JPH0382739A - Duplex stainless steel excellent in hot workability and corrosion resistance - Google Patents

Duplex stainless steel excellent in hot workability and corrosion resistance

Info

Publication number
JPH0382739A
JPH0382739A JP21965889A JP21965889A JPH0382739A JP H0382739 A JPH0382739 A JP H0382739A JP 21965889 A JP21965889 A JP 21965889A JP 21965889 A JP21965889 A JP 21965889A JP H0382739 A JPH0382739 A JP H0382739A
Authority
JP
Japan
Prior art keywords
corrosion resistance
content
stainless steel
hot workability
duplex stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21965889A
Other languages
Japanese (ja)
Inventor
Kunio Kondo
邦夫 近藤
Yasutaka Okada
康孝 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP21965889A priority Critical patent/JPH0382739A/en
Publication of JPH0382739A publication Critical patent/JPH0382739A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To improve corrosion resistance and hot workability by specifying respective contents of C, Si, Mn, P, S, Cr, Ni, Mo, Cu, V, etc., and ferrite. CONSTITUTION:The duplex stainless steel has a composition consisting of, by weight, <=0.03% C, 0.1-2% Si, 0.1-2% Mn, <=0.05% P, <=0.002% S, 17-30% Cr, 1-11% Ni, 1-6% Mo, 0.1.2% Cu, 0.01-0.5% V, 0.01-0.04% Al, 0.1-0.4% N, <=0.005% O, one or more kinds among 0.0005-0.01% Ca, 0.0005-0.01% Mg, and 0.0005-0.01% REM, and the balance Fe. Further, S(%)+O(%), Al(%)+N(%), and ferrite content are regulated to <=0.005%, <=0.007%, and 30-70vol.%, respectively. The above steel has superior corrosion resistance and hot workability.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、オーステナイトとフェライトの2相組織か
ら戒るステンレス鋼に関し、特に海水を使用する熱交換
器を始めとした耐海水性が必要とされる化学機器や構造
物、各種化学プラント用配管、ラインパイプ、油井管等
として好適な、熱間加工性及び耐食性(耐応力腐食割れ
性、耐孔食性。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to stainless steel which is protected from a two-phase structure of austenite and ferrite, and is particularly applicable to stainless steels that require seawater resistance, such as heat exchangers that use seawater. It has good hot workability and corrosion resistance (stress corrosion cracking resistance, pitting corrosion resistance), making it suitable for chemical equipment and structures, piping for various chemical plants, line pipes, oil country tubular goods, etc.

耐酸性等)に優れた2相ステンレス鋼に関するものであ
る。
This relates to duplex stainless steel with excellent acid resistance, etc.

〈従来技術とその課題〉 近年、耐食性や溶接性に優れる材料として2相ステンレ
ス鋼の需要が増大しているが、この2相ステンレス鋼は
特に耐海水腐食性や強度の面でフェライト系ステンレス
鋼或いはオーステナイト系ステンレスよりも優れた特性
を有していることから、JISにおいても5US329
J1!1mとして規格化され、その適用分野も拡大の一
途をたどっている。
<Prior art and its challenges> In recent years, demand for duplex stainless steel has increased as a material with excellent corrosion resistance and weldability, but this duplex stainless steel is particularly superior to ferritic stainless steel in terms of seawater corrosion resistance and strength. Or, because it has better properties than austenitic stainless steel, it is also rated 5US329 in JIS.
It has been standardized as J1!1m, and the fields of its application are continuing to expand.

その上、2相ステンレス鋼の適用分野拡大に伴い、前記
5US329J1鋼をもってしても耐食性が不十分な環
境で良好な性能を発揮させるべく、2相ステンレス鋼に
微量元素を添加してその耐食性を更に向上させようとの
試みもなされるようになってきた。そして、例えば2相
ステンレス鋼の耐海水腐食性を向上させるためにV又は
Wの添加を行う提案(特公昭51−43807号)や、
2相ステンレス鋼の耐酸性改善を目指したCu添加に関
する提案(特公昭59−5662号)等もなされている
Furthermore, with the expansion of the field of application of duplex stainless steel, trace elements are added to duplex stainless steel to improve its corrosion resistance in order to exhibit good performance in environments where even the 5US329J1 steel does not have sufficient corrosion resistance. Attempts have also been made to further improve it. For example, there is a proposal to add V or W to improve the seawater corrosion resistance of duplex stainless steel (Japanese Patent Publication No. 51-43807),
Proposals regarding the addition of Cu aimed at improving the acid resistance of duplex stainless steel (Japanese Patent Publication No. 59-5662) have also been made.

ところが、一方で、上記2相ステンレス鋼はフェライト
相とオーステナイト相の2相組織から成っているため熱
間加工性が芳しくなく、分塊圧延や熱間圧延時に割れや
疵等の欠陥を発生し易くて製造歩留りが非常に悪いと言
う問題を有していた。
However, on the other hand, the above-mentioned duplex stainless steel has a two-phase structure of a ferrite phase and an austenite phase, so its hot workability is poor, and defects such as cracks and flaws occur during blooming and hot rolling. However, the manufacturing yield was very low.

ましてや、耐食性改善のために5US329J1鋼にV
、 W、 Cu等を添加した場合の熱間加工性の低下は
より一層著しいものであった。
Moreover, V is applied to 5US329J1 steel to improve corrosion resistance.
, W, Cu, etc., the decrease in hot workability was even more remarkable.

そこで、2相ステンレス鋼の熱間加工性阻害元素たるS
の含有量を極力低減すると共に、固溶されているSをC
aの添加により硫化物として固定して粒界への偏析を抑
え、これによって2相ステンレス鋼の熱間加工性を改善
しようとの提案がなされた(特開昭60−262946
号)。しかしながら、上記“Caを添加する手段″によ
ると確かに熱間加工性が大幅に改善されて製造歩留りの
向上がもたらされるものの、これと引き換えに2相ステ
ンレス鋼が本来具備していた“優れた耐食性”の低下を
招き、従ってその用途に制限を受けることとなって実用
上好ましくないとの指摘がなされていた。
Therefore, S is an element that inhibits hot workability of duplex stainless steel.
In addition to reducing the content of solid solution S to C as much as possible,
A proposal was made to improve the hot workability of duplex stainless steel by fixing it as a sulfide and suppressing its segregation to grain boundaries by adding a.
issue). However, although the above-mentioned "means of adding Ca" does indeed greatly improve hot workability and improve manufacturing yield, it comes at the cost of improving the "excellent properties" originally possessed by duplex stainless steel. It has been pointed out that this leads to a decrease in "corrosion resistance" and is therefore undesirable from a practical standpoint, limiting its use.

また、これとは別に、Ca添加により介在物を球状化し
て隙間腐食性を高める技術が特開昭63157838号
公報に開示されているが、Ca系の介在物は水溶性に富
み球状であったとしても本来的に孔食の起点になり易い
ものであり、そのため耐食性改善を目指した介在物の形
状制御技術には自ずと限界があった。
Separately, JP-A-63157838 discloses a technique to improve crevice corrosion by making inclusions spherical by adding Ca, but Ca-based inclusions were highly water-soluble and spherical. However, they are inherently prone to becoming the starting point for pitting corrosion, and therefore there is a natural limit to technology for controlling the shape of inclusions aimed at improving corrosion resistance.

更に、高耐食性の確保を目指して2相ステンレス鋼にN
を添加する試みもなされているが、Nを添加すると窒化
物の析出により所期の耐食性が得られないと言う問題を
抜は出ることができなかった。
Furthermore, we added N to duplex stainless steel to ensure high corrosion resistance.
Attempts have also been made to add N, but it has not been possible to eliminate the problem that the desired corrosion resistance cannot be obtained due to the precipitation of nitrides when N is added.

このようなことから、本発明が目的としたのは、本来の
優れた耐食性を維持したままで、かつ十分に満足できる
熱間加工性をも示す2相ステンレス鋼を提供することで
ある。
Therefore, an object of the present invention is to provide a duplex stainless steel that maintains its original excellent corrosion resistance and also exhibits sufficiently satisfactory hot workability.

く課題を解決するための手段〉 本発明者等は、上記目的達成すべく、特に“熱間加工性
向上に有効と考えられるCa等の硫化物形成元素を添加
しても耐食性が低下せず、またCuやVの添加による耐
食性改善効果を十分に発揮でき、更にNを添加しても窒
化物析出による耐食性低下の生じない成分組成の2相ス
テンレス鋼”の実現を目指して、まず2相ステンレス鋼
の熱間加工性改善に著効のあるCa添加がなされた場合
に鋼の耐食性が劣化する原因について調査・検討したと
ころ、rCaは固溶Sと結び付いて硫化物を形成すると
同時に鋼中のOと結合して酸化物を生成する傾向も強く
、従って一層レベル以上のOが存在する鋼中にCaを添
加した場合には酸化物系の介在物が多く形成され、これ
が著しい耐食性の低下を招く原因となる」との事実が明
らかとなり、また、該傾向は何もCaに限られるもので
はなく、2相ステンレス鋼の熱間加工性改善に効果があ
ると推測されるMg、REV(希土類元素)等の他の硫
化物形成元素を添加したときにも同様であることを見出
した。
Means for Solving the Problems In order to achieve the above-mentioned object, the present inventors have specifically found that ``corrosion resistance does not deteriorate even if sulfide-forming elements such as Ca, which are considered to be effective in improving hot workability, are added.'' In addition, with the aim of realizing a two-phase stainless steel with a composition that can fully demonstrate the corrosion resistance improvement effect of the addition of Cu and V, and that does not cause a decrease in corrosion resistance due to nitride precipitation even if N is added, we first developed a two-phase stainless steel. We investigated and examined the cause of the deterioration of the corrosion resistance of stainless steel when Ca is added, which has a significant effect on improving the hot workability of stainless steel. It also has a strong tendency to combine with O to form oxides. Therefore, when Ca is added to steel in which O is present at a higher level, many oxide-based inclusions are formed, which causes a significant decrease in corrosion resistance. Furthermore, this tendency is not limited to Ca, but also Mg and REV (which are presumed to be effective in improving the hot workability of duplex stainless steel). It was also found that the same effect was obtained when other sulfide-forming elements such as rare earth elements were added.

更に、本発明者等は、ステンレス鋼の耐食性の評価法と
してr 10 ZFeCfz・6Hto + 1/2O
N−H(jの溶液に24時間浸漬した際にビフティング
が発生する温度(C,P、T、)の高低で判断する手法
」を導入して硫化物形成元素無添加2相ステンレス鋼と
硫化物形成元素添加2相ステンレス鋼の耐食性を評価す
ると共に、一般に知られているところのrCr、 Mo
及びNの含有割合(重量%)に基づく式で算出される“
P、1.□にて評価する手法」をも適用して同様材料の
耐食性を評価し、その結果から「同じP、 1.の2相
ステンレス鋼であっても“熱間加工性の向上を目指して
Ca、 Mg、  REMの硫化物形成元素を添加した
もの”では“Ca、 Mg、  REMを添加していな
いもの”に比べて孔食発生温度が著しく低下する」こと
を確認した。
Furthermore, the present inventors used r 10 ZFeCfz・6Hto + 1/2O as a method for evaluating the corrosion resistance of stainless steel.
By introducing a method to determine the temperature (C, P, T,) at which bifting occurs when immersed in a solution of N-H (J) for 24 hours, we developed a method to determine the temperature (C, P, T,) at which bifting occurs when immersed in a solution of In addition to evaluating the corrosion resistance of duplex stainless steel with addition of metal-forming elements, we also investigated
is calculated using a formula based on the content ratio (wt%) of N and
P.1. The corrosion resistance of similar materials was evaluated by applying the same P, It was confirmed that the temperature at which pitting corrosion occurs is significantly lower in the steel with the sulfide-forming elements Mg and REM added than in the steel without the addition of Ca, Mg and REM.

そして、これらの結果を踏まえた上で、再度、種々の元
素の2相ステンレス鋼の耐食性に及ぼす影響を総合的に
注意深く検討し、耐食性と熱間加工性を両立させ得る組
成の2相ステンレス鋼の存否について研究を重ねた結果
、次のような新たな知見を得るに至った。即ち、 (al  通常製造されている2相ステンレス鋼におい
てCat Mg或いはREMの添加は何れも熱間加工性
の改善に有効である上、特に○含有量とS含有量を特定
レベルにまで低減すると共に S ($) + OCX) ≦0.0050なる条件を
満足させれば、Cat Mg及びREMの添加がなされ
たとしても耐食性を著しく低下させる硫化物系介在物、
酸化物系介在物の生成が見られなくなる。
Based on these results, we comprehensively and carefully examined the effects of various elements on the corrosion resistance of duplex stainless steel, and developed a duplex stainless steel with a composition that achieves both corrosion resistance and hot workability. As a result of repeated research on the existence or non-existence of That is, (al) Addition of Cat Mg or REM to normally produced duplex stainless steel is effective in improving hot workability, and in particular reduces the ○ content and S content to specific levels. and S ($) + OCX) ≦0.0050, sulfide-based inclusions that significantly reduce corrosion resistance even if Cat Mg and REM are added,
The formation of oxide inclusions is no longer observed.

(b)また、窒化物系介在物の存在も耐食性低下の原因
となっており、2相ステンレス鋼において[111(X
) X N (X)) (7)値が特ニ0.007を超
えた場合には、AINの析出が孔食の起点となって耐孔
食性の低下を招く。
(b) In addition, the presence of nitride-based inclusions also causes a decrease in corrosion resistance, and in duplex stainless steel [111(X
) X N (X)) (7) When the value particularly exceeds 0.007, precipitation of AIN becomes a starting point for pitting corrosion, resulting in a decrease in pitting corrosion resistance.

(C)  更に、2相ステンレス鋼において鋼中のフェ
ライト含有量割合が特定の範囲に調整された場合に耐食
性改善効果がより一層安定するようになる。
(C) Furthermore, in duplex stainless steel, when the ferrite content ratio in the steel is adjusted to a specific range, the corrosion resistance improvement effect becomes even more stable.

(d)  従って、Cat Mg或いはREMの添加、
O含有量とS含有量の規制、M含有量とN含有量の規制
、並びにフェライト量の調整等の手段を併用すれば、非
常に優れた耐食性と熱間加工性とを兼ね備えた2相ステ
ンレス鋼の実現が可能である。
(d) Therefore, the addition of Cat Mg or REM;
If measures such as regulating the O content and S content, regulating the M content and N content, and adjusting the amount of ferrite are used together, duplex stainless steel with extremely excellent corrosion resistance and hot workability can be produced. Realization of steel is possible.

本発明は、上記知見等に基づいてなされたものであり 「2相ステンレス鋼を、 C: 0.03%以下(以降、成分割合を表わす%は重
量%とする。
The present invention has been made based on the above-mentioned findings, etc., and is based on the following: ``C: 0.03% or less (hereinafter, % representing the component ratio is % by weight).

Si:0.0050%。Si: 0.0050%.

Mn : 0.0050%、   P : 0.05%
以下。
Mn: 0.0050%, P: 0.05%
below.

S : 0.002%以下、   Cr : 17.0
〜30.0%。
S: 0.002% or less, Cr: 17.0
~30.0%.

Ni : 1.0〜11.0%、   Mo : 1.
0〜6.0%。
Ni: 1.0-11.0%, Mo: 1.
0-6.0%.

Cu : 0.0050%、   V : 0.01〜
0.50%。
Cu: 0.0050%, V: 0.01~
0.50%.

A1: o、oi〜0.04%、   N : 0.1
0〜0.40%。
A1: o, oi~0.04%, N: 0.1
0-0.40%.

0 : 0.0050%以下 で、かつ Ca : o、ooos〜o、oto%。0: 0.0050% or less So, and Ca: o, ooos~o, oto%.

Mg : 0.0005〜0.010%。Mg: 0.0005-0.010%.

R,E M : 0.0005〜0.010%のうちの
1種以上を含むか、或いは更にW : 0.0050%
、  Ti : 0.01〜0.50%。
Contains one or more of R, EM: 0.0005 to 0.010%, or further W: 0.0050%
, Ti: 0.01-0.50%.

Nb : 0101〜0.50% のうちの1種以上をも含有すると共に、残部がFe及び
不可避的不純物から戒り、かつ S(χ)+O(χ)≦0.0050゜ AI(X) X N (X) ≦0.0070゜,Mg
:0.0005〜0.010% なる条件を満足する如くに構成することにより、優れた
熱間加工性と耐食性を兼備せしめた点」に特徴を有して
いる。
Nb: 0101 to 0.50%, and the balance is free from Fe and inevitable impurities, and S(χ)+O(χ)≦0.0050゜AI(X) N (X) ≦0.0070゜, Mg
:0.0005 to 0.010% By configuring it to satisfy the following conditions, it is characterized by having both excellent hot workability and corrosion resistance.

ここで、2相ステンレス鋼の各成分含有割合並びにフェ
ライト含有量割合を前記の如くに限定した理由は次の通
りである。
Here, the reason why the content ratio of each component and the ferrite content ratio of the duplex stainless steel are limited as described above is as follows.

〈作用〉 A)成分含有割合 Cは鋼中に不可避的に含まれる元素であるが、その含有
量が0.03%を超えた場合には特に溶接熱影響部に炭
化物が析出して耐食性の低下を招くことから、C含有量
は0.03%以下と定めた。
<Function> A) Component content ratio C is an element that is unavoidably contained in steel, but if its content exceeds 0.03%, carbides will precipitate, especially in the weld heat affected zone, and corrosion resistance will deteriorate. Since this would lead to a decrease in carbon content, the C content was set at 0.03% or less.

Ni 十分な耐食性を確保するためにはO含有量の低減が欠か
せず、そのため脱酸を目的としたStの添加が必須とな
る。この場合、Si含有量が0.01%未満では十分な
脱酸効果が得られず、一方、2゜0%を超えて含有させ
ると脆化を招くようになることから、Si含有量は0.
0050%と定めた。
Ni In order to ensure sufficient corrosion resistance, it is essential to reduce the O content, and therefore it is essential to add St for the purpose of deoxidation. In this case, if the Si content is less than 0.01%, a sufficient deoxidizing effect cannot be obtained, while if the Si content exceeds 2.0%, it will cause embrittlement. ..
It was set as 0050%.

迫 Mnは鋼の脱酸と脱硫のために添加される成分であるが
、その含有量が0.10%未満では脱酸・脱硫の効果が
少なく、一方、2.0%を超えて含有量させると耐食性
に悪影響を及ぼすようになることから、Mn含有量は0
.0050%と定めた。
Mn is a component added to deoxidize and desulfurize steel, but if its content is less than 0.10%, the deoxidizing and desulfurizing effect will be small; on the other hand, if its content exceeds 2.0%, If the Mn content is 0, it will have a negative effect on corrosion resistance.
.. It was set as 0050%.

ヱ Pは鋼に不可避的に含有されて熱間加工性と耐食性を劣
化させる不純物元素であるので、その含有量は出来るだ
け低いことが好ましいが、脱燐コストとの兼ね合いでP
含有量は0.05%以下と定めた。
Since P is an impurity element that is unavoidably contained in steel and deteriorates hot workability and corrosion resistance, it is preferable to keep its content as low as possible, but considering the cost of dephosphorization,
The content was set at 0.05% or less.

S。S.

Sも鋼に不可避的に含有される不純物であり、2相ステ
ンレス鋼の熱間加工性に最も大きく影響する元素である
ため、その含有量は少なければ少ないほど好ましい。そ
して、十分に満足できる熱間加工性を確保するためには
0.002%以下のレベルにまでSを低減する必要があ
ることから、S含有量の上限を0.002%と定めた。
S is also an impurity that is inevitably contained in steel, and is the element that has the greatest effect on the hot workability of duplex stainless steel, so the lower the content, the better. In order to ensure sufficiently satisfactory hot workability, it is necessary to reduce S to a level of 0.002% or less, so the upper limit of the S content was set at 0.002%.

Cr Crは2相ステンレス鋼の基本成分の1つであり、耐食
性を支配する重要な成分である。そして、オーステナイ
ト−フェライトの2相組織を呈せしめるには17.0%
以上のCr含有量が必要であるが、その含有量が30.
0%を超えるとσ相が析出し易くなって耐食性と靭性を
劣化するようになることから、Cr含有量は17.O〜
30.0%と定めた。
Cr Cr is one of the basic components of duplex stainless steel and is an important component governing corrosion resistance. In order to exhibit an austenite-ferrite two-phase structure, 17.0% is required.
A Cr content of at least 30% is required.
If the Cr content exceeds 0%, the σ phase tends to precipitate, degrading corrosion resistance and toughness, so the Cr content should be 17. O~
It was set at 30.0%.

Ni Niは2相組織を得るためにCr含有量、 Mo含有量
並びにN含有量との兼ね合いで添加される成分であるが
、Ni含有量が1.0%未満であるとフェライト相が主
体となって2相組織が得られない。一方、11.0%を
超えてNiを含有させると、今度はオーステナイトを主
体とする相となって2相組織が得られないばかりか、高
価な元素であることから経済的な不利を招くことにもな
る。従って、Ni含有量は1.0〜11.0%と定めた
Ni Ni is a component added in consideration of the Cr content, Mo content, and N content in order to obtain a two-phase structure, but if the Ni content is less than 1.0%, the ferrite phase becomes the main component. Therefore, a two-phase structure cannot be obtained. On the other hand, if Ni is contained in an amount exceeding 11.0%, not only will the phase become mainly austenite, making it impossible to obtain a two-phase structure, but it will also cause economic disadvantages since it is an expensive element. It also becomes. Therefore, the Ni content was determined to be 1.0 to 11.0%.

ハ Mo成分には鋼の耐食性を向上させる作用があるが、そ
の含有量が1.0%未満では前記作用による所望の効果
が得られず、一方、6.0%を超えて含有させるとσ相
の析出を著しく促進することから、Mo含有量は1.0
〜6.0%と定めた。
The Mo component has the effect of improving the corrosion resistance of steel, but if the Mo content is less than 1.0%, the desired effect cannot be obtained by the above effect, while on the other hand, if the Mo content is more than 6.0%, σ The Mo content is 1.0 because it significantly promotes phase precipitation.
It was set at ~6.0%.

Cu Cu成分には鋼の耐酸性を向上させる作用があるが、そ
の含有量が0.10%未満では前記作用による所望の効
果が得られず、一方、2.0%を超えて含有させると熱
間加工性を大きく低下するようになることから、Cu″
含有量は0.0050%と定めた。
Cu Cu component has the effect of improving the acid resistance of steel, but if the content is less than 0.10%, the desired effect due to the above effect cannot be obtained, while on the other hand, if the content exceeds 2.0%, Cu″
The content was determined to be 0.0050%.

■ ■成分にはCr、 Mo及びCuと共に適量添加するこ
ことで耐局部腐食性を向上させる作用があるが、その含
有量が0.01%未満では前記作用による所望の効果が
得られず、一方、0.50%を超えて含有させると熱間
加工性の劣化を招くことから、■含有量は0.01〜0
.50%と定めた。
The component (■) has the effect of improving local corrosion resistance when added in appropriate amounts along with Cr, Mo, and Cu, but if its content is less than 0.01%, the desired effect due to the above effect cannot be obtained, On the other hand, if the content exceeds 0.50%, hot workability deteriorates, so the content should be 0.01 to 0.
.. It was set at 50%.

Alも脱酸剤として不可欠な成分であり、十分な耐食性
を確保するためにはA1の脱酸作用をも利用したO量の
低減が欠かせない。しかし、その含有量が0.01%未
満では所望の脱酸効果が得られず、一方、0.04%を
超えて含有させるとAfNが析出して耐孔食性の低下を
招くようになることから、N含有量は0.01〜0.0
4%と定めた。更に、安定した耐食性を確保するために
は、後述するようにtU (X) x N (X) ≦
0.0070なる条件を満足するようにN含有量を調整
する必要がある。
Al is also an essential component as a deoxidizing agent, and in order to ensure sufficient corrosion resistance, it is essential to reduce the amount of O by also utilizing the deoxidizing action of Al. However, if the content is less than 0.01%, the desired deoxidizing effect cannot be obtained, while if the content exceeds 0.04%, AfN will precipitate, leading to a decrease in pitting corrosion resistance. Therefore, the N content is 0.01 to 0.0
It was set at 4%. Furthermore, in order to ensure stable corrosion resistance, as described later, tU (X) x N (X) ≦
It is necessary to adjust the N content so as to satisfy the condition of 0.0070.

Nは2相組織を形成するのに重要な成分てあり、耐食性
の向上にも有効であるが、N含有量が0.10%未満で
は上記効果が乏しく、一方、0.40%を超えて含有さ
せると熱間加工性が低下する上、鋳造時にブローホール
ができ易くなることから、N含有量は0.10〜0.4
0%と限定した。また、N含有量の上限は耐食性によっ
ても規制され、後述するようにAINが生成しないよう
に Af(χ)×N(χ)≦0.0070 なる条件を満足するようにN含有量を調整する必要があ
る。
N is an important component in forming a two-phase structure and is also effective in improving corrosion resistance, but if the N content is less than 0.10%, the above effects are poor, while if it exceeds 0.40%, The N content is 0.10 to 0.4 because it reduces hot workability and tends to cause blowholes during casting.
It was limited to 0%. In addition, the upper limit of the N content is also regulated by corrosion resistance, and the N content is adjusted so as to satisfy the condition Af(χ)×N(χ)≦0.0070 so that AIN is not generated as described later. There is a need.

Ca、 M 、  びREM(土 −素)CaやMg、
或いはLa 、 Ce等のREMは何れも鋼中で硫化物
を生成してSを固定し、鋼の熱間加工性を向上させる作
用を有しているのでこれらのうちの1種又は2種以上の
添加が必須であるが、何れも含有量が0.0005%未
満では前記作用による所望の効果が得られず、一方、0
.010%を超えて含有させても上記効果が飽和してし
まうことから、Ca。
Ca, M, and REM (earth-element) Ca and Mg,
Alternatively, since REMs such as La and Ce all have the effect of generating sulfides in steel, fixing S, and improving the hot workability of steel, one or more of these can be used. However, if the content is less than 0.0005%, the desired effect cannot be obtained;
.. Even if the content exceeds 0.010%, the above effect will be saturated, so Ca.

Mg又はREMの含有量はそれぞれ0.0005〜0.
010%と定めた。
The content of Mg or REM is 0.0005 to 0.00, respectively.
It was set as 0.10%.

0エユL11Σ肋 これらの成分には何れも綱の耐食性を改善する作用があ
るので、必要によりこれらのうちの1種又は2種以上の
添加がなされるが、以下、個々の威分毎にその含有量範
囲を限定した理由を説明する。
Since all of these ingredients have the effect of improving the corrosion resistance of the steel, one or more of these ingredients may be added as necessary. The reason for limiting the content range will be explained.

a)  W Wには耐隙間腐食性を向上させる作用があるが、その含
有量が0.01%未満では上記作用による所望の効果が
確保できず、一方、1.50%を超えて含有させると熱
間加工性の低下を招くようになることから、W含有量は
0.0050%と定めた。
a) W W has the effect of improving crevice corrosion resistance, but if its content is less than 0.01%, the desired effect of the above effect cannot be ensured, and on the other hand, if it is contained more than 1.50%. Since this leads to a decrease in hot workability, the W content is set at 0.0050%.

b) Ti、及びNb これらの元素は鋼中で安定な炭化物を生成して耐食性の
向上に寄与するが、何れも0.01%未満では十分な効
果が得られず、一方、何れも0.50%を超えて含有さ
せても上記効果が飽和してしまうことから、Ti含有量
並びにNb含有量は0.01〜0.50%と定めた。
b) Ti and Nb These elements generate stable carbides in steel and contribute to improving corrosion resistance, but if any of them is less than 0.01%, a sufficient effect cannot be obtained; Since the above effects would be saturated even if the content exceeds 50%, the Ti content and Nb content were determined to be 0.01 to 0.50%.

OはCaやREM等と化合物を作り易く、容易に酸化物
系の介在物となって耐食性を低下させる好ましくない不
純物元素であって、所望の耐食性を確保するためにはそ
の含有量を0.0050%以下に低減する必要がある。
O is an undesirable impurity element that easily forms compounds with Ca, REM, etc. and easily becomes oxide-based inclusions that reduce corrosion resistance. It is necessary to reduce it to 0.050% or less.

そして、耐食性の向上のためにはO含有量は低いほど良
く、出来れば0.0030%以下にまで低減することが
好ましい。
In order to improve corrosion resistance, the lower the O content, the better, and it is preferable to reduce it to 0.0030% or less if possible.

Σ(X)シΣ咲巳兜佐 2相ステンレス鋼の熱間加工性を向上させるためのCa
添加を S (り + O(X) >0.0050なる条件の下
で実施すると、8.0それぞれの含有量が前記規定範囲
内であったとしても鋼中に酸化物系介在物及び硫化物系
介在物が多量に析出して耐食性を大きく低下させること
から、S及び0の含有量は s (z) + O(X) s 0.0050の条件を
満足する範囲内に制限することと定めた。
Ca for improving the hot workability of Σ(X)shiΣSakami Kabutsa duplex stainless steel
If the addition is carried out under the condition that S (Ri + O(X) > 0.0050), oxide inclusions and sulfides will be present in the steel even if the respective contents of 8.0 are within the specified ranges. Since a large amount of system inclusions precipitate and greatly reduce corrosion resistance, it is specified that the content of S and 0 should be limited to a range that satisfies the condition of s (z) + O(X) s 0.0050. Ta.

第1図は、Ca又はCeを30〜40ppI11添加し
た2相ステンレス鋼における( S (X) + O(
X) )の値と耐食性との関係を示すグラフである。
Figure 1 shows (S (X) + O(
It is a graph showing the relationship between the value of X)) and corrosion resistance.

なお、第1図に示される結果は、図中に示した3種類の
鋼種を用い、S、Oの含有量を変化させてその耐食性を
評価し得たものである。ここで、前記3w4種ともp、
 r、が同じではないので、耐食性試験はそれぞれの綱
のC,P、T、の近傍の温度で実施した。そして、試験
環境は10%Fe(J3・6Hz○+1/2ON−HC
Z溶液とし、試験片をこの溶液に24時間浸漬した後に
腐食減量を測定して耐食性を評価した。
The results shown in FIG. 1 were obtained by evaluating the corrosion resistance of the three types of steel shown in the figure and varying the S and O contents. Here, all of the 3w and 4 types are p,
Since r is not the same, the corrosion resistance test was conducted at temperatures near C, P, and T of each steel. The test environment was 10% Fe (J3, 6Hz○+1/2ON-HC
A Z solution was used, and the test piece was immersed in this solution for 24 hours, and then the corrosion loss was measured to evaluate the corrosion resistance.

コノ第1図からも、(S (%) + O(X))が0
.0050を超えると鋼種にかかわらず著しく腐食減量
が大きくなることが明らかであり、良好な耐食性を確保
すルニハ(S(X)+0(X)]を0.0050以下に
する必要のあることが分かる。
From Figure 1, (S (%) + O(X)) is 0.
.. It is clear that when the corrosion weight exceeds 0.0050, the corrosion loss increases significantly regardless of the steel type, and it is clear that Luniha (S(X) + 0(X)) must be 0.0050 or less to ensure good corrosion resistance. .

世1LL丈惺L□通 先にも述べたように、鋼の耐食性を向上させるためには
脱酸を十分に行う必要があるのでMの添加量増加に走る
傾向にあるが、2相ステンレス鋼のように通常は高Nの
鋼では、AIを過剰に添加するとAfN系介在物が多量
に析出することとなって耐食性が大きく低下する。そし
て、AIとNの含有量が、〔AI(χ)×N(χ)〕の
値で0.0070を境としてこれよりも大きくなると鋼
の耐食性が著しく劣化することから、M及びNの含有量
は Af (り x N (z) ≦0.0070の条件を
満足する範囲内に制限することと定めた。
As mentioned previously, in order to improve the corrosion resistance of steel, it is necessary to sufficiently deoxidize it, so there is a tendency to increase the amount of M added, but duplex stainless steel In steels that normally have a high N content, such as steels, when excessive amounts of AI are added, a large amount of AfN-based inclusions will precipitate, resulting in a significant decrease in corrosion resistance. If the content of AI and N exceeds the value of [AI (χ) × N (χ)] of 0.0070, the corrosion resistance of steel will deteriorate significantly, so the content of M and N It was determined that the amount should be limited within a range that satisfies the condition Af(ri x N (z)≦0.0070).

第2図は、Cra又はCeを30〜40ppm添加した
S (X) + O(χ)≦0.0050を満たす2相
ステンレス鋼における(111(り X N (り )
の値と耐食性との関係を示すグラフである。
Figure 2 shows (111(ri)
2 is a graph showing the relationship between the value of and corrosion resistance.

なお、第2図に示される結果は、図中に示した3種類の
鋼種を用い、A1の添加量を変化させてその耐食性を評
価し得たものである。ここで、上記3fi4種ともP、
I、が同じではないので、耐食性試験はそれぞれの鋼の
C,P、T、の近傍の温度で実施した。
The results shown in FIG. 2 were obtained by evaluating the corrosion resistance of the three types of steel shown in the figure and varying the amount of A1 added. Here, all four types of 3fi above are P,
Since I is not the same, the corrosion resistance test was conducted at temperatures near C, P, and T of each steel.

耐食性試験環境は10!re(Js・6Hzo +1/
2ON−HCf溶液とし、試験片をこの溶液に24時間
浸漬した後に腐食減量を測定して耐食性を評価した。
Corrosion resistance test environment is 10! re(Js・6Hzo +1/
A 2ON-HCf solution was used, and the test piece was immersed in this solution for 24 hours, and then the corrosion loss was measured to evaluate the corrosion resistance.

この第2図からも、N含有量によらず〔pJl(z)×
N (X) )が0.0070を超えると著しく腐食減
量が太き(なることが明らかであり、良好な耐食性を確
保すルニは(Ai! (X) X N (%) )を0
.0070以下にする必要のあることが分かる。
From this Figure 2, it can be seen that [pJl(z)×
It is clear that when N (X) ) exceeds 0.0070, the corrosion loss becomes significantly large (Ai! (X) X N (%) ) is 0.
.. It can be seen that the value needs to be 0070 or less.

B)フェライト含有量 フェライト量が3Qvo1.%未満或いは70vol。B) Ferrite content The amount of ferrite is 3Qvo1. % or 70vol.

%を超える場合には所望の耐食性を確保するここができ
ないことから、2相ステンレス鋼中のフェライト含有量
を30〜0.010%と限定した。
%, it is impossible to secure the desired corrosion resistance, so the ferrite content in the duplex stainless steel was limited to 30 to 0.010%.

なお、上記フェライト量の割合は、本発明の規定範囲内
で各成分の含有割合を調整して達成することができる。
Note that the above ratio of the amount of ferrite can be achieved by adjusting the content ratio of each component within the specified range of the present invention.

続いて、この発明を実施例により、比較例と対比しなが
ら更に具体的に説明する。
Next, the present invention will be described in more detail using Examples and in comparison with Comparative Examples.

〈実施例〉 まず、高周波誘導真空溶解炉で第1表に示す如き成分組
成の各2相ステンレス鋼を溶製し、50kgの鋼塊に鋳
込んだ。
<Example> First, each duplex stainless steel having the composition shown in Table 1 was melted in a high frequency induction vacuum melting furnace and cast into a 50 kg steel ingot.

次いで、これら鋼塊を12tm厚にまで熱間圧延した後
、r1070℃に30分間加熱・保持後水冷」なる条件
の溶体化処理を施し、このようにして得られた各板材の
フェライト(α〉量を調査すると共に、該板材から21
m厚×20n幅X5Qn+長の腐食試験片とIonφX
130m長の高温高速引張試験片を採取してそれぞれの
試験に供した。
Next, these steel ingots were hot-rolled to a thickness of 12 tm, and then subjected to solution treatment under the following conditions: heating and holding at r1070°C for 30 minutes, followed by water cooling. In addition to investigating the amount, 21
Corrosion test piece of m thickness x 20n width x 5Qn + length and IonφX
High-temperature, high-speed tensile test pieces with a length of 130 m were taken and used for each test.

なお、腐食試験は、上記腐食試験片を各種温度第 2 表 の10%PeC!5−6HzO+2ON−H(J水溶液
に24時間浸漬して試験片表面にピッティングが生しる
最低の温度を調査し、該温度を“限界ピンティング温度
(C,P、T、)”としてそれの高いものを高耐食性と
評価する方法によった。但し、ステンレス鋼の耐食性の
程度がほぼCr+ N及びNoの各元素の含有量に支配
されることは良く知られており、既に述べたように耐食
性のレベルが P、 L =Cr(Z) + 3 Mo(f) + 1
6N (χ)でほぼ整理できることからこれまで上記P
、1.が耐食性の指標とされてきた点も考慮し、この実
施例においても耐食性の評価はP、 1.を加味したC
以下,Si、T。
In addition, the corrosion test was carried out using the above corrosion test pieces at various temperatures as shown in Table 2 at 10% PeC! 5-6HzO+2ON-H (Immerse in J aqueous solution for 24 hours to find the lowest temperature at which pitting occurs on the surface of the test piece, and define this temperature as the "limit pinting temperature (C, P, T,)". However, it is well known that the degree of corrosion resistance of stainless steel is mostly controlled by the content of each element of Cr + N and No, and as mentioned above, The level of corrosion resistance is P, L = Cr(Z) + 3 Mo(f) + 1
6N (χ), so the above P
, 1. Taking into consideration the fact that has been used as an index of corrosion resistance, the evaluation of corrosion resistance in this example was P, 1. C with
Hereinafter, Si, T.

の高低を基に行った。Based on the height of

また、高温高速引張試験は熱間加工性の評価のために実
施したものであるが、“歪速度:1.Os −”で90
0℃、1ooo℃、1200℃の各温度で引張破断させ
た時の絞り値が全て70%以上を示すもの1が実際の熱
間圧延においても十分な加工性を示して良好な表面性状
を呈することから、上記絞り値が全ての温度で70%以
上のものを良好(○)・何れかの温度で70%未満を示
すものを不良(×)と評価した。
In addition, the high-temperature high-speed tensile test was conducted to evaluate hot workability, and the strain rate was 90 at a strain rate of 1.Os.
Items 1 that exhibit a reduction of area of 70% or more when subjected to tensile fracture at each temperature of 0°C, 1ooo°C, and 1200°C exhibit sufficient workability and good surface quality even in actual hot rolling. Therefore, those whose aperture value was 70% or more at all temperatures were evaluated as good (◯), and those whose aperture value was less than 70% at any temperature were evaluated as poor (×).

これらの結果を第2表に示す。These results are shown in Table 2.

第2表に示される結果からも明らかなように、本発明に
係る2相ステンレス鋼は、Ca等の硫化物生成元素が添
加されているので熱間加工性が良好であるばかりでなく
、 S(χ)+O(χ)≦0.0050゜ Al (X) X N (X) ≦0.0070なる条
件が満たされているので、耐食性試験結果をp、 r、
とC,P、T、との関係でグラフ化した第3図にて確認
できる通り、従来鋼や比較鋼と同じP、1.であっても
これより遥かに高いC,P、T、を示していて一段と優
れた耐食性を有していることが分かる。
As is clear from the results shown in Table 2, the duplex stainless steel according to the present invention not only has good hot workability because it contains sulfide-forming elements such as Ca, but also has S (χ)+O(χ)≦0.0050゜Al (X) X N (X)≦0.0070 is satisfied, so the corrosion resistance test results are
As can be seen in Figure 3, which is a graph showing the relationship between C, P, and T, P, 1. Even so, it shows much higher C, P, and T than this, and it can be seen that it has even better corrosion resistance.

これに対して、従来鋼16〜21もCa、 Mgの硫化
物生成元素が添加されて良好な熱間加工性を有している
が、従来鋼16.17.18ではS量及び0量の低減が
十分でなくて硫化物系と酸化物系の介在物が多量に析出
するので本発明鋼と比較してp、 r、の割にばC,P
、?、が低レベルとなっており、また従来鋼18〜21
は(Aj(X)XN(χ)〕の値が本発明で規定する範
囲から外れているためにAIN析出によって耐食性が十
分でなく、更に従来M20.21はフェライト分率も本
発明で規定する範囲から外れているのでやはりp、 r
、の割にはC,P、T、が低く、何れも熱間加工性と耐
食性が共に優れているとは言い難い。
On the other hand, conventional steels 16 to 21 also have good hot workability due to the addition of sulfide-forming elements such as Ca and Mg, but conventional steels 16, 17, and 18 have low amounts of S and 0. Since the reduction is not sufficient and a large amount of sulfide-based and oxide-based inclusions are precipitated, C and P are lower than p and r compared to the steel of the present invention.
,? , is at a low level, and conventional steel 18-21
Because the value of (Aj (X) Since it is out of the range, p, r
C, P, and T are low in comparison to , and it is hard to say that any of them are excellent in both hot workability and corrosion resistance.

また、比較鋼22.23は、それぞれフェライト分率が
本発明で規定する範囲から外れているため耐食性に劣る
結果となっている。
Furthermore, Comparative Steels 22 and 23 had inferior corrosion resistance because their ferrite fractions were outside the range defined by the present invention.

そして、比較鋼24.25.26はP量が過剰であった
り、Cu、 Vの添加がなされていないため耐食性が十
分でなく、比較鋼27.28は(S(χ)十〇(り)の
値或いは(Af (X) X N (Z) )の値が本
発明で規定する範囲から外れているために耐食性が劣っ
ている。
Comparative steel 24.25.26 has an excessive amount of P and no addition of Cu or V, so its corrosion resistance is insufficient, and comparative steel 27.28 has (S(χ) 10(ri) or the value of (Af (X)

更に、比較鋼29はS含有量が過剰なために熱間加工性
と耐食性のどちらも劣っており、比較鋼3゜は硫化物生
成元素たるCa、 Mg或いはREMの添加がなされて
いないため耐食性は良好であるものの熱間加工性が不十
分な結果となっている。
Furthermore, Comparative Steel 29 has poor hot workability and corrosion resistance due to excessive S content, and Comparative Steel 3° has poor corrosion resistance because it does not contain any sulfide-forming elements such as Ca, Mg, or REM. Although the results are good, the hot workability is insufficient.

〈効果の総括〉 以上に説明した如く、この発明によれば、耐食性並びに
熱間加工性が共に優れた2相ステンレス鋼を実現するこ
とが可能となり、“海底フローライン用ラインパイプ等
の耐食性(耐海水性等)が重視される用途で熱間加工性
を犠牲にして製造歩留りの大幅な低下を余儀無くされて
いた2相ステンレス鋼に絡む従来の問題”が−挙に解決
できるなど、産業上図り知れない効果がもたらされる。
<Summary of Effects> As explained above, according to the present invention, it is possible to realize a duplex stainless steel that is excellent in both corrosion resistance and hot workability, and it is possible to achieve “corrosion resistance for line pipes for submarine flow lines, etc.” The conventional problems associated with duplex stainless steels, which were forced to sacrifice hot workability and significantly reduce production yields in applications where seawater resistance (e.g., seawater resistance) were important, could be solved at once. This brings about unimaginable effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、2相ステンレス鋼における(S(X)十〇(
2)〕の値と腐食減量との関係を示すグラフである。 第2図は、2相ステンレス鋼における(Affi(χ)
×N (X) )の値と腐食減量との関係を示すグラフ
である。 第3図は、耐食性試験結果をp、 r、とC,P、T、
との関係で表わしたグラフである。 第 図 (Sα)+○α)〕 のイ直 第2 図 〔A1(χ) x N (X) ]の値第3 図 P、1
Figure 1 shows (S(X) 10(
2)] is a graph showing the relationship between the value and the corrosion weight loss. Figure 2 shows (Affi(χ)) in duplex stainless steel.
It is a graph showing the relationship between the value of ×N(X)) and corrosion loss. Figure 3 shows the corrosion resistance test results for p, r, C, P, T,
This is a graph expressed in relation to Figure (Sα) + ○α)] Value of A2 Figure 3 [A1(χ) x N (X)] Figure 3 P, 1

Claims (2)

【特許請求の範囲】[Claims] (1)重量割合にて C:0.03%以下,Si:0.10〜2.0%,Mn
:0.10〜2.0%,P:0.05%以下,S:0.
002%以下,Cr:17.0〜30.0%,Ni:1
.0〜11.0%,Mo:1.0〜6.0%,Cu:0
.10〜2.0%,V:0.01〜0.50%,Al:
0.01〜0.04%,N:0.10〜0.40%,O
:0.0050%以下 で、かつ Ca:0.0005〜0.010%, Mg:0.0005〜0.010%, REM:0.0005〜0.010% のうちの1種以上をも含有すると共に、残部がFe及び
不可避的不純物から成り、かつ S(%)+O(%)≦0.0050, Al(%)×N(%)≦0.0070, フェライト含有量:30〜70vol.% なる条件を満足していることを特徴とする、熱間加工性
と耐食性の優れた2相ステンレス鋼。
(1) C: 0.03% or less, Si: 0.10-2.0%, Mn in weight percentage
: 0.10-2.0%, P: 0.05% or less, S: 0.
002% or less, Cr: 17.0-30.0%, Ni: 1
.. 0-11.0%, Mo: 1.0-6.0%, Cu: 0
.. 10-2.0%, V: 0.01-0.50%, Al:
0.01-0.04%, N: 0.10-0.40%, O
: 0.0050% or less, and also contains one or more of the following: Ca: 0.0005-0.010%, Mg: 0.0005-0.010%, REM: 0.0005-0.010% At the same time, the remainder consists of Fe and unavoidable impurities, and S (%) + O (%) ≦0.0050, Al (%) × N (%) ≦0.0070, ferrite content: 30 to 70 vol. % duplex stainless steel with excellent hot workability and corrosion resistance.
(2)重量割合にて C:0.03%以下,Si:0.10〜2.0%,Mn
:0.10〜2.0%,P:0.05%以下,S:0.
002%以下,Cr:17.0〜30.0%,Ni:1
.0〜11.0%,Mo:1.0〜6.0%,Cu:0
.10〜2.0%,V:0.01〜0.50%,Al:
0.01〜0.04%,N:0.10〜0.40%,O
:0.0050%以下 で、かつ Ca:0.0005〜0.010%, Mg:0.0005〜0.010%, REM:0.0005〜0.010% のうちの1種以上、並びに W:0.01〜1.50%,Ti:0.01〜0.50
%,Nb:0.01〜0.50% のうちの1種以上をも含有すると共に、残部がFe及び
不可避的不純物から成り、かつ S(%)+O(%)≦0.0050, Al(%)×N(%)≦0.0070, フェライト含有量:30〜70vol.% なる条件を満足していることを特徴とする、熱間加工性
と耐食性の優れた2相ステンレス鋼。
(2) C: 0.03% or less, Si: 0.10-2.0%, Mn in weight percentage
: 0.10-2.0%, P: 0.05% or less, S: 0.
002% or less, Cr: 17.0-30.0%, Ni: 1
.. 0-11.0%, Mo: 1.0-6.0%, Cu: 0
.. 10-2.0%, V: 0.01-0.50%, Al:
0.01-0.04%, N: 0.10-0.40%, O
: 0.0050% or less, and one or more of Ca: 0.0005 to 0.010%, Mg: 0.0005 to 0.010%, REM: 0.0005 to 0.010%, and W :0.01~1.50%, Ti:0.01~0.50
%, Nb: 0.01 to 0.50%, the remainder consists of Fe and unavoidable impurities, and S (%) + O (%) ≦ 0.0050, Al ( %)×N(%)≦0.0070, ferrite content: 30 to 70 vol. % duplex stainless steel with excellent hot workability and corrosion resistance.
JP21965889A 1989-08-25 1989-08-25 Duplex stainless steel excellent in hot workability and corrosion resistance Pending JPH0382739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21965889A JPH0382739A (en) 1989-08-25 1989-08-25 Duplex stainless steel excellent in hot workability and corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21965889A JPH0382739A (en) 1989-08-25 1989-08-25 Duplex stainless steel excellent in hot workability and corrosion resistance

Publications (1)

Publication Number Publication Date
JPH0382739A true JPH0382739A (en) 1991-04-08

Family

ID=16738950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21965889A Pending JPH0382739A (en) 1989-08-25 1989-08-25 Duplex stainless steel excellent in hot workability and corrosion resistance

Country Status (1)

Country Link
JP (1) JPH0382739A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995011321A1 (en) * 1993-10-20 1995-04-27 Sumitomo Metal Industries, Ltd. Stainless steel for high-purity gas
WO1996018751A1 (en) * 1994-12-16 1996-06-20 Sumitomo Metal Industries, Ltd. Duplex stainless steel excellent in corrosion resistance
WO2008018242A1 (en) * 2006-08-08 2008-02-14 Nippon Steel & Sumikin Stainless Steel Corporation Two-phase stainless steel
KR20170016487A (en) * 2014-06-17 2017-02-13 오또꿈뿌 오와이제이 Duplex stainless steel
US9862168B2 (en) 2011-01-27 2018-01-09 Nippon Steel & Sumikin Stainless Steel Corporation Alloying element-saving hot rolled duplex stainless steel material, clad steel plate having duplex stainless steel as cladding material therefor, and production method for same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995011321A1 (en) * 1993-10-20 1995-04-27 Sumitomo Metal Industries, Ltd. Stainless steel for high-purity gas
US5830408A (en) * 1993-10-20 1998-11-03 Sumitomo Metal Industries, Ltd. Stainless steel for high-purity gases
WO1996018751A1 (en) * 1994-12-16 1996-06-20 Sumitomo Metal Industries, Ltd. Duplex stainless steel excellent in corrosion resistance
EP0750053A1 (en) * 1994-12-16 1996-12-27 Sumitomo Metal Industries, Ltd. Duplex stainless steel excellent in corrosion resistance
US5672215A (en) * 1994-12-16 1997-09-30 Sumitomo Metal Industries, Ltd. Duplex stainless steel excellent in corrosion resistance
EP0750053A4 (en) * 1994-12-16 1998-04-01 Sumitomo Metal Ind Duplex stainless steel excellent in corrosion resistance
WO2008018242A1 (en) * 2006-08-08 2008-02-14 Nippon Steel & Sumikin Stainless Steel Corporation Two-phase stainless steel
JP2008038214A (en) * 2006-08-08 2008-02-21 Nippon Steel & Sumikin Stainless Steel Corp Duplex stainless steel
US20090098007A1 (en) * 2006-08-08 2009-04-16 Shinji Tsuge Duplex Stainless Steel
US8778260B2 (en) 2006-08-08 2014-07-15 Nippon Steel & Sumikin Stainless Steel Corporation Duplex stainless steel
US9862168B2 (en) 2011-01-27 2018-01-09 Nippon Steel & Sumikin Stainless Steel Corporation Alloying element-saving hot rolled duplex stainless steel material, clad steel plate having duplex stainless steel as cladding material therefor, and production method for same
KR20170016487A (en) * 2014-06-17 2017-02-13 오또꿈뿌 오와이제이 Duplex stainless steel
EP3158101A4 (en) * 2014-06-17 2017-12-13 Outokumpu Oyj Duplex stainless steel

Similar Documents

Publication Publication Date Title
AU650799B2 (en) Duplex stainless steel having improved strength and corrosion resistance
JP4946092B2 (en) High-strength steel and manufacturing method thereof
US5496421A (en) High-strength martensitic stainless steel and method for making the same
US5591391A (en) High chromium ferritic heat-resistant steel
JP2000192196A (en) Martensitic stainless steel for oil well
JP3732424B2 (en) Manufacturing method of hot-rolled steel sheet with high weather resistance and high workability
JPH10503809A (en) Martensitic stainless steel with sulfide stress cracking resistance with excellent hot workability
WO2007029687A1 (en) Low alloy steel
JPH0382740A (en) Duplex stainless steel excellent in hot workability and corrosion resistance
JP3269799B2 (en) Ferritic stainless steel for engine exhaust parts with excellent workability, intergranular corrosion resistance and high-temperature strength
JPH075972B2 (en) Method for manufacturing low carbon martensitic stainless steel line pipe
JPH0382739A (en) Duplex stainless steel excellent in hot workability and corrosion resistance
JP2002309349A (en) Martensitic stainless steel with excellent strength stability
EP1143024B1 (en) Martensitic stainless steel
JP2004099921A (en) Seawater resistant steel and manufacturing method
JP3887832B2 (en) Manufacturing method of high strength hot bend steel pipe
JP5793556B2 (en) 862 MPa class low C high Cr steel pipe having high corrosion resistance and manufacturing method thereof
JP3886864B2 (en) Ferritic stainless steel cold-rolled annealed material excellent in secondary workability and manufacturing method thereof
KR101554771B1 (en) Super ductile lean duplex stainless steel
JP2017128775A (en) Stainless steel and stainless steel pipe
KR20210067034A (en) High strength and lean-duplex stainless steel and method of manufactruing the same
JP2000290756A (en) HIGH Cr MARTENSITIC HEAT RESISTANT STEEL EXCELLENT IN HOT WORKABILITY
JP2661875B2 (en) Superplastic duplex stainless steel with low deformation resistance and excellent elongation properties
JP2002241903A (en) HIGH Cr FERRITIC HEAT RESISTANT STEEL
JP2004263248A (en) Method for manufacturing high-tensile steel excellent in ctod characteristic of weld zone