 0.002% so that the production can be carried out under economically satisfactory conditions.
  • niobium its weight content in the composition of the steel is less than 0.045%. Beyond a content by weight of 0.045%, the recrystallization of the austenite is delayed. The structure then contains a significant fraction of elongated grains, which no longer makes it possible to achieve the target hole expansion ratio Ac%. Preferably, the content by weight of niobium is less than 0.04%.
  • composition of the invention also comprises chromium in an amount of between 0.10% and 0.55%.
  • chromium content makes it possible to improve the surface quality.
  • the chromium content is defined together with the molybdenum content.
  • the silicon is present in the chemical composition of the sheet, with a content by weight of between 0.1% and 0.3%. Silicon retards the precipitation of cementite. In the amounts defined according to the invention, it precipitates in a very small amount, that is to say in surface content less than 1.5% and in a very fine form. This finer morphology of the cementite makes it possible to obtain a high hole expansion capacity of greater than or equal to 45%.
  • the content by weight of silicon is between 0.15% and 0.3%.
  • the sulfur content of the steel according to the invention must not be greater than 0.004% in order to limit the formation of sulphides, especially of manganese sulphides.
  • the low levels of sulfur and nitrogen present in the composition of the sheet promote the ability to expand the hole.
  • the phosphorus content of the steel according to the invention is less than 0.020% in order to promote hole expansion ability and weldability.
  • the composition of the sheet comprises chromium and molybdenum in specific contents.
  • Tables 1 to 4 show the influence of the composition of a sheet and the manufacturing conditions of this sheet on the elastic limit, the maximum tensile strength, the total elongation at break, the hole expansion and an oxidation criterion taken in the middle or core coil and strip axis, these notions of coil core and strip axis being explained later.
  • the hole expansion method is described in ISO 16630: 2009 as follows: after making a hole by cutting in a sheet, a frustoconical tool is used so as to expand at the edges of this hole. hole. It is during this operation that one can observe an early damage in the vicinity of the edges of the hole during the expansion, this damage starting on particles of second phase or the interfaces between the different microstructural constituents in the 'steel.
  • the hole expansion method thus consists in measuring the initial diameter Di of the hole before stamping, then the final diameter Df of the hole after stamping, determined at the moment when there are observed through-cracks in the thickness of the sheet on the edges of the hole.
  • Ac thus makes it possible to quantify the ability of a sheet to withstand stamping at a cut orifice.
  • the initial diameter is 10 millimeters.
  • the inventors have demonstrated that two criteria relating to the presence of defects of the wound sheet should be satisfied to obtain excellent fatigue performance. More precisely, these criteria must be respected in a zone of the coil which is subjected to specific conditions: this zone is situated in the core of the coil and in the axis of the strip where the partial pressure of oxygen is lower but sufficient for elements more oxidizable than iron can be oxidized. This phenomenon is observed when the winding is made in contiguous turns at a minimum winding voltage of 3 tons-force.
  • the coil core is defined as being the length zone of the coil to which, on either side, an end zone is subtracted, the length of each of the end zones being equal to 30% of the total length of the coil.
  • the strip axis is similarly defined as being an area centered on the middle of the strip in the direction transverse to the rolling direction, and of width equal to 60% of the width of the strip.
  • these two oxidation criteria are evaluated on a sheet 1 in the middle of the coil and in the axis of the strip over an observation length l ref .
  • This observation length is chosen to characterize the surface state in a representative manner.
  • the observation length l ref is set at 100 micrometers, but can be up to 500 micrometers or more if one wishes to reinforce the requirements in terms of oxidation criterion.
  • the defects due to the oxidation 2 are distributed over n oxidation zones Oi of said coiled sheet 1, i being between 1 and n.
  • Each oxidation zone Oi extends along a length l i , and is considered to be distinct from the neighboring zone Oi + 1 if these two zones Oi, Oi + 1 are separated by a zone free from any oxidation defect. at least 3 microns in length.
  • the first criterion [1] to which the defects 2 of the sheet 1 must satisfy is a maximum depth criterion corresponding to P i max ⁇ 8 micrometers, P i max being the maximum depth of a fault due to the oxidation 2 on each oxidation zone Oi.
  • the second criterion [2] to which the defects 2 of the sheet 1 must satisfy is a mean depth criterion reflecting the greater or lesser presence of the oxidation zones on the observation zone of length l ref .
  • This second criterion is defined by 1 l r e f ⁇ i not P i m o there ⁇ l i ⁇ 2.5 micrometers, P i moy being the average depth of defects due to oxidation on an oxidation zone Oi.
  • Table 1 shows the results obtained for compositions not falling within the scope of the sheet of the invention.
  • Table 2a shows sheet compositions according to the invention and Table 2b shows the results obtained for the sheet compositions of Table 2a, which sheets are intended to be uncoated and wound at a constant temperature of 590.degree. except for example 5.
  • Table 3 shows the results obtained for compositions of the sheet of the invention, which is also intended to be uncoated and for winding temperatures ranging from 526 ° C to 625 ° C.
  • Table 4 shows the results obtained for compositions of the sheet of the invention, which is intended to be galvanized and for a winding temperature ranging from 535 ° C. to 585 ° C.
  • Table 2b illustrates the results obtained for a composition of the sheet comprising chromium and molybdenum in respective contents of between 0.15% and 0.55% for chromium and between 0.05% and 0.32% for chromium and molybdenum. molybdenum.
  • Table 3 illustrates the results obtained for a composition of the sheet comprising chromium and molybdenum in respective contents of between 0.30% and 0.32% for chromium and between 0.15% and 0.17% for chromium and molybdenum. molybdenum.
  • Table 4 illustrates the results obtained for a composition of the sheet comprising chromium and molybdenum in respective contents of between 0.31% and 0.32% for chromium and between 0.15% and 0.16% for molybdenum.
  • Tables 2, 3 and 4 meet the oxidation criteria defined above.
  • the figure 7 illustrates the presence of surface defects for a sheet 9 which does not meet the previously defined oxidation criteria and whose composition comprises 0.3% chromium and 0.02% molybdenum.
  • FIGS 8 and 9 illustrate the surface state of two sheets 10, 11 which satisfy the oxidation criteria and whose respective composition includes for the figure 8 0.3% chromium, and 0.093% molybdenum, and for the figure 9 0.3% chromium and 0.15% molybdenum.
  • the experimental points obtained for counterexamples and examples are shown at a winding temperature of 590 ° C. More precisely, the experimental points 3 correspond to the counterexamples of the table 1, the experimental points 4a correspond to the examples of the tables 2a and 2b for which the surface oxidation is low and the experimental points 4b correspond to the examples of Tables 2a and 2b for which the surface oxidation is zero or very low.
  • a first experimental point 3 corresponds to counterexample 11 for which the precise content of chromium is 0.150
  • a second experimental point 4a corresponds to Example 11 for which the precise chromium content is 0.152.
  • the composition of the sheet of the invention comprises chromium and molybdenum with a content by weight of chromium which is strictly greater than 0.15% and less than or equal to 0.6 % when the molybdenum content is between 0.05% and 0.11% and a chromium content of between 0.10% and 0.6% where the molybdenum content is strictly greater than 0.11% and less than or equal to 0.35%.
  • the molybdenum content is thus between 0.05% and 0.35% while respecting the chromium contents previously expressed.
  • the content by weight of chromium is between 0.16% and 0.55% when the content by weight of molybdenum is between 0.05% and 0.11%, and the content by weight of chromium is included between 0.10% and 0.55% when the content by weight of molybdenum is between 0.11% and 0.25%.
  • the content by weight of chromium is between 0.27% and 0.52% and the content by weight of molybdenum is between 0.05% and 0.18%.
  • the microstructure of the sheet of the invention comprises granular bainite.
  • Granular bainite is distinguished from upper and lower bainite.
  • the granular bainite composing the microstructure of the sheet of the invention is defined as having a large proportion of adjacent grains strongly disoriented and an irregular morphology of the grains.
  • the surface percentage of granular bainite is greater than 70%.
  • the ferrite is present in a surface fraction not exceeding 20%.
  • the optional supplement consists of lower bainite, martensite and residual austenite, the sum of the martensite and residual austenite contents being less than 5%.
  • the figure 10 represents the microstructure of a sheet of the invention thus comprising granite bainite 12, islands of martensite and austenite 13 and ferrite 14.
  • the effective titanium Tieff represents the amount of excess titanium capable of precipitating in the form of carbides.
  • Tables 2 to 4 show the effective titanium values for each composition tested.
  • FIGS. 3 to 6 illustrate the results obtained respectively in yield strength and maximum tensile strength, as a function of the effective titanium content for different compositions for which the titanium and nitrogen contents vary.
  • the figures 3 and 5 illustrate these properties in the rolling direction of the sheet, and the figures 4 and 6 illustrate these properties in the transverse direction of rolling of sheet metal
  • the experimental points 5.5a represented by solid circles correspond to a composition for which the titanium content varies between 0.071% and 0.076% and the nitrogen content varies between 0.0070% and 0.0090%
  • the experimental points 6 , 6a represented by solid diamonds correspond to a composition for which the titanium content varies between 0.087% and 0.091% and the nitrogen content varies between 0.0060% and 0.0084%
  • the experimental points 7.7a materialized by solid triangles correspond to a composition for which the titanium content varies between 0.088% and 0.092%, and the nitrogen content varies between 0.0073% and 0.0081%
  • the experimental points 8.8a represented by solid squares correspond to to a composition for wherein the titanium content varies between 0.098% and 0.104% and the nitrogen content varies between 0.0048% and 0.0070%.
  • the criteria in elastic limit and in maximum tensile strength are respected for an effective titanium content varying between 0.055% and 0.095%.
  • the criteria in yield strength and maximum tensile strength are met for an effective titanium content ranging between 0.040% and 0.070%.
  • composition may comprise an effective titanium content varying between 0.040% and 0.095%, preferably between 0.055% and 0.070% where the criteria are met both in the rolling direction and in the cross direction.
  • the advantage presented by the consideration of the effective titanium resides in particular in the possibility of using a high nitrogen content to avoid limiting the nitrogen content which is binding for the process of making the sheet.
  • titanium [Ti] is added so that the quantities of titanium [Ti] and nitrogen [N] dissolved in the liquid metal satisfy% [Ti]% [N] ⁇ 6.10 -4 % 2 .
  • the liquid metal is then carried out either in a vacuum treatment or in a silica-calcium (SiCa) treatment, in which case it will be provided that the composition further comprises a content by weight of 0.0005 ⁇ Ca ⁇ 0.005%.
  • the titanium nitrides do not precipitate early in the coarse form in the liquid metal, which would have the effect of reducing the ability to expand the hole.
  • the precipitation of titanium occurs at lower temperatures in the form of fine carbonitrides distributed uniformly. This fine precipitation contributes to the hardening and refinement of the microstructure.
  • the steel is cast to obtain a cast half-product.
  • This can be done preferably by continuous casting.
  • the casting may be carried out between counter-rotating rolls to obtain a semi-finished product in the form of thin slabs or thin strips. Indeed, these modes of casting lead to a decrease in the size of the precipitates, favorable to the expansion of hole on the product obtained in the final state.
  • the half-product obtained is then heated to a temperature of between 1160 and 1300 ° C. Below 1160 ° C, the target tensile strength of 780 MPa is not achieved.
  • the hot rolling stage of the half-products starting at more than 1160 ° C. can be done directly after casting, ie without cooling the half product until at room temperature, and therefore without it being necessary to perform a heating step.
  • said cast half-product is hot rolled with an end-of-rolling temperature of between 880 and 930 ° C., the reduction rate of the penultimate pass being less than 0.25, the rate of the last pass being less than 0.15, the sum of the two reduction rates being less than 0.37, the next-to-last pass rolling start temperature being less than 960 ° C, so as to obtain a hot-rolled product.
  • the material is rolled at a temperature below the non-recrystallization temperature, which prevents the recrystallization of austenite. It is thus intended not to cause excessive deformation of the austenite during these last two passes.
  • the hot-rolled product After rolling, the hot-rolled product is cooled at a rate of between 20 and 150 ° C./s, preferably between 50 and 150 ° C./s, so as to obtain a hot-rolled steel sheet.
  • the sheet obtained is reeled at a temperature of between 525 and 635 ° C.
  • the winding temperature will be between 525 and 635 ° C so that the precipitation is the densest and most hardening possible allowing to satisfy a mechanical tensile strength greater than 780 MPa in both the long and the transverse directions. According to the results presented in these tables, these winding temperatures make it possible to obtain a sheet for which the oxidation criterion is satisfied.
  • the winding temperature will be between 530 and 600 ° C., regardless of the desired direction of the properties in the direction of rolling or in the cross direction and to compensate for the additional precipitation occurring during the heat treatment associated with the galvanizing operation. According to the results presented in this table, these winding temperatures make it possible to obtain a sheet for which the oxidation criterion is satisfied.
  • the wound sheet is then etched according to a conventional technique well known in itself, and then heated to a temperature between 550 and 750 ° C.
  • the sheet will then be cooled at a speed of between 5 and 20 ° C./s, and then coated with zinc in a suitable zinc bath.
  • All the steel sheets according to the invention were rolled with a lower reduction ratio of 0.15 in the penultimate rolling pass, and a reduction rate of less than 0.07 in the last rolling pass, the cumulative deformation during these two passes being less than 0.37. At the end of the hot rolling, we obtain a little deformed austenite.
  • the invention makes it possible to provide steel sheets having high tensile mechanical characteristics and good formability by stamping.
  • the stampings made from these sheets have a high fatigue resistance due to the minimization or absence of surface defects after stamping.
  • Table 2a Sheet metal compositions according to the invention Chemical composition (in%) VS mn Yes al Cr MB Nb Ti P S NOT Tieff
  • Example 1 0.06 1.6 0.2 0.06 0.29 0.09 0.031 0.110 0,015 0,002 0,007 0.086
  • Example 2 0.06 1.6 0.2 0.04 0.29 0.05 0,034 0.115 0,015 0,001 0.006 0.094
  • Example 3 0.06 1.6 0.2 0.04 0.29 0.11 0,034 0.111 0,015 0,001 0.006 0.090
  • Example 4 0.06 1.5 0.2 0.06 0.38 0.15 0,026 0,100 0,017 0,001 0.006 0.078
  • Example 5 0.07 1.5 0.2 0.04 0.30 0.16 0,030 0,100 0.016 0,001 0.005 0.083
  • Example 6
  • Example 19 0.05 1.4 0.25 0.03 0.30 0.20 0,032 0.089 0,013 0,002 0,008 0,061
  • Example 20 0.05 1.5 0.25 0.04 0.55 0.05 0,030 0.089 0.012 0,002 0,009 0.058
  • Example 21 0.05 1.5 0.25 0.04 0.54 0.11 0,030 0.087 0.012 0,002 0,008 0.059
  • Example 22 0.05 1.4 0.24 0.03 0.16 0.20 0,030 0.088 0,013 0,002 0,008 0,060
  • Example 23 0.05 1.4 0.24 0.03 0.19 0.20 0,030 0.088 0,013 0,002 0,008 0,060
  • Example 24 0.05 1.4 0.24 0.04 0.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)
  • Metal Rolling (AREA)

Description

L'invention concerne principalement une tôle d'acier laminée à chaud.The invention mainly relates to a hot-rolled steel sheet.

L'invention concerne en outre un procédé permettant de fabriquer une telle tôle d'acier.The invention further relates to a method for making such a steel sheet.

Le besoin d'allègement des véhicules automobiles et d'accroissement de la sécurité ont conduit à l'élaboration d'aciers à haute résistance.The need for lighter motor vehicles and increased safety has led to the development of high-strength steels.

On a historiquement commencé par développer des aciers comprenant des éléments d'addition de façon à obtenir principalement un durcissement par précipitation.It has been historically begun by developing steels comprising additive elements so as to obtain mainly precipitation hardening.

Puis, on a proposé des aciers « Dual Phase » qui comportent de la martensite au sein d'une matrice ferritique de façon à obtenir un durcissement structural.Then, "Dual Phase" steels were proposed which comprise martensite within a ferritic matrix so as to obtain a structural hardening.

Afin d'obtenir des niveaux de résistance supérieure combinés à une aptitude à la déformation, on a développé des aciers « TRIP » (Transformation Induced Plasticity) dont la microstructure est constituée d'une matrice ferritique comportant de la bainite et de l'austénite résiduelle qui, sous l'effet d'une déformation, par exemple lors d'une opération d'emboutissage, se transforme en martensite.In order to obtain higher levels of resistance combined with deformability, "Transformation Induced Plasticity" (TRIP) steels have been developed whose microstructure consists of a ferritic matrix comprising bainite and residual austenite. which, under the effect of a deformation, for example during a stamping operation, is transformed into martensite.

Pour atteindre une résistance mécanique supérieure à 800 MPa, des aciers multiphasés à structure majoritairement bainitique ont été proposés. Ces aciers sont utilisés dans l'industrie, et particulièrement dans l'industrie automobile, pour réaliser des pièces structurales.To achieve a mechanical strength greater than 800 MPa, multiphase steels with predominantly bainitic structure have been proposed. These steels are used in industry, and particularly in the automotive industry, to produce structural parts.

Ce type d'acier est décrit dans la publication EP 2 020 451 . Afin d'obtenir un allongement à rupture supérieur à 10% ainsi qu'une résistance mécanique supérieure à 800 MPa, les aciers décrits dans cette publication comportent, outre la présence connue de carbone, de manganèse et de silicium, du molybdène et du vanadium. La microstructure de ces aciers comprend essentiellement de la bainite supérieure (au moins 80%) ainsi que de la bainite inférieure, de la martensite et de l'austénite résiduelle.This type of steel is described in the publication EP 2,020,451 . In order to obtain an elongation at break greater than 10% and a mechanical strength greater than 800 MPa, the steels described in this publication include, in addition to the known presence of carbon, manganese and silicon, molybdenum and vanadium. The microstructure of these steels essentially comprises upper bainite (at least 80%) as well as lower bainite, martensite and residual austenite.

Cependant, la fabrication de ces aciers est coûteuse du fait de la présence de molybdène et de vanadium.However, the manufacture of these steels is expensive because of the presence of molybdenum and vanadium.

De plus, certaines pièces automobiles telles que les poutres de pare-choc et les bras de suspension, sont fabriquées par des opérations de mise en forme combinant différents modes de déformation. Certaines caractéristiques microstructurales de l'acier peuvent se révéler bien adaptées à un mode de déformation, mais peu favorables vis-à-vis d'un autre mode. Certaines parties des pièces doivent présenter une haute résistance à l'allongement, d'autres doivent présenter une bonne aptitude à la mise en forme d'un bord découpé. Cette dernière propriété est évaluée par la méthode d'expansion de trou décrite dans la norme ISO 16630 :2009.In addition, certain automotive parts such as bumper beams and suspension arms, are manufactured by shaping operations combining different modes of deformation. Certain microstructural characteristics of steel may be well adapted to a mode of deformation, but unfavorable vis-à-vis another mode. Some parts of the parts must have a high resistance to elongation, others must have good aptitude for shaping a cut edge. This latter property is evaluated by the hole expansion method described in ISO 16630: 2009.

Un type d'acier palliant ces inconvénients est exempt de molybdène et de vanadium, et comprend du titane et du niobium dans des teneurs spécifiques, ces deux éléments conférant notamment à la tôle la résistance visée, le durcissement nécessaire et le rapport d'expansion de trou visé.A type of steel that overcomes these disadvantages is free of molybdenum and vanadium, and comprises titanium and niobium in specific contents, these two elements conferring in particular on the sheet the desired strength, the necessary hardening and the expansion ratio of target hole.

Les tôles d'acier faisant l'objet de la présente invention sont soumises à un bobinage à chaud, cette opération permettant notamment de faire précipiter les carbures de titane et de conférer à la tôle un maximum de durcissement.The steel sheets which are the subject of the present invention are subjected to a hot winding, this operation notably making it possible to precipitate the titanium carbides and to give the sheet maximum curing.

Or il a été constaté que pour certains aciers comprenant des éléments plus oxydables que le fer tels que du silicium, du manganèse, du chrome et de l'aluminium, certaines tôles résultantes bobinées à haute température présentent des défauts de surface. Ces défauts peuvent être amplifiés par une déformation ultérieure réalisée sur ces tôles. Pour éviter ces défauts, il est ainsi nécessaire, soit d'effectuer un refroidissement rapide des bobines à l'aide d'un procédé supplémentaire conduisant à un coût plus élevé, soit d'effectuer l'opération de bobinage à plus basse température, ce qui provoque une diminution de la précipitation du titane.However, it has been found that for certain steels comprising elements that are more oxidizable than iron, such as silicon, manganese, chromium and aluminum, certain resultant sheets wound at high temperature have surface defects. These defects can be amplified by subsequent deformation performed on these sheets. In order to avoid these defects, it is thus necessary either to rapidly cool the coils using an additional process leading to a higher cost, or to perform the winding operation at a lower temperature. which causes a decrease in the precipitation of titanium.

L'invention vise donc à mettre à disposition une tôle pour laquelle l'opération de bobinage à haute température n'engendre pas la formation des défauts de surface précités.The invention therefore aims to provide a sheet for which the high temperature winding operation does not cause the formation of the aforementioned surface defects.

Par ailleurs, l'invention vise une tôle d'acier à l'état non revêtu ou galvanisé. La composition et les caractéristiques mécaniques de l'acier doivent être compatibles avec les contraintes et les cycles thermiques des procédés de revêtement de zinc au trempé en continu.Furthermore, the invention relates to a steel sheet in the uncoated or galvanized state. The composition and mechanical properties of the steel must be compatible with the stresses and thermal cycles of continuous dipping zinc coating processes.

L'invention a également pour but de proposer un procédé de fabrication d'une tôle d'acier ne nécessitant pas d'efforts de laminage importants, ce qui permet d'en assurer la fabrication dans une large gamme d'épaisseur, par exemple entre 1,5 et 4,5 millimètres.The object of the invention is also to propose a process for manufacturing a steel sheet that does not require large rolling forces, which makes it possible to manufacture them in a wide range of thickness, for example between 1.5 and 4.5 millimeters.

Enfin, l'invention vise une tôle d'acier laminé à chaud de coût de fabrication économique, présentant conjointement une limite d'élasticité supérieure à 680 MPa au moins en sens travers de la direction de laminage, et inférieure ou égale à 840 MPa, une résistance mécanique comprise entre 780 MPa et 950 MPa, un allongement à rupture supérieur à 10% et un rapport d'expansion de trou (Ac) supérieur ou égal à 45%.Finally, the invention relates to a hot-rolled steel sheet of economical manufacturing cost, having jointly a yield strength greater than 680 MPa at least in the direction of the rolling direction, and less than or equal to 840 MPa, a mechanical strength of between 780 MPa and 950 MPa, an elongation at break greater than 10% and a hole expansion ratio (Ac) greater than or equal to 45%.

À cet effet, la tôle de l'invention est essentiellement caractérisée en ce que sa composition chimique comprend, les teneurs étant exprimées en poids :

  • 0,04% ≤ C ≤ 0,08%
  • 1,2% ≤ Mn ≤ 1,9%
  • 0,1% ≤ Si ≤ 0,3%
  • 0,07% ≤ Ti ≤ 0,125%
  • 0,05% ≤ Mo≤ 0,35%
  • 0,15% < Cr≤ 0,6% lorsque 0,05% ≤ Mo≤ 0,11%, ou
  • 0,10% ≤ Cr≤ 0,6% lorsque 0,11% < Mo≤ 0,35%
  • Nb ≤ 0,045%
  • 0,005% ≤ Al ≤ 0,1%
  • 0,002% ≤ N ≤ 0,01%
  • S ≤ 0,004%
  • P<0,020%
  • et optionnellement 0,001 % ≤ V ≤ 0,2%
le reste étant constitué de fer et d'impuretés inévitables provenant de l'élaboration,
dont la microstructure est constituée de bainite granulaire dont le pourcentage surfacique est supérieur à 70%, et de ferrite dont le pourcentage surfacique est inférieur à 20%, le complément éventuel étant constitué de bainite inférieure, de martensite et d'austénite résiduelle, la somme des teneurs en martensite et en austénite résiduelle étant inférieure à 5%.For this purpose, the sheet of the invention is essentially characterized in that its chemical composition comprises, the contents being expressed by weight:
  • 0.04% ≤ C ≤ 0.08%
  • 1.2% ≤ Mn ≤ 1.9%
  • 0.1% ≤ If ≤ 0.3%
  • 0.07% ≤ Ti ≤ 0.125%
  • 0.05% ≤ Mo ≤ 0.35%
  • 0.15% <Cr≤ 0.6% where 0.05% ≤ Mo≤ 0.11%, or
  • 0.10% ≤ Cr≤ 0.6% when 0.11% <Mo ≤ 0.35%
  • Nb ≤ 0.045%
  • 0.005% ≤ Al ≤ 0.1%
  • 0.002% ≤ N ≤ 0.01%
  • S ≤ 0.004%
  • P <0.020%
  • and optionally 0.001% ≤ V ≤ 0.2%
the rest being iron and unavoidable impurities from the elaboration,
whose microstructure consists of granular bainite with a surface percentage greater than 70%, and of ferrite whose surface percentage is less than 20%, the optional supplement being constituted by lower bainite, martensite and residual austenite, the sum martensite and residual austenite contents being less than 5%.

La tôle de l'invention peut également comporter les caractéristiques optionnelles suivantes considérées isolément ou selon toutes les combinaisons techniques possibles :

  • la composition chimique consiste, les teneurs étant exprimées en poids :
    • 0,04% ≤ C ≤ 0,08%
    • 1,2% ≤ Mn ≤ 1,9%
    • 0,1% ≤ Si ≤ 0,3%
    • 0,07% ≤ Ti ≤ 0,125%
    • 0,05% ≤ Mo≤ 0,25%
    • 0,16% ≤ Cr ≤ 0,55% lorsque 0,05% ≤ Mo≤ 0,11%, ou
    • 0,10% ≤ Cr ≤ 0,55% lorsque 0,11% < Mo≤ 0,25%
    • Nb ≤ 0,045%
    • 0,005% ≤ Al ≤ 0,1%
    • 0,002% ≤ N ≤ 0,01%
    • S ≤ 0,004%
    • P<0,020%
    le reste étant constitué de fer et d'impuretés inévitables provenant de l'élaboration,
  • la composition de l'acier comprend, les teneurs étant exprimées en poids :
    • 0,27% ≤ Cr≤ 0,52% lorsque 0,05% ≤ Mo≤ 0,11%, ou
    • 0,10% ≤ Cr≤ 0,52% lorsque 0,11% < Mo≤ 0,25%
  • la composition de l'acier comprend, les teneurs étant exprimées en poids :
    • 0,05% ≤ Mo≤ 0,18%, et
    • 0,16% ≤ Cr≤ 0,55% lorsque 0,05% ≤ Mo≤ 0,11%, ou
    • 0,10% ≤ Cr≤ 0,55% lorsque 0,11% < Mo≤ 0,18%
  • la composition chimique comprend, les teneurs étant exprimées en poids :
    • 0,05% ≤ C ≤ 0,07%
    • 1,4% ≤ Mn ≤ 1,6%
    • 0,15% ≤ Si ≤ 0,3%
    • Nb ≤ 0,04%
    • 0,01% ≤ Al ≤ 0,07%
  • la composition chimique comprend, les teneurs étant exprimées en poids :
    • 0,040% ≤ Tieff ≤ 0,095%
    • où Tieff = Ti - 3,42 x N,
    • Ti étant la teneur en titane exprimée en poids
    • N étant la teneur en azote exprimée en poids
  • la tôle d'acier est bobinée et décapée, l'opération de bobinage étant menée à une température comprise entre 525 °C et 635 °C suivie d'une opération de décapage, et la profondeur des défauts superficiels dus à l'oxydation répartis sur n zones d'oxydation i de la dite tôle bobinée, i étant compris entre 1 et n, et les n zones d'oxydation s'étendant sur une longueur lref d'observation, satisfait :
    • un premier critère de profondeur maximale défini par P i max 8 m i c r o m è t r e s
      Figure imgb0001
      avec P i max profondeur maximale d'un défaut dû à l'oxydation sur la zone d'oxydation i de la dite tôle bobinée, et
    • un second critère de profondeur moyenne défini par 1 l r e f i n P i m o y × l i × 2,5 m i c r o m è t r e s
      Figure imgb0002
      avec P i moy profondeur moyenne des défauts dus à l'oxydation sur une zone d'oxydation i, et
      li : longueur de la zone d'oxydation i
  • la longueur lref d'observation des défauts dus à l'oxydation est supérieure ou égale à 100 micromètres.
  • la longueur lref d'observation des défauts dus à l'oxydation est supérieure ou égale à 500 micromètres.
  • la tôle est bobinée en spires jointives à une tension minimale de bobinage de 3 tonnes-force.
The sheet of the invention may also include the following optional features considered in isolation or in any possible technical combination:
  • the chemical composition consists, the contents being expressed in weight:
    • 0.04% ≤ C ≤ 0.08%
    • 1.2% ≤ Mn ≤ 1.9%
    • 0.1% ≤ If ≤ 0.3%
    • 0.07% ≤ Ti ≤ 0.125%
    • 0.05% ≤ Mo≤ 0.25%
    • 0.16% ≤ Cr ≤ 0.55% when 0.05% ≤ Mo≤ 0.11%, or
    • 0.10% ≤ Cr ≤ 0.55% when 0.11% <Mo≤ 0.25%
    • Nb ≤ 0.045%
    • 0.005% ≤ Al ≤ 0.1%
    • 0.002% ≤ N ≤ 0.01%
    • S ≤ 0.004%
    • P <0.020%
    the rest being iron and unavoidable impurities from the elaboration,
  • the composition of the steel comprises, the contents being expressed by weight:
    • 0.27% ≤ Cr≤ 0.52% when 0.05% ≤ Mo≤ 0.11%, or
    • 0.10% ≤ Cr≤ 0.52% when 0.11% <Mo≤ 0.25%
  • the composition of the steel comprises, the contents being expressed by weight:
    • 0.05% ≤ Mo ≤ 0.18%, and
    • 0.16% ≤ Cr≤ 0.55% when 0.05% ≤ Mo≤ 0.11%, or
    • 0.10% ≤ Cr≤ 0.55% when 0.11% <Mo ≤ 0.18%
  • the chemical composition comprises, the contents being expressed by weight:
    • 0.05% ≤ C ≤ 0.07%
    • 1.4% ≤ Mn ≤ 1.6%
    • 0.15% ≤ If ≤ 0.3%
    • Nb ≤ 0.04%
    • 0.01% ≤ Al ≤ 0.07%
  • the chemical composition comprises, the contents being expressed by weight:
    • 0.040% ≤ Tieff ≤ 0.095%
    • where Tieff = Ti - 3.42 x N,
    • Ti being the titanium content expressed by weight
    • N being the nitrogen content expressed by weight
  • the steel sheet is wound and stripped, the winding operation being conducted at a temperature between 525 ° C and 635 ° C followed by a stripping operation, and the depth of the superficial defects due to oxidation distributed over n oxidation zones i of said coiled sheet, i being between 1 and n, and n oxidation zones extending over a length l ref observation, satisfies:
    • a first criterion of maximum depth defined by P i max 8 m i vs r o m th t r e s
      Figure imgb0001
      with P i max maximum depth of a fault due to oxidation on the oxidation zone i of said coiled sheet, and
    • a second criterion of average depth defined by 1 l r e f Σ i not P i m o there × l i × 2.5 m i vs r o m th t r e s
      Figure imgb0002
      with P i mean average depth of oxidation defects on an oxidation zone i, and
      l i : length of the oxidation zone i
  • the length l ref observation of defects due to oxidation is greater than or equal to 100 micrometers.
  • the length l ref observation of defects due to oxidation is greater than or equal to 500 micrometers.
  • the sheet is wound in turns contiguous to a minimum winding voltage of 3 tons-force.

L'invention porte en outre sur un procédé de fabrication d'une tôle d'acier laminée à chaud de limite d'élasticité supérieure à 680 MPa au moins en sens travers de la direction de laminage, et inférieure ou égale à 840 MPa, de résistance comprise entre 780 MPa et 950 MPa et d'allongement à rupture supérieur à 10%, caractérisé en ce qu'on approvisionne sous forme de métal liquide un acier dont la composition consiste, les teneurs étant exprimées en poids :

  • 0,04% ≤ C ≤ 0,08%
  • 1,2% ≤ Mn ≤ 1,9%
  • 0,1% ≤ Si ≤ 0,3%
  • 0,07% ≤ Ti ≤ 0,125%
  • 0,05% ≤ Mo≤ 0,35%
  • 0,15% < Cr≤ 0,6% lorsque 0,05% ≤ Mo≤ 0,11%, ou
  • 0,10% ≤ Cr≤ 0,6% lorsque 0,11% < Mo≤ 0,35%
  • Nb ≤ 0,045%
  • 0,005% ≤ Al ≤ 0,1%
  • 0,002% ≤ N ≤ 0,01%
  • S ≤ 0,004%
  • P<0,020%
  • et optionnellement 0,001 % ≤ V ≤ 0,2%
le reste étant constitué de fer et d'impuretés inévitables,
en ce qu'on effectue un traitement sous vide ou au SiCa, dans ce dernier cas, la composition comprend en outre, les teneurs étant exprimées en poids 0,0005 % Ca 0,005 % ,
Figure imgb0003
en ce que les quantités de titane [Ti] et d'azote [N] dissoutes dans le métal liquide satisfont à (%[Ti]) x (%[N]) < 6.10-4 %2, en ce qu'on coule l'acier pour obtenir un demi-produit coulé,
en ce qu'on réchauffe éventuellement le dit demi-produit à une température comprise entre 1160°C et 1300°C, puis
en ce qu'on lamine à chaud ledit demi-produit coulé avec une température de fin de laminage comprise entre 880°C et 930 °C, le taux de réduction de l'avant-dernière passe étant inférieur à 0,25, le taux de la dernière passe étant inférieur à 0,15, la somme de ces deux taux de réduction étant inférieure à 0,37, la température de début de laminage de l'avant dernière passe étant inférieure à 960 °C, de façon à obtenir un produit laminé à chaud, puis
en ce qu'on refroidit le dit produit laminé à chaud à une vitesse comprise entre 20 et 150 °C/s de façon à obtenir une tôle d'acier laminé à chaud.The invention further relates to a method of manufacturing a hot-rolled steel sheet of yield strength greater than 680 MPa in at least one direction transverse to the rolling direction, and less than or equal to 840 MPa, resistance of between 780 MPa and 950 MPa and elongation at break greater than 10%, characterized in that supply in the form of liquid metal a steel whose composition consists, the contents being expressed by weight:
  • 0.04% ≤ C ≤ 0.08%
  • 1.2% ≤ Mn ≤ 1.9%
  • 0.1% ≤ If ≤ 0.3%
  • 0.07% ≤ Ti ≤ 0.125%
  • 0.05% ≤ Mo ≤ 0.35%
  • 0.15% <Cr≤ 0.6% where 0.05% ≤ Mo≤ 0.11%, or
  • 0.10% ≤ Cr≤ 0.6% when 0.11% <Mo ≤ 0.35%
  • Nb ≤ 0.045%
  • 0.005% ≤ Al ≤ 0.1%
  • 0.002% ≤ N ≤ 0.01%
  • S ≤ 0.004%
  • P <0.020%
  • and optionally 0.001% ≤ V ≤ 0.2%
the rest being iron and unavoidable impurities,
in that treatment is carried out under vacuum or with SiCa, in the latter case, the composition further comprises, the contents being expressed by weight 0.0005 % It 0.005 % ,
Figure imgb0003
in that the quantities of titanium [Ti] and nitrogen [N] dissolved in the liquid metal satisfy (% [Ti]) x (% [N]) <6.10 -4 % 2 , in that steel to obtain a cast half-product,
in that the said semi-finished product is optionally heated to a temperature of between 1160 ° C. and 1300 ° C., and
in that said cast half-product is hot-rolled with an end-of-rolling temperature of between 880 ° C and 930 ° C, the reduction rate of the penultimate pass being less than 0.25, the of the last pass being less than 0.15, the sum of these two reduction ratios being less than 0.37, the precursor past rolling start temperature being less than 960 ° C, so as to obtain a hot-rolled product, then
in that the said hot-rolled product is cooled at a speed of between 20 and 150 ° C / s so as to obtain a hot-rolled steel sheet.

Le procédé de l'invention peut également comporter les caractéristiques optionnelles suivantes considérées isolément ou selon toutes les combinaisons techniques possibles :

  • on bobine la tôle d'acier laminé à chaud à une température comprise entre 525 et 635 °C.
  • la composition consiste, les teneurs étant exprimées en poids :
    • 0,04% ≤ C ≤ 0,08%
    • 1,2% ≤ Mn ≤ 1,9%
    • 0,1% ≤ Si ≤ 0,3%
    • 0,07% ≤ Ti ≤ 0,125%
    • 0,05% ≤ Mo≤ 0,25%
    • 0,16% ≤ Cr≤ 0,55% lorsque 0,05% ≤ Mo≤ 0,11%, ou
    • 0,10% ≤ Cr≤ 0,55% lorsque 0,11% < Mo≤ 0,25%
    • Nb ≤ 0,045%
    • 0,005% ≤ Al ≤ 0,1%
    • 0,002% ≤ N ≤ 0,01%
    • S ≤ 0,004%
    • P<0,020%
    le reste étant constitué de fer et d'impuretés inévitables
  • la vitesse de refroidissement du produit laminé à chaud est comprise entre 50 et 150°C/s.
  • la composition de l'acier comprend, les teneurs étant exprimées en poids :
    • 0,27% ≤ Cr≤ 0,52% lorsque 0,05% ≤ Mo≤ 0,11%, ou
    • 0,10% ≤ Cr≤ 0,52% lorsque 0,11% < Mo≤ 0,25%
  • la composition de l'acier comprend, les teneurs étant exprimées en poids :
    • 0,05% ≤ Mo≤ 0,18%, et
    • 0,16% ≤ Cr≤ 0,55% lorsque 0,05% ≤ Mo≤ 0,11%, ou
    • 0,10% ≤ Cr≤ 0,55% lorsque 0,11% < Mo≤ 0,18%
  • la composition de l'acier comprend, les teneurs étant exprimées en poids :
    • 0,05% ≤ C ≤ 0,08%
    • 1,4% ≤ Mn ≤ 1,6%
    • 0,15% ≤ Si ≤ 0,3%
    • Nb ≤ 0,04%
    • 0,01% ≤ Al ≤ 0,07%
  • on bobine la tôle à une température comprise entre 580 et strictement 630 °C.
  • on bobine la tôle à une température comprise entre 530 et 600 °C,
    on décape la dite tôle, puis
    on réchauffe la tôle décapée à une température comprise entre 600 et 750 °C, puis on refroidit la tôle décapée réchauffée à une vitesse comprise entre 5 et 20°C/s,
    et on revêt de zinc la tôle obtenue dans un bain de zinc adapté.
  • on bobine la tôle en spires jointives à une tension minimale de bobinage de 3 tonnes-force.
The method of the invention may also include the following optional characteristics considered in isolation or in any possible technical combination:
  • the hot-rolled steel sheet is reeled at a temperature between 525 and 635 ° C.
  • the composition consists, the contents being expressed by weight:
    • 0.04% ≤ C ≤ 0.08%
    • 1.2% ≤ Mn ≤ 1.9%
    • 0.1% ≤ If ≤ 0.3%
    • 0.07% ≤ Ti ≤ 0.125%
    • 0.05% ≤ Mo≤ 0.25%
    • 0.16% ≤ Cr≤ 0.55% when 0.05% ≤ Mo≤ 0.11%, or
    • 0.10% ≤ Cr≤ 0.55% when 0.11% <Mo≤ 0.25%
    • Nb ≤ 0.045%
    • 0.005% ≤ Al ≤ 0.1%
    • 0.002% ≤ N ≤ 0.01%
    • S ≤ 0.004%
    • P <0.020%
    the rest being iron and inevitable impurities
  • the cooling rate of the hot rolled product is between 50 and 150 ° C / s.
  • the composition of the steel comprises, the contents being expressed by weight:
    • 0.27% ≤ Cr≤ 0.52% when 0.05% ≤ Mo≤ 0.11%, or
    • 0.10% ≤ Cr≤ 0.52% when 0.11% <Mo≤ 0.25%
  • the composition of the steel comprises, the contents being expressed by weight:
    • 0.05% ≤ Mo ≤ 0.18%, and
    • 0.16% ≤ Cr≤ 0.55% when 0.05% ≤ Mo≤ 0.11%, or
    • 0.10% ≤ Cr≤ 0.55% when 0.11% <Mo ≤ 0.18%
  • the composition of the steel comprises, the contents being expressed by weight:
    • 0.05% ≤ C ≤ 0.08%
    • 1.4% ≤ Mn ≤ 1.6%
    • 0.15% ≤ If ≤ 0.3%
    • Nb ≤ 0.04%
    • 0.01% ≤ Al ≤ 0.07%
  • the sheet is reeled at a temperature between 580 and strictly 630 ° C.
  • the sheet is reeled at a temperature of between 530 and 600 ° C,
    we strip the said sheet, then
    the etched sheet is heated to a temperature of between 600 and 750 ° C., and then the heated etched sheet is cooled to a speed of between 5 and 20 ° C./sec,
    and zinc coating the sheet obtained in a suitable zinc bath.
  • the sheet is wound in turns contiguous to a minimum winding voltage of 3 tons-force.

D'autres caractéristiques et avantages de l'invention ressortiront clairement de la description qui en est donnée ci-dessous, à titre indicatif et nullement limitatif, en référence aux figures annexées parmi lesquelles :

  • la figure 1 est un graphique illustrant les résultats en termes d'oxydation en coeur de bobine des tôles de l'invention et des tôles de l'art antérieur, bobinées à une température de 590°C, comprenant différentes teneurs en chrome et en molybdène,
  • la figure 2 est une représentation schématique de la surface d'une tôle vue en coupe illustrant la répartition des défauts superficiels dus à l'oxydation sur une tôle bobinée et décapée, en vue de la définition d'un critère d'oxydation admissible,
  • la figure 3 est un graphique représentant l'évolution de la limite d'élasticité mesurée dans le sens de laminage en fonction de la teneur en titane efficace des tôles de l'invention pour lesquelles les teneurs en titane et en azote varient,
  • la figure 4 est un graphique représentant l'évolution de la limite d'élasticité dans le sens travers à la direction de laminage en fonction de la teneur en titane efficace des tôles de l'invention pour lesquelles les teneurs en titane et en azote varient,
  • la figure 5 est un graphique représentant l'évolution de la résistance maximale en traction dans le sens de laminage en fonction de la teneur en titane efficace des tôles de l'invention pour lesquelles les teneurs en titane et en azote varient,
  • la figure 6 est un graphique représentant l'évolution de la résistance maximale en traction dans le sens travers du laminage en fonction de la teneur en titane efficace des tôles de l'invention pour lesquelles les teneurs en titane et en azote varient,
  • la figure 7 est une photographie prise au Microscope Electronique à Balayage représentant l'état de surface en coupe d'une tôle après décapage dont la composition se situe en dehors de la portée de l'invention et qui ne satisfait pas aux critères d'oxydation,
  • la figure 8 est une photographie prise au Microscope Electronique à Balayage représentant l'état de surface en coupe d'une tôle de l'invention après décapage qui satisfait aux critères d'oxydation,
  • la figure 9 est une photographie prise au Microscope Electronique à Balayage représentant l'état de surface en coupe d'une tôle de l'invention après décapage dont la composition diffère de celle de la tôle représentée sur la figure 8 et qui satisfait également aux critères d'oxydation, et
  • la figure 10 est une photographie prise au Microscope Electronique à Balayage représentant la microstructure d'une tôle de l'invention.
Other features and advantages of the invention will emerge clearly from the description which is given below, by way of indication and in no way limitative, with reference to the appended figures among which:
  • the figure 1 is a graph illustrating the results in terms of coil core oxidation of the sheets of the invention and sheets of the prior art, wound at a temperature of 590 ° C., comprising different chromium and molybdenum contents,
  • the figure 2 is a schematic representation of the surface of a sheet metal sectional view illustrating the distribution of surface defects due to oxidation on a coiled and pickled sheet, for the purpose of defining a permissible oxidation criterion,
  • the figure 3 is a graph representing the evolution of the yield strength measured in the rolling direction as a function of the effective titanium content of the sheets of the invention for which the titanium and nitrogen contents vary,
  • the figure 4 is a graph showing the evolution of the yield strength in the cross direction to the rolling direction as a function of the effective titanium content of the sheets of the invention for which the titanium and nitrogen contents vary,
  • the figure 5 is a graph showing the evolution of the maximum tensile strength in the rolling direction as a function of the effective titanium content of the sheets of the invention for which the titanium and nitrogen contents vary,
  • the figure 6 is a graph showing the evolution of the maximum tensile strength in the transverse direction of the rolling as a function of the effective titanium content of the sheets of the invention for which the titanium and nitrogen contents vary,
  • the figure 7 is a photograph taken with a Scanning Electron Microscope showing the surface state in section of a sheet after pickling the composition is outside the scope of the invention and does not meet the oxidation criteria,
  • the figure 8 is a photograph taken with a Scanning Electron Microscope showing the surface state in section of a sheet of the invention after pickling which satisfies the oxidation criteria,
  • the figure 9 is a photograph taken with a Scanning Electron Microscope showing the surface state in section of a sheet of the invention after stripping, the composition of which differs from that of the sheet shown on FIG. figure 8 and which also meets the oxidation criteria, and
  • the figure 10 is a photograph taken with a Scanning Electron Microscope representing the microstructure of a sheet of the invention.

Les inventeurs ont découvert que les défauts de surface présents sur certaines tôles bobinées à hautes températures, notamment au-dessus d'une température de 570°C, sont principalement localisés au niveau du coeur de la bobine. Dans cette région, les spires sont jointives, et la pression partielle d'oxygène est telle que seuls des éléments plus oxydables que le fer comme par exemple le silicium, le manganèse ou le chrome peuvent encore s'oxyder au contact d'atomes d'oxygène.The inventors have discovered that the surface defects present on certain sheets wound at high temperatures, especially above a temperature of 570 ° C., are mainly located at the core of the coil. In this region, the turns are contiguous, and the partial pressure of oxygen is such that only elements that are more oxidizable than iron, for example silicon, manganese or chromium, can still oxidize in contact with atoms of oxygen.

Le diagramme de phase fer-oxygène à 1 atmosphère montre que l'oxyde de fer, la wustite, formé à hautes températures n'est plus stable en deçà de 570°C et se décompose à l'équilibre thermodynamique en deux autres phases: l'hématite et la magnétite, l'un des produits de cette réaction étant l'oxygène.The 1-atmosphere iron-oxygen phase diagram shows that iron oxide, wustite, formed at high temperatures is no longer stable below 570 ° C and decomposes at thermodynamic equilibrium in two other phases: hematite and magnetite, one of the products of this reaction being oxygen.

Les inventeurs ont ainsi identifié que les conditions sont réunies pour qu'en coeur de bobine, l'oxygène ainsi libéré se combine avec les éléments plus oxydables que le fer, soit notamment le manganèse, le silicium, le chrome et l'aluminium présents à la surface de la tôle. Les joints de grains de la microstructure finale constituent naturellement des courts-circuits de diffusion pour ces éléments par rapport à une diffusion homogène dans la matrice. Il en résulte une oxydation plus marquée et plus profonde au niveau des joints de grains.The inventors have thus identified that the conditions are met so that in the coil core, the oxygen thus released combines with the more oxidizable elements than iron, namely notably manganese, silicon, chromium and aluminum present at the surface of the sheet. The grain boundaries of the final microstructure naturally constitute diffusion short circuits for these elements with respect to homogeneous diffusion in the matrix. This results in more pronounced and deeper oxidation at the grain boundaries.

Lors de l'opération de décapage visant à éliminer la couche de calamine, les oxydes ainsi formés sont également retirés, laissant place à des défauts (manques de continuité) sensiblement perpendiculaires à la peau de la tôle d'environ 3 à 5 micromètres.During the stripping operation to remove the scale layer, the oxides thus formed are also removed, leaving room for defects (lack of continuity) substantially perpendicular to the skin of the sheet of about 3 to 5 microns.

Si ces défauts ne provoquent pas de dégradation particulière des performances en fatigue pour une tôle non soumise à déformation, ce n'est pas le cas lorsque la tôle est déformée et plus particulièrement dans la zone située en intrados d'un pli de déformation où la profondeur du défaut peut atteindre 25 micromètres.If these defects do not cause any particular deterioration of the fatigue performance for a plate that is not subject to deformation, this is not the case when the sheet is deformed and more particularly in the zone located on the lower surface of a deformation fold where the defect depth can reach 25 micrometers.

Pour une température de bobinage d'environ 590°C, ces défauts de surface sont naturellement présents en coeur de bobine où la surface de la tôle reste le plus longtemps soumise à des hautes températures, notamment supérieures à 570°C.For a winding temperature of about 590 ° C., these surface defects are naturally present in the core of the coil where the surface of the sheet remains the longest subjected to high temperatures, especially greater than 570 ° C.

Les inventeurs ont alors trouvé une composition de tôle permettant d'éviter la formation d'oxydation intergranulaire en coeur de bobine au niveau des grains de la microstructure finale après décapage, l'oxydation intergranulaire intervenant sur les joints de grains de la microstructure finale.The inventors then found a sheet composition which makes it possible to prevent the formation of intergranular oxidation at the coil core at the level of the grains of the final microstructure after pickling, the intergranular oxidation occurring on the grain boundaries of the final microstructure.

A cet effet, il a été identifié que la composition de la tôle doit comporter du chrome et du molybdène définis dans des teneurs particulières. De façon surprenante, les inventeurs ont mis en évidence que de telles tôles ne présentent pas les défauts de surfaces précités.For this purpose, it has been identified that the composition of the sheet must comprise chromium and molybdenum defined in particular contents. Surprisingly, the inventors have demonstrated that such sheets do not have the aforementioned surface defects.

Selon l'invention, la teneur en poids en carbone de la tôle est comprise entre 0,040% et 0,08 %. Cette gamme de teneur en carbone permet d'obtenir simultanément un allongement à rupture élevé et une résistance mécanique Rm supérieure à 780 MPa.According to the invention, the carbon weight content of the sheet is between 0.040% and 0.08%. This range of carbon content makes it possible simultaneously to obtain a high breaking elongation and a mechanical strength Rm greater than 780 MPa.

Par ailleurs, la teneur maximale en poids en carbone est fixée à 0,08% ce qui permet d'obtenir un rapport d'expansion de trou Ac% supérieur ou égal à 45%.Moreover, the maximum content by weight of carbon is set at 0.08%, which makes it possible to obtain a hole expansion ratio Ac% greater than or equal to 45%.

De préférence, la teneur en poids en carbone est comprise entre 0,05% et 0,07%.Preferably, the content by weight of carbon is between 0.05% and 0.07%.

Selon l'invention, la teneur en poids en manganèse est comprise entre 1,2% et 1,9 %. Présent en telle quantité, le manganèse participe à la résistance de la tôle et limite la formation d'une bande de ségrégation centrale. Il contribue à obtenir un rapport d'expansion de trou Ac% supérieur ou égal à 45%. De préférence, la teneur en poids en manganèse est comprise entre 1,4% et 1,6%.According to the invention, the weight content of manganese is between 1.2% and 1.9%. Present in such quantity, manganese participates in the strength of the sheet and limits the formation of a central segregation band. It helps to obtain an Ac% hole expansion ratio greater than or equal to 45%. Preferably, the content by weight of manganese is between 1.4% and 1.6%.

Une teneur en poids en aluminium comprise entre 0,005% et 0,1% permet d'assurer la désoxydation de l'acier pendant sa fabrication. De préférence, la teneur en poids en aluminium est comprise entre 0,01% et 0,07%.An aluminum content by weight of between 0.005% and 0.1% ensures the deoxidation of the steel during its manufacture. Preferably, the content by weight of aluminum is between 0.01% and 0.07%.

Le titane est présent dans l'acier de la tôle de l'invention en quantité comprise entre 0,07% et 0,125% en poids.Titanium is present in the steel of the sheet of the invention in an amount of between 0.07% and 0.125% by weight.

Il peut être prévu optionnellement l'ajout de vanadium en quantité comprise entre 0,001% et 0,2% en poids. Une augmentation de la résistance mécanique jusqu'à 250 MPa peut être obtenue par un affinement de la microstructure et une précipitation durcissante des carbonitrures.Optionally, the addition of vanadium in an amount of between 0.001% and 0.2% by weight may be provided. An increase in mechanical strength up to 250 MPa can be achieved by refinement of the microstructure and hardening precipitation of carbonitrides.

En outre, il est prévu que la teneur en poids de l'azote soit comprise entre 0,002% et 0,01%. Quoique la teneur en azote puisse être extrêmement basse, on fixe sa valeur limite à 0,002% de façon à ce que la fabrication puisse être réalisée dans des conditions économiquement satisfaisantes.In addition, it is expected that the weight content of nitrogen is between 0.002% and 0.01%. Although the nitrogen content can be extremely low, its limit value is set at 0.002% so that the production can be carried out under economically satisfactory conditions.

Concernant le niobium, sa teneur en poids dans la composition de l'acier est inférieure à 0,045%. Au-delà d'une teneur en poids de 0,045 %, la recristallisation de l'austénite est retardée. La structure contient alors une fraction significative de grains allongés, ce qui ne permet plus d'atteindre le rapport d'expansion de trou Ac% visé. De préférence, la teneur en poids en niobium est inférieure à 0,04%.As regards niobium, its weight content in the composition of the steel is less than 0.045%. Beyond a content by weight of 0.045%, the recrystallization of the austenite is delayed. The structure then contains a significant fraction of elongated grains, which no longer makes it possible to achieve the target hole expansion ratio Ac%. Preferably, the content by weight of niobium is less than 0.04%.

La composition de l'invention comporte également du chrome en quantité comprise entre 0,10% et 0,55%. Une telle teneur en chrome permet d'améliorer la qualité de surface. Comme on le verra plus loin, la teneur en chrome est définie conjointement avec la teneur en molybdène.The composition of the invention also comprises chromium in an amount of between 0.10% and 0.55%. Such a chromium content makes it possible to improve the surface quality. As will be seen below, the chromium content is defined together with the molybdenum content.

Selon l'invention, le silicium est présent dans la composition chimique de la tôle, selon une teneur en poids comprise entre 0,1% et 0,3%. Le silicium retarde la précipitation de la cémentite. Dans les quantités définies selon l'invention, celle-ci précipite en quantité très faible, c'est-à-dire en teneur surfacique inférieure à 1,5% et sous une forme très fine. Cette morphologie plus fine de la cémentite permet d'obtenir une aptitude à l'expansion de trou élevée, supérieure ou égale à 45%. De préférence, la teneur en poids en silicium est comprise entre 0,15% et 0,3%.According to the invention, the silicon is present in the chemical composition of the sheet, with a content by weight of between 0.1% and 0.3%. Silicon retards the precipitation of cementite. In the amounts defined according to the invention, it precipitates in a very small amount, that is to say in surface content less than 1.5% and in a very fine form. This finer morphology of the cementite makes it possible to obtain a high hole expansion capacity of greater than or equal to 45%. Preferably, the content by weight of silicon is between 0.15% and 0.3%.

La teneur en soufre de l'acier selon l'invention ne doit pas être supérieure à 0,004% dans le but de limiter la formation de sulfures, notamment de sulfures de manganèse. Les faibles teneurs en soufre et en azote présents dans la composition de la tôle favorisent l'aptitude à l'expansion de trou.The sulfur content of the steel according to the invention must not be greater than 0.004% in order to limit the formation of sulphides, especially of manganese sulphides. The low levels of sulfur and nitrogen present in the composition of the sheet promote the ability to expand the hole.

La teneur en phosphore de l'acier selon l'invention est inférieure à 0,020% dans le but de favoriser l'aptitude à l'expansion de trou et la soudabilité.The phosphorus content of the steel according to the invention is less than 0.020% in order to promote hole expansion ability and weldability.

Selon l'invention, la composition de la tôle comporte du chrome et du molybdène dans des teneurs spécifiques.According to the invention, the composition of the sheet comprises chromium and molybdenum in specific contents.

On se réfère aux tableaux 1 à 4 ainsi qu'à la figure 1 pour expliciter les limites des teneurs en chrome et en molybdène dans la composition de la tôle de l'invention.Referring to Tables 1 to 4 and figure 1 to explain the limits of chromium and molybdenum contents in the composition of the sheet of the invention.

Les tableaux 1 à 4 montrent l'influence de la composition d'une tôle et des conditions de fabrication de cette tôle sur la limite d'élasticité, la résistance maximale en traction, l'allongement total à rupture, l'expansion de trou et un critère d'oxydation pris en milieu ou coeur de bobine et en axe de bande, ces notions de coeur de bobine et d'axe de bande étant explicitées plus loin.Tables 1 to 4 show the influence of the composition of a sheet and the manufacturing conditions of this sheet on the elastic limit, the maximum tensile strength, the total elongation at break, the hole expansion and an oxidation criterion taken in the middle or core coil and strip axis, these notions of coil core and strip axis being explained later.

La méthode d'expansion de trou est décrite dans la norme ISO 16630 :2009 de la façon suivante : après réalisation d'un trou par découpe dans une tôle, on utilise un outil tronconique de façon à réaliser une expansion au niveau des bords de ce trou. C'est au cours de cette opération que l'on peut observer un endommagement précoce au voisinage des bords du trou lors de l'expansion, cet endommagement s'amorçant sur des particules de seconde phase ou aux interfaces entre les différents constituants microstructuraux dans l'acier.The hole expansion method is described in ISO 16630: 2009 as follows: after making a hole by cutting in a sheet, a frustoconical tool is used so as to expand at the edges of this hole. hole. It is during this operation that one can observe an early damage in the vicinity of the edges of the hole during the expansion, this damage starting on particles of second phase or the interfaces between the different microstructural constituents in the 'steel.

La méthode d'expansion de trou consiste ainsi à mesurer le diamètre initial Di du trou avant emboutissage, puis le diamètre final Df du trou après emboutissage, déterminé au moment où l'on observe des fissures traversantes dans l'épaisseur de la tôle sur les bords du trou. On détermine alors l'aptitude à l'expansion de trou Ac% selon la formule suivante: A c % = 100 × D f D i D i .

Figure imgb0004
Ac permet donc de quantifier l'aptitude d'une tôle à résister à un emboutissage au niveau d'un orifice découpé. Selon cette méthode, le diamètre initial est de 10 millimètres.The hole expansion method thus consists in measuring the initial diameter Di of the hole before stamping, then the final diameter Df of the hole after stamping, determined at the moment when there are observed through-cracks in the thickness of the sheet on the edges of the hole. The hole expansion ability Ac% is then determined according to the following formula: AT vs % = 100 × D f - D i D i .
Figure imgb0004
Ac thus makes it possible to quantify the ability of a sheet to withstand stamping at a cut orifice. According to this method, the initial diameter is 10 millimeters.

Comme explicité plus haut, on cherche à éviter la formation d'oxydation intergranulaire se caractérisant par des manques de continuité en surface de la tôle bobinée et décapée.As explained above, it is sought to avoid the formation of intergranular oxidation characterized by lack of continuity in the surface of the coiled and stripped sheet.

Il s'agit donc d'obtenir une surface pour laquelle la profondeur de ces défauts est suffisamment réduite pour qu'après mise en forme de la tôle, l'augmentation du facteur d'intensité de contrainte local associé à ces défauts engendré par cette mise en forme ne porte pas atteinte à la durée de vie en fatigue de la tôle.It is therefore necessary to obtain a surface for which the depth of these defects is sufficiently reduced so that after forming the sheet, the increase of the local stress intensity factor associated with these defects generated by this setting in shape does not affect the fatigue life of the sheet.

Les inventeurs ont mis en évidence que deux critères relatifs à la présence de défauts de la tôle bobinée, devaient être satisfaits pour permettre d'obtenir d'excellentes performances en fatigue. Plus précisément, ces critères doivent être respectés dans une zone de la bobine qui est soumise à des conditions spécifiques : cette zone est située en coeur de bobine et en axe de bande où la pression partielle d'oxygène est plus faible mais suffisante pour que des éléments plus oxydables que le fer puissent être oxydés. Ce phénomène est observé lorsque le bobinage est réalisé en spires jointives à une tension minimale de bobinage de 3 tonnes-force.The inventors have demonstrated that two criteria relating to the presence of defects of the wound sheet should be satisfied to obtain excellent fatigue performance. More precisely, these criteria must be respected in a zone of the coil which is subjected to specific conditions: this zone is situated in the core of the coil and in the axis of the strip where the partial pressure of oxygen is lower but sufficient for elements more oxidizable than iron can be oxidized. This phenomenon is observed when the winding is made in contiguous turns at a minimum winding voltage of 3 tons-force.

On définit le coeur de bobine comme étant la zone en longueur de la bobine à laquelle on retranche de part et d'autre, une zone d'extrémité, la longueur de chacune des zones d'extrémité étant égale à 30% de la longueur totale de la bobine. On définit de façon similaire l'axe de bande comme étant une zone centrée sur le milieu de la bande dans le sens transversal au sens de laminage, et de largeur égale à 60% de la largeur de la bande.The coil core is defined as being the length zone of the coil to which, on either side, an end zone is subtracted, the length of each of the end zones being equal to 30% of the total length of the coil. The strip axis is similarly defined as being an area centered on the middle of the strip in the direction transverse to the rolling direction, and of width equal to 60% of the width of the strip.

En référence à la figure 2, ces deux critères d'oxydation sont évalués sur une tôle 1 en milieu de bobine et en axe de bande sur une longueur d'observation lref . Cette longueur d'observation est choisie pour caractériser de façon représentative l'état de surface. La longueur d'observation lref est fixée à 100 micromètres, mais peut aller jusqu'à 500 micromètres voire au-delà si l'on souhaite renforcer les exigences en terme de critère d'oxydation.With reference to the figure 2 these two oxidation criteria are evaluated on a sheet 1 in the middle of the coil and in the axis of the strip over an observation length l ref . This observation length is chosen to characterize the surface state in a representative manner. The observation length l ref is set at 100 micrometers, but can be up to 500 micrometers or more if one wishes to reinforce the requirements in terms of oxidation criterion.

Les défauts dus à l'oxydation 2 sont répartis sur n zones d'oxydation Oi de la dite tôle bobinée 1, i étant compris entre 1 et n. Chaque zone d'oxydation Oi s'étend selon une longueur li , et est considérée comme distincte de la zone voisine Oi+1 si ces deux zones Oi, Oi+1 sont séparées par une zone exempte de tout défaut d'oxydation d'au moins 3 micromètres de longueur. Le premier critère [1] auxquels doivent satisfaire les défauts 2 de la tôle 1 est un critère de profondeur maximale répondant à Pi max ≤ 8 micromètres, Pi max étant la profondeur maximale d'un défaut dû à l'oxydation 2 sur chaque zone d'oxydation Oi.The defects due to the oxidation 2 are distributed over n oxidation zones Oi of said coiled sheet 1, i being between 1 and n. Each oxidation zone Oi extends along a length l i , and is considered to be distinct from the neighboring zone Oi + 1 if these two zones Oi, Oi + 1 are separated by a zone free from any oxidation defect. at least 3 microns in length. The first criterion [1] to which the defects 2 of the sheet 1 must satisfy is a maximum depth criterion corresponding to P i max ≤ 8 micrometers, P i max being the maximum depth of a fault due to the oxidation 2 on each oxidation zone Oi.

Le second critère [2] auquel doivent satisfaire les défauts 2 de la tôle 1 est un critère de profondeur moyenne traduisant la présence plus ou moins grande des zones d'oxydation sur la zone d'observation de longueur lref . Ce second critère est défini par 1 l r e f i n P i m o y × l i 2,5

Figure imgb0005
micromètres, Pi moy étant la profondeur moyenne des défauts dus à l'oxydation sur une zone d'oxydation Oi.The second criterion [2] to which the defects 2 of the sheet 1 must satisfy is a mean depth criterion reflecting the greater or lesser presence of the oxidation zones on the observation zone of length l ref . This second criterion is defined by 1 l r e f Σ i not P i m o there × l i 2.5
Figure imgb0005
micrometers, P i moy being the average depth of defects due to oxidation on an oxidation zone Oi.

Sur les tableaux 1 à 4 ainsi que sur la figure 1, les résultats d'oxydation de surface sont représentés comme suit :

  • oxydation nulle ou très faible : critères [1] et [2] satisfaits
  • Figure imgb0006
    oxydation faible : critères satisfaits
  • ● oxydation forte : critères non satisfaits
In Tables 1 to 4 and on the figure 1 the surface oxidation results are represented as follows:
  • Nil or very low oxidation: criteria [1] and [2] satisfied
  • Figure imgb0006
    low oxidation: satisfied criteria
  • ● strong oxidation: unmet criteria

Une oxydation nulle ou très faible permet d'obtenir une excellente tenue à la fatigue, même sur des pièces mises déformées de façon importante, c'est-à-dire présentant un taux de déformation plastique équivalent allant jusqu'à 39%, le taux de déformation plastique équivalente étant défini en tout de la pièce déformée à partir des déformations principales ε1 et ε2, par la formule : ε c = 2 3 ε 1 2 + ε 1 ε 2 + ε 2 2 .

Figure imgb0007
Zero or very low oxidation makes it possible to obtain excellent resistance to fatigue, even on parts which are deformed in a significant manner, that is to say having an equivalent plastic deformation ratio of up to 39%, the of equivalent plastic deformation being defined in all of the deformed part from the main deformations ε1 and ε2, by the formula: ε vs ~ = 2 3 ε 1 2 + ε 1 ε 2 + ε 2 2 .
Figure imgb0007

Le tableau 1 représente les résultats obtenus pour des compositions n'entrant pas dans le cadre de la tôle de l'invention.Table 1 shows the results obtained for compositions not falling within the scope of the sheet of the invention.

Le tableau 2a représente des compositions de tôles selon l'invention et le Tableau 2b représente les résultats obtenus pour les compositions de tôles du Tableau 2a, lesquelles tôles sont destinées à être non revêtues et bobinées à une température constante de 590 °C, à l'exception de l'exemple 5.Table 2a shows sheet compositions according to the invention and Table 2b shows the results obtained for the sheet compositions of Table 2a, which sheets are intended to be uncoated and wound at a constant temperature of 590.degree. except for example 5.

Le tableau 3 représente les résultats obtenus pour des compositions de la tôle de l'invention, laquelle est également destinée à être non revêtue et pour des températures de bobinage variant de 526 °C à 625 °C.Table 3 shows the results obtained for compositions of the sheet of the invention, which is also intended to be uncoated and for winding temperatures ranging from 526 ° C to 625 ° C.

Le tableau 4 représente les résultats obtenus pour des compositions de la tôle de l'invention, laquelle est destinée à être galvanisée et pour une température de bobinage variant de 535 °C à 585 °C.Table 4 shows the results obtained for compositions of the sheet of the invention, which is intended to be galvanized and for a winding temperature ranging from 535 ° C. to 585 ° C.

Les contre-exemples 1 et 11 du tableau 1 montrent que lorsque les teneurs en chrome et en molybdène ne satisfont pas aux conditions de l'invention, les critères d'oxydation ne sont pas satisfaits.Counterexamples 1 and 11 of Table 1 show that when the chromium and molybdenum contents do not meet the conditions of the invention, the oxidation criteria are not satisfied.

Les contre exemples 5, 6, 7 et 9 montrent qu'en présence de chrome mais sans molybdène, l'oxydation n'est également pas admissible. Le contre-exemple 9 illustre par ailleurs que l'ajout de nickel ne permet pas d'obtenir de résultats satisfaisants sur les critères d'oxydation.The counterexamples 5, 6, 7 and 9 show that in the presence of chromium but without molybdenum, oxidation is also not permissible. The counterexample 9 It also illustrates that the addition of nickel does not make it possible to obtain satisfactory results on the oxidation criteria.

A l'inverse, le contre-exemple 4 montre qu'en présence de molybdène mais avec une infime teneur en chrome, l'oxydation de surface ne répond pas aux critères prédéfinis.Conversely, the counterexample 4 shows that in the presence of molybdenum but with a low chromium content, the surface oxidation does not meet the predefined criteria.

Enfin, les contre-exemples 2, 3, 8 et 11 montrent que les teneurs respectives en chrome et molybdène doivent être suffisantes.Finally, counterexamples 2, 3, 8 and 11 show that the respective contents of chromium and molybdenum must be sufficient.

Le tableau 2b illustre les résultats obtenus pour une composition de la tôle comportant du chrome et du molybdène dans des teneurs respectives comprises entre 0,15 % et 0,55% pour le chrome et entre 0,05 % et 0,32% pour le molybdène.Table 2b illustrates the results obtained for a composition of the sheet comprising chromium and molybdenum in respective contents of between 0.15% and 0.55% for chromium and between 0.05% and 0.32% for chromium and molybdenum. molybdenum.

Le tableau 3 illustre les résultats obtenus pour une composition de la tôle comportant du chrome et du molybdène dans des teneurs respectives comprises entre 0,30 % et 0,32 % pour le chrome et entre 0,15 % et 0,17% pour le molybdène.Table 3 illustrates the results obtained for a composition of the sheet comprising chromium and molybdenum in respective contents of between 0.30% and 0.32% for chromium and between 0.15% and 0.17% for chromium and molybdenum. molybdenum.

Et le tableau 4 illustre les résultats obtenus pour une composition de la tôle comportant du chrome et du molybdène dans des teneurs respectives comprises entre 0,31% et 0,32% pour le chrome et entre 0,15 % et 0,16% pour le molybdène. Chacun des exemples des tableaux 2, 3 et 4 répondent aux critères d'oxydation défini précédemment.And Table 4 illustrates the results obtained for a composition of the sheet comprising chromium and molybdenum in respective contents of between 0.31% and 0.32% for chromium and between 0.15% and 0.16% for molybdenum. Each of the examples in Tables 2, 3 and 4 meet the oxidation criteria defined above.

La figure 7 illustre la présence de défauts de surface pour une tôle 9 qui ne satisfait pas les critères d'oxydation précédemment définis et dont la composition comporte 0,3% de chrome et 0,02% de molybdène.The figure 7 illustrates the presence of surface defects for a sheet 9 which does not meet the previously defined oxidation criteria and whose composition comprises 0.3% chromium and 0.02% molybdenum.

Les figures 8 et 9 illustrent l'état de surface de deux tôles 10,11 qui satisfont les critères d'oxydation et dont la composition respective comporte pour la figure 8 0,3% de chrome, et 0,093% de molybdène, et pour la figure 9 0,3% de chrome et 0,15% de molybdène.The Figures 8 and 9 illustrate the surface state of two sheets 10, 11 which satisfy the oxidation criteria and whose respective composition includes for the figure 8 0.3% chromium, and 0.093% molybdenum, and for the figure 9 0.3% chromium and 0.15% molybdenum.

On rappelle que le bobinage des tôles faisant l'objet des résultats présentés sur les tableaux 2 à 4 est réalisé en spires jointives à une tension minimale de bobinage de 3 tonnes-force.It is recalled that the winding of the sheets subject of the results presented in Tables 2 to 4 is made in turns contiguous to a minimum winding voltage of 3 tons-force.

Sur la figure 1, sont représentés les points expérimentaux obtenus pour des contre-exemples et des exemples à une température de bobinage de 590 °C. Plus précisément, les points expérimentaux 3 correspondent aux contre-exemples du tableau 1, les points expérimentaux 4a correspondent aux exemples des tableaux 2a et 2b pour lesquels l'oxydation de surface est faible et les points expérimentaux 4b correspondent aux exemples des tableaux 2a et 2b pour lesquels l'oxydation de surface est nulle ou très faible.On the figure 1 the experimental points obtained for counterexamples and examples are shown at a winding temperature of 590 ° C. More precisely, the experimental points 3 correspond to the counterexamples of the table 1, the experimental points 4a correspond to the examples of the tables 2a and 2b for which the surface oxidation is low and the experimental points 4b correspond to the examples of Tables 2a and 2b for which the surface oxidation is zero or very low.

Il est à noter la quasi superposition de deux points expérimentaux à 0,10% de molybdène. Un premier point expérimental 3 correspond au contre-exemple 11 pour lequel la teneur précise en chrome est de 0,150, et un second point expérimental 4a correspond à l'exemple 11 pour lequel la teneur précise en chrome est de 0,152.It is worth noting the almost superposition of two experimental points at 0.10% molybdenum. A first experimental point 3 corresponds to counterexample 11 for which the precise content of chromium is 0.150, and a second experimental point 4a corresponds to Example 11 for which the precise chromium content is 0.152.

Au regard de ce qui précède, on définit ainsi que la composition de la tôle de l'invention comporte du chrome et du molybdène avec une teneur en poids en chrome qui est strictement supérieure à 0,15% et inférieure ou égale à 0,6% lorsque la teneur en molybdène est comprise entre 0,05% et 0,11%, et une teneur en poids en chrome comprise entre 0,10% et 0,6% lorsque la teneur en molybdène est strictement supérieure à 0,11% et inférieure ou égale à 0,35%. La teneur en molybdène est ainsi comprise entre 0,05% et 0,35% en respectant les teneurs en chrome exprimées précédemment.In the light of the foregoing, it is thus defined that the composition of the sheet of the invention comprises chromium and molybdenum with a content by weight of chromium which is strictly greater than 0.15% and less than or equal to 0.6 % when the molybdenum content is between 0.05% and 0.11% and a chromium content of between 0.10% and 0.6% where the molybdenum content is strictly greater than 0.11% and less than or equal to 0.35%. The molybdenum content is thus between 0.05% and 0.35% while respecting the chromium contents previously expressed.

De préférence, la teneur en poids en chrome est comprise entre 0,16 % et 0,55% lorsque la teneur en poids en molybdène est comprise entre 0,05% et 0,11%, et la teneur en poids en chrome est comprise entre 0,10 % et 0,55% lorsque la teneur en poids en molybdène est comprise entre 0,11% et 0,25%.Preferably, the content by weight of chromium is between 0.16% and 0.55% when the content by weight of molybdenum is between 0.05% and 0.11%, and the content by weight of chromium is included between 0.10% and 0.55% when the content by weight of molybdenum is between 0.11% and 0.25%.

Plus préférentiellement encore, la teneur en poids en chrome est comprise entre 0,27 % et 0,52% et la teneur en poids en molybdène est comprise entre 0,05% et 0,18%.Even more preferably, the content by weight of chromium is between 0.27% and 0.52% and the content by weight of molybdenum is between 0.05% and 0.18%.

La microstructure de la tôle de l'invention comporte de la bainite granulaire.The microstructure of the sheet of the invention comprises granular bainite.

La bainite granulaire se distingue de la bainite supérieure et inférieure. On se réfère ici à l'Article Characterisation and Quantification of Complex Bainitic Microstructures in High and Ultra-High Strength Steets - Materials Science Forum Vol 500-501, pp 387-394 ; Nov2005 pour la définition de la bainite granulaire.Granular bainite is distinguished from upper and lower bainite. We refer here to Article Characterization and Quantification of Complex Bainitic Microstructures in High and High-Strength Steels - Materials Science Forum Vol 500-501, pp 387-394; Nov2005 for the definition of granular bainite.

En accord avec cet article, on définit la bainite granulaire composant la microstructure de la tôle de l'invention comme présentant une proportion importante de grains adjacents fortement désorientés et une morphologie irrégulière des grains. Le pourcentage surfacique de bainite granulaire est supérieur à 70%.In accordance with this article, the granular bainite composing the microstructure of the sheet of the invention is defined as having a large proportion of adjacent grains strongly disoriented and an irregular morphology of the grains. The surface percentage of granular bainite is greater than 70%.

Par ailleurs, la ferrite est présente dans une fraction surfacique n'excédant pas 20%. Le complément éventuel est constitué de bainite inférieure, de martensite et d'austénite résiduelle, la somme des teneurs en martensite et en austénite résiduelle étant inférieure à 5%.Furthermore, the ferrite is present in a surface fraction not exceeding 20%. The optional supplement consists of lower bainite, martensite and residual austenite, the sum of the martensite and residual austenite contents being less than 5%.

La figure 10 représente la microstructure d'une tôle de l'invention comportant ainsi de la bainite granulaire 12, des ilots de martensite et d'austénite 13 et de la ferrite 14.The figure 10 represents the microstructure of a sheet of the invention thus comprising granite bainite 12, islands of martensite and austenite 13 and ferrite 14.

Il a été déterminé selon l'invention qu'un critère à prendre en considération pour la limite d'élasticité et la résistance maximale en traction est le titane dit efficace.It has been determined according to the invention that a criterion to be taken into consideration for the elastic limit and the maximum tensile strength is titanium said to be effective.

En supposant que la précipitation du titane intervienne sous forme de nitrure et compte tenu du rapport stoechiométrique de ces deux éléments dans le nitrure de titane, le titane efficace Tieff représente la quantité de titane excédentaire susceptible de précipiter sous forme de carbures. Ainsi le titane efficace se définit selon la formule Tieff = Ti - 3,42 x N, Ti étant la teneur en titane exprimée en poids, et N étant la teneur en azote exprimée en poids.Assuming that the precipitation of titanium takes place in the form of nitride and given the stoichiometric ratio of these two elements in titanium nitride, the effective titanium Tieff represents the amount of excess titanium capable of precipitating in the form of carbides. Thus the effective titanium is defined according to the formula Tieff = Ti - 3.42 x N, Ti being the titanium content expressed by weight, and N being the nitrogen content expressed by weight.

Les tableaux 2 à 4 présentent les valeurs de titane efficace pour chaque composition testée.Tables 2 to 4 show the effective titanium values for each composition tested.

Les figures 3 à 6 illustrent les résultats obtenus respectivement en limite d'élasticité et en résistance maximale en traction, en fonction de la teneur en titane efficace pour différentes compositions pour lesquelles les couples des teneurs en titane et en azote varient. Les figures 3 et 5 illustrent ces propriétés dans le sens de laminage de la tôle, et les figures 4 et 6 illustrent ces propriétés dans le sens travers du laminage de la tôleThe Figures 3 to 6 illustrate the results obtained respectively in yield strength and maximum tensile strength, as a function of the effective titanium content for different compositions for which the titanium and nitrogen contents vary. The figures 3 and 5 illustrate these properties in the rolling direction of the sheet, and the figures 4 and 6 illustrate these properties in the transverse direction of rolling of sheet metal

Sur ces figures 3 à 6, les points expérimentaux 5,5a matérialisés par des ronds pleins correspondent à une composition pour laquelle la teneur en titane varie entre 0,071% et 0,076% et la teneur en azote varie entre 0,0070% et 0,0090%, les points expérimentaux 6,6a matérialisés par des losanges pleins correspondent à une composition pour laquelle la teneur en titane varie entre 0,087% et 0,091% et la teneur en azote varie entre 0,0060% et 0,0084%, les points expérimentaux 7,7a matérialisés par des triangles pleins correspondent à une composition pour laquelle la teneur en titane varie entre 0,088% et 0,092%, et la teneur en azote varie entre 0,0073% et 0,0081%, et les points expérimentaux 8,8a matérialisés par des carrés pleins correspondent à une composition pour laquelle la teneur en titane varie entre 0,098% et 0,104% et la teneur en azote varie entre 0,0048% et 0,0070%.On these Figures 3 to 6 the experimental points 5.5a represented by solid circles correspond to a composition for which the titanium content varies between 0.071% and 0.076% and the nitrogen content varies between 0.0070% and 0.0090%, the experimental points 6 , 6a represented by solid diamonds correspond to a composition for which the titanium content varies between 0.087% and 0.091% and the nitrogen content varies between 0.0060% and 0.0084%, the experimental points 7.7a materialized by solid triangles correspond to a composition for which the titanium content varies between 0.088% and 0.092%, and the nitrogen content varies between 0.0073% and 0.0081%, and the experimental points 8.8a represented by solid squares correspond to to a composition for wherein the titanium content varies between 0.098% and 0.104% and the nitrogen content varies between 0.0048% and 0.0070%.

On constate au regard de ces figures que c'est bien le titane efficace qu'il faut considérer.It can be seen from these figures that it is indeed the effective titanium that must be considered.

Plus précisément, dans le sens de laminage (figures 3 et 5), les critères en limite d'élasticité et en résistance maximale en traction sont respectés pour une teneur en titane efficace variant entre 0,055% et 0,095%. Dans le sens travers du laminage (figures 4 et 6), les critères en limite d'élasticité et en résistance maximale en traction sont respectés pour une teneur en titane efficace variant entre 0,040% et 0,070%.More precisely, in the rolling direction ( figures 3 and 5 ), the criteria in elastic limit and in maximum tensile strength are respected for an effective titanium content varying between 0.055% and 0.095%. In the transverse direction of rolling ( figures 4 and 6 ), the criteria in yield strength and maximum tensile strength are met for an effective titanium content ranging between 0.040% and 0.070%.

On définit ainsi que la composition peut comporter une teneur en titane efficace variant entre 0,040% et 0,095%, de préférence entre 0,055% et 0,070% où les critères sont respectés à la fois dans le sens de laminage et en sens travers.It is thus defined that the composition may comprise an effective titanium content varying between 0.040% and 0.095%, preferably between 0.055% and 0.070% where the criteria are met both in the rolling direction and in the cross direction.

L'avantage présenté par la considération du titane efficace réside notamment dans la possibilité d'utiliser une teneur haute en azote pour éviter de limiter la teneur en azote ce qui est contraignant pour le procédé d'élaboration de la tôle.The advantage presented by the consideration of the effective titanium resides in particular in the possibility of using a high nitrogen content to avoid limiting the nitrogen content which is binding for the process of making the sheet.

Le procédé de fabrication d'une tôle d'acier précédemment définie comprend les étapes suivantes :
On approvisionne sous forme de métal liquide un acier dont la composition consiste, les teneurs étant exprimées en poids:

  • 0,04% ≤ C ≤ 0,08%
  • 1,2% ≤ Mn ≤ 1,9%
  • 0,1% ≤ Si ≤ 0,3%
  • 0,07% ≤ Ti ≤ 0,125%
  • 0,05% ≤ Mo≤ 0,35%
  • 0,15% < Cr≤ 0,6% lorsque 0,05% ≤ Mo≤ 0,11%, ou
  • 0,10% ≤ Cr≤ 0,6% lorsque 0,11% < Mo≤ 0,35%
  • Nb ≤ 0,045%
  • 0,005% ≤ Al ≤ 0,1%
  • 0,002% ≤ N ≤ 0,01%
  • S ≤ 0,004%
  • P<0,020 et optionnellement 0,001% ≤ V ≤ 0,2%
le reste étant constitué de fer et d'impuretés inévitables,The method of manufacturing a previously defined steel sheet comprises the following steps:
Liquid steel is supplied in the form of a liquid whose composition consists, the contents being expressed by weight:
  • 0.04% ≤ C ≤ 0.08%
  • 1.2% ≤ Mn ≤ 1.9%
  • 0.1% ≤ If ≤ 0.3%
  • 0.07% ≤ Ti ≤ 0.125%
  • 0.05% ≤ Mo ≤ 0.35%
  • 0.15% <Cr≤ 0.6% where 0.05% ≤ Mo≤ 0.11%, or
  • 0.10% ≤ Cr≤ 0.6% when 0.11% <Mo ≤ 0.35%
  • Nb ≤ 0.045%
  • 0.005% ≤ Al ≤ 0.1%
  • 0.002% ≤ N ≤ 0.01%
  • S ≤ 0.004%
  • P <0.020 and optionally 0.001% ≤ V ≤ 0.2%
the rest being iron and unavoidable impurities,

Dans le métal liquide contenant une teneur en azote [N] dissous, on ajoute le titane [Ti] de façon que les quantités de titane [Ti] et d'azote [N] dissoutes dans le métal liquide satisfassent à %[Ti] %[N] < 6.10-4 %2.In the liquid metal containing a dissolved [N] nitrogen content, titanium [Ti] is added so that the quantities of titanium [Ti] and nitrogen [N] dissolved in the liquid metal satisfy% [Ti]% [N] <6.10 -4 % 2 .

On effectue ensuite sur le métal liquide soit un traitement sous vide, soit un traitement au silico- calcium (SiCa), auquel cas il sera prévu que la composition comprend en outre en teneur en poids en 0,0005 ≤ Ca ≤ 0,005%.The liquid metal is then carried out either in a vacuum treatment or in a silica-calcium (SiCa) treatment, in which case it will be provided that the composition further comprises a content by weight of 0.0005 ≤ Ca ≤ 0.005%.

Dans ces conditions, les nitrures de titane ne précipitent pas précocement sous forme grossière dans le métal liquide, ce qui aurait pour effet de réduire l'aptitude à l'expansion de trou. La précipitation du titane intervient à plus basse température sous forme de carbonitrures fins répartis uniformément. Cette précipitation fine contribue au durcissement et à l'affinement de la microstructure.Under these conditions, the titanium nitrides do not precipitate early in the coarse form in the liquid metal, which would have the effect of reducing the ability to expand the hole. The precipitation of titanium occurs at lower temperatures in the form of fine carbonitrides distributed uniformly. This fine precipitation contributes to the hardening and refinement of the microstructure.

Puis on coule l'acier pour obtenir un demi-produit coulé. Ceci peut se faire préférentiellement par coulée continue. Très préférentiellement, la coulée peut être réalisée entre cylindres contra-rotatifs pour obtenir un demi-produit coulé sous forme de brames minces ou de bandes minces. En effet, ces modes de coulée conduisent à une diminution de la taille des précipités, favorables à l'expansion de trou sur le produit obtenu à l'état final.Then the steel is cast to obtain a cast half-product. This can be done preferably by continuous casting. Very preferably, the casting may be carried out between counter-rotating rolls to obtain a semi-finished product in the form of thin slabs or thin strips. Indeed, these modes of casting lead to a decrease in the size of the precipitates, favorable to the expansion of hole on the product obtained in the final state.

Le demi-produit obtenu est ensuite réchauffé à une température comprise entre 1160 et 1300°C. En deçà de 1160 °C, la résistance mécanique en traction visée de 780 MPa n'est pas atteinte. Naturellement, dans le cas d'une coulée directe de brames minces, l'étape de laminage à chaud des demi produits débutant à plus de 1160°C peut se faire directement après coulée, c'est à dire sans refroidissement du demi produit jusqu'à température ambiante, et donc sans qu'il ne soit nécessaire d'effectuer une étape de réchauffage. Puis, on lamine à chaud ledit demi-produit coulé avec une température de fin de laminage comprise entre 880 et 930 °C, le taux de réduction de l'avant dernière passe étant inférieure à 0,25, le taux de la dernière passe étant inférieure à 0,15, la somme des deux taux de réduction étant inférieure à 0,37, la température de début de laminage de l'avant dernière passe étant inférieure à 960 °C, de façon à obtenir un produit laminé à chaud.The half-product obtained is then heated to a temperature of between 1160 and 1300 ° C. Below 1160 ° C, the target tensile strength of 780 MPa is not achieved. Naturally, in the case of a direct casting of thin slabs, the hot rolling stage of the half-products starting at more than 1160 ° C. can be done directly after casting, ie without cooling the half product until at room temperature, and therefore without it being necessary to perform a heating step. Then, said cast half-product is hot rolled with an end-of-rolling temperature of between 880 and 930 ° C., the reduction rate of the penultimate pass being less than 0.25, the rate of the last pass being less than 0.15, the sum of the two reduction rates being less than 0.37, the next-to-last pass rolling start temperature being less than 960 ° C, so as to obtain a hot-rolled product.

On lamine donc au cours des deux dernières passes à une température inférieure à la température de non recristallisation, ce qui empêche la recristallisation de l'austénite. On vise ainsi à ne pas provoquer une déformation excessive de l'austénite lors de ces deux dernières passes.Thus, during the last two passes, the material is rolled at a temperature below the non-recrystallization temperature, which prevents the recrystallization of austenite. It is thus intended not to cause excessive deformation of the austenite during these last two passes.

Ces conditions permettent de créer un grain le plus équiaxe possible afin de satisfaire les exigences relatives au rapport d'expansion de trou Ac%.These conditions make it possible to create as equiva- lent grain as possible in order to satisfy the requirements of the hole expansion ratio Ac%.

Après laminage, on refroidit le produit laminé à chaud à une vitesse comprise entre 20 et 150 °C/s, de préférence comprise entre 50 et 150°C/s, de façon à obtenir une tôle d'acier laminé à chaud.After rolling, the hot-rolled product is cooled at a rate of between 20 and 150 ° C./s, preferably between 50 and 150 ° C./s, so as to obtain a hot-rolled steel sheet.

Enfin, on bobine la tôle obtenue à une température comprise entre 525 et 635°C.Finally, the sheet obtained is reeled at a temperature of between 525 and 635 ° C.

Dans le cas de la fabrication d'une tôle non revêtue et en référence aux tableaux 2 et 3, la température de bobinage sera comprise entre 525 et 635°C afin que la précipitation soit la plus dense et la plus durcissante possible ce qui permet de satisfaire à une résistance mécanique en traction supérieure à 780 MPa en sens long comme en sens travers. Conformément aux résultats présentés dans ces tableaux, ces températures de bobinage permettent d'obtenir une tôle pour laquelle le critère d'oxydation est satisfait.In the case of the manufacture of an uncoated sheet and with reference to Tables 2 and 3, the winding temperature will be between 525 and 635 ° C so that the precipitation is the densest and most hardening possible allowing to satisfy a mechanical tensile strength greater than 780 MPa in both the long and the transverse directions. According to the results presented in these tables, these winding temperatures make it possible to obtain a sheet for which the oxidation criterion is satisfied.

En référence au tableau 3, on remarque que l'augmentation de la température de bobinage (exemples 26 et 28) engendre des défauts dus à l'oxydation absents pour des températures de bobinage plus faible. Néanmoins, la composition de la tôle de l'invention permet de pouvoir bobiner à des hautes températures tout en respectant le critère d'oxydation.With reference to Table 3, it will be noted that the increase in the winding temperature (Examples 26 and 28) gives rise to oxidation defects that are absent at lower winding temperatures. Nevertheless, the composition of the sheet of the invention makes it possible to wind at high temperatures while respecting the oxidation criterion.

Dans le cas de la fabrication d'une tôle destinée à être soumise à une opération de galvanisation et en référence au tableau 4, la température de bobinage sera comprise entre 530 et 600 °C et ce, quelle que soit la direction souhaitée des propriétés dans le sens de laminage ou en sens travers et afin de compenser la précipitation complémentaire intervenant lors du traitement de réchauffage associé à l'opération de galvanisation. Conformément aux résultats présentés dans ce tableau, ces températures de bobinage permettent d'obtenir une tôle pour laquelle le critère d'oxydation est satisfait.In the case of the manufacture of a sheet intended to be subjected to a galvanizing operation and with reference to Table 4, the winding temperature will be between 530 and 600 ° C., regardless of the desired direction of the properties in the direction of rolling or in the cross direction and to compensate for the additional precipitation occurring during the heat treatment associated with the galvanizing operation. According to the results presented in this table, these winding temperatures make it possible to obtain a sheet for which the oxidation criterion is satisfied.

Dans ce dernier cas, la tôle bobinée sera ensuite décapée selon une technique conventionnelle bien connue en elle-même, puis réchauffée à une température comprise entre 550 et 750 °C. La tôle sera alors refroidie à une vitesse comprise entre 5 et 20°C/s, puis revêtue de zinc dans un bain de zinc adapté.In the latter case, the wound sheet is then etched according to a conventional technique well known in itself, and then heated to a temperature between 550 and 750 ° C. The sheet will then be cooled at a speed of between 5 and 20 ° C./s, and then coated with zinc in a suitable zinc bath.

Toutes les tôles d'acier selon l'invention ont été laminées avec un taux de réduction inférieur de 0,15 dans l'avant-dernière passe de laminage, et un taux de réduction inférieur à 0,07 dans la dernière passe de laminage, la déformation cumulée lors de ces deux passes étant inférieure à 0,37. A l'issue du laminage à chaud, on obtient donc une austénite peu déformée.All the steel sheets according to the invention were rolled with a lower reduction ratio of 0.15 in the penultimate rolling pass, and a reduction rate of less than 0.07 in the last rolling pass, the cumulative deformation during these two passes being less than 0.37. At the end of the hot rolling, we obtain a little deformed austenite.

Ainsi, l'invention permet de mettre à disposition des tôles d'acier présentant des caractéristiques mécaniques de traction élevées et une bonne aptitude à la mise en forme par emboutissage. Les pièces embouties fabriquées à partir de ces tôles présentent une grande résistance à la fatigue en raison de la minimisation ou de l'absence de défauts superficiels après emboutissage.

Figure imgb0008
Tableau 2a : Compositions de tôles selon l'invention Composition chimique (en %) C Mn Si Al Cr Mo Nb Ti P S N Tieff Exemple 1 0,06 1,6 0,2 0,06 0,29 0,09 0,031 0,110 0,015 0,002 0,007 0,086 Exemple 2 0,06 1,6 0,2 0,04 0,29 0,05 0,034 0,115 0,015 0,001 0,006 0,094 Exemple 3 0,06 1,6 0,2 0,04 0,29 0,11 0,034 0,111 0,015 0,001 0,006 0,090 Exemple 4 0,06 1,5 0,2 0,06 0,38 0,15 0,026 0,100 0,017 0,001 0,006 0,078 Exemple 5 0,07 1,5 0,2 0,04 0,30 0,16 0,030 0,100 0,016 0,001 0,005 0,083 Exemple 6 0,06 1,5 0,3 0,03 0,41 0,11 0,033 0,093 0,017 0,002 0,009 0,063 Exemple 7 0,06 1,5 0,3 0,03 0,51 0,11 0,033 0,094 0,017 0,002 0,01 0,059 Exemple 8 0,06 1,5 0,2 0,05 0,28 0,15 0 0,098 0,017 0,001 0,003 0,087 Exemple 9 0,080 1,61 0,23 0,04 0,15 0,15 0,028 0,113 0,012 0,001 0,006 0,092 Exemple 10 0,06 1,5 0,21 0,05 0,47 0,15 0,030 0,074 0,015 0,002 0,008 0,047 Exemple 11 0,05 1,5 0,24 0,04 0,151 0,10 0,030 0,089 0,012 0,002 0,007 0,065 Exemple 12 0,05 1,5 0,24 0,04 0,15 0,25 0,030 0,094 0,013 0,002 0,008 0,066 Exemple 13 0,05 1,5 0,24 0,04 0,30 0,25 0,030 0,092 0,012 0,002 0,008 0,064 Exemple 14 0,05 1,5 0,25 0,04 0,21 0,06 0,033 0,087 0,012 0,001 - 0,063 Exemple 152 0,05 1,5 0,25 0,04 0,21 0,09 0,033 0,087 0,012 0,001 - 0,063 Exemple 16 0,05. 1,5 0,25 0,04 0,21 0,15 0,032 0,088 0,012 0,001 - 0,064 Exemple 17 0,05 1,5 0,25 0,04 0,21 0,32 0,033 0,089 0,013 0,001 - 0,065 Exemple 182 0,05 1,5 0,25 0,04 0,25 0,15 0,032 0,088 0,012 0,002 0,008 0,060 Exemple 19 0,05 1,4 0,25 0,03 0,30 0,20 0,032 0,089 0,013 0,002 0,008 0,061 Exemple 20 0,05 1,5 0,25 0,04 0,55 0,05 0,030 0,089 0,012 0,002 0,009 0,058 Exemple 21 0,05 1,5 0,25 0,04 0,54 0,11 0,030 0,087 0,012 0,002 0,008 0,059 Exemple 22 0,05 1,4 0,24 0,03 0,16 0,20 0,030 0,088 0,013 0,002 0,008 0,060 Exemple 23 0,05 1,4 0,24 0,03 0,19 0,20 0,030 0,088 0,013 0,002 0,008 0,060 Exemple 24 0,05 1,4 0,24 0,04 0,39 0,24 0,030 0,087 0,012 0,002 0,008 0,059 Exemple 25 0,05 1,5 0,24 0,04 0,53 0,26 0,030 0,088 0,012 0,002 0,008 0,060 Valeur précise : 0,152 - Contient également du vanadium V=0,005% Tableau 2b : conditions d'essais et résultats obtenus pour les compositions de tôles selon l'invention du Tableau 2a bobinées à 590°C et non revêtues Température de bobinage (°C) Limite d'élasticité Re (Mpa) Résistance maximale en traction Rm (Mpa) Allongement total à rupture (%) Expansion de trou Ac (Méthode ISO) (%) Critère d'oxydation en coeur de bobine Légende du critère d'oxydation Exemple 1 590 808 841 15,8 NA
Figure imgb0006
oxydation nulle ou très faible : critère satisfait
Exemple 2 590 820 848 15,9 NA
Figure imgb0006
oxydation faible : critère satisfait
Exemple 3 590 823 854 15 NA oxydation forte : critère non satisfait Exemple 4 590 792 832 16,5 58
Figure imgb0006
Exemple 5 595 810 893 13,3 59 * : valeur estimée Exemple 6 590 766 801 15,6 NA
Figure imgb0006
NA : non déterminé
Exemple 7 590 761 798 17,8 NA
Figure imgb0006
Exemple 8 590 787 818 15,2 71 Exemple 9 590 823* 854 15,9 NA
Figure imgb0006
Exemple 10 590 796 834 15,2 56
Figure imgb0006
Exemple 11 590 711 801* 17,1 NA
Figure imgb0006
Exemple 12 590 768 809 16,9 NA Exemple 13 590 781 825 16,2 NA Exemple 14 590 721 807* 17,8 NA
Figure imgb0006
Exemple 15 590 746 781 17,0 NA
Figure imgb0006
Exemple 16 590 754 787 16,0 NA Exemple 17 590 751 788 16,9 NA
Figure imgb0006
Exemple 18 590 759 793 19,0 NA Exemple 19 590 770 805 17,7 NA Exemple 20 590 721 814* 16,9 NA Exemple 21 590 744 789 17,6 NA Exemple 22 590 757 799 16,5 NA Exemple 23 590 764 802 17,5 NA Exemple 24 590 796 837 16,5 NA Exemple 25 590 760 822 15,8 NA
Figure imgb0020
Figure imgb0021
Thus, the invention makes it possible to provide steel sheets having high tensile mechanical characteristics and good formability by stamping. The stampings made from these sheets have a high fatigue resistance due to the minimization or absence of surface defects after stamping.
Figure imgb0008
Table 2a: Sheet metal compositions according to the invention Chemical composition (in%) VS mn Yes al Cr MB Nb Ti P S NOT Tieff Example 1 0.06 1.6 0.2 0.06 0.29 0.09 0.031 0.110 0,015 0,002 0,007 0.086 Example 2 0.06 1.6 0.2 0.04 0.29 0.05 0,034 0.115 0,015 0,001 0.006 0.094 Example 3 0.06 1.6 0.2 0.04 0.29 0.11 0,034 0.111 0,015 0,001 0.006 0.090 Example 4 0.06 1.5 0.2 0.06 0.38 0.15 0,026 0,100 0,017 0,001 0.006 0.078 Example 5 0.07 1.5 0.2 0.04 0.30 0.16 0,030 0,100 0.016 0,001 0.005 0.083 Example 6 0.06 1.5 0.3 0.03 0.41 0.11 0.033 0.093 0,017 0,002 0,009 0,063 Example 7 0.06 1.5 0.3 0.03 0.51 0.11 0.033 0.094 0,017 0,002 0.01 0.059 Example 8 0.06 1.5 0.2 0.05 0.28 0.15 0 0.098 0,017 0,001 0,003 0.087 Example 9 0,080 1.61 0.23 0.04 0.15 0.15 0,028 0.113 0.012 0,001 0.006 0.092 Example 10 0.06 1.5 0.21 0.05 0.47 0.15 0,030 0.074 0,015 0,002 0,008 0,047 Example 11 0.05 1.5 0.24 0.04 0.15 1 0.10 0,030 0.089 0.012 0,002 0,007 0,065 Example 12 0.05 1.5 0.24 0.04 0.15 0.25 0,030 0.094 0,013 0,002 0,008 0.066 Example 13 0.05 1.5 0.24 0.04 0.30 0.25 0,030 0.092 0.012 0,002 0,008 0.064 Example 14 0.05 1.5 0.25 0.04 0.21 0.06 0.033 0.087 0.012 0,001 - 0,063 Example 15 2 0.05 1.5 0.25 0.04 0.21 0.09 0.033 0.087 0.012 0,001 - 0,063 Example 16 0.05. 1.5 0.25 0.04 0.21 0.15 0,032 0.088 0.012 0,001 - 0.064 Example 17 0.05 1.5 0.25 0.04 0.21 0.32 0.033 0.089 0,013 0,001 - 0,065 Example 18 2 0.05 1.5 0.25 0.04 0.25 0.15 0,032 0.088 0.012 0,002 0,008 0,060 Example 19 0.05 1.4 0.25 0.03 0.30 0.20 0,032 0.089 0,013 0,002 0,008 0,061 Example 20 0.05 1.5 0.25 0.04 0.55 0.05 0,030 0.089 0.012 0,002 0,009 0.058 Example 21 0.05 1.5 0.25 0.04 0.54 0.11 0,030 0.087 0.012 0,002 0,008 0.059 Example 22 0.05 1.4 0.24 0.03 0.16 0.20 0,030 0.088 0,013 0,002 0,008 0,060 Example 23 0.05 1.4 0.24 0.03 0.19 0.20 0,030 0.088 0,013 0,002 0,008 0,060 Example 24 0.05 1.4 0.24 0.04 0.39 0.24 0,030 0.087 0.012 0,002 0,008 0.059 Example 25 0.05 1.5 0.24 0.04 0.53 0.26 0,030 0.088 0.012 0,002 0,008 0,060 Accurate value: 0.152 - Also contains vanadium V = 0.005% Winding temperature (° C) Resistance limit Re (Mpa) Maximum tensile strength Rm (Mpa) Total elongation at break (%) Ac hole expansion (ISO method) (%) Oxidation criterion in coil core Legend of the oxidation criterion Example 1 590 808 841 15.8 N / A
Figure imgb0006
zero or very low oxidation: satisfied criterion
Example 2 590 820 848 15.9 N / A
Figure imgb0006
low oxidation: satisfied criterion
Example 3 590 823 854 15 N / A strong oxidation: criterion not satisfied Example 4 590 792 832 16.5 58
Figure imgb0006
Example 5 595 810 893 13.3 59 *: estimated value Example 6 590 766 801 15.6 N / A
Figure imgb0006
NA: not determined
Example 7 590 761 798 17.8 N / A
Figure imgb0006
Example 8 590 787 818 15.2 71 Example 9 590 823 * 854 15.9 N / A
Figure imgb0006
Example 10 590 796 834 15.2 56
Figure imgb0006
Example 11 590 711 801 * 17.1 N / A
Figure imgb0006
Example 12 590 768 809 16.9 N / A Example 13 590 781 825 16.2 N / A Example 14 590 721 807 * 17.8 N / A
Figure imgb0006
Example 15 590 746 781 17.0 N / A
Figure imgb0006
Example 16 590 754 787 16.0 N / A Example 17 590 751 788 16.9 N / A
Figure imgb0006
Example 18 590 759 793 19.0 N / A Example 19 590 770 805 17.7 N / A Example 20 590 721 814 * 16.9 N / A Example 21 590 744 789 17.6 N / A Example 22 590 757 799 16.5 N / A Example 23 590 764 802 17.5 N / A Example 24 590 796 837 16.5 N / A Example 25 590 760 822 15.8 N / A
Figure imgb0020
Figure imgb0021

Claims (20)

  1. Hot-rolled steel sheet having a thickness of between 1.5 and 4.5 millimetres, having an elastic limit greater than 680 MPa, at least in the direction transverse to the rolling direction, and less than or equal to 840 MPa, a strength of between 780 MPa and 950 MPa, an elongation at failure greater than 10% and a hole expansion ratio (Ac) greater than or equal to 45%, the chemical composition of which comprises, the contents being expressed by weight:
    0.04% ≤ C ≤ 0.08%
    1.2% ≤ Mn ≤ 1.9%
    0.1% ≤ Si ≤ 0.3%
    0.07% ≤ Ti ≤ 0.125%
    0.05% ≤ Mo ≤ 0.35%
    0.15% < Cr ≤ 0.6% when 0.05% ≤ Mo ≤ 0.11%, or
    0.10% ≤ Cr ≤ 0.6% when 0.11% < Mo ≤ 0.35%
    Nb ≤ 0.045%
    0.005% ≤ Al ≤ 0.1%
    0.002% ≤ N ≤ 0.01%
    S ≤ 0.004%
    P < 0.020%
    and optionally 0.001% ≤ V ≤ 0.2%,
    the remainder being composed of iron and unavoidable impurities from the production,
    the microstructure of which is composed of granular bainite, the area percentage of which is greater than 70%, and ferrite, the area percentage of which is less than 20%, any remainder being composed of lower bainite, martensite and residual austenite, the sum of the contents of martensite and residual austenite being less than 5%.
  2. Rolled steel sheet according to claim 1, characterised in that the chemical composition comprises, the contents being expressed by weight:
    0.04% ≤ C ≤ 0.08%
    1.2% ≤ Mn ≤ 1.9%
    0.1% ≤ Si ≤ 0.3%
    0.07% ≤ Ti ≤ 0.125%
    0.05% ≤ Mo ≤ 0.25%
    0.16% ≤ Cr ≤ 0.55% when 0.05% ≤ Mo ≤ 0.11%, or
    0.10% ≤ Cr ≤ 0.55% when 0.11% < Mo ≤ 0.25%
    Nb ≤ 0.045%
    0.005% ≤ Al ≤ 0.1%
    0.002% ≤ N ≤ 0.01%
    S ≤ 0.004%
    P < 0.020%,
    the remainder being composed of iron and unavoidable impurities from the production.
  3. Steel sheet according to either claim 1 or claim 2, characterised in that the composition of the steel comprises, the contents being expressed by weight:
    0.27% ≤ Cr ≤ 0.52% when 0.05% ≤ Mo ≤ 0.11%, or
    0.10% ≤ Cr ≤ 0.52% when 0.11% < Mo ≤ 0.25%.
  4. Steel sheet according to any one of the preceding claims, characterised in that the composition of the steel comprises, the contents being expressed by weight:
    0.05% ≤ Mo ≤ 0.18%, and in that
    0.16% ≤ Cr ≤ 0.55% when 0.05% ≤ Mo ≤ 0.11%, or
    0.10% ≤ Cr ≤ 0.55% when 0.11% < Mo ≤ 0.18%.
  5. Steel sheet according to any one of the preceding claims, characterised in that the chemical composition comprises, the contents being expressed by weight:
    0.05% ≤ C ≤ 0.07%
    1.4% ≤ Mn ≤ 1.6%
    0.15% ≤ Si ≤ 0.3%
    Nb ≤ 0.04%
    0.01% ≤ Al ≤ 0.07%.
  6. Steel sheet according to any one of claims 1 to 3, characterised in that the chemical composition comprises, the contents being expressed by weight: 0.040 % Tieff 0.095 %
    Figure imgb0030
    where Tieff = Ti - 3.42 x N,
    Ti being the titanium content expressed by weight,
    N being the nitrogen content expressed by weight.
  7. Steel sheet according to any one of the preceding claims, characterised in that, after coiling at a temperature between 525°C and 635°C followed by a pickling operation, the depth of the superficial defects due to oxidation distributed over n oxidation zones i of said coiled sheet, i being between 1 and n, and the n oxidation zones extending over an observation length lref , satisfies:
    - a first maximum depth criterion defined by P i max 8 m i c r o m e t r e s
    Figure imgb0031
    where P i max :
    Figure imgb0032
    maximum depth of a defect due to oxidation over the oxidation zone i of said coiled sheet, and
    - a second average depth criterion defined by 1 l r e f i n P i m o y × l i 2.5 m i c r o m e t r e s
    Figure imgb0033
    where P i m o y :
    Figure imgb0034
    average depth of the defects due to oxidation over an oxidation zone i, and
    li : length of the oxidation zone i.
  8. Steel sheet according to claim 7, characterised in that the observation length lref of the defects due to oxidation is greater than or equal to 100 micrometres.
  9. Steel sheet according to claim 8, characterised in that the observation length lref of the defects due to oxidation is greater than or equal to 500 micrometres.
  10. Steel sheet according to any one of the preceding claims, characterised in that it is coiled in contiguous turns at a minimum coiling tension of 3 tonnes-force.
  11. Method of manufacturing a hot-rolled steel sheet having a thickness of between 1.5 and 4.5 millimetres, having an elastic limit greater than 680 MPa, at least in the direction transverse to the rolling direction, and less than or equal to 840 MPa, a strength of between 780 MPa and 950 MPa, and an elongation at failure greater than 10%, characterised in that there is provided, in the form of liquid metal, a steel the composition of which comprises, the contents being expressed by weight:
    0.04% ≤ C ≤ 0.08%
    1.2% ≤ Mn ≤ 1.9%
    0.1% ≤ Si ≤ 0.3%
    0.07% ≤ Ti ≤ 0.125%
    0.05% ≤ Mo ≤ 0.35%
    0.15% < Cr ≤ 0.6% when 0.05% ≤ Mo ≤ 0.11%, or
    0.10% ≤ Cr ≤ 0.6% when 0.11% < Mo ≤ 0.35%
    Nb ≤ 0.045%
    0.005% ≤ Al ≤ 0.1%
    0.002% ≤ N ≤ 0.01%
    S ≤ 0.004%
    P < 0.020%
    and optionally 0.001% ≤ V ≤ 0.2%,
    the remainder being composed of iron and unavoidable impurities,
    in that there is carried out a treatment in vacuo or with SiCa, in the latter case the composition further comprises, the contents being expressed by weight, 0.0005 % Ca 0.005 % ,
    Figure imgb0035
    in that the quantities of titanium [Ti] and nitrogen [N] dissolved in the liquid metal satisfy (%[Ti]) x (%[N]) < 6.10-4 %2, in that the steel is cast in order to obtain a cast semi-finished product,
    in that said semi-finished product is optionally heated to a temperature between 1160°C and 1300°C, and then
    in that said cast semi-finished product is hot-rolled with an end-of-rolling temperature of between 880°C and 930°C, the reduction rate of the penultimate pass being less than 0.25, the rate of the final pass being less than 0.15, the sum of the two reduction rates being less than 0.37, the start-of-rolling temperature of the penultimate pass being less than 960°C, so as to obtain a hot-rolled product, and then
    in that said hot-rolled product is cooled at a rate of between 20 and 150°C/s, and then
    in that said hot-rolled product is hot-coiled so as to obtain a hot-rolled steel sheet.
  12. Method according to claim 11, characterised in that the hot-rolled steel sheet is coiled at a temperature of between 525 and 635°C.
  13. Method according to either claim 11 or claim 12, characterised in that the composition comprises, the contents being expressed by weight:
    0.04% ≤ C ≤ 0.08%
    1.2% ≤ Mn ≤ 1.9%
    0.1% ≤ Si ≤ 0.3%
    0.07% ≤ Ti ≤ 0.125%
    0.05% ≤ Mo ≤ 0.25%
    0.16% ≤ Cr ≤ 0.55% when 0.05% ≤ Mo ≤ 0.11%, or
    0.10% ≤ Cr ≤ 0.55% when 0.11% < Mo ≤ 0.25%
    Nb ≤ 0.045%
    0.005% ≤ Al ≤ 0.1%
    0.002% ≤ N ≤ 0.01%
    S ≤ 0.004%
    P < 0.020%,
    the remainder being composed of iron and unavoidable impurities.
  14. Method according to any one of claims 11 to 13, characterised in that the rate of cooling of the hot-rolled product is between 50 and 150°C/s.
  15. Method according to any one of claims 11 to 14, characterised in that the composition of the steel comprises, the contents being expressed by weight:
    0.27% ≤ Cr ≤ 0.52% when 0.05% ≤ Mo ≤ 0.11%, or
    0.10% ≤ Cr ≤ 0.52% when 0.11% < Mo ≤ 0.25%.
  16. Method according to any one of claims 11 to 14, characterised in that the composition of the steel comprises, the contents being expressed by weight:
    0.05% ≤ Mo ≤ 0.18%, and in that
    0.16% ≤ Cr ≤ 0.55% when 0.05% ≤ Mo ≤ 0.11%, or
    0.10% ≤ Cr ≤ 0.55% when 0.11% < Mo ≤ 0.18%.
  17. Method according to any one of claims 11 to 16, characterised in that the composition of the steel comprises, the contents being expressed by weight:
    0.05% ≤ C ≤ 0.08%
    1.4% ≤ Mn ≤ 1.6%
    0.15% ≤ Si 0.3%
    Nb ≤ 0.04%
    0.01% ≤ Al ≤ 0.07%.
  18. Method according to any one of claims 11 to 17, characterised in that the sheet is coiled at a temperature of between 580 and strictly 630°C.
  19. Method of manufacturing a hot-rolled sheet according to any one of claims 10 to 17, characterised in that the sheet is coiled at a temperature of between 530 and 600°C,
    in that said sheet is pickled, and then
    in that the pickled sheet is heated to a temperature of between 600 and 750°C, and then in that the heated pickled sheet is cooled at a rate of between 5 and 20°C/s, and in that the sheet obtained is coated with zinc in a suitable zinc bath.
  20. Method of manufacturing a hot-rolled sheet according to any one of claims 10 to 19, characterised in that the sheet is coiled in contiguous turns at a minimum coiling tension of 3 tonnes-force.
EP15753985.9A 2014-07-11 2015-07-10 Hot-rolled steel sheet and associated manufacturing method Active EP3167091B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL15753985T PL3167091T3 (en) 2014-07-11 2015-07-10 Hot-rolled steel sheet and associated manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/IB2014/001312 WO2016005780A1 (en) 2014-07-11 2014-07-11 Hot-rolled steel sheet and associated manufacturing method
PCT/IB2015/001159 WO2016005811A1 (en) 2014-07-11 2015-07-10 Hot-rolled steel sheet and associated manufacturing method

Publications (2)

Publication Number Publication Date
EP3167091A1 EP3167091A1 (en) 2017-05-17
EP3167091B1 true EP3167091B1 (en) 2018-09-12

Family

ID=51492373

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15753985.9A Active EP3167091B1 (en) 2014-07-11 2015-07-10 Hot-rolled steel sheet and associated manufacturing method

Country Status (17)

Country Link
US (2) US10858716B2 (en)
EP (1) EP3167091B1 (en)
JP (1) JP6391801B2 (en)
KR (1) KR101928675B1 (en)
CN (1) CN106536780B (en)
BR (1) BR112017000405B1 (en)
CA (1) CA2954830C (en)
ES (1) ES2704472T3 (en)
HU (1) HUE042353T2 (en)
MA (1) MA39523A1 (en)
MX (1) MX2017000496A (en)
PL (1) PL3167091T3 (en)
RU (1) RU2674360C2 (en)
TR (1) TR201818867T4 (en)
UA (1) UA117790C2 (en)
WO (2) WO2016005780A1 (en)
ZA (1) ZA201608396B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110291215B (en) * 2017-01-20 2022-03-29 蒂森克虏伯钢铁欧洲股份公司 Hot-rolled flat steel product consisting of a complex phase steel with a predominantly bainitic structure and method for producing such a flat steel product
CN109092924A (en) * 2018-08-17 2018-12-28 江苏亨通电力特种导线有限公司 A kind of processing method of copper clad aluminum rod piece
CN110106322B (en) * 2019-05-22 2021-03-02 武汉钢铁有限公司 High-strength steel for thin engineering machinery and plate shape control method
CN110438401A (en) * 2019-09-03 2019-11-12 苏州翔楼新材料股份有限公司 A kind of 800MPa level low alloy high-strength cold-rolled strip and its manufacturing method
CN114058942B (en) * 2020-07-31 2022-08-16 宝山钢铁股份有限公司 Steel plate for torsion beam and manufacturing method thereof, torsion beam and manufacturing method thereof
CN114107798A (en) * 2020-08-31 2022-03-01 宝山钢铁股份有限公司 980 MPa-grade bainite high-reaming steel and manufacturing method thereof
CN114107789B (en) * 2020-08-31 2023-05-09 宝山钢铁股份有限公司 780 MPa-grade high-surface high-performance stability ultrahigh-reaming steel and manufacturing method thereof
CN113005367A (en) * 2021-02-25 2021-06-22 武汉钢铁有限公司 780 MPa-grade hot-rolled dual-phase steel with excellent hole expanding performance and preparation method thereof
DE102021104584A1 (en) * 2021-02-25 2022-08-25 Salzgitter Flachstahl Gmbh High-strength, hot-rolled flat steel product with high local cold workability and a method for producing such a flat steel product
CN113981323B (en) * 2021-10-29 2022-05-17 新余钢铁股份有限公司 Q420qE steel plate for improving fire straightening performance and manufacturing method thereof
CN115572908B (en) * 2022-10-25 2024-03-15 本钢板材股份有限公司 Complex-phase high-strength steel with high elongation and production method thereof

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6013053A (en) * 1983-07-04 1985-01-23 Nisshin Steel Co Ltd Aluminized steel sheet with superior strength at high temperature and superior heat resistance
JP3417878B2 (en) * 1999-07-02 2003-06-16 株式会社神戸製鋼所 High-strength hot-rolled steel sheet excellent in stretch flangeability and fatigue properties and its manufacturing method
JP4258934B2 (en) 2000-01-17 2009-04-30 Jfeスチール株式会社 High-strength hot-rolled steel sheet excellent in workability and fatigue characteristics and method for producing the same
US6364968B1 (en) * 2000-06-02 2002-04-02 Kawasaki Steel Corporation High-strength hot-rolled steel sheet having excellent stretch flangeability, and method of producing the same
JP4288146B2 (en) * 2002-12-24 2009-07-01 新日本製鐵株式会社 Method for producing burring high-strength steel sheet with excellent softening resistance in weld heat affected zone
JP4341396B2 (en) * 2003-03-27 2009-10-07 Jfeスチール株式会社 High strength hot rolled steel strip for ERW pipes with excellent low temperature toughness and weldability
JP4411005B2 (en) * 2003-04-04 2010-02-10 株式会社神戸製鋼所 High-strength hot-rolled steel sheet with excellent formability
EP1764423B1 (en) * 2004-07-07 2015-11-04 JFE Steel Corporation Method for producing high tensile steel sheet
US8357023B2 (en) 2006-01-19 2013-01-22 Silverlit Limited Helicopter
EP2020451A1 (en) * 2007-07-19 2009-02-04 ArcelorMittal France Method of manufacturing sheets of steel with high levels of strength and ductility, and sheets produced using same
CN101285156B (en) * 2008-06-05 2010-06-23 广州珠江钢铁有限责任公司 700MPa grade composite strengthening bainite steel and method for preparing same
MX2011012371A (en) * 2009-05-27 2011-12-08 Nippon Steel Corp High-strength steel sheet, hot-dipped steel sheet, and alloy hot-dipped steel sheet that have excellent fatigue, elongation, and collision characteristics, and manufacturing method for said steel sheets.
RU2414515C1 (en) 2009-12-07 2011-03-20 Открытое акционерное общество "Северсталь" (ОАО "Северсталь") Procedure for production of heavy plate low alloyed rolled steel
JP4978741B2 (en) 2010-05-31 2012-07-18 Jfeスチール株式会社 High-strength hot-rolled steel sheet excellent in stretch flangeability and fatigue resistance and method for producing the same
WO2012127125A1 (en) * 2011-03-24 2012-09-27 Arcelormittal Investigatión Y Desarrollo Sl Hot-rolled steel sheet and associated production method
CN103459646B (en) * 2011-04-13 2015-07-29 新日铁住金株式会社 High-strength cold-rolled steel sheet having excellent local deformability and method for manufacturing same
US9567658B2 (en) * 2011-05-25 2017-02-14 Nippon Steel & Sumitomo Metal Corporation Cold-rolled steel sheet
KR101638707B1 (en) * 2011-07-20 2016-07-11 제이에프이 스틸 가부시키가이샤 Low yield ratio and high-strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same
MX2015001687A (en) * 2012-08-07 2015-04-10 Nippon Steel & Sumitomo Metal Corp Zinc-plated steel sheet for hot press molding.
JP5553093B2 (en) * 2012-08-09 2014-07-16 Jfeスチール株式会社 Thick high-tensile hot-rolled steel sheet with excellent low-temperature toughness
JP6293997B2 (en) 2012-11-30 2018-03-14 新日鐵住金株式会社 High-strength steel sheet with excellent stretch flangeability and bending workability, and method for producing molten steel for the steel sheet
JP5610003B2 (en) * 2013-01-31 2014-10-22 Jfeスチール株式会社 High-strength hot-rolled steel sheet excellent in burring workability and manufacturing method thereof
US10329637B2 (en) * 2014-04-23 2019-06-25 Nippon Steel & Sumitomo Metal Corporation Heat-rolled steel plate for tailored rolled blank, tailored rolled blank, and methods for producing these

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
JP2017526812A (en) 2017-09-14
US10858716B2 (en) 2020-12-08
US20170183753A1 (en) 2017-06-29
MX2017000496A (en) 2017-04-27
RU2674360C2 (en) 2018-12-07
CN106536780A (en) 2017-03-22
US11447844B2 (en) 2022-09-20
WO2016005811A1 (en) 2016-01-14
WO2016005780A1 (en) 2016-01-14
HUE042353T2 (en) 2019-06-28
TR201818867T4 (en) 2019-01-21
CA2954830A1 (en) 2016-01-14
EP3167091A1 (en) 2017-05-17
BR112017000405A2 (en) 2018-01-23
KR101928675B1 (en) 2018-12-12
PL3167091T3 (en) 2019-02-28
MA39523A1 (en) 2017-06-30
RU2017104317A3 (en) 2018-08-13
ZA201608396B (en) 2019-10-30
CN106536780B (en) 2018-12-21
KR20170015998A (en) 2017-02-10
JP6391801B2 (en) 2018-09-19
ES2704472T3 (en) 2019-03-18
US20210130921A1 (en) 2021-05-06
CA2954830C (en) 2019-02-12
RU2017104317A (en) 2018-08-13
UA117790C2 (en) 2018-09-25
BR112017000405B1 (en) 2021-08-17

Similar Documents

Publication Publication Date Title
EP3167091B1 (en) Hot-rolled steel sheet and associated manufacturing method
EP2689045B1 (en) Hot-rolled steel sheet and associated production method
EP2718469B1 (en) Cold-rolled steel plate coated with zinc or a zinc alloy, method for manufacturing same, and use of such a steel plate
EP2855725B1 (en) Low-density hot- or cold-rolled steel, method for implementing same and use thereof
EP2155916B1 (en) Low density steel with good stamping capability
EP1649069B1 (en) Method of producing austenitic iron/carbon/manganese steel sheets having a high strength and excellent toughness and being suitable for cold forming, and sheets thus produced
EP2155915B1 (en) Process for manufacturing cold-rolled and annealed steel sheets with very high strength, and sheets thus produced
EP1844173B1 (en) Method for producing austenitic iron-carbon-manganese metal sheets, and sheets produced thereby
EP1913169A1 (en) Method of producing high-strength steel plates with excellent ductility and plates thus produced
WO2016198940A2 (en) High-strength steel and production method
EP1819461A2 (en) Method of producing austentic iron/carbon/manganese steel sheets having very high strength and elongation characteristics and excellent homogeneity
EP2707514A1 (en) Steel sheet with high mechanical strength, ductility and formability properties, production method and use of such sheets
EP2020451A1 (en) Method of manufacturing sheets of steel with high levels of strength and ductility, and sheets produced using same
FR2480311A1 (en) COLD LAMINATED STEEL SHEET WITH LOW ELIMINATION LIMIT AND HIGH RESISTANCE FOR DEEP TIPPING
EP2257652B1 (en) Method of manufacturing sheets of austenitic stainless steel with high mechanical properties
EP1099769A1 (en) Process for manufacturing high tensile strength hot rolled steel sheet for forming and especially for deep drawing
EP0564309B1 (en) Process for manufacturing of steel sheets and steel sheets obtained by this process
JP2023128403A (en) Thick steel plate and method for manufacture thereof
EP1481106A1 (en) Al-mg alloy sheet or strip for the production of bent parts having a small bend radius

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170213

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180315

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015016212

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1040678

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181015

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181213

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2704472

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20190318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190112

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015016212

Country of ref document: DE

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E042353

Country of ref document: HU

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

26N No opposition filed

Effective date: 20190613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 1040678

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230427

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20230627

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230626

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230801

Year of fee payment: 9

Ref country code: AT

Payment date: 20230622

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20230630

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240620

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240619

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20240625

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20240627

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240619

Year of fee payment: 10

Ref country code: FI

Payment date: 20240619

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20240625

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240619

Year of fee payment: 10

Ref country code: BE

Payment date: 20240619

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240619

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240619

Year of fee payment: 10