JP4258934B2 - High-strength hot-rolled steel sheet excellent in workability and fatigue characteristics and method for producing the same - Google Patents
High-strength hot-rolled steel sheet excellent in workability and fatigue characteristics and method for producing the same Download PDFInfo
- Publication number
- JP4258934B2 JP4258934B2 JP2000008316A JP2000008316A JP4258934B2 JP 4258934 B2 JP4258934 B2 JP 4258934B2 JP 2000008316 A JP2000008316 A JP 2000008316A JP 2000008316 A JP2000008316 A JP 2000008316A JP 4258934 B2 JP4258934 B2 JP 4258934B2
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- rolled steel
- less
- strength
- workability
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、自動車用足回り部材の素材に適した、加工性と疲労性に優れた高強度熱延鋼板およびその製造方法に関するものである。
【0002】
【従来技術】
自動車の安全性向上と環境保全につながる燃費向上の観点から、自動車用熱延鋼板の高強度薄肉化が強く求められている。特に、ホイールや足廻り部材の軽量化は自動車の燃費向上に極めて有効な手段であるので、これらの部材の軽量化を目的とした自動車用鋼板の高強度化が検討されている。ホイールや足廻り部材に用いられる鋼板に要求される特性は多岐にわたり、加工性、特に伸びフランジ性とともに、保安強度部材に使用することから母材および打抜きせん断部の疲労特性も重要視されている。このため、加工性および疲労特性を兼ね備えた高強度熱延鋼板に関する検討が行なわれている。
【0003】
例えば、特開平9−31534号公報には、低Si、Tiおよび微量Nbを添加し、低Nとしたフェライト−マルテンサイト複合組織鋼板が提案されている。この公報に開示された技術では、低Siとすることで表面性状を改善し、Ti添加することで母材疲労強度を確保し、低N,Tiおよび微量Nbを添加することで延性と伸びフランジ性を確保し、マルテンサイトを生成させることで延性と打抜きせん断部の疲労強度を確保することを試みている。しかし、最近の足廻り部材では、薄肉化に伴なう剛性低下を補うためにプレス時の断面形状をより複雑化するようになってきており、鋼板に要求される伸びフランジ性はますます厳しいものとなってきている。このため、極めて硬質なマルテンサイトを含む混合組織の鋼板では、フェライトとマルテンサイトとの硬度差が大きいため、厳しい伸びフランジ加工を受けた場合にフェライトとマルテンサイトの境界でボイドが発生しやすく、要求される伸びフランジ性を満足することができていない。
【0004】
また、特開平9−137249号公報には、Ti,NbをCと所定の関係を満たすように添加し、金属組織はフェライトを主相として所定の面積率のベイナイトと所定の面積率のマルテンサイトもしくは残留オーステナイトからなる混合組織とし、鋼板表面粗さRaを1.5μm以下、鋼板表面のフェライト粒径を5μm以下とする鋼板が提案されている。この公報に開示された技術では、Cと所定の関係を満たすように添加したTiとNbがフェライト内に炭化物として析出して加工性と母材疲労強度を確保し、金属組織を上記混合組織とすることで延性と伸びフランジ性を確保し、さらに表面粗さと鋼板表層のフェライト粒径を規定することで母材疲労強度を確保することを試みている。しかし、この技術においても鋼板中にマルテンサイトを存在させているため、要求される伸びフランジ性を満足することができていない。また、残留オーステナイトを含む混合組織とした場合も、残留オーステナイトは伸びフランジ加工中にマルテンサイト変態してしまうため、最初からマルテンサイトを含む混合組織の場合と同様、要求される伸びフランジ性を満足することができていない。
【0005】
【発明が解決しようとする課題】
以上のように、従来の技術では、加工性に優れ、最近のホイールや足廻り部材の材料に要求される厳しい伸びフランジ性の要求を満たし、かつ母材および打抜きせん断部の疲労特性にも優れた高強度熱延鋼板を提供することは困難である。
【0006】
本発明は、かかる事情に鑑みてなされたものであって、加工性、特に伸びフランジ性に優れるとともに、母材および打抜きせん断部の疲労特性に優れた高強度熱延鋼板およびその製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意検討した結果、以下の(1)〜(4)の知見を得た。
(1)高強度で延性を損なわずに伸びフランジ性を向上させるには、できるだけ低C化し、主相をベイナイト組織とするとともに、固溶強化または析出強化したフェライト組織を適切な体積比率で含有させることが有効であること。
(2)(1)の低C化に加え、Cuを添加することによって、より一層強度および伸びフランジ性を向上させることができること。
(3)母材疲労強度を向上させるにはPとSiが所定の関係を満たすようにPを含有させることが有効であること。
(4)打抜きせん断面の疲労強度を向上させるにはパーライトあるいは粗大な炭化物を回避することが有効であること。
【0008】
上記(1)の理由は、高強度とするにはベイナイトを主相とすることが有効であり、さらに低C化することでベイナイトの硬度を低減させて、ベイナイトの延性を改善させるとともに、固溶強化したフェライトとの硬度差を小さくすることにより、伸びフランジ性を向上させることができるためである。上記(2)の理由は、必ずしも明確でないがCuを添加することで熱間圧延の巻取り後の冷却過程でCuが析出してフェライトが強化され、伸びフランジ性が向上するためであると考えられる。上記(3)の理由は、延性と伸びフランジ性を損なわず強化するのに効果的なSiを添加した場合、スケールと地鉄の界面で凹凸が増大するに伴ない、鋼板表面の凹凸が増大し、凹部に応力が集中することにより母材疲労強度が低下するが、PをSiと所定の関係を満たすように含有させることによりこの凹凸を低減することができ、母材疲労強度の低下を防ぐことができるためである。上記(4)の理由は、パーライトあるいは粗大な炭化物が存在すると、打抜きせん断加工時に、極めて硬いパーライト中のセメンタイトや粗大な炭化物の周りにボイドが発生し、このボイドが端面に現れるとマイクロクラックとして応力が集中して疲労強度が低下するためである。
【0009】
本発明は上記知見に基づいてなされたものであって、以下の(1)〜(5)を提供する。
(1) 質量%で、
C :0.02〜0.05%、
Si:0.3〜1.5%、
Mn:1.3〜2.3%、
P :0.1%以下、
S :0.001%未満、
Cr:0.05〜0.7%、
Mo:1%以下、
Ni:1%以下
を含有し、(P−0.02)/Si>0.01およびSi<3(Mo+Ni)の関係を満たし、残部Feおよび不可避不純物からなり、金属組織がベイナイトおよびフェライトからなり、ベイナイト体積率が60〜95%であることを特徴とする加工性と疲労特性に優れた高強度熱延鋼板。
【0010】
(2) 前記(1)に記載の熱延鋼板において、さらに、質量%で、
Ti:0.01〜0.08%、
Nb:0.01〜0.05%、
V :0.01〜0.1%
のうち1種または2種以上を含むことを特徴とする加工性と疲労特性に優れた高強度熱延鋼板。
【0011】
(3) 前記(1)または前記(2)に記載の熱延鋼板において、さらに、質量%で、
Cu:0.1〜1.0%、
を含むことを特徴とする加工性と疲労特性に優れた高強度熱延鋼板。
【0012】
(4) 前記(1)から前記(3)のいずれかに記載の熱延鋼板において、さらに、鋼板表面の最大高さRyが20μm以下であることを特徴とする加工性と疲労特性に優れた高強度熱延鋼板。
【0013】
(5) 前記(1)から前記(4)のいずれかに記載の熱延鋼板を製造するにあたり、鋳造後、圧延終了温度がAr3点以上の仕上圧延を含む熱間圧延を行なった後、500〜600℃まで冷却速度30〜60℃/sで冷却し、その後冷却速度2〜20℃/sで冷却し、300〜475℃で巻き取ることを特徴とする加工性と疲労特性に優れた高強度熱延鋼板の製造方法。
【0014】
なお、本発明でいうベイナイトおよびフェライトは、マルテンサイトおよび残留オーステナイトを除く組織または相を指し、さらに詳しく言うと、ベイナイトとはグラニュラーベイニティックフェライトおよびベイニティックフェライトを含むものであり、フェライトとはポリゴナルフェライトおよび擬ポリゴナルフェライトを指す。
【0015】
【発明の実施の形態】
以下、本発明について具体的に説明する。
1.鋼組成
本発明の熱延鋼板は、質量%で、C:0.02〜0.05%、Si:0.3〜1.5%、Mn:1.3〜2.3%、P:0.1%以下、S:0.001%未満、Cr:0.05〜0.7%、Mo:1%以下、Ni:1%以下を含有し、かつ、(P−0.02)/Si>0.01およびSi<3(Mo+Ni)の関係を満足し、残部Feおよび不可避不純物からなり、さらに必要に応じて、Ti:0.01〜0.08%、Nb:0.01〜0.05%、V:0.01〜0.1%のうち1種または2種以上を含有する。これら成分について具体的に説明する。
【0016】
C:0.02〜0.05%
Cは、ベイナイトを形成して鋼を強化する効果を有する。しかし、C含有量が0.05%を超えると、ベイナイトが硬化して延性が低下するとともに、フェライトとベイナイトの硬度差が増大して伸びフランジ性が損なわれる。一方、C含有量が0.02%未満では、鋼板の強度を確保するために十分なベイナイトが生成しない。このためC含有量を0.02〜0.05%とする。
【0017】
Si:0.3〜1.5%
Siは、フェライトを固溶強化して延性の低下を抑制しつつ強度を上昇させ、かつベイナイトとフェライトの硬度差を小さくすることで伸びフランジ性を向上させる。しかし、Si含有量が1.5%を超えると、フェライト体積が高くなりすぎて高強度および高伸びフランジ性を得るための組織比率から外れること、および、後述する範囲でPを含有させてもスケールと地鉄界面の凹凸を低減することができなくなる。一方、Si含有量が0.3%未満では十分な伸びフランジ性を得るために必要な固溶強化が得られない。このため、Si含有量を0.3〜1.5%とする。
【0018】
Mn:1.3〜2.3%
Mnは、鋼を強化する効果を有する。しかし、2.3%を超えて含有させると、鋳造時に偏析が生じて熱間圧延後のベイナイトとフェライトの組織がバンド状の不均一となり加工性を低下させる。また、強度を確保するためには少なくとも1.3%必要である。このため、Mn含有量は1.3〜2.3%とする。
【0019】
P:0.1%以下
Pは、母材疲労強度に影響するスケールと地鉄との界面の凹凸を増大することなく添加することができるSi量の範囲を拡大するとともに、Siと同様にフェライトを固溶強化して強度を上昇させ、フェライトとベイナイトの硬度差を小さくして伸びフランジ性を向上する重要な元素である。しかし、P含有量が0.1%を超えると熱間圧延時に割れを生じるため、P含有量は0.1%以下とする。
【0020】
S:0.001%未満
Sは、伸びフランジ性を向上させるためには低く抑えることが重要であり、硫化物を極力低減して伸びフランジ加工時に生じるボイドを回避するため、そのS含有量を0.001%未満とする。
【0021】
Cr:0.05〜0.7%
Crは、加工性の劣化と打抜きせん断部の疲労強度を低下させるパーライトの生成を抑制する。しかし、Cr含有量が0.7%を超えると、マルテンサイトが生成して伸びフランジ性が極端に低下する。一方、Cr含有量が0.05%未満ではパーライトの生成を抑制し、伸びフランジ性を向上する効果が十分でない。このため、Cr含有量を0.05〜0.7%とする。より一層優れた打抜きせん断部の疲労強度と伸びフランジ性を得るためには、Cr含有量を0.2%以上とすることが望ましい。
【0022】
Mo:1%以下
Moは、SiとPが添加された場合に生成しやすくなるフェライトを抑制してフェライトとベイナイトの組織比率を適正化するとともに、生成したフェライトを固溶強化することで伸びフランジ性を向上させる本発明において特に重要な元素である。しかし、Moを1%を超えて含有させても効果が飽和してコストの上昇を招くだけなので1%以下とする。
【0023】
Ni:1%以下
Niは、Moと同様に、フェライトとベイナイトの組織比率を適正化するとともに、フェライトを固溶強化するが、1%を超えて含有させても効果が飽和してコストの上昇を招くだけなので1%以下とする。
【0024】
(P−0.02)/Si>0.01、但し、P、Siは重量%
本パラメータは母材の疲労強度を低下させる鋼板表面の凹凸を抑制するためにP、Siの添加量を規定するもので、本パラメータを満足するようにP、Siを添加したとき、Si添加によりスケールと地鉄界面の凹凸が増大してもたらされる鋼板表面の凹凸が抑制される。
【0025】
Si<3(Mo+Ni)、但し、Si、Mo、Niは重量%
本パラメータは、フェライトを固溶強化しつつ、フェライトとベイナイトの組織比率を適正化するために規定するもので、本パラメータを満足するようにSi、Mo、Niを添加することで組織比率が適正化できる。
【0026】
Ti:0.01〜0.08%
Nb:0.01〜0.05%
V :0.01〜0.1%
Ti,Nb,Vは熱間圧延後のオーステナイトから生成するフェライトを微細化してフェライトとベイナイトの硬度差を小さくし、伸びフランジ性をさらに向上させるため、必要に応じて1種または2種以上を添加する。しかし、Ti、Nb、Vの含有量がそれぞれ0.1%未満では上記の効果が得られず、また、Ti:0.08%超、Nb:0.05%超、V:0.1%超の場合にはこれらの効果が飽和し、コストの上昇を招くだけなので、これらを添加する場合には、Ti:0.01〜0.08%、Nb:0.01〜0.05%、V:0.01〜0.1%の範囲とする。
【0027】
Cu:0.1〜1.0%
Cuは、パーライトの生成を抑制して打抜きせん断部の疲労強度を向上させるとともに、熱間圧延時の巻取り後、コイルが除冷される際にフェライトを析出硬化してベイナイトとフェライトの硬度差を低減することにより伸びフランジ性を向上させる。Cu含有量が0.1%未満ではこの効果が得られず、Cu含有量を1.0%超としても効果が飽和するため、Cu含有量を0.1〜1.0%とする。
【0028】
本発明者らは、Cuの伸びフランジ性に対する影響を調査するため、Cuを0.5%含有させた鋼(引張強度721MPa)およびCuを含有しない鋼(引張強度719MPa)について、穴拡げ試験を行なった。その結果、Cuを含有しない鋼の穴拡げ率が72%であるのに対して、引張強度がほぼ等しくCuを含有する鋼の穴拡げ率は119%であり、Cuを含有させることにより穴拡げ性、すなわち伸びフランジ性が向上することが確認された。
【0029】
2.金属組織
高強度でかつ高伸びフランジ性を有し、延性に優れた熱延鋼板とするためには金属組織の構成が重要であり、高強度と高伸びフランジ性を実現するには、高強度でありながらマルテンサイトよりもフェライトとの硬度差が小さいベイナイトを主相とし、延性を確保するためにフェライトを含有させることが有効である。そして、ベイナイトの体積率を60〜95%とすることにより、高強度で加工性の良好な鋼板を得ることができる。したがって、金属組織をベイナイトおよびフェライトからなるものとし、ベイナイトの体積率を60〜95%とした。
【0030】
3.表面粗さ
鋼板は、高強度化するほど切欠き感受性が高まるが、鋼板表面の凹凸や、スケールと地鉄の界面の凹凸は切欠きと同様な役割となるため、この凹凸の抑制が高疲労強度化には有効である。具体的には、鋼板表面の最大高さRyを20μm以下とすることが、高疲労強度化のためには好ましい。図1に、鋼板表面の最大高さRyと疲労強度比(母材疲労強度/TS)の関係を示す。図1より、鋼板表面の最大高さRyが20μm以下の範囲では、疲労強度比(母材疲労強度/TS)がより高くなっていることがわかる。
【0031】
ここで、表面粗さの好ましい範囲を最大高さRyにより規定したのは、鋼板表面に1箇所でも応力が集中するところがあれば、そこから疲労破壊が生じるためである。図2に、鋼板表面の性状を平均して表した平均粗さRaと疲労強度比(母材疲労強度/TS)の関係を示す。図2より、平均粗さRaが低くても疲労強度比が高くならない場合があることがわかるが、これは平均粗さRaが小さくても最大高さRyが大きいために疲労強度比が高くならなかったものと考えられる。
【0032】
4.製造方法
本発明の熱延鋼板は、鋳造後、圧延終了温度がAr3点以上の仕上圧延を含む熱間圧延を行なった後、500〜600℃まで冷却速度30〜60℃/sで冷却し、その後冷却速度2〜20℃/sで冷却し、300〜475℃で巻き取ることにより製造することができる。
【0033】
熱間圧延において、仕上圧延の圧延終了温度をAr3点以上とするのは、圧延終了温度がAr3点よりも低いと、仕上圧延がフェライトとオーステナイトとの2相組織で終了するため加工フェライトが残り、延性および伸びフランジ性を損なうためである。
【0034】
仕上圧延後、500〜600℃まで冷却速度30〜60℃/sで冷却するのは、オーステナイトから生成するフェライトの体積率を5%超〜40%未満に調整するためである。この冷却速度の範囲での冷却を600℃より高い温度とすると、冷却速度を最大の60℃/sとしても、この後に続く冷却中にフェライトの体積率が40%以上となり前述の金属組織が得られない。また、この冷却速度の範囲での冷却を500℃未満の温度まで行なうと、冷却速度を最小の30℃/sとしても、フェライトの体積率が5%以下となり前述の金属組織が得られない。
【0035】
上記の冷却速度の範囲で冷却を行なった後、冷却速度を2〜20℃/sと緩冷却速度とするのは、残ったオーステナイトから生成するベイナイトの延性または伸びフランジ性を向上させるためであり、冷却速度が20℃/sを超えるとベイナイト内の転位の解放が不十分となるため延性の低いベイナイトとなってしまい、冷却速度が2℃/s未満であるとベイナイト内での炭化物の凝集が進み過ぎて粗大な炭化物が生じて伸びフランジ性を損なうためである。
【0036】
巻取り温度を300〜475℃とするのはベイナイト組織を得るためである。また、巻取り温度が300℃より低いと伸びフランジ性を低下させるマルテンサイトが生じてしまい、475℃より高いとPの偏析が顕著となり延性および伸びフランジ性がともに損なわれてしまう。より一層優れた伸びフランジ性の鋼板を得るためには、巻取り温度を400℃以下とすることが望ましい。
【0037】
【実施例】
表1に示す成分を有する鋼を鋳造後、1180〜1280℃に加熱し、粗圧延した後、表2に示す仕上圧延終了温度FT、第1段目冷却での冷却速度CR1、第1段目冷却の停止温度T1、第2段目冷却での冷却速度CR2、および巻取り温度CTの条件により、仕上熱延した後に冷却して巻取り、板厚3.6mmの熱延鋼板を得た。この熱延鋼板を酸洗した後、JIS5号引張試験片(圧延垂直方向)、穴拡げ試験片、図3(a)に示す母材疲労試験片および図3(b)に示す打抜き穴付き疲労試験片(ともに圧延垂直方向)を採取し、それぞれの試験片を試験に供して特性値を測定した。
【0038】
伸びフランジ性を評価する穴拡げ試験は、130角の鋼板の中央に10mmφのポンチによりクリアランス12.5%で打抜いた穴を有する試験片を準備し、その穴を60°円錐ポンチにより打抜き穴のバリ側と反対方向から押し上げる方法とした。より客観的な測定を行なうため、穴拡げ試験での亀裂判定には、試験中のサーモグラフィーを用い、亀裂発生時の温度下降が始まる瞬間を亀裂発生とみなし、その時の穴拡げ率λ(=[(亀裂発生時の穴径−初期穴径)/初期穴径]×100)を求める方法とした。
【0039】
図3(a)および(b)は母材および打抜き穴付き疲労試験片の形状を示す図面である。打抜き穴付き疲労試験片の打抜き穴は、10mmφのポンチによりクリアランス15%で打抜いて形成した。これらの試験片を片振り引張疲労試験に供し、107回繰り返し負荷しても未破断となる最大の応力を疲労強度とした。
【0040】
これらの試験で得られた値を表3に示す。また、表3には母材疲労強度について疲労強度比(疲労強度/引張り試験)を併せて示す。さらに、表3には、延性についてはTS×Elが12000以上を良好(評価○)12000未満を不良(評価×)と評価し、伸びフランジ性については穴拡げ率100以上を良好(評価○)100未満を不良(評価×)と評価し、母材疲労強度については疲労強度比が0.70以上を良好(評価○)0.70未満を不良(評価×)と評価し、打抜きせん断部疲労強度については穴疲労強度が190以上を良好(評価○)190未満を不良(評価×)と評価した結果をそれぞれ併せて示す。
【0041】
表3より、本発明に係る鋼組成および製造条件のNo.1〜5,10〜16,21〜44では、延性、伸びフランジ性、母材疲労強度、および打抜きせん断部疲労強度のいずれにも優れており、自動車の足廻り部材等の材料として好適な特性を有する熱延鋼板が得られていることがわかる。これに対して、製造条件が本発明の範囲から外れるNo.6〜9,17〜20、および鋼組成が本発明の範囲から外れるNo.45〜52の条件で得られる熱延鋼板は、いずれかの特性が劣っている。
【0042】
【表1】
【0043】
【表2】
【0044】
【表3】
【0045】
【発明の効果】
以上のように、本発明によれば、加工性、特に伸びフランジ性に優れ、かつ、母材および打抜きせん断部の疲労特性に優れた高強度熱延鋼板およびその製造方法を提供することができる。本発明により提供される熱延鋼板は、特に、厳しい伸びフランジ性の要求される自動車用足廻り部品の材料として、極めて有用である。
【図面の簡単な説明】
【図1】熱延鋼板の鋼板表面最大高さRyと疲労強度比(母材疲労強度/TS)の関係を示すグラフ。
【図2】熱延鋼板の鋼板表面平均粗さRaと疲労強度比(母材疲労強度/TS)の関係を示すグラフ。
【図3】(a)母材疲労試験片の概略図。
(b)打抜き穴付き疲労試験片の概略図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-strength hot-rolled steel sheet that is suitable for a material for an underbody member for automobiles and has excellent workability and fatigue properties, and a method for producing the same.
[0002]
[Prior art]
From the viewpoint of improving the safety of automobiles and improving fuel efficiency leading to environmental conservation, there is a strong demand for hot-rolled steel sheets for automobiles with high strength and thinness. In particular, weight reduction of wheels and suspension members is an extremely effective means for improving the fuel efficiency of automobiles. Therefore, increasing the strength of steel sheets for automobiles for the purpose of reducing the weight of these members has been studied. The characteristics required for steel plates used for wheels and undercarriage members are diverse, and workability, especially stretch flangeability, as well as fatigue strength characteristics of the base metal and punched sheared parts are important because it is used for safety strength members. . For this reason, studies on high-strength hot-rolled steel sheets having both workability and fatigue characteristics have been conducted.
[0003]
For example, Japanese Patent Application Laid-Open No. 9-31534 proposes a ferrite-martensitic composite steel sheet that is made low by adding low Si, Ti, and a small amount of Nb. In the technology disclosed in this publication, the surface properties are improved by using low Si, the base metal fatigue strength is secured by adding Ti, and ductility and stretch flange are added by adding low N, Ti, and a small amount of Nb. It is trying to secure ductility and fatigue strength of the punched sheared part by securing the property and generating martensite. However, with recent suspension members, the cross-sectional shape at the time of pressing has become more complex to compensate for the reduction in rigidity accompanying thinning, and the stretch flangeability required for steel sheets has become increasingly severe. It has become a thing. For this reason, in a steel sheet with a mixed structure containing extremely hard martensite, the hardness difference between ferrite and martensite is large, so voids are likely to occur at the boundary between ferrite and martensite when subjected to severe stretch flange processing. The required stretch flangeability cannot be satisfied.
[0004]
Further, in JP-A-9-137249, Ti and Nb are added so as to satisfy a predetermined relationship with C, and the metal structure has ferrite as a main phase and bainite having a predetermined area ratio and martensite having a predetermined area ratio. Alternatively, a steel sheet having a mixed structure composed of retained austenite, a steel sheet surface roughness Ra of 1.5 μm or less, and a ferrite particle diameter of 5 μm or less on the steel sheet surface has been proposed. In the technique disclosed in this publication, Ti and Nb added so as to satisfy a predetermined relationship with C are precipitated as carbides in the ferrite to ensure workability and base metal fatigue strength, and the metal structure is mixed with the above mixed structure. By doing this, ductility and stretch flangeability are ensured, and further, it is attempted to secure the base material fatigue strength by defining the surface roughness and the ferrite grain size of the steel sheet surface layer. However, even in this technique, since martensite is present in the steel sheet, the required stretch flangeability cannot be satisfied. In addition, even when a mixed structure containing retained austenite is used, retained austenite transforms into martensite during stretch flange processing, so that it satisfies the required stretch flangeability as in the case of a mixed structure containing martensite from the beginning. Not be able to.
[0005]
[Problems to be solved by the invention]
As described above, the conventional technology is excellent in workability, meets the demands of strict stretch flangeability required for the materials of recent wheels and suspension members, and is excellent in fatigue characteristics of the base material and punched shear part. It is difficult to provide a high strength hot rolled steel sheet.
[0006]
The present invention has been made in view of such circumstances, and provides a high-strength hot-rolled steel sheet having excellent workability, particularly stretch flangeability, and excellent fatigue characteristics of a base material and a punched shear portion, and a method for producing the same. The purpose is to do.
[0007]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have obtained the following findings (1) to (4).
(1) In order to improve stretch flangeability without impairing ductility with high strength, the C content is lowered as much as possible, the main phase is made a bainite structure, and a solid solution strengthened or precipitation strengthened ferrite structure is contained in an appropriate volume ratio. To be effective.
(2) Strength and stretch flangeability can be further improved by adding Cu in addition to the low C of (1).
(3) In order to improve the base metal fatigue strength, it is effective to contain P so that P and Si satisfy a predetermined relationship.
(4) In order to improve the fatigue strength of the punched shear surface, it is effective to avoid pearlite or coarse carbides.
[0008]
The reason for (1) above is that it is effective to use bainite as the main phase in order to obtain high strength. Further, by lowering C, the hardness of bainite is reduced, the ductility of bainite is improved, and This is because stretch flangeability can be improved by reducing the difference in hardness from the melt strengthened ferrite. The reason for the above (2) is not necessarily clear, but it is thought that by adding Cu, Cu precipitates in the cooling process after hot rolling and strengthens ferrite and improves stretch flangeability. It is done. The reason for the above (3) is that when Si is added to enhance the ductility and stretch flangeability without damaging, the irregularities on the steel sheet surface increase as the irregularities increase at the interface between the scale and the steel. When the stress concentrates in the concave portion, the base metal fatigue strength decreases. However, by incorporating P so as to satisfy a predetermined relationship with Si, the unevenness can be reduced, and the base metal fatigue strength is reduced. This is because it can be prevented. The reason for the above (4) is that when pearlite or coarse carbide is present, voids are generated around cementite and coarse carbide in extremely hard pearlite during punching shearing. This is because stress concentrates and fatigue strength decreases.
[0009]
This invention is made | formed based on the said knowledge, Comprising: The following (1)-(5) is provided.
(1) In mass %,
C: 0.02 to 0.05%,
Si: 0.3 to 1.5%,
Mn: 1.3 to 2.3%
P: 0.1% or less,
S: less than 0.001%,
Cr: 0.05 to 0.7%,
Mo: 1% or less,
Ni: 1% or less, satisfying the relationship of (P−0.02) / Si> 0.01 and Si <3 (Mo + Ni), the balance being Fe and inevitable impurities, and the metal structure being bainite and ferrite A high-strength hot-rolled steel sheet excellent in workability and fatigue characteristics, characterized in that the bainite volume fraction is 60 to 95%.
[0010]
(2) In the hot-rolled steel sheet according to (1), further, in mass %,
Ti: 0.01 to 0.08%,
Nb: 0.01-0.05%
V: 0.01 to 0.1%
A high-strength hot-rolled steel sheet excellent in workability and fatigue characteristics, characterized by containing one or more of them.
[0011]
(3) In the hot-rolled steel sheet according to (1) or (2), further, in mass %,
Cu: 0.1 to 1.0%
A high-strength hot-rolled steel sheet with excellent workability and fatigue characteristics characterized by containing
[0012]
(4) In the hot-rolled steel sheet according to any one of (1) to (3), the maximum height Ry of the steel sheet surface is 20 μm or less, and excellent workability and fatigue characteristics are provided. High strength hot rolled steel sheet.
[0013]
(5) In producing the hot-rolled steel sheet according to any one of (1) to (4), after casting, after performing hot rolling including finish rolling with a rolling end temperature of Ar 3 or more, Excellent workability and fatigue characteristics, characterized by cooling to 500-600 ° C at a cooling rate of 30-60 ° C / s, then cooling at a cooling rate of 2-20 ° C / s, and winding at 300-475 ° C Manufacturing method of high-strength hot-rolled steel sheet.
[0014]
In the present invention, bainite and ferrite refer to a structure or phase excluding martensite and retained austenite. More specifically, bainite includes granular bainitic ferrite and bainitic ferrite. Refers to polygonal ferrite and pseudopolygonal ferrite.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be specifically described.
1. Steel composition The hot-rolled steel sheet of the present invention is in mass %, C: 0.02 to 0.05%, Si: 0.3 to 1.5%, Mn: 1.3 to 2.3%, P: 0. 0.1% or less, S: less than 0.001%, Cr: 0.05 to 0.7%, Mo: 1% or less, Ni: 1% or less, and (P-0.02) / Si > 0.01 and Si <3 (Mo + Ni), which consists of the remainder Fe and inevitable impurities, and if necessary, Ti: 0.01 to 0.08%, Nb: 0.01 to 0.00. 05%, V: contains one or more of 0.01 to 0.1%. These components will be specifically described.
[0016]
C: 0.02-0.05%
C has an effect of strengthening steel by forming bainite. However, when the C content exceeds 0.05%, the bainite is hardened and the ductility is lowered, and the hardness difference between ferrite and bainite is increased and the stretch flangeability is impaired. On the other hand, when the C content is less than 0.02%, sufficient bainite is not generated to ensure the strength of the steel sheet. For this reason, C content shall be 0.02-0.05%.
[0017]
Si: 0.3 to 1.5%
Si enhances the strength of the ferrite by solid-solution strengthening and suppresses the decrease in ductility, and improves the stretch flangeability by reducing the hardness difference between bainite and ferrite. However, if the Si content exceeds 1.5%, the ferrite volume becomes too high and deviates from the structure ratio for obtaining high strength and high stretch flangeability, and even if P is contained in the range described later. Unevenness at the scale-base metal interface cannot be reduced. On the other hand, if the Si content is less than 0.3%, the solid solution strengthening necessary for obtaining sufficient stretch flangeability cannot be obtained. For this reason, Si content shall be 0.3 to 1.5%.
[0018]
Mn: 1.3 to 2.3%
Mn has an effect of strengthening steel. However, if the content exceeds 2.3%, segregation occurs during casting, and the structure of bainite and ferrite after hot rolling becomes non-uniform in a band shape, thereby reducing workability. Further, at least 1.3% is necessary to ensure the strength. For this reason, Mn content shall be 1.3 to 2.3%.
[0019]
P: 0.1% or less P increases the range of the amount of Si that can be added without increasing the unevenness of the interface between the scale and the base iron, which affects the fatigue strength of the base metal. It is an important element that increases the strength by solid solution strengthening and decreases the hardness difference between ferrite and bainite and improves stretch flangeability. However, if the P content exceeds 0.1%, cracking occurs during hot rolling, so the P content is 0.1% or less.
[0020]
S: Less than 0.001% It is important to keep S low in order to improve stretch flangeability. In order to reduce sulfides as much as possible and avoid voids generated during stretch flange processing, the S content is limited. Less than 0.001%.
[0021]
Cr: 0.05-0.7%
Cr suppresses the production | generation of the pearlite which reduces workability deterioration and the fatigue strength of a punching shear part. However, if the Cr content exceeds 0.7%, martensite is generated and stretch flangeability is extremely lowered. On the other hand, if the Cr content is less than 0.05%, the effect of suppressing the formation of pearlite and improving stretch flangeability is not sufficient. For this reason, the Cr content is set to 0.05 to 0.7%. In order to obtain a further excellent fatigue strength and stretch flangeability of the punched shear portion, the Cr content is desirably 0.2% or more.
[0022]
Mo: 1% or less Mo suppresses ferrite that is easily formed when Si and P are added, optimizes the structure ratio of ferrite and bainite, and strengthens the generated ferrite by solid solution strengthening to expand flange It is an especially important element in the present invention for improving the properties. However, even if Mo is contained in excess of 1%, the effect is saturated and the cost is increased.
[0023]
Ni: 1% or less Ni, as well as Mo, optimizes the structure ratio of ferrite and bainite and strengthens the solid solution of ferrite, but the effect is saturated and the cost rises even if it exceeds 1%. Is less than 1%.
[0024]
(P-0.02) / Si> 0.01, where P and Si are weight%
This parameter defines the amount of P and Si added to suppress unevenness on the surface of the steel sheet, which reduces the fatigue strength of the base metal. When P and Si are added to satisfy this parameter, Unevenness on the surface of the steel sheet caused by an increase in the unevenness of the scale-base metal interface is suppressed.
[0025]
Si <3 (Mo + Ni), where Si, Mo, Ni are weight%
This parameter is specified in order to optimize the structure ratio of ferrite and bainite while solidifying and strengthening ferrite. The structure ratio is appropriate by adding Si, Mo and Ni to satisfy this parameter. Can be
[0026]
Ti: 0.01 to 0.08%
Nb: 0.01 to 0.05%
V: 0.01 to 0.1%
Ti, Nb, and V are used to refine ferrite produced from austenite after hot rolling to reduce the hardness difference between ferrite and bainite, and to further improve stretch flangeability. Added. However, when the contents of Ti, Nb, and V are each less than 0.1%, the above effects cannot be obtained, and Ti: more than 0.08%, Nb: more than 0.05%, V: 0.1% In the case of exceeding, these effects are saturated and only increase the cost. Therefore, when adding these, Ti: 0.01 to 0.08%, Nb: 0.01 to 0.05%, V: The range is 0.01 to 0.1%.
[0027]
Cu: 0.1 to 1.0%
Cu suppresses the formation of pearlite to improve the fatigue strength of the punched sheared part, and after winding during hot rolling, when the coil is cooled down, the ferrite is precipitated and hardened, resulting in a hardness difference between bainite and ferrite. Stretch flangeability is improved by reducing. If the Cu content is less than 0.1%, this effect cannot be obtained, and even if the Cu content exceeds 1.0%, the effect is saturated, so the Cu content is set to 0.1 to 1.0%.
[0028]
In order to investigate the influence of Cu on stretch flangeability, the present inventors conducted a hole expansion test on steel containing 0.5% Cu (tensile strength 721 MPa) and steel not containing Cu (tensile strength 719 MPa). I did it. As a result, the hole expansion ratio of steel containing no Cu is 72%, whereas the steel sheet containing Cu is almost equal in tensile strength is 119%. It was confirmed that the property, that is, the stretch flangeability is improved.
[0029]
2. The structure of the metal structure is important in order to obtain a hot-rolled steel sheet with high strength and high stretch flangeability and excellent ductility. To achieve high strength and high stretch flangeability, high strength is required. However, it is effective to contain bainite having a smaller hardness difference from ferrite than martensite as the main phase and to contain ferrite in order to ensure ductility. And the steel plate with high intensity | strength and favorable workability can be obtained by the volume ratio of bainite being 60 to 95%. Therefore, the metal structure is made of bainite and ferrite, and the volume fraction of bainite is 60 to 95%.
[0030]
3. The surface roughness of steel sheets increases the notch sensitivity as the strength increases, but the unevenness on the surface of the steel sheet and the unevenness at the interface between the scale and the ground iron play the same role as the notch, so suppressing this unevenness increases fatigue. It is effective for strengthening. Specifically, the maximum height Ry of the steel sheet surface is preferably 20 μm or less in order to increase the fatigue strength. FIG. 1 shows the relationship between the maximum height Ry of the steel sheet surface and the fatigue strength ratio (base material fatigue strength / TS). FIG. 1 shows that the fatigue strength ratio (base material fatigue strength / TS) is higher when the maximum height Ry of the steel sheet surface is 20 μm or less.
[0031]
Here, the reason why the preferable range of the surface roughness is defined by the maximum height Ry is that if there is a place where stress is concentrated even at one place on the surface of the steel sheet, fatigue fracture occurs from there. FIG. 2 shows the relationship between the average roughness Ra expressed by averaging the properties of the steel sheet surface and the fatigue strength ratio (base material fatigue strength / TS). FIG. 2 shows that the fatigue strength ratio may not increase even when the average roughness Ra is low. This is because the maximum height Ry is large even if the average roughness Ra is small, and the fatigue strength ratio is high. It is thought that there was not.
[0032]
4). Manufacturing method The hot-rolled steel sheet of the present invention is subjected to hot rolling including finish rolling at a rolling end temperature of Ar 3 or higher after casting, and then cooled to 500 to 600 ° C at a cooling rate of 30 to 60 ° C / s. Then, it can be manufactured by cooling at a cooling rate of 2 to 20 ° C./s and winding up at 300 to 475 ° C.
[0033]
In hot rolling, the finish rolling temperature of finish rolling is set to Ar 3 points or higher because if the rolling finish temperature is lower than Ar 3 points, finish rolling ends with a two-phase structure of ferrite and austenite. This is because of remaining and impairing ductility and stretch flangeability.
[0034]
The reason for cooling to 500 to 600 ° C. at a cooling rate of 30 to 60 ° C./s after finish rolling is to adjust the volume fraction of ferrite produced from austenite to more than 5% to less than 40%. When cooling in the range of the cooling rate is higher than 600 ° C., the volume ratio of ferrite becomes 40% or more during the subsequent cooling even when the maximum cooling rate is 60 ° C./s, and the above-described metal structure is obtained. I can't. Further, when the cooling within the range of the cooling rate is performed to a temperature of less than 500 ° C., the volume ratio of ferrite becomes 5% or less and the above-described metal structure cannot be obtained even when the cooling rate is set to the minimum of 30 ° C./s.
[0035]
The reason why the cooling rate is a slow cooling rate of 2 to 20 ° C./s after cooling in the above cooling rate range is to improve the ductility or stretch flangeability of bainite produced from the remaining austenite. When the cooling rate exceeds 20 ° C./s, dislocations in the bainite are insufficiently released, resulting in bainite having a low ductility. When the cooling rate is less than 2 ° C./s, agglomeration of carbides in the bainite. This is because the coarse carbides are generated due to excessive progress and the stretch flangeability is impaired.
[0036]
The reason for setting the coiling temperature to 300 to 475 ° C. is to obtain a bainite structure. Further, if the coiling temperature is lower than 300 ° C., martensite that lowers the stretch flangeability is generated, and if it is higher than 475 ° C., segregation of P becomes remarkable, and both ductility and stretch flangeability are impaired. In order to obtain a further excellent stretch flangeable steel sheet, it is desirable that the coiling temperature be 400 ° C. or lower.
[0037]
【Example】
After casting the steel having the components shown in Table 1, after heating to 1180-1280 ° C. and rough rolling, finish rolling finish temperature FT shown in Table 2, cooling rate CR1 in the first stage cooling, first stage According to the conditions of the cooling stop temperature T1, the cooling rate CR2 in the second stage cooling, and the coiling temperature CT, the hot rolled steel was finished and then cooled and wound to obtain a hot rolled steel sheet having a thickness of 3.6 mm. After pickling the hot-rolled steel sheet, a JIS No. 5 tensile test piece (in the vertical direction of rolling), a hole expansion test piece, a base material fatigue test piece shown in FIG. 3A and fatigue with a punched hole shown in FIG. Specimens (both in the vertical direction of rolling) were collected, and each specimen was subjected to a test to measure a characteristic value.
[0038]
In the hole expansion test to evaluate stretch flangeability, a test piece having a hole punched with a clearance of 12.5% by a 10 mmφ punch at the center of a 130-square steel plate was prepared, and the hole was punched by a 60 ° conical punch. The method was to push up from the opposite side of the burr side. In order to perform a more objective measurement, for the crack determination in the hole expansion test, the thermography during the test is used, the moment when the temperature starts to decrease at the time of crack generation is regarded as crack generation, and the hole expansion ratio λ (= [ (Hole diameter at the time of crack occurrence−initial hole diameter) / initial hole diameter] × 100).
[0039]
3A and 3B are drawings showing the shapes of the base material and the fatigue test piece with punched holes. The punched hole of the fatigue test piece with a punched hole was formed by punching with a clearance of 15% using a 10 mmφ punch. These test pieces were subjected to a unidirectional tensile fatigue test, and the maximum stress that would not break even after repeated
[0040]
Table 3 shows the values obtained in these tests. Table 3 also shows the fatigue strength ratio (fatigue strength / tensile test) for the base material fatigue strength. Furthermore, in Table 3, TS × El of 12000 or more is good (evaluation ○) for ductility, and less than 12000 is evaluated as bad (evaluation ×), and the hole expansion rate is 100 or more for evaluation of stretch flangeability (evaluation ○). Less than 100 is evaluated as defective (evaluation x), and the fatigue strength ratio of the base metal fatigue strength is 0.70 or more as good (evaluation ○), and less than 0.70 is evaluated as defective (evaluation x). As for the strength, the results of evaluation of hole fatigue strength of 190 or more as good (evaluation o) and evaluation of less than 190 as poor (evaluation x) are also shown.
[0041]
From Table 3, No. of steel composition and manufacturing conditions according to the present invention. 1-5, 10-16, 21-44 are excellent in all of ductility, stretch flangeability, base metal fatigue strength, and punched shear fatigue strength, and are suitable characteristics as materials for automobile suspension members and the like. It turns out that the hot-rolled steel plate which has this is obtained. On the other hand, the manufacturing conditions deviate from the scope of the present invention. Nos. 6-9, 17-20, and steel compositions deviating from the scope of the present invention. The hot rolled steel sheet obtained under the conditions of 45 to 52 is inferior in any of the characteristics.
[0042]
[Table 1]
[0043]
[Table 2]
[0044]
[Table 3]
[0045]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a high-strength hot-rolled steel sheet excellent in workability, particularly stretch flangeability, and excellent in fatigue characteristics of a base material and a punched shear portion, and a method for producing the same. . The hot-rolled steel sheet provided by the present invention is extremely useful as a material for automobile undercarriage parts that are required to have severe stretch flangeability.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the maximum steel surface height Ry and the fatigue strength ratio (base metal fatigue strength / TS) of a hot-rolled steel plate.
FIG. 2 is a graph showing the relationship between the steel sheet surface average roughness Ra and the fatigue strength ratio (base material fatigue strength / TS) of a hot-rolled steel plate.
FIG. 3A is a schematic view of a base metal fatigue test piece.
(B) Schematic of fatigue test piece with punched holes.
Claims (5)
C :0.02〜0.05%、
Si:0.3〜1.5%、
Mn:1.3〜2.3%、
P :0.1%以下、
S :0.001%未満、
Cr:0.05〜0.7%、
Mo:1%以下、
Ni:1%以下
を含有し、(P−0.02)/Si>0.01およびSi<3(Mo+Ni)の関係を満たし、残部Feおよび不可避不純物からなり、金属組織がベイナイトおよびフェライトからなり、ベイナイト体積率が60〜95%であることを特徴とする加工性と疲労特性に優れた高強度熱延鋼板。% By mass
C: 0.02 to 0.05%,
Si: 0.3 to 1.5%,
Mn: 1.3 to 2.3%
P: 0.1% or less,
S: less than 0.001%,
Cr: 0.05 to 0.7%,
Mo: 1% or less,
Ni: 1% or less, satisfying the relationship of (P−0.02) / Si> 0.01 and Si <3 (Mo + Ni), the balance being Fe and inevitable impurities, and the metal structure being bainite and ferrite A high-strength hot-rolled steel sheet excellent in workability and fatigue characteristics, characterized in that the bainite volume fraction is 60 to 95%.
Ti:0.01〜0.08%、
Nb:0.01〜0.05%、
V :0.01〜0.1%
のうち1種または2種以上を含むことを特徴とする請求項1に記載の加工性と疲労特性に優れた高強度熱延鋼板。Furthermore, in mass %,
Ti: 0.01 to 0.08%,
Nb: 0.01-0.05%
V: 0.01 to 0.1%
The high-strength hot-rolled steel sheet having excellent workability and fatigue characteristics according to claim 1, wherein one or more of them are included.
Cu:0.1〜1.0%、
を含むことを特徴とする請求項1または請求項2に記載の加工性と疲労特性に優れた高強度熱延鋼板。Furthermore, in mass %,
Cu: 0.1 to 1.0%
The high-strength hot-rolled steel sheet having excellent workability and fatigue characteristics according to claim 1 or 2, characterized by comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000008316A JP4258934B2 (en) | 2000-01-17 | 2000-01-17 | High-strength hot-rolled steel sheet excellent in workability and fatigue characteristics and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000008316A JP4258934B2 (en) | 2000-01-17 | 2000-01-17 | High-strength hot-rolled steel sheet excellent in workability and fatigue characteristics and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001200331A JP2001200331A (en) | 2001-07-24 |
JP4258934B2 true JP4258934B2 (en) | 2009-04-30 |
Family
ID=18536608
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000008316A Expired - Fee Related JP4258934B2 (en) | 2000-01-17 | 2000-01-17 | High-strength hot-rolled steel sheet excellent in workability and fatigue characteristics and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4258934B2 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090018167A (en) | 2006-07-14 | 2009-02-19 | 신닛뽄세이테쯔 카부시키카이샤 | High-strength steel sheet excellent in stretch flangeability and fatigue property |
JP4955496B2 (en) * | 2007-09-28 | 2012-06-20 | 株式会社神戸製鋼所 | High-strength hot-rolled steel sheet with excellent fatigue characteristics and stretch flangeability |
JP4431185B2 (en) | 2008-06-13 | 2010-03-10 | 新日本製鐵株式会社 | High-strength steel sheet with excellent stretch flangeability and fatigue characteristics and method for producing the molten steel |
CN102892910B (en) | 2010-05-10 | 2016-11-16 | 新日铁住金株式会社 | High-strength steel sheet and manufacture method thereof |
ES2701022T3 (en) | 2011-02-24 | 2019-02-20 | Nippon Steel & Sumitomo Metal Corp | High-strength steel sheet with superior contouring of the flange by stretching and superior folding, and steel preparation procedure in ingots |
WO2016005780A1 (en) | 2014-07-11 | 2016-01-14 | Arcelormittal Investigación Y Desarrollo Sl | Hot-rolled steel sheet and associated manufacturing method |
BR112017016799A2 (en) * | 2015-02-20 | 2018-04-03 | Nippon Steel & Sumitomo Metal Corporation | Hot-rolled steel product |
WO2016132549A1 (en) | 2015-02-20 | 2016-08-25 | 新日鐵住金株式会社 | Hot-rolled steel sheet |
WO2016132542A1 (en) | 2015-02-20 | 2016-08-25 | 新日鐵住金株式会社 | Hot-rolled steel sheet |
ES2769224T3 (en) | 2015-02-25 | 2020-06-25 | Nippon Steel Corp | Hot rolled steel sheet |
WO2016135898A1 (en) * | 2015-02-25 | 2016-09-01 | 新日鐵住金株式会社 | Hot-rolled steel sheet or plate |
JP6358406B2 (en) | 2016-08-05 | 2018-07-18 | 新日鐵住金株式会社 | Steel plate and plated steel plate |
BR112019000766B8 (en) | 2016-08-05 | 2023-03-14 | Nippon Steel & Sumitomo Metal Corp | STEEL SHEET |
-
2000
- 2000-01-17 JP JP2000008316A patent/JP4258934B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001200331A (en) | 2001-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2527571C1 (en) | High-strength cold-rolled sheet steel and method of its production | |
JP3888333B2 (en) | High-strength steel and manufacturing method thereof | |
WO2020090303A1 (en) | High-strength steel sheet and manufacturing method therefor | |
WO2010131303A1 (en) | Hot rolled steel sheet having excellent punching workability and fatigue properties, hot dip galvanized steel sheet, and method for producing the same | |
JP6950835B2 (en) | Manufacturing method of high-strength member, high-strength member and steel plate for high-strength member | |
EP1990430B1 (en) | High-strength hot rolled steel plate and manufacturing method thereof | |
WO2007116599A1 (en) | Steel plate having excellent fine blanking processability and method for manufacture thereof | |
JP4712838B2 (en) | High strength cold-rolled steel sheet with excellent hydrogen embrittlement resistance and workability | |
JP4258934B2 (en) | High-strength hot-rolled steel sheet excellent in workability and fatigue characteristics and method for producing the same | |
WO2013161090A1 (en) | High-strength hot-rolled steel plate with good ductility, stretch flangeability and material quality uniformity, and process for manufacturing same | |
JP4472015B2 (en) | High strength low specific gravity steel plate excellent in ductility and method for producing the same | |
WO2015146174A1 (en) | High-carbon hot-rolled steel sheet and method for producing same | |
JP2001020039A (en) | High strength hot rolled steel sheet excellent in stretch flanging property and fatigue characteristic and its production | |
JP6417977B2 (en) | Steel plate blank | |
JP6958752B2 (en) | Steel sheets, members and their manufacturing methods | |
JP4299774B2 (en) | High strength low specific gravity steel sheet with excellent ductility and fatigue characteristics and method for producing the same | |
JP4905031B2 (en) | Steel plate excellent in fine blanking workability and manufacturing method thereof | |
JP6519011B2 (en) | Hot rolled steel sheet and method of manufacturing the same | |
JP6205911B2 (en) | Steel plate blank, laser cutting steel plate and laser cutting steel plate manufacturing method | |
JP3539545B2 (en) | High-tensile steel sheet excellent in burring property and method for producing the same | |
JP3601387B2 (en) | High-strength hot-rolled steel sheet excellent in workability and fatigue characteristics and method for producing the same | |
JP5316025B2 (en) | Die quench steel plate with excellent hot punchability | |
JP3451820B2 (en) | Hot rolled steel sheet with excellent notch fatigue resistance and method for producing the same | |
CN116368253A (en) | High-strength steel sheet excellent in heat stability and method for producing same | |
JP2010174293A (en) | Steel sheet to be die-quenched superior in hot-punchability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061124 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080813 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080909 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081107 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090120 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090202 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120220 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4258934 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120220 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130220 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130220 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |