JPS6354765B2 - - Google Patents

Info

Publication number
JPS6354765B2
JPS6354765B2 JP10618483A JP10618483A JPS6354765B2 JP S6354765 B2 JPS6354765 B2 JP S6354765B2 JP 10618483 A JP10618483 A JP 10618483A JP 10618483 A JP10618483 A JP 10618483A JP S6354765 B2 JPS6354765 B2 JP S6354765B2
Authority
JP
Japan
Prior art keywords
temperature
transformation point
steel
quenching
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10618483A
Other languages
Japanese (ja)
Other versions
JPS59232220A (en
Inventor
Teruo Kaneko
Akio Ikeda
Terutaka Tsumura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP10618483A priority Critical patent/JPS59232220A/en
Publication of JPS59232220A publication Critical patent/JPS59232220A/en
Publication of JPS6354765B2 publication Critical patent/JPS6354765B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、油井或いはガス井用鋼管材として
好適な、特に、いわゆるサワー油井やサワーガス
井に適用して優れた効果を発揮するところの、硫
化物腐食割れ(以下、SSCCと略称する)に対し
て高い抵抗性を有する高強度鋼の製造方法に関す
るものである。 SSCCはは、前記サワー油井やサワーガス井等
の硫化水素を含む湿潤な環境(サワー環境)下で
使用される鋼材に応力が作用して生ずる現象であ
り、一般に、材料硬度(例えば降伏強度)が高く
なるほど耐SSCC性は劣化することが知られてい
て、高強度材では極く小さな応力が作用しても割
れを生ずることが確認されている。 そして、従来からの多くの研究や実際の経験か
ら、鋼材のSSCCを防止するには、その強度をロ
ツクウエルCスケール硬度(HRC)で20〜22程
度以下に規制するのが有効であるとされており、
従つてサワー環境に適用される鋼材は、通常、前
記硬度に対応した70Kgf/mm2以下の降伏強度のも
のに制限されざるを得なかつた。 しかしながら、近年のエネルギー事情は地層深
層部の油田、ガス田にまで開発の手を伸ばすこと
を要求するようになつてきており、油井やガス井
の深さ増大から、これらに使用する油井管等の鋼
材強度の上昇が切実に叫ばれているのが現状であ
つた。 そこでこれらの要求に応えるため、Ti―B添
加鋼を急速加熱後焼入れし、更に焼もどすことに
よつて高強度と優れた耐SSCC性を兼ね備えた鋼
の製造方法(特開昭52−52114号公報)や、Cr―
Mo添加鋼を急速加熱後焼入れし、更に焼もどす
ことによつて高強度と優れた耐SSCC性を兼ね備
えた鋼の製造方法(特開昭54−119324号公報)等
も提案されたが、いずれも高強度化に限界があり
(サワー環境下では、降伏強度を75Kgf/mm2より
も小さくしないとSSCCを生ずる)、しかも割れ
限界応力比が75%未満にしか達しないものであつ
た、ここで「割れ限界比」とは、サワー環境下で
SSCCを発生しない最高応力と材料の降伏強度と
の比を百分率で表わしたものである。 本発明者等は、上述のような観点から、降伏強
度で75Kgf/mm2以上の強度を有するとともに、割
れ限界比が90%以上という、極めて高い強度を有
する上に耐SSCC性にも優れた、従来不可能とさ
れていた高強度鋼をコスト安く製造すべく長年に
わたつて研究を重ねた結果、 (a) P及びSの含有量を特定の値に抑えて粒界偏
析や介在物を減少させたC―Mn―Cr―Mo系
の鋼を、2度にわたつて繰返し焼入れ処理した
後、焼もどしすると、Cr及びMoによる強度上
昇作用、低P及び低Sによる耐食性向上効果、
繰返し焼入れによる偏析元素の分散化と組織の
均一化作用、同じく繰返し焼入れによる介在物
の球状化作用、焼戻しによるマルテンサイトの
内部応力除去作用、セメンタイトの球状化作用
及び耐食性向上作用等が相互に絡み合つて、降
伏強度:75Kgf/mm2以上の高強度を有するとと
もに、90%以上の割れ限界応力比をも有する極
めて優れた耐SSCC鋼材が得られること、 (b) 前記繰返し焼入れの際、第1回目の焼入れの
後にも焼もどしを行うと、第1回目の焼入れに
よる歪が十分に除去されて置き割れが防止され
る上、第2回目の焼入れ効果が一層向上し、よ
り均一な組織を有する耐SSCC性に一段と優れ
た鋼材が得られること、 を知見するに至り、更に実験・検討を繰返した
ところ、 (c) 前記繰返し焼入れの際、第2回目の焼入れ時
の加熱を高周波誘導加熱等によつて、Ac1変態
点〜Ac3変態点までの温度範囲の平均昇温速
度:10〜50℃/secの条件にすると、鋼材の結
晶粒が更に微細化し、より優れた耐SSCC性能
を付与できる、 ことを確認したのである。 この発明は、上記知見に基づいてなされたもの
であり、 C:0.15〜0.40%(以下、成分組成割合を示す
%は重量%とする)、 Si:0.1〜1.0%、Mn:0.3〜1.0%、 Cr:0.1〜1.5%、Mo:0.1〜1.0%、 Al:0.01〜0.10%、P:0.015%以下、 S:0.005以下、 N:0.003〜0.015%、 を含有するとともに、必要に応じて更に、 Nb:0.01〜0.10%、V:0.01〜0.10%、 Ti:0.005〜0.050%、 B:0.0001〜0.0050%、 Ca:0.0005〜0.0100%、 Cu:0.1〜0.5%、 の1種以上をも含み、 Fe及びその他の不可避不純物:残り、 から成る成分組成の鋼を、Ac3変態点以上結晶粒
粗大化開始温度未満の温度域から焼入れし、必要
に応じて〔Ac1変態点―50℃〕以下の温度で焼戻
した後、再びAc3変態点以上結晶粒粗大化開始温
度未満の温度域にまで加熱し、該温度域から再度
焼入れして、その後Ac1変態点以下の温度で焼戻
すことにより、降伏強度:75Kgf/mm2以上の強度
を有し、割れ限界比が90%以上という優れた耐
SSCC性を備えた高強度鋼を得る点に特徴を有す
るものである。 次に、この発明において、鋼の化学成分組成及
び熱処理条件を前記のように限定した理由を説明
する。 A 鋼の化学成分組成 a○ C C成分には、鋼の強度を確保する作用のほか、
焼入れ性や焼戻し抵抗性を向上することにより均
一焼入れ組織化、高温焼戻し均一組織化を促進し
て耐SSCC性を向上する作用をも有しているが、
その含有量が0.15%未満では前記作用に所望の効
果が得られず、他方0.40%を越えて含有させると
熱処理時の焼割れ発生、或いは靭性劣化を来たす
こととなるので、C含有量を0.15〜0.40%と定め
た。 b○ Si Si成分には、鋼の脱酸剤としての作用のほか、
鋼材強度を向上する作用があるので0.1%以上の
添加を必要とするものであるが、1.0%を越えて
含有させると靭性の劣化を来たすようになること
から、Si含有量を0.1〜1.0%と定めた。 c○ Mn Mn成分にも、鋼の脱酸剤としての作用があ
り、そのほか強度及び靭性を向上せしめる作用を
も有しているが、その含有量が0.3%未満では前
記作用に所望の効果が得られず、他方、1.0%を
越えて含有させると鋼の靭性を劣化するようにな
ることから、Mn含有量を0.3〜1.0%と定めた。 d○ Cr Cr成分には、鋼の強度を増加し、また焼戻し
抵抗性を高める作用があるが、その含有量が0.1
%未満では前記作用に所望の効果を得ることがで
きず、他方1.5%を越えて含有させると鋼の靭性
劣化を来たすようになることから、Cr含有量を
0.1〜1.5%と定めた。 e○ Mo Mo成分には、鋼の焼戻し抵抗性を高める作用
があるが、その含有量が0.1%未満では前記作用
に所望の効果を得ることができず、他方1.0%を
越えて含有させると鋼の靭性劣化を来たすように
なるので、Mo含有量を0.1〜1.0%と定めた。 f○ Al Al成分は鋼の脱酸剤として有用な元素であり、
また鋼中のNと結合して窒化物を形成することに
よつてBの作用を有効化するものであるが、その
含有量が0.01%未満では所望の効果を得ることが
できず、他方0.10%を越えて含有させると介在物
の増加を招いて鋼を脆化するようになることか
ら、Al含有量を0.01〜0.10%と定めた。 g○ P Pは鋼中に不可避的に随伴される不純物であ
り、少なければ少ない程良好なものであるが、特
にその含有量が0.015%を越えると耐SSCC性を劣
化する上、焼割れ感受性も高くなることから、そ
の含有量を0.015%以下と定めた。 h○ S Sも鋼中に不可避的に随伴される不純物であり
少ないほど良好なものであるが、特にその含有量
が0.005%を越えると、やはり耐SSCC性を著しく
劣化するようになることから、S含有量を0.005
%以下と定めた。 i○ N N成分には、窒化物を形成して鋼の粒成長を抑
制し、組織を均一化する作用があるが、その含有
量が0.003%未満では前記作用に所望の効果が得
られず鋼材靭性を劣化することとなり、他方、
0.015%を越えて含有させるとB添加の効果を減
少して焼入れ性劣化を招くようになるので、N含
有量を0.003〜0.015%と定めた。 j○ Nb、及びV これらの成分には、オーステナイト粒を微細化
し、焼戻し抵抗性を向上する作用があるので必要
に応じて添加含有せしめられるものであるが、
Nb及びVの含有量がそれぞれ0.01%未満では前
記作用に所望の効果が得られず、他方、それぞれ
の含有量が0.10%を越えてもより以上の向上効果
を得られないばかりか、靭性低下を招くようにな
ることから、Nb及びVの含有量をそれぞれ0.01
〜0.10%と定めた。 k○ Ti Ti成分には、Bとともに鋼の焼入れ性を向上
し、焼戻し抵抗性を高める作用があるので必要に
応じて添加含有せしめられるものであるが、その
含有量が0.005%未満では前記作用に所望の効果
を得ることができず、他方0.050%を越えて含有
させると炭窒化析出物の増加による靭性劣化を招
くこととなるので、Ti含有量を0.005〜0.050%と
定めた。 l○ B B成分には、鋼の焼入れ性向上、オーステナイ
ト粒の微細化、焼戻し抵抗性の向上等の作用があ
り、必要に応じて0.0001%以上を含有せしめられ
るものであるが、その含有量が0.0050%を越えて
も更なる向上効果を得ることができないばかりで
なく、靭性低下を来たすこととなるので、B含有
量を0.0001〜0.0050%と定めた。 m○ Ca Ca成分には、硫化物系介在物を球状化させ耐
SSCC性を向上させる作用があるので、必要に応
じて0.0005%以上添加されるものであるが、その
含有量が0.0100%を越えると介在物が増加して靭
性劣化を来たすようになることから、Ca含有量
を0.0005〜0.0100%と定めた。 n○ Cu Cu成分には、鋼の耐食性を向上させる作用が
あるので、必要に応じて0.1%以上含有せしめら
れるものであるが、0.5%を越えて含有させると
高温割れを発生するようになることから、Cu含
有量を0.1〜0.5%と定めた。 B 熱処理条件 a○ 焼入れ温度 第1回目及び第2回目の焼入れとも、焼入れ温
度がAc3変態点よりも低いと(α+γ)の2相域
焼入れとなるので鋼材組織が不均一となり、他方
焼入れ温度が結晶粒粗大化開始温度以上になると
得られる鋼材に所望の細粒組織を得ることができ
なくなつて耐SSCC性劣化を来たすことから、焼
入れ温度をAc3変態点以上結晶粒粗大化開始温度
未満と定めた。 なお、第2回目の焼入れの際に、Ac1変態点〜
Ac3変態点の平均昇温速度を10〜50℃/secとす
ることが、耐SSCC性能を高める上で好ましいこ
とである。このとき、昇温速度が10℃/sec未満
では、細粒化の程度が小さくなつて耐SSCC性向
上に対する効果が幾分低くなり、また昇温速度が
50℃/secを越えるとオーステナイト粒が粗大化
して混粒となるため、やはり耐SSCC性が低下傾
向をみせるからである。 b○ 第1回目の焼入れ後の焼戻し温度 第1回目の焼入れ後の焼戻し温度が〔Ac1変態
点―50℃〕の値を越えると製品の細粒化効果が小
となり、強度不足を来たすこととなるので、該焼
戻し温度を〔Ac1変態点―50℃〕以下と定めた。 c○ 第2回目の焼入れ後の焼戻し温度 第2回目の焼入れ後の焼戻しは、焼入れによつ
て生成されたマルテンサイトを十分焼戻すことで
マルテンサイトの内部応力の除去やセメンタイト
の球状化を図り、耐食性を向上させるためのもの
であつて、焼戻し温度の下限は特に限定しないが
この温度は高いほど良結果を得ることができる。
しかしながら、該温度がAc1変態点を越えるとC
やMn等の濃縮したオーステナイトが生成され、
冷却時に島状マルテンサイトができ耐SSCC性に
悪影響を及ぼすことから、第2回目の焼入れ後の
焼戻し温度をAc1変態点以下と定めた。 次に、この発明を実施例により、比較例と対比
しながら説明する。 実施例 1 まず、常法によつて第1表に示される如き化学
成分組成の本発明対象鋼A〜M、及び比較鋼N〜
Sを溶製した。 次いで、これらの鋼のそれぞれに熱間圧延を加
This invention is suitable as a steel pipe material for oil or gas wells, and is particularly effective against sulfide corrosion cracking (hereinafter abbreviated as SSCC) when applied to so-called sour oil wells and sour gas wells. The present invention relates to a method for manufacturing high-strength steel having high resistance. SSCC is a phenomenon that occurs when stress is applied to steel materials used in humid environments containing hydrogen sulfide (sour environments) such as sour oil wells and sour gas wells, and generally, material hardness (e.g. yield strength) is It is known that SSCC resistance deteriorates as the strength increases, and it has been confirmed that high-strength materials crack even when subjected to extremely small stress. Based on many previous studies and actual experience, it has been found that in order to prevent SSCC in steel materials, it is effective to limit the strength to a Rockwell C scale hardness (H R C) of 20 to 22 or less. has been
Therefore, steel materials used in sour environments have usually been limited to those with a yield strength of 70 Kgf/mm 2 or less, which corresponds to the above-mentioned hardness. However, the energy situation in recent years has required development to extend to oil and gas fields deep underground, and as the depth of oil and gas wells increases, the oil country pipes used in these wells, etc. At present, there is an urgent need to increase the strength of steel materials. In order to meet these demands, we developed a method for producing steel that combines high strength and excellent SSCC resistance by rapidly heating Ti-B-added steel, quenching it, and then tempering it (Japanese Patent Laid-Open No. 52-52114). Public bulletin), Cr-
A method for producing steel with both high strength and excellent SSCC resistance by rapidly heating and then quenching Mo-added steel (Japanese Unexamined Patent Publication No. 119324/1982) has been proposed, but However, there is a limit to how high the strength can be increased (in a sour environment, SSCC will occur unless the yield strength is lower than 75 Kgf/ mm2 ), and the critical stress ratio for cracking can only reach less than 75%. What is the "cracking limit ratio" in a sour environment?
It is the ratio of the maximum stress that does not cause SSCC to the yield strength of the material, expressed as a percentage. From the above-mentioned viewpoints, the present inventors have developed a material that has a yield strength of 75 Kgf/mm 2 or more, a cracking limit ratio of 90% or more, which is extremely high strength, and has excellent SSCC resistance. As a result of many years of research in order to produce high-strength steel at a low cost, which was previously thought to be impossible, we have (a) suppressed the P and S contents to specific values to eliminate grain boundary segregation and inclusions; When the reduced C-Mn-Cr-Mo steel is repeatedly quenched twice and then tempered, the strength increases due to Cr and Mo, the corrosion resistance improves due to low P and low S,
The dispersion of segregated elements and homogenization of the structure by repeated quenching, the spheroidization of inclusions by repeated quenching, the internal stress relief effect of martensite by tempering, the spheroidization of cementite, and the corrosion resistance improvement effect are intertwined with each other. In addition, an extremely excellent SSCC-resistant steel material having a high yield strength of 75 Kgf/mm 2 or more and a cracking critical stress ratio of 90% or more can be obtained; (b) during the repeated quenching, If tempering is performed after the first quenching, the distortion caused by the first quenching will be sufficiently removed and cracking will be prevented, and the second quenching effect will be further improved, creating a more uniform structure. After repeated experiments and studies, we found that (c) During the repeated quenching, the heating during the second quenching was performed using high-frequency induction heating. If the average heating rate in the temperature range from Ac 1 transformation point to Ac 3 transformation point is set to 10 to 50℃/sec, the crystal grains of the steel material become even finer, resulting in better SSCC resistance. We have confirmed that it is possible to grant This invention was made based on the above findings, and includes C: 0.15 to 0.40% (hereinafter, % indicating component composition ratio is expressed as weight %), Si: 0.1 to 1.0%, Mn: 0.3 to 1.0%. , Cr: 0.1 to 1.5%, Mo: 0.1 to 1.0%, Al: 0.01 to 0.10%, P: 0.015% or less, S: 0.005 or less, N: 0.003 to 0.015%, and further if necessary. , Nb: 0.01 to 0.10%, V: 0.01 to 0.10%, Ti: 0.005 to 0.050%, B: 0.0001 to 0.0050%, Ca: 0.0005 to 0.0100%, Cu: 0.1 to 0.5%. , Fe and other unavoidable impurities: the remainder, quenching steel from a temperature range above the Ac 3 transformation point and below the crystal grain coarsening start temperature, and if necessary [Ac 1 transformation point - 50℃] After tempering at the following temperature, heat again to a temperature range above the Ac 3 transformation point and below the crystal grain coarsening start temperature, quenching again from this temperature range, and then tempering at a temperature below the Ac 1 transformation point. As a result, it has a yield strength of 75Kgf/ mm2 or more and a cracking limit ratio of 90% or more.
This method is characterized by obtaining high-strength steel with SSCC properties. Next, in this invention, the reason why the chemical composition and heat treatment conditions of the steel are limited as described above will be explained. A Chemical composition of steel a○ C C component has the effect of ensuring the strength of steel, as well as
By improving hardenability and tempering resistance, it also has the effect of promoting uniform hardening structure and high temperature tempering uniform structure, and improving SSCC resistance.
If the content is less than 0.15%, the desired effect cannot be obtained, while if the content exceeds 0.40%, it will cause quench cracking during heat treatment or deterioration of toughness. Therefore, the C content should be reduced to 0.15%. It was set at ~0.40%. b○ Si In addition to acting as a deoxidizer for steel, the Si component also has
Since it has the effect of improving the strength of steel materials, it is necessary to add 0.1% or more, but if it is added in excess of 1.0%, the toughness will deteriorate, so the Si content should be reduced to 0.1 to 1.0%. It was determined that c○ Mn The Mn component also acts as a deoxidizing agent for steel, and also has the effect of improving strength and toughness, but if its content is less than 0.3%, the desired effect will not be achieved. On the other hand, if the Mn content exceeds 1.0%, the toughness of the steel deteriorates, so the Mn content was set at 0.3 to 1.0%. d○ Cr The Cr component has the effect of increasing the strength and tempering resistance of steel, but if its content is 0.1
If the content is less than 1.5%, the desired effect cannot be obtained, while if the content exceeds 1.5%, the toughness of the steel will deteriorate.
It was set at 0.1-1.5%. e○ Mo The Mo component has the effect of increasing the tempering resistance of steel, but if its content is less than 0.1%, the desired effect cannot be obtained, and on the other hand, if it is contained in excess of 1.0%, Since this causes deterioration of the toughness of the steel, the Mo content is set at 0.1 to 1.0%. f○ Al Al component is an element useful as a deoxidizing agent for steel,
In addition, B combines with N in steel to form nitrides, thereby making the action of B more effective, but if the content is less than 0.01%, the desired effect cannot be obtained; If the Al content exceeds 0.01% to 0.10%, the Al content is set at 0.01% to 0.10% because inclusions increase and the steel becomes brittle. g○ P P is an impurity that inevitably accompanies steel, and the less it is, the better it is, but if its content exceeds 0.015%, it not only deteriorates SSCC resistance but also increases quench cracking susceptibility. The content was set at 0.015% or less. h○ S S is also an impurity that inevitably accompanies steel, and the less it is, the better it is, but especially if its content exceeds 0.005%, it will significantly deteriorate the SSCC resistance. , S content 0.005
% or less. i○ N The N component has the effect of forming nitrides, suppressing the grain growth of steel, and making the structure uniform, but if its content is less than 0.003%, the desired effect cannot be obtained. This will deteriorate the toughness of the steel material, and on the other hand,
If the N content exceeds 0.015%, the effect of B addition will be reduced and hardenability will deteriorate, so the N content was set at 0.003 to 0.015%. j○ Nb and V These components have the effect of refining austenite grains and improving tempering resistance, so they can be added as necessary.
If the content of Nb and V is less than 0.01% each, the desired effect cannot be obtained in the above action, and on the other hand, if the content of each exceeds 0.10%, not only can no further improvement effect be obtained, but also the toughness decreases. The content of Nb and V was set at 0.01 each.
It was set at ~0.10%. k○ Ti The Ti component, together with B, has the effect of improving the hardenability of steel and increasing the tempering resistance, so it can be added as necessary, but if its content is less than 0.005%, the above effects will be reduced. However, if the Ti content exceeds 0.050%, the toughness will deteriorate due to an increase in carbonitride precipitates, so the Ti content was set at 0.005 to 0.050%. l○ B The B component has the effect of improving the hardenability of steel, making the austenite grains finer, and improving the tempering resistance, and it can be contained in an amount of 0.0001% or more if necessary, but its content If the B content exceeds 0.0050%, not only no further improvement effect can be obtained, but also a decrease in toughness occurs, so the B content was set at 0.0001 to 0.0050%. m○ Ca Ca component has sulfide-based inclusions spheroidized and
Since it has the effect of improving SSCC properties, it is added at 0.0005% or more as necessary, but if the content exceeds 0.0100%, inclusions will increase and toughness will deteriorate. The Ca content was determined to be 0.0005 to 0.0100%. n○ Cu The Cu component has the effect of improving the corrosion resistance of steel, so it can be contained at 0.1% or more if necessary, but if it is contained in excess of 0.5%, hot cracking will occur. Therefore, the Cu content was set at 0.1 to 0.5%. B Heat treatment conditions a○ Quenching temperature In both the first and second quenching, if the quenching temperature is lower than the Ac 3 transformation point, the steel structure will be non-uniform because it will be quenched in the two-phase region of (α + γ), and the other quenching temperature If the temperature exceeds the crystal grain coarsening start temperature, it becomes impossible to obtain the desired fine grain structure in the resulting steel material, resulting in deterioration of SSCC resistance. It is set as less than. In addition, during the second quenching, Ac 1 transformation point ~
It is preferable to set the average temperature increase rate at the Ac 3 transformation point to 10 to 50° C./sec in order to improve the SSCC resistance performance. At this time, if the temperature increase rate is less than 10℃/sec, the degree of grain refinement will be small and the effect on improving SSCC resistance will be somewhat lower, and the temperature increase rate will be less than 10℃/sec.
This is because when the temperature exceeds 50° C./sec, the austenite grains become coarse and mixed, and the SSCC resistance tends to decrease. b○ Tempering temperature after the first quenching If the tempering temperature after the first quenching exceeds the value of [Ac 1 transformation point - 50℃], the grain refining effect of the product will be small, resulting in insufficient strength. Therefore, the tempering temperature was set to be below [Ac 1 transformation point - 50°C]. c○ Tempering temperature after the second quenching The tempering after the second quenching removes the internal stress of the martensite and makes the cementite spheroidized by sufficiently tempering the martensite generated by quenching. This is to improve corrosion resistance, and the lower limit of the tempering temperature is not particularly limited, but the higher the tempering temperature, the better the results.
However, if the temperature exceeds the Ac 1 transformation point, C
Concentrated austenite such as Mn and Mn is generated,
Since island-shaped martensite is formed during cooling, which has a negative effect on SSCC resistance, the tempering temperature after the second quenching was determined to be below the Ac 1 transformation point. Next, the present invention will be explained using Examples and in comparison with Comparative Examples. Example 1 First, the subject steels A to M of the present invention and the comparative steels N to M having the chemical compositions shown in Table 1 were prepared by a conventional method.
S was melted. Then, hot rolling is applied to each of these steels.

【表】 (注) *印は、本発明の条件から外れていることを
示す。
[Table] (Note) * indicates that the conditions are outside the conditions of the present invention.

【表】【table】

【表】 えて第2表に示す厚さの板材とし、更に同じく第
2表に記号X及びYで示す条件の熱処理を施して
から、その降伏強度並びに割れ限界応力比を調べ
た。この結果も第2表に併せて示した。 なお、第2表において、記号Xは、 (i) 920℃×30min加熱後水焼入れ、 (ii) 920℃×10min加熱後水焼入れ、 (iii) 700℃×30min加熱後空冷の焼戻し、 以上(i)〜(iii)の工程で示される一連の熱処理を示
すものであり、記号Yは、 (i) 920℃×30min加熱後水焼入れ、 (ii) 加熱速度:30℃/secで920℃まで加熱後、直
ちに水焼入れ、 (iii) 700℃×30min加熱後空冷の焼戻し、 以上(i)〜(iii)の工程で示される一連の熱処理を示
すものである。 そして、割れ限界応力比は次のようにして測定
した。 即ち、第1図に示されるように、熱処理終了後
の各鋼板から切り出した平行部:6.4minφの丸棒
引張り試験片1を試験容器2内に保持し、この試
験容器2内をH2S飽和0.5%酢酸―5%食塩水溶
液で満たすとともに丸棒引張り試験片1に重錘3
にて一定荷重を加え、720時間内で割れ生じない
最大応力を求め、これをSSCC限界応力とする方
法によつた。なお、第1図中にて符号4で示され
るものはH2Sガス流路内のコツクであり、符号5
で示されるものは前記水溶液循環ポンプ、符号6
で示されるものは該水溶液貯蔵タンクである。 第2表に示される結果からも、本発明法によれ
ば降伏強度で75Kgf/mm2以上の高強度を有すると
ともに割れ限界応力比が90%以上という優れた耐
SSCC性を有する鋼が得られるのに対して、鋼の
成分が本発明の範囲から外れた比較法では所望の
特性を達成できないことが明らかである。 実施例 2 実施例1における第1表中の鋼Aに対して第3
表に示す如き熱処理を施した。 このようにして得られた鋼の降伏強度及び割れ
[Table] Plate materials having the thickness shown in Table 2 were then heat treated under the conditions shown by symbols X and Y in Table 2, and their yield strengths and cracking limit stress ratios were investigated. The results are also shown in Table 2. In Table 2, symbol This shows a series of heat treatments shown in steps i) to (iii), where the symbol Y is: (i) water quenching after heating at 920°C for 30 minutes, (ii) heating rate: 30°C/sec to 920°C This shows a series of heat treatments shown in steps (i) to (iii) above: water quenching immediately after heating, (iii) tempering at 700°C for 30 minutes followed by air cooling. The cracking limit stress ratio was measured as follows. That is, as shown in FIG. 1, a round bar tensile test piece 1 with a parallel part of 6.4 minφ cut out from each steel plate after heat treatment is held in a test container 2, and the inside of this test container 2 is heated with H 2 S. Fill with saturated 0.5% acetic acid-5% saline solution and place 3 weights on round bar tensile test piece 1.
A method was used in which a constant load was applied to the specimen, the maximum stress at which cracking did not occur within 720 hours was determined, and this was taken as the SSCC critical stress. In addition, what is indicated by the symbol 4 in FIG. 1 is a hole in the H 2 S gas flow path, and the symbol 5
6 is the aqueous solution circulation pump.
What is shown is the aqueous solution storage tank. The results shown in Table 2 also show that the method of the present invention has high yield strength of 75 Kgf/mm 2 or more and excellent durability with a cracking critical stress ratio of 90% or more.
It is clear that while a steel with SSCC properties is obtained, the desired properties cannot be achieved with the comparative process in which the composition of the steel is outside the scope of the present invention. Example 2 Steel A in Table 1 in Example 1 was
Heat treatments were performed as shown in the table. Yield strength and cracking of the steel thus obtained

【表】【table】

【表】 (注) *印は、本発明範囲から外れていることを示す

限界応力比を実施例1と同様にして調べ、その結
果を第3表に併せて示した。 第3表に示される結果からも、本発明法によれ
ば降伏強度で75Kgf/mm2以上の高強度を有すると
ともに割れ限界応力が90%以上という優れた耐
SSCC性を有する鋼が得られるのに対して、熱処
理条件が本発明範囲から外れた比較法では所望の
特性を達成できないことがわかる。 上述のように、本発明によれば、優れた耐
SSCC性を有する高強度鋼をコスト安く製造する
ことができ、深層にしてサワー環境という荷酷な
条件下に存在する天然資源の開発が可能となるな
ど、工業上有用な効果がもたらされるのである。
[Table] (Note) * indicates that it is outside the scope of the present invention.
The critical stress ratio was investigated in the same manner as in Example 1, and the results are also shown in Table 3. The results shown in Table 3 also show that the method of the present invention has a high yield strength of 75 Kgf/mm 2 or more and excellent durability with a cracking limit stress of 90% or more.
It can be seen that while a steel having SSCC properties can be obtained, the comparative method in which the heat treatment conditions are outside the scope of the present invention cannot achieve the desired properties. As described above, the present invention provides excellent durability.
It is possible to produce high-strength steel with SSCC properties at a low cost, and it brings about industrially useful effects, such as making it possible to exploit natural resources that exist in deep layers and under harsh conditions in sour environments. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は鋼の割れ限界応力比を測定する装置の
概略模式図である。 図面において、1……丸棒引張り試験片、2…
…試験容器、3……重錘、4……コツク、5……
ポンプ、6……溶液貯蔵タンク。
FIG. 1 is a schematic diagram of an apparatus for measuring the cracking critical stress ratio of steel. In the drawings, 1...Round bar tensile test piece, 2...
...Test container, 3... Weight, 4... Kotuku, 5...
Pump, 6...solution storage tank.

Claims (1)

【特許請求の範囲】 1 重量割合で、 C:0.15〜0.40%、Si:0.1〜1.0%、 Mn:0.3〜1.0%、Cr:0.1〜1.5%、 Mo:0.1〜1.0%、 Al:0.01〜0.10%、 P:0.015%以下、S:0.005%以下、 N:0.003〜0.015%、 を含有するとともに、必要に応じて更に、 Nb:0.01〜0.10%、 V:0.01〜0.10%、 Ti:0.005〜0.050%、 B:0.0001〜0.0050%、 Ca:0.0005〜0.0100%、 Cu:0.1〜0.5%、 のうちの1種以上をも含み、 Fe及びその他の不可避不純物:残り、 から成る成分組成の鋼を、Ac3変態点以上結晶粒
粗大化開始温度未満の温度域から焼入れし、続い
てこれを、再びAc3変態点以上結晶粒粗大化開始
温度未満の温度域にまで加熱した後、該温度域か
ら再度焼入れし、その後Ac1変態点以下の温度で
焼戻すことを特徴とする、耐硫化物腐食割れ性に
優れた高強度鋼の製造方法。 2 再焼入れ時の加熱に際して、Ac1変態点〜
Ac3変態点までの温度範囲を平均昇温速度:10〜
50℃/secで昇温せしめることから成る、特許請
求の範囲第1項に記載の耐硫化物腐食割れ性に優
れた高強度鋼の製造方法。 3 重量割合で、 C:0.15〜0.40%、Si:0.1〜1.0%、 Mn:0.3〜1.0%、Cr:0.1〜1.5%、 Mo:0.1〜1.0%、 Al:0.01〜0.10%、 P:0.015%以下、S:0.005%以下、 N:0.003〜0.015%、 を含有するとともに、必要に応じて更に、 Nb:0.01〜0.10%、 V:0.01〜0.10%、 Ti:0.005〜0.050%、 B:0.0001〜0.0050%、 Ca:0.0005〜0.0100%、 Cu:0.1〜0.5%、 のうちの1種以上をも含み、 Fe及びその他の不可避不純物:残り、 から成る成分組成の鋼を、Ac3変態点以上結晶粒
粗大化開始温度未満の温度域から焼入れした後、
〔Ac1変態点―50℃〕以下の温度で焼戻し、続い
てこれを、再びAc3変態点以上結晶粒粗大化開始
温度未満の温度域にまで加熱した後、該温度域か
ら再度焼入れし、その後Ac1変態点以下の温度で
焼戻すことを特徴とする、耐硫化物腐食割れ性に
優れた高強度鋼の製造方法。 4 再焼入れ時の加熱に際して、Ac1変態点〜
Ac3変態点までの温度範囲を平均昇温速度:10〜
50℃/secで昇温せしめることから成る、特許請
求の範囲第1項に記載の耐硫化物腐食割れ性に優
れた高強度鋼の製造方法。
[Claims] 1. In weight percentage: C: 0.15-0.40%, Si: 0.1-1.0%, Mn: 0.3-1.0%, Cr: 0.1-1.5%, Mo: 0.1-1.0%, Al: 0.01- Contains 0.10%, P: 0.015% or less, S: 0.005% or less, N: 0.003 to 0.015%, and further contains, if necessary, Nb: 0.01 to 0.10%, V: 0.01 to 0.10%, Ti: 0.005 ~0.050%, B: 0.0001~0.0050%, Ca: 0.0005~0.0100%, Cu: 0.1~0.5%, and contains one or more of the following, Fe and other unavoidable impurities: the remainder. is quenched from a temperature range above the Ac 3 transformation point and below the crystal grain coarsening start temperature, and then heated again to a temperature range above the Ac 3 transformation point and below the crystal grain coarsening start temperature. A method for producing high-strength steel with excellent sulfide corrosion cracking resistance, which is characterized by quenching the steel again at a temperature below the Ac 1 transformation point and then tempering it at a temperature below the Ac 1 transformation point. 2 When heating during re-quenching, Ac 1 transformation point ~
Average heating rate for temperature range up to Ac 3 transformation point: 10~
A method for producing high-strength steel with excellent sulfide corrosion cracking resistance according to claim 1, which comprises raising the temperature at 50° C./sec. 3 In terms of weight percentage, C: 0.15-0.40%, Si: 0.1-1.0%, Mn: 0.3-1.0%, Cr: 0.1-1.5%, Mo: 0.1-1.0%, Al: 0.01-0.10%, P: 0.015 % or less, S: 0.005% or less, N: 0.003 to 0.015%, and further contains, if necessary, Nb: 0.01 to 0.10%, V: 0.01 to 0.10%, Ti: 0.005 to 0.050%, B: 0.0001 to 0.0050%, Ca: 0.0005 to 0.0100%, Cu: 0.1 to 0.5%, containing one or more of the following, Fe and other unavoidable impurities: the remainder: Ac 3 transformation point After quenching from a temperature range below the crystal grain coarsening starting temperature,
Tempering at a temperature below [Ac 1 transformation point - 50°C], then heating this again to a temperature range of at least the Ac 3 transformation point and below the crystal grain coarsening start temperature, and then quenching again from this temperature range, A method for producing high-strength steel with excellent sulfide corrosion cracking resistance, which is then tempered at a temperature below the Ac 1 transformation point. 4 Ac 1 transformation point ~ during heating during re-quenching
Average heating rate for temperature range up to Ac 3 transformation point: 10~
A method for producing high-strength steel with excellent sulfide corrosion cracking resistance according to claim 1, which comprises raising the temperature at 50° C./sec.
JP10618483A 1983-06-14 1983-06-14 Manufacture of high strength steel with superior resistance to sulfide corrosion cracking Granted JPS59232220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10618483A JPS59232220A (en) 1983-06-14 1983-06-14 Manufacture of high strength steel with superior resistance to sulfide corrosion cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10618483A JPS59232220A (en) 1983-06-14 1983-06-14 Manufacture of high strength steel with superior resistance to sulfide corrosion cracking

Publications (2)

Publication Number Publication Date
JPS59232220A JPS59232220A (en) 1984-12-27
JPS6354765B2 true JPS6354765B2 (en) 1988-10-31

Family

ID=14427124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10618483A Granted JPS59232220A (en) 1983-06-14 1983-06-14 Manufacture of high strength steel with superior resistance to sulfide corrosion cracking

Country Status (1)

Country Link
JP (1) JPS59232220A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH038279U (en) * 1989-06-13 1991-01-25
WO2009008281A1 (en) * 2007-07-10 2009-01-15 Usui Kokusai Sangyo Kaisha, Ltd. Steel tube for fuel injection tube and process for producing the same
WO2010113953A1 (en) * 2009-03-30 2010-10-07 住友金属工業株式会社 Method for producing seamless steel pipe
CN105506248A (en) * 2015-04-01 2016-04-20 贵州大学 Heat treatment method for refining medium-high carbon steel grains

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62284043A (en) * 1986-06-03 1987-12-09 Nippon Kokan Kk <Nkk> Steel excellent in sulfid stress corrosion cracking resistance in weld zone and its production
JPS62290847A (en) * 1986-06-11 1987-12-17 Nippon Kokan Kk <Nkk> Steel having superior resistance to sulfide stress corrosion cracking and its manufacture
JP4140556B2 (en) 2004-06-14 2008-08-27 住友金属工業株式会社 Low alloy steel for oil well pipes with excellent resistance to sulfide stress cracking
JP4609138B2 (en) 2005-03-24 2011-01-12 住友金属工業株式会社 Manufacturing method of oil well pipe steel excellent in sulfide stress cracking resistance and oil well seamless steel pipe
FR2942808B1 (en) * 2009-03-03 2011-02-18 Vallourec Mannesmann Oil & Gas LOW-ALLOY STEEL WITH HIGH ELASTICITY LIMIT AND HIGH RESISTANCE TO CRUSHING UNDER SULFIDE STRESS.
JP5728836B2 (en) * 2009-06-24 2015-06-03 Jfeスチール株式会社 Manufacturing method of high strength seamless steel pipe for oil wells with excellent resistance to sulfide stress cracking
CN102719752B (en) * 2011-03-29 2015-03-11 鞍钢股份有限公司 Seamless steel pipe with excellent hydrogen sulfide stress corrosion resistance and manufacture method thereof
EA025503B1 (en) * 2012-03-07 2016-12-30 Ниппон Стил Энд Сумитомо Метал Корпорейшн Method for producing high-strength steel material excellent in sulfide stress cracking resistance
JP5522322B1 (en) 2012-06-20 2014-06-18 新日鐵住金株式会社 Oil well pipe steel and its manufacturing method
BR112015005870B1 (en) 2012-11-05 2018-11-21 Nippon Steel & Sumitomo Metal Corporation low alloy steel for tubular oil industry products that have sulphide stress crack resistance and manufacturing method
AR096965A1 (en) 2013-07-26 2016-02-10 Nippon Steel & Sumitomo Metal Corp LOW ALLOY STEEL TUBE FOR OIL WELL AND METHOD FOR THE MANUFACTURE OF THE SAME
CA2918720C (en) 2013-07-26 2019-04-16 Nippon Steel & Sumitomo Metal Corporation High-strength steel material for oil well and oil well pipes
AR101200A1 (en) 2014-07-25 2016-11-30 Nippon Steel & Sumitomo Metal Corp LOW ALLOY STEEL TUBE FOR OIL WELL
AR101683A1 (en) 2014-09-04 2017-01-04 Nippon Steel & Sumitomo Metal Corp THICK WALL STEEL TUBE FOR OIL WELL AND SAME PRODUCTION METHOD
MX2017004258A (en) 2014-10-01 2017-06-06 Nippon Steel & Sumitomo Metal Corp High-strength steel material for oil wells, and oil well pipe.
AU2015331943B2 (en) 2014-10-17 2018-04-19 Nippon Steel Corporation Low alloy oil-well steel pipe
CN105648325A (en) * 2016-01-13 2016-06-08 铜陵百荣新型材料铸件有限公司 High-tenacity high-speed steel and production technique thereof
BR112019005395B1 (en) 2016-10-06 2022-10-11 Nippon Steel Corporation STEEL MATERIAL, OIL WELL STEEL PIPE AND METHOD FOR PRODUCING STEEL MATERIAL
MX2019008642A (en) 2017-01-24 2019-09-23 Nippon Steel Corp Steel material, and steel material manufacturing method.
KR20190112021A (en) * 2017-01-26 2019-10-02 싸브 테크놀로지 에이비 Quenching of hardened steel
AR114708A1 (en) 2018-03-26 2020-10-07 Nippon Steel & Sumitomo Metal Corp STEEL MATERIAL SUITABLE FOR USE IN AGRI ENVIRONMENT
AR114712A1 (en) 2018-03-27 2020-10-07 Nippon Steel & Sumitomo Metal Corp STEEL MATERIAL SUITABLE FOR USE IN AGRI ENVIRONMENT
US11643712B2 (en) 2018-04-09 2023-05-09 Nippon Steel Corporation Steel pipe and method for producing steel pipe
MX2020010108A (en) 2018-04-09 2020-11-06 Nippon Steel Corp Steel pipe and method for producing steel pipe.
JP6950820B2 (en) 2018-04-09 2021-10-13 日本製鉄株式会社 Steel material suitable for use in sour environment
US20210262051A1 (en) 2018-10-31 2021-08-26 Nippon Steel Corporation Steel material and method for producing steel material
AR118071A1 (en) 2019-02-15 2021-09-15 Nippon Steel Corp STEEL MATERIAL SUITABLE FOR USE IN AGRI ENVIRONMENT
AR118070A1 (en) 2019-02-15 2021-09-15 Nippon Steel Corp STEEL MATERIAL SUITABLE FOR USE IN AGRI ENVIRONMENT
JP7428918B2 (en) 2019-03-22 2024-02-07 日本製鉄株式会社 Seamless steel pipe suitable for use in sour environments

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH038279U (en) * 1989-06-13 1991-01-25
WO2009008281A1 (en) * 2007-07-10 2009-01-15 Usui Kokusai Sangyo Kaisha, Ltd. Steel tube for fuel injection tube and process for producing the same
WO2010113953A1 (en) * 2009-03-30 2010-10-07 住友金属工業株式会社 Method for producing seamless steel pipe
JP4632000B2 (en) * 2009-03-30 2011-02-16 住友金属工業株式会社 Seamless steel pipe manufacturing method
EA019610B1 (en) * 2009-03-30 2014-04-30 Сумитомо Метал Индастриз, Лтд. Method for producing seamless steel pipe
CN105506248A (en) * 2015-04-01 2016-04-20 贵州大学 Heat treatment method for refining medium-high carbon steel grains
CN105506248B (en) * 2015-04-01 2018-01-30 贵州大学 A kind of medium and high carbon steel crystal grain refinement heat treatment method

Also Published As

Publication number Publication date
JPS59232220A (en) 1984-12-27

Similar Documents

Publication Publication Date Title
JPS6354765B2 (en)
CN111164230B (en) Wire rod and steel wire for spring having excellent corrosion and fatigue resistance, and method for producing same
JP3358135B2 (en) High strength steel excellent in sulfide stress cracking resistance and method of manufacturing the same
JPWO2008123422A1 (en) Seamless steel pipe manufacturing method
CN1044263C (en) Highly corrosion-resistant martensitic stainless steel with excellent weldability and process for producing the same
CN113584407A (en) High-strength high-temperature corrosion resistant martensitic stainless steel and manufacturing method thereof
JPS63230847A (en) Low-alloy steel for oil well pipe excellent in corrosion resistance
JPH06116635A (en) Production of high strength low alloy steel for oil well use, excellent in sulfide stress corrosion cracking resistance
JP3932995B2 (en) Induction tempering steel and method for producing the same
JP3793391B2 (en) High strength bolt excellent in delayed fracture resistance with a tensile strength of 1300 MPa or more and method for producing the same
JP3852248B2 (en) Manufacturing method of martensitic stainless steel with excellent stress corrosion cracking resistance
JPH02236223A (en) Production of high strength steel excellent in delayed fracture characteristic
JP6390685B2 (en) Non-tempered steel and method for producing the same
JP4344126B2 (en) Induction tempered steel with excellent torsional properties
JPS648686B2 (en)
JP2000178692A (en) 655Nmm-2 CLASS LOW-C HIGH-Cr ALLOY OIL WELL PIPE WITH HIGH STRESS CORROSION CRACKING RESISTANCE, AND ITS MANUFACTURE
JP2000160300A (en) 655 Nmm-2 CLASS LOW-C HIGH-Cr ALLOY OIL WELL PIPE WITH HIGH CORROSION RESISTANCE, AND ITS MANUFACTURE
WO2005031020A1 (en) Steel product for induction hardening, induction-hardened member using the same, and methods for producing them
JPH0741855A (en) Production of low yield radio and high toughness seamless steel pipe showing metallic structure essentially consisting of fine-grained ferrite
JP3536687B2 (en) Low-C high-Cr alloy steel having high corrosion resistance and high strength, and method for producing the same
JPS59232222A (en) Manufacture of high strength steel with superior resistance to sulfide corrosion cracking
JPS59232221A (en) Manufacture of high strength steel with superior resistance to sulfide corrosion cracking
JP2001032047A (en) 862 N/mm2 CLASS LOW C HIGH Cr ALLOY OIL WELL PIPE HAVING HIGH CORROSION RESISTANCE AND ITS PRODUCTION
JPH06336648A (en) High strength pc bar wire excellent in delayed fracture resistance and its production
JPH11270531A (en) High strength bolt having good delayed fracture characteristic and manufacture thereof