JPH02159319A - Manufacture of grain-oriented silicon steel sheet excellent in surface characteristic and magnetic property - Google Patents

Manufacture of grain-oriented silicon steel sheet excellent in surface characteristic and magnetic property

Info

Publication number
JPH02159319A
JPH02159319A JP31183688A JP31183688A JPH02159319A JP H02159319 A JPH02159319 A JP H02159319A JP 31183688 A JP31183688 A JP 31183688A JP 31183688 A JP31183688 A JP 31183688A JP H02159319 A JPH02159319 A JP H02159319A
Authority
JP
Japan
Prior art keywords
slab
rolling
steel
annealing
subjected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31183688A
Other languages
Japanese (ja)
Other versions
JPH0713267B2 (en
Inventor
Michiro Komatsubara
道郎 小松原
Takashi Obara
隆史 小原
Fumihiko Takeuchi
竹内 文彦
Masahiko Manabe
真鍋 昌彦
Yoshiaki Iida
飯田 嘉明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP31183688A priority Critical patent/JPH0713267B2/en
Publication of JPH02159319A publication Critical patent/JPH02159319A/en
Publication of JPH0713267B2 publication Critical patent/JPH0713267B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a grain-oriented Si steel sheet excellent in surface characteristics and magnetic properties by treating a slab of an Si-containing steel having a specific composition under the prescribed process conditions. CONSTITUTION:A slab of an Si steel containing, by weight, 2-4.5% Si and 0.004-0.080% Sb is subjected to soaking treatment in an internally heated-type heating furnace, such as an induction heater into which nonoxidizing gas is introduced, at a temp. in the region of >=1400 deg.C for <=60min. Subsequently, the above slab is subjected to hot rollings including roughing where rolling at >=40% draft is carried out by one or more passes at >=1250 deg.C. Then, the hot rolled plate is subjected to a single cold rolling or is cold-rolled twice while process-annealed between the cold rolling stages, and the resulting sheet is subjected to decarburizing annealing and is subjected, after subjected to the application of a separation agent at annealing to the steel-sheet surface, to finish annealing. By this method, deterioration in the surface characteristics of a product due to the internally heated-type heating of the Si steel slab at high temp. can be avoided, and the above steel sheet having high quality can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 圧延方向に優れた磁気特性を有する方向性けい素鋼板の
製造方法に関し、とくに含けい素鋼スラブに施す高温加
熱に伴う問題点の有利な解決についての開発研究の成果
を提供しようとするものである。
[Detailed Description of the Invention] (Industrial Field of Application) This invention relates to a method for producing grain-oriented silicon steel sheets having excellent magnetic properties in the rolling direction, and in particular to an advantageous method for solving problems associated with high-temperature heating applied to silicon-containing steel slabs. This is an attempt to provide the results of development research regarding solutions.

(従来の技術) 方向性けい素鋼板は、ゴス方位と呼ばれる(110)(
001)方位に高度に揃った2次再結晶粒を仕上焼鈍に
おいて形成させるものであり、仕上焼鈍に先立ち、■正
常粒の成長を抑制させるためにインヒビターと呼ばれる
MnS、 MnSeおよびAfNなどの微細な析出物を
均一に析出分散させてお(ことおよび、■(110) 
(001)方位以外の結晶組織は細粒化しておくこと、
特に繊維状組織をつくり易い(100) <1mn>組
織を破壊しておくことが必要である。そしてこれらを満
足させるに当って熱間圧延工程の影響を無視することは
できず、特に、連続鋳造により得られた含けい素鋼スラ
ブを用いる場合は、スラブ加熱の影響が極めて大きい。
(Prior art) A grain-oriented silicon steel sheet has a (110) (
001) Secondary recrystallized grains with highly aligned orientations are formed in the final annealing. Prior to the final annealing, fine particles such as MnS, MnSe and AfN called inhibitors are added to suppress the growth of normal grains. The precipitate is uniformly precipitated and dispersed (and (110)
The crystal structure other than the (001) orientation should be fine-grained;
In particular, it is necessary to destroy the (100) <1 mn> structure, which tends to form a fibrous structure. In order to satisfy these requirements, the influence of the hot rolling process cannot be ignored, and especially when using a silicon-containing steel slab obtained by continuous casting, the influence of heating the slab is extremely large.

すなわち、インヒビターを微細に析出分散させるには、
インヒビターをスラブ加熱時に完全に固溶させておかね
ばならないため、スラブを高温まで加熱するとスラブの
結晶組織が粗大化して、結晶組織に(100) <i、
mn>の繊維組織が出現する不利をまねく。
In other words, in order to finely precipitate and disperse the inhibitor,
Since the inhibitor must be completely dissolved in the solid solution when heating the slab, heating the slab to a high temperature will coarsen the crystal structure of the slab and change the crystal structure to (100) <i,
This results in the disadvantage that a fibrous structure of mn> appears.

そこでスラブ加熱は、特開昭60−190520号公報
に開示のように、1300℃以上1450℃未満の高温
で短時間の加熱を行う方式が主流になりつつある。
Therefore, as for slab heating, a method of heating for a short time at a high temperature of 1300° C. or more and less than 1450° C., as disclosed in Japanese Patent Application Laid-Open No. 60-190520, is becoming mainstream.

かようなスラブの加熱は、実公昭58−24397号公
報、特開昭60−145318号公報や特開昭60−1
28210号公報に開示されている誘導加熱炉や直接通
電加熱炉のような内部発熱型加熱炉での短時間加熱によ
って行うことが効率的ではあるが、短時間加熱とはいえ
スラブ表面には多量の溶融スケールが生成し、この溶融
スケールは加熱炉の操業性を損うばかりでなく、いわゆ
るノロとなって表面疵の発生原因ともなる。この問題を
解決する手法として例えば特開昭60−145318号
公報には、スラブ加熱雰囲気におけるOz濃度を1%以
下にすることによって、スラブ表面の溶融スケールの生
成を抑制し、製品の表面性状を改善するものが開示され
ているが、10トン以上もある大きなスラブを高温で加
熱する炉を完全に密閉することが難しいため、雰囲気の
0□濃度を1%以下にすることは実操業上困難で、また
1400℃以上の温度にスラブを加熱すると、従来のノ
ロに起因した表面欠陥とは異なるタイプの線状模様と呼
ばれる表面欠陥が製品に出現し、これは雰囲気の0□濃
度を実験的に0.1%以下に低減しても、その発生を回
避できなかった。
Heating of such a slab is described in Japanese Utility Model Publication No. 58-24397, Japanese Patent Application Laid-open No. 60-145318, and Japanese Patent Application Laid-open No. 60-1.
Although it is efficient to conduct heating for a short time using an internal heating type heating furnace such as an induction heating furnace or a direct current heating furnace disclosed in Publication No. 28210, even though the heating is performed for a short time, a large amount of heat is deposited on the slab surface. A molten scale is generated, and this molten scale not only impairs the operability of the heating furnace, but also becomes so-called slag and causes surface flaws. As a method to solve this problem, for example, Japanese Patent Application Laid-Open No. 145318/1983 describes a method to suppress the formation of molten scale on the slab surface and improve the surface quality of the product by reducing the Oz concentration in the slab heating atmosphere to 1% or less. Improvements have been disclosed, but it is difficult to completely seal the furnace that heats large slabs weighing more than 10 tons at high temperatures, so it is difficult to reduce the 0□ concentration in the atmosphere to 1% or less in actual operations. Also, when the slab is heated to a temperature of 1400℃ or higher, a surface defect called a linear pattern appears on the product, which is different from the surface defect caused by conventional slag. Even if it was reduced to 0.1% or less, the occurrence could not be avoided.

(発明が解決しようとする課題) そこでMnS、 MnSeやAffiN等のインヒビタ
ーを含有するけい素鋼スラブが1400℃以上の高温域
における加熱を経ても線状模様と呼ばれる製品の表面欠
陥が発生しない有利な製造方法を与えることが、この発
明の目的である。
(Problem to be solved by the invention) Therefore, silicon steel slabs containing inhibitors such as MnS, MnSe, and AffiN have the advantage of not causing surface defects called linear patterns even after being heated in a high temperature range of 1400°C or higher. It is an object of the present invention to provide a manufacturing method.

(課題を解決するための手段) 発明者らは、従来の雰囲気中0□濃度の規制によっては
改善されない製品の表面性状を向上する手段について種
々検討したところ、1400℃以上の高温度でのスラブ
加熱を施す場合は鋼中成分および粗圧延条件を規制する
ことが製品の表面性状の改善に極めて有効であることを
新規に知見し、この発明を完成するに至った。
(Means for Solving the Problem) The inventors investigated various means for improving the surface properties of products that cannot be improved by the conventional regulation of 0□ concentration in the atmosphere, and found that The inventors have newly found that controlling the components in the steel and the rough rolling conditions when heating is extremely effective in improving the surface properties of the product, leading to the completion of this invention.

すなわちこの発明は、St:2〜4.5 wtXおよび
Sb : 0.004〜0.080 wtXを含むケイ
素鋼スラブを、非酸化性ガスを導入した内部発熱型加熱
炉にて1400℃以上の温度に加熱してこの温度域で6
0分間以内の均熱処理を施し、次いで工250℃以上の
温度で圧下率が40%以上の圧延を少なくとも1パスは
行う粗圧延を含む熱間圧延を施し、その後1回もしくは
中間焼鈍を挟む2回の冷間圧延を施したのち、脱炭焼鈍
を施し、次いで鋼板表面に焼鈍分離剤を塗布してから仕
上焼鈍を施す表面性状および磁気特性に優れた方向性け
い素鋼板の製造方法である。
That is, this invention heats a silicon steel slab containing St: 2 to 4.5 wtX and Sb: 0.004 to 0.080 wtX to a temperature of 1400° C. or higher in an internal heat-generating furnace into which a non-oxidizing gas is introduced. 6 in this temperature range.
Soaking for 0 minutes or less, followed by hot rolling including rough rolling at a temperature of 250°C or higher and a rolling reduction of 40% or higher for at least one pass, followed by one round or two intermediate annealing steps. This is a method for producing a grain-oriented silicon steel sheet with excellent surface properties and magnetic properties, in which the steel sheet is cold rolled twice, then decarburized annealed, then an annealing separator is applied to the surface of the steel sheet, and then finish annealed. .

さてこの発明における出発材は、方向性けい素鋼スラブ
が対象であり、その成分組成は、次の各成分が有利に適
合する。
Now, the starting material in this invention is a grain-oriented silicon steel slab, and the following components are advantageously suitable for its composition.

Cは鋼板の結晶組織を改善するため必要で、0.02w
tX (以下単に%と示す)未満では効果がなく、逆に
0.08%を越えると脱炭性が劣化するので、通常は0
.02〜0.08%の範囲とする。
C is necessary to improve the crystal structure of the steel plate, and is 0.02w.
If it is less than tX (hereinafter simply referred to as %), there is no effect, and if it exceeds 0.08%, decarburization performance deteriorates, so it is usually 0.
.. The range is 0.02% to 0.08%.

Siは鋼板の比抵抗を高め鉄損を下げるために必要で、
2%未満ではα−γ変態となって仕上焼鈍で結晶方位が
揃わず、一方4.5%を越えると冷延性が劣化するので
通常は2〜4.5%の範囲とする。
Si is necessary to increase the specific resistance of steel sheets and reduce iron loss.
If it is less than 2%, α-γ transformation will occur and the crystal orientation will not be aligned during final annealing, while if it exceeds 4.5%, cold rollability will deteriorate, so it is usually in the range of 2 to 4.5%.

Mnは、インヒビターとして作用させるためには0.0
2%以上は必要、であり、0.12%を越えると、固溶
温度が上がって、スラブ加熱温度が高くなり過ぎるので
、通常は0.02〜0.12%の範囲とする。
Mn should be 0.0 in order to act as an inhibitor.
2% or more is necessary, and if it exceeds 0.12%, the solid solution temperature will rise and the slab heating temperature will become too high, so it is usually in the range of 0.02 to 0.12%.

鋼は上記した他にインヒビター成分として、S。In addition to the above, the steel contains S as an inhibitor component.

Se、^It、 Cu、 Sn、 Mo+ P+ Cr
、 TeおよびBiのうちから選ばれる1種または2種
以上を含有することが好ましい。
Se, ^It, Cu, Sn, Mo+ P+ Cr
, Te, and Bi.

さらにこの発明では製品での線状模様を抑制するために
とくにsbを0.004%以上含有させることが必要で
ある。但し、0.080%を越えると、脱炭焼鈍におけ
る脱炭性が悪くなるので、0.004〜0.080%と
する。
Furthermore, in this invention, in order to suppress linear patterns in the product, it is particularly necessary to contain sb in an amount of 0.004% or more. However, if it exceeds 0.080%, the decarburization properties in decarburization annealing will deteriorate, so the content is set at 0.004 to 0.080%.

またスラブはインゴットを分塊圧延したものでも連続鋳
造によって製造されるスラブでも良い。
Further, the slab may be a slab produced by blooming an ingot or a slab produced by continuous casting.

また、連続鋳造された後、分塊再圧されたスラブも対象
に含まれることはいうまでもない。
It goes without saying that the target also includes slabs that have been continuously cast and then re-blushed.

上記成分を有するスラブは内部発熱型加熱炉、例えば誘
導加熱炉あるいは直接通電加熱炉で1400℃以上の温
度に加熱されるが、経済効率を考慮して、昇温の途中ま
では従来型のガス燃焼炉で加熱しても良い。但し140
0℃以上の高温に何トンもあるスラブをガス燃焼炉で加
熱することは不可能に近いので、最終的に内部発熱型加
熱炉を使用することは必要であり、この発明においても
必須となる。
The slab containing the above components is heated to a temperature of 1,400°C or higher in an internal heat-generating heating furnace, such as an induction heating furnace or a direct current heating furnace.However, in consideration of economic efficiency, conventional gas It may be heated in a combustion furnace. However, 140
Since it is nearly impossible to heat a slab weighing several tons to a high temperature of 0°C or higher using a gas combustion furnace, it is ultimately necessary to use an internal heating type heating furnace, which is also essential in this invention. .

このとき、雰囲気中の0!濃度はsbが含有されている
ため厳密な規制は不要で、したがって従来のように炉内
密閉などの特別な手段を講する必要がなく、ArやN2
等の非酸化性ガスが炉内に導入されていれば良いが、0
□濃度が高い場合は炉内へのノロ蓄積のため作業能率が
低下することもあるので、oz1度は5%以下とするこ
とが好ましい。
At this time, 0 in the atmosphere! Concentrations do not need to be strictly regulated because sb is included, so there is no need to take special measures such as sealing the furnace as in the past, and Ar and N2
It is sufficient if a non-oxidizing gas such as
□ If the concentration is high, work efficiency may decrease due to slag accumulation in the furnace, so it is preferable that the oz1 degree is 5% or less.

また、インヒビターの固溶には1400℃以上の均熱温
度が必要であるが、実用的には1400〜1470”C
が慣用される。均熱時間としては10分以上が望ましい
が、あくまでも均熱温度によって決定されるべきであり
、一方60分間を越えるとスラブ組織が粗大化して磁気
特性が劣化するので60分間以内とする。
In addition, a soaking temperature of 1400°C or higher is required for solid solution of the inhibitor, but practically it is 1400-1470"C.
is commonly used. The soaking time is preferably 10 minutes or more, but it should be determined by the soaking temperature; on the other hand, if it exceeds 60 minutes, the slab structure will become coarse and the magnetic properties will deteriorate, so the soaking time should be within 60 minutes.

次いで加熱後のスラブは粗圧延によってシートバーとさ
れ、その後仕上タンデム圧延機によってホットコイルと
されるが、ここで粗圧延での条件が製品に線状模様を発
生させないためには重要である。すなわち粗圧延段階に
おいて1250℃以上の温度で圧下率が40%以上の圧
延を少なくとも1パス施すことが、製品に線状模様を発
生させないためには必要である。
The heated slab is then rough rolled into a sheet bar, and then turned into a hot coil by a finishing tandem rolling mill, but the rough rolling conditions are important in order to prevent the generation of linear patterns in the product. That is, in the rough rolling stage, it is necessary to perform at least one pass of rolling at a temperature of 1250° C. or higher and a rolling reduction of 40% or higher in order to prevent the generation of linear patterns in the product.

そして熱間圧延を経た熱延板に必要に応じて焼ならし焼
鈍を施してから、1回又は中間焼鈍を挟む2回の冷間圧
延によって最終板厚とされる。その後脱炭・1次再結晶
焼鈍を施し、鋼板表面に焼鈍分離剤を塗布した後、12
00’C近傍での最終仕上焼鈍にて2次再結晶および純
化を行った後、絶縁コーティングを被成して製品とする
Then, the hot-rolled sheet is subjected to normalization annealing if necessary, and then cold-rolled once or twice with intermediate annealing in between to reach the final thickness. After that, decarburization and primary recrystallization annealing were performed, and after applying an annealing separator to the steel plate surface,
After secondary recrystallization and purification are performed by final annealing at around 00'C, an insulating coating is applied to produce a product.

(作 用) スラブに高温加熱を施す理由は、上述したようにインヒ
ビターを固?容するためであり、鋼中に含有されるMn
S SMnSeおよびAI!、N等を固溶するためには
、十分に高温とする必要がある。したがって内部発熱型
加熱炉内に装入されたスラブは高温雰囲気にさらされる
ため、表面酸化によって生成した溶融スケールがノロと
なって表面疵の発生原因となる。そこでスラブの表面酸
化を抑制することが肝要で、雰囲気の0□濃度を厳しく
規制することで対処できるが、加熱温度が1400℃以
上になると製品に線状模様という新たな表面欠陥が発生
する。この表面欠陥は製品板表面のフォルステライト被
膜の構造に乱れが生じて地鉄面が一部裸出し、フォルス
テライトが地鉄内部に眉をなして入り込んだ構造になる
、平均被膜厚さの薄いもので、この表面欠陥の発生はこ
の発明に従ってスラブ加熱と熱間圧延を施すことによっ
て有利に回避される。
(Effect) The reason for applying high temperature heating to the slab is to harden the inhibitor as mentioned above. This is to reduce the Mn contained in the steel.
S SMnSe and AI! , N, etc., it is necessary to make the temperature sufficiently high. Therefore, since the slab charged into the internal heating type heating furnace is exposed to a high temperature atmosphere, molten scale generated by surface oxidation becomes slag and causes surface defects. Therefore, it is important to suppress surface oxidation of the slab, and this can be done by strictly regulating the 0□ concentration in the atmosphere, but if the heating temperature exceeds 1400°C, a new surface defect called a linear pattern will occur on the product. This surface defect occurs when the structure of the forsterite coating on the surface of the product plate is disturbed, and a part of the base metal surface is exposed, resulting in a structure in which forsterite forms an eyebrow inside the base metal, and the average coating thickness is thin. However, the occurrence of surface defects is advantageously avoided by performing slab heating and hot rolling in accordance with the present invention.

次にこの発明を導くに至った実験結果について述べる。Next, the experimental results that led to this invention will be described.

St : 3.35χ、C: 0.035%、Mn :
 0.070%およびS : 0,020%を含有する
厚さ180ffI11のけい素鋼スラブ゛(八)とSi
 : 3.36%C: 0.032%、Mn : 0.
068%およびS : 0.021%にさらにSb :
 0.008%を含有する、厚さ180 mmのけい素
鋼スラブ(B)を、誘導加熱炉で1320℃から146
0″Cの温度域の所定温度で、各40分間の均熱処理を
施し、次いで粗圧延として、01380℃で厚さ120
 mmに(圧下率33%)01290℃で厚さ60胴に
 (圧下率50%)■1210℃で厚さ45ff11m
に(圧下率25%)■1120″Cで厚さ35閣に(圧
下率22%)の4パスの圧延処理を施した後、7スタン
ドの仕上圧延機で一気に2.0 mm厚の熱延鋼帯に仕
上げた。このとき、誘導加熱炉内のガス密閉性を変えて
、0□濃度を0.1%と3%の二水準に変更した。これ
らのコイルは常法の2回圧延法によって製品としたが、
表面性状を判定するため、製品コイルを100mごとの
ブロックに分けてそれぞれ表面欠陥の有無を判定し、該
当する欠陥を有するブロックを総ブロック数で割って百
倍したものを疵発生率とした。第1図に疵発生率および
線状模様発生率とスラブ誘導加熱温度との関係を示す。
St: 3.35χ, C: 0.035%, Mn:
Silicon steel slab (8) with a thickness of 180ff I1 containing 0.070% and S: 0,020% and Si
: 3.36%C: 0.032%, Mn: 0.
068% and S: 0.021% and further Sb:
A 180 mm thick silicon steel slab (B) containing 0.008% was heated from 1320°C to 146°C in an induction heating furnace.
Soaking treatment was carried out for 40 minutes each at a predetermined temperature in the temperature range of 0"C, and then rough rolling was carried out at 01380C to a thickness of 120mm.
mm (rolling rate 33%) 01290℃ to thickness 60mm (rolling rate 50%) ■1210℃ thickness 45ff 11m
(Reduction rate: 25%) ■ After 4 passes of rolling at 1120"C to a thickness of 35 mm (Reduction rate: 22%), it was hot-rolled to a thickness of 2.0 mm at once using a 7-stand finishing mill. The coils were finished into steel strips.At this time, the gas tightness in the induction heating furnace was changed to change the 0□ concentration to two levels, 0.1% and 3%.These coils were rolled using the conventional two-rolling method. The product was made by
In order to determine the surface quality, the product coil was divided into blocks of 100 m each, and the presence or absence of surface defects was determined for each block, and the number of blocks with the corresponding defect was divided by the total number of blocks and multiplied by 100 to determine the flaw occurrence rate. FIG. 1 shows the relationship between the flaw occurrence rate, the linear pattern occurrence rate, and the slab induction heating temperature.

同図に示したように、従来タイプの欠陥である疵につい
ては、0!濃度を0゜1%以下に規制することで有効に
低減できるが、ここで問題とする新たな欠陥である線状
模様については、sbを含有していないスラブ(A)の
場合、スラブ加熱温度が1400℃以上になると急激に
増加している。この線状模様はsbをo、ooa%含有
させることで同図のスラブ(B)にて示されるように1
0%以下に顕著に低減することが可能となる。またsb
含有鋼における、もうひとつの特徴として、3%の0□
濃度であっても従来型の欠陥である疵が低減されており
、0□濃度の規制を大幅に緩和することが可能であると
の知見が得られた。
As shown in the figure, the number of scratches, which are conventional types of defects, is 0! It can be effectively reduced by regulating the concentration to 0.1% or less, but regarding the new defect that is the problem here, linear patterns, in the case of a slab (A) that does not contain sb, the slab heating temperature increases rapidly when the temperature exceeds 1400°C. This linear pattern is created by containing o, ooa% of sb, as shown in slab (B) in the same figure.
It becomes possible to significantly reduce it to 0% or less. Also sb
Another feature of the containing steel is that 3% of 0□
Even when it comes to density, the conventional defects, such as flaws, are reduced, and it has been found that it is possible to significantly relax the regulation of 0□ density.

またsbを0.008%含有する上記のスラブ(厚さ1
80 mm)を用いて熱間圧延における粗圧延の圧下率
が線状模様に及ぼす影響を調査した。スラブ加熱は誘導
加熱炉を用い1460℃で20分間のインヒビター溶体
化処理を行ったが、このとき雰囲気中の0□濃度は5%
とした。なお粗圧延の条件は、次の表1に示す通りであ
る。各条件に従って得られた製品の線状模様発生率につ
いて調べた結果を、表1に併記する。
In addition, the above slab containing 0.008% sb (thickness 1
80 mm) to investigate the effect of the rough rolling reduction ratio on the linear pattern in hot rolling. The slab was heated using an induction heating furnace and subjected to inhibitor solution treatment at 1460°C for 20 minutes, at which time the 0□ concentration in the atmosphere was 5%.
And so. The rough rolling conditions are as shown in Table 1 below. Table 1 also shows the results of investigating the linear pattern occurrence rate of products obtained according to each condition.

同表から、粗圧延において、1250℃以上の温度で圧
下率40%以上の圧下を1パス以上行うことによって、
線状模様の発生率が激減することがわかる。従来140
0’C未満のスラブ加熱においてはインヒビターの溶体
化を完了させるために長時間のスラブ加熱を必要として
いたので必然的に加熱後のスラブ組織は粗大化し、この
粗大化した結晶粒の破壊を意図して、熱間圧延において
制御した再結晶化圧延が行われていた。すなわち特公昭
60−37172号公報に開示されているように、96
0〜1190℃の温度範囲での30%以上の高圧下率の
圧延によって再結晶する領域があるため、熱間圧延にお
ける仕上圧延の前段や、粗圧延の後半は、高圧下率で行
うことが必要とされていた。したがって、高温度域での
粗圧延は必然的に圧下率を下げ、低温度域では圧下率を
上げていた。
From the same table, in rough rolling, by performing one pass or more of rolling at a temperature of 1250°C or higher and a rolling reduction rate of 40% or higher,
It can be seen that the incidence of linear patterns is drastically reduced. Conventional 140
When heating the slab below 0'C, it was necessary to heat the slab for a long time to complete the solutionization of the inhibitor, so the slab structure after heating inevitably became coarse, and the aim was to destroy this coarse grain. Thus, controlled recrystallization rolling was performed during hot rolling. That is, as disclosed in Japanese Patent Publication No. 60-37172, 96
Since there is a region where recrystallization occurs due to rolling with a high reduction rate of 30% or more in the temperature range of 0 to 1190°C, the first stage of finish rolling in hot rolling and the second half of rough rolling can be performed at a high reduction rate. It was needed. Therefore, rough rolling in a high temperature range inevitably lowers the rolling reduction rate, while in a low temperature range it increases the rolling reduction rate.

この発明に従う熱間圧延においては、1190″C以下
の再結晶温度域において、圧下率が低くなる場合がある
が、スラブ内部発熱型加熱の均熱時間を60分間以内に
規制することによ゛って磁気特性の劣化を防ぐことが、
次の実験によって判明した。
In the hot rolling according to the present invention, the reduction rate may be low in the recrystallization temperature range of 1190"C or lower, but this can be achieved by regulating the soaking time of the slab internal exothermic heating to within 60 minutes. To prevent deterioration of magnetic properties,
This was discovered through the following experiment.

C: 0.040%、Si : 3.36%、Mn :
 0.070%、Se: 0.025%およびSb :
 0.015%を含有するスラブをN2を導入した誘導
加熱炉で1450’Cに加熱し、20分、40分、60
分、80分および100分と均熱した後、熱間圧延を施
して2.3鵬厚の熱延鋼帯とした。このとき、雰囲気中
の02濃度は8%であった。粗圧延のスケジュールは上
記した表1の条件■とした。
C: 0.040%, Si: 3.36%, Mn:
0.070%, Se: 0.025% and Sb:
A slab containing 0.015% was heated to 1450'C in an induction heating furnace with N2 introduced, and heated for 20 minutes, 40 minutes, and 60 minutes.
After soaking for 80 minutes and 100 minutes, hot rolling was performed to obtain a hot rolled steel strip having a thickness of 2.3 mm. At this time, the 02 concentration in the atmosphere was 8%. The rough rolling schedule was set to the condition (2) in Table 1 above.

二〇熱延鋼帯は950℃で2分間の焼ならし焼鈍を施し
た後、酸洗し、0.70mmの中間厚に圧延した後、1
000″Cで1分間の中間焼鈍を施し、その後0.23
+maの最終厚みにまで冷間圧延した。次いで800℃
で2分間の脱炭焼鈍を施した後、MgOを主剤とする焼
鈍分離剤を鋼板表面に塗布して箱焼鈍によって1200
℃×10時間の仕上焼鈍を施した。得られた製品の線状
模様発生率および磁気特性の測定結果を表2に記す。
20 Hot-rolled steel strip is normalized and annealed at 950°C for 2 minutes, pickled, rolled to an intermediate thickness of 0.70mm, and then
Intermediate annealing was performed at 000″C for 1 minute, and then 0.23
It was cold rolled to a final thickness of +ma. Then 800℃
After decarburizing annealing for 2 minutes at
Finish annealing was performed at ℃ for 10 hours. Table 2 shows the measurement results of the linear pattern occurrence rate and magnetic properties of the obtained product.

表2 同表に示されるように、均熱時間60分間以内のスラブ
加熱処理によって磁気特性は良好に保たれる。
Table 2 As shown in the table, magnetic properties are maintained well by slab heating treatment within 60 minutes of soaking time.

通常、粗圧延の圧下率が高い場合は熱間圧延中の高変形
によって粒界割れを誘起し、表面性状は劣化すると考え
られる。これに対してこの発明における圧下の影響はこ
れと全く逆の傾向を示しており、この発明の実験におい
て初めて知見し得た現象である。
Normally, when the reduction ratio in rough rolling is high, it is thought that intergranular cracking is induced due to high deformation during hot rolling, and the surface quality is deteriorated. On the other hand, the influence of rolling in this invention shows a completely opposite tendency, and this is a phenomenon that was discovered for the first time in the experiments of this invention.

さらに発明者らはこの現象の機構を明らかにするため、
上述した2種類のスラブを3%の0□濃度を含有するN
2雰囲気中で1430℃で30分間焼鈍した後、スラブ
表層の組織を観察したところ、第2図に示すように、s
bを含有しないm(b)においては表面にノロの層があ
るとともに、地鉄側にも厚いサブスケールの層が存在し
た。このサブスケール層は1400℃以上において急激
に発達する。これに対して、sbを含有するa(a)に
おいては、表面のノロの層が薄く、かつ地鉄側のサブス
ケール層も薄く、平滑な界面になっているところに特徴
がある。
Furthermore, in order to clarify the mechanism of this phenomenon, the inventors
The two types of slabs mentioned above were treated with N containing a 0□ concentration of 3%.
After annealing at 1430°C for 30 minutes in a 2 atmosphere, the structure of the surface layer of the slab was observed, as shown in Figure 2.
In m(b), which does not contain b, there was a layer of slag on the surface, and a thick subscale layer was also present on the base iron side. This subscale layer develops rapidly at temperatures above 1400°C. On the other hand, a(a) containing sb is characterized in that the slag layer on the surface is thin, and the subscale layer on the base metal side is also thin, resulting in a smooth interface.

sb含存する鋼(a)のようなサブスケールの構造は、
次工程の粗圧延での強圧下によって容易に剥落し、地鉄
界面が裸出するのに対し、sbを含有しない鋼(b)の
ような厚くこみいったサブスケールの構造のものは熱間
圧延における粗圧延の強圧下によっても剥落させること
が困難で、最終製品までその影響が残存するものと思わ
れる。これに対し綱(a)の構造のようなサブスケール
は40%以上の強加工によって剥落させることが可能で
あるが、そのff11250℃以上の高温でないと、サ
ブスケールと地鉄の界面の密着性が強化されサブスケー
ルが剥落されないものと推測される。
The subscale structure of steel (a) containing sb is
It easily flakes off due to heavy reduction in the next process of rough rolling, exposing the bare steel interface, whereas steel with a thick, congested subscale structure, such as steel (b) that does not contain sb, peels off easily during hot rolling. It is difficult to remove it even by the strong reduction during rough rolling during rolling, and it is thought that the effect remains until the final product. On the other hand, subscales such as the structure of rope (a) can be peeled off by strong working of 40% or more, but unless the temperature is higher than ff11250℃, the adhesion between the subscale and the base steel will deteriorate. It is assumed that the subscales are strengthened and the subscales do not fall off.

このようなサブスケールの構造をもたらし、製品の線状
模様を低減させるために有効なsbの適正含有量につい
て行った実験結果を第3図に示す。
FIG. 3 shows the results of an experiment conducted regarding the appropriate content of sb effective for producing such a subscale structure and reducing the linear pattern of the product.

上記スラブ(Cu : 0.036%、Si : 3.
16%、Mn二0.064%、S : 0.018%)
の組成においてsb含有量を種々に変化させた200 
mm厚の各スラブは、誘導加熱により、1460℃で2
0分間、2%濃度の02を含むN2雰囲気中で加熱され
た後、1320℃で160 mm厚に(圧下率20%)
−1270℃で90mm厚に(圧下率44%) →11
90℃で55+++m厚に(圧下率39%)まで粗圧延
で圧延した後7スタンドのタンデム圧延で仕上圧延を行
った。熱延鋼帯はその後常法の冷延2回法で製品となし
た。第3図に示されるように、sbを0.004%以上
含有させることによって、線状模様の発生率を激減させ
ることが可能となる。
The above slab (Cu: 0.036%, Si: 3.
16%, Mn2 0.064%, S: 0.018%)
200 with various sb contents in the composition of
Each mm-thick slab was heated at 1460℃ for 2 hours by induction heating.
After being heated in a N2 atmosphere containing 2% concentration of 02 for 0 minutes, it was heated at 1320 °C to a thickness of 160 mm (reduction rate 20%).
-1270℃ to 90mm thickness (reduction rate 44%) →11
After rough rolling at 90° C. to a thickness of 55+++ m (reduction ratio: 39%), finish rolling was performed by tandem rolling with 7 stands. The hot-rolled steel strip was then made into a product by a conventional two-step cold rolling method. As shown in FIG. 3, by containing 0.004% or more of sb, it is possible to drastically reduce the incidence of linear patterns.

(実施例) 裏施拠上 連続鋳造によって得られたC : 0.050%、Si
:3.25%、Mn : 0.078%、S : 0.
020%、Sn : 0.10%、Cu : 0.08
%、A I!、: 0.025%、N : 0.008
3%およびSb : 0.009%を含有する200閾
厚のスラブを、ガス燃焼炉に装入し、1200℃まで加
熱した後、直ちに誘導加熱炉にて1400”Cに昇温し
20分間保持した後熱間圧延を施した。このとき誘導加
熱炉の雰囲気はN2ガスで、0□を3%含有していた。
(Example) C obtained by continuous casting on backing: 0.050%, Si
: 3.25%, Mn: 0.078%, S: 0.
020%, Sn: 0.10%, Cu: 0.08
%, AI! , : 0.025%, N : 0.008
A slab of 200 threshold thickness containing 3% and Sb: 0.009% was charged into a gas combustion furnace and heated to 1200°C, and then immediately raised to 1400"C in an induction heating furnace and held for 20 minutes. After that, hot rolling was performed.At this time, the atmosphere in the induction heating furnace was N2 gas containing 3% 0□.

また熱間圧延は、200閣厚−1350℃で140 m
m厚に(圧下率30%、以下同様)→1280℃で80
mm厚に(43%)→1200℃で40mm厚に(50
%)の3パスの粗圧延を行い、その後7スタンドの仕上
圧延機で2.6M厚の熱延鋼帯とした。熱延鋼帯は酸洗
後、1.50mm厚まで冷間圧延し、1150℃で2分
間の焼鈍を施した後急冷し、その後150℃の温度で冷
間圧延を施し、0.23mmの板厚としだ後840℃X
3分の脱炭焼鈍を施し、次いで鋼板表面に?IgOを主
成分とする焼鈍分離剤を塗布してから、水素中で120
0″C×20時間の仕上焼鈍を施した。一方比較例とし
て、連続鋳造によって得られた、C: 0.055%、
St : 3.30%、Mn : 0.080%、S 
: 0.021%、Sn:0610%、Cu:0.09
%、八Z : 0.025%およびN : 0.008
3%を含有する200 mm厚のスラブを上記と同様の
処理にて製品鋼帯とした。両者の線状模様発生率と磁気
特性について調べた結果を表3に示す。
In addition, hot rolling is 140 m at 200°C - 1350°C.
m thickness (reduction rate 30%, same below) → 80 at 1280℃
mm thickness (43%) → 40 mm thickness at 1200℃ (50
%), and then a 2.6M thick hot-rolled steel strip was obtained using a 7-stand finishing mill. After pickling, the hot rolled steel strip was cold rolled to a thickness of 1.50 mm, annealed at 1150°C for 2 minutes, rapidly cooled, and then cold rolled at 150°C to form a 0.23 mm plate. 840℃ after thickening
After 3 minutes of decarburization annealing, the surface of the steel plate is After applying an annealing separator mainly composed of IgO, it was heated at 120°C in hydrogen.
Finish annealing was performed for 0''C x 20 hours.On the other hand, as a comparative example, C: 0.055%, obtained by continuous casting.
St: 3.30%, Mn: 0.080%, S
: 0.021%, Sn: 0610%, Cu: 0.09
%, 8Z: 0.025% and N: 0.008
A 200 mm thick slab containing 3% was processed in the same manner as above to produce a product steel strip. Table 3 shows the results of investigating the linear pattern occurrence rate and magnetic properties of both.

連続鋳造によって得られたC 二0.040%、Si:
3.35%、Mn : 0.080%、Se : 0.
024%、Sb : 0.018%およびMo : 0
.010%を含有する210 mm厚のスラブ2本を分
塊再圧によって180 aun厚のスラブにした後、1
200℃までガス燃焼炉で加熱した後、直ちに誘導加熱
炉にて1420”Cまで昇温し40分間均熱した後、そ
れぞれのスラブに対し次の熱間圧延を施した。すなわち
一方のスラブは、180 rm厚→1320℃で150
 mm厚に(17%)  −+1280℃で80mm厚
に(47%)→1195℃で60閣厚に(25%)→1
060℃で45閣厚に(25%)の粗圧延を施した後、
仕上圧延で2.2閣厚の熱延鋼帯(適合例)とし、他方
のスラブは、180鴫厚→1320℃で135 mm厚
に(25%)→1270″Cで100 mm厚1に(2
6%) →1180’Cで75mm厚(25%)→11
00℃で60mm厚に(20%)→1060℃で45m
m厚に(25%)の粗圧延を施した後、仕上圧延で2.
2 mm厚の熱延綱帯(比較例)とした。
C20.040%, Si obtained by continuous casting:
3.35%, Mn: 0.080%, Se: 0.
024%, Sb: 0.018% and Mo: 0
.. Two 210 mm thick slabs containing 0.010% were made into a 180 aun thick slab by blooming recompression, and then
After heating to 200°C in a gas combustion furnace, the temperature was immediately raised to 1420"C in an induction heating furnace, and after soaking for 40 minutes, each slab was subjected to the following hot rolling. That is, one slab was , 180 rm thickness → 150 at 1320℃
mm thick (17%) -+80 mm thick at 1280°C (47%) → 60 mm thick at 1195°C (25%) → 1
After rough rolling to 45mm thick (25%) at 060℃,
A hot-rolled steel strip with a thickness of 2.2mm (conforming example) is made by finish rolling, and the other slab is 180mm thick → 135mm thick at 1320°C (25%) → 100mm thick 1 at 1270″C ( 2
6%) → 75mm thickness at 1180'C (25%) → 11
60mm thick at 00℃ (20%) → 45m at 1060℃
After rough rolling (25%) to m thickness, 2.
A hot-rolled steel strip (comparative example) with a thickness of 2 mm was used.

次いで両者に、1000℃で1分間の焼ならし処理を施
した後、0.60mmの中間厚となし950 ’Cで2
分間の中間焼鈍を行った後、冷間圧延で0.23mmの
最終板厚に仕上げた。
Both were then normalized at 1000°C for 1 minute and then normalized at 950'C with an intermediate thickness of 0.60mm.
After performing intermediate annealing for 1 minute, the plate was cold rolled to a final thickness of 0.23 mm.

この後800″Cで3分間の湿水素中での脱炭焼鈍を行
ったのち、鋼板表面にMgOを主成分とする焼鈍分離剤
を塗布し、水素中で1200℃15時間の仕上焼鈍を行
った。
After decarburization annealing in wet hydrogen at 800"C for 3 minutes, an annealing separator containing MgO as a main component was applied to the surface of the steel plate, and final annealing was performed in hydrogen at 1200°C for 15 hours. Ta.

かくして得られた製品の線状模様発生率と磁気特性につ
いて調べた結果を表4に示す。
Table 4 shows the results of examining the linear pattern occurrence rate and magnetic properties of the product thus obtained.

表4 連続鋳造によって得られたC : 0.060%、Si
:3.35%、Mn : 0.080%、Se : 0
.020%、Sb : 0.020%、Cu : 0.
08%、Mo : 0.015%、A 1 : 0.0
25%およびN : 0.0076%を含有する220
ffI[Il厚のスラブを、ガス燃焼炉によって115
0℃まで加熱した後、直ちにスラブ誘導加熱炉に装入し
、1450℃で20分間の加熱処理を施した。このとき
誘導加熱炉内の雰囲気はN2で、6%の02を含有して
いた。
Table 4 C obtained by continuous casting: 0.060%, Si
: 3.35%, Mn: 0.080%, Se: 0
.. 020%, Sb: 0.020%, Cu: 0.
08%, Mo: 0.015%, A1: 0.0
25% and N: 220 containing 0.0076%
A slab with a thickness of ffI [Il is
After heating to 0°C, it was immediately placed in a slab induction heating furnace and heat-treated at 1450°C for 20 minutes. At this time, the atmosphere in the induction heating furnace was N2 and contained 6% 02.

次いで加熱後のスラブに220 mm厚→1310℃で
11011II11厚に(50%)→1270℃で60
mm厚に(45%)→1120℃で40mm厚に(33
%)の粗圧延を施し、次いで7スタンドのタンデム圧延
機で2.7mmJVO熱延鋼帯とした後、酸洗し、1.
4 TM1厚の中間板厚にし、1050℃で2分間の中
間焼鈍後ミスト冷却により急冷した。その後、冷間圧延
により0.20mmの最終板厚にし、湿水素中で脱炭焼
鈍した後、鋼板表面に?IgOを主成分とする焼鈍分離
剤を塗布し、1200℃X20時間の仕上焼鈍を施した
。か(して得られた製品の線状模様発生率は2%であっ
た。
Next, the heated slab was heated to a thickness of 220 mm → 11011II11 thickness at 1310°C (50%) → 60 mm at 1270°C.
mm thickness (45%) → 40 mm thickness at 1120℃ (33
%), and then processed into a 2.7 mm JVO hot-rolled steel strip using a 7-stand tandem rolling mill, followed by pickling.
4 The intermediate plate thickness was TM1, and after intermediate annealing at 1050°C for 2 minutes, it was rapidly cooled by mist cooling. After that, the final thickness of the steel plate is 0.20 mm by cold rolling, and after decarburization annealing in wet hydrogen, the surface of the steel plate is An annealing separator containing IgO as a main component was applied, and final annealing was performed at 1200° C. for 20 hours. The linear pattern occurrence rate of the product obtained was 2%.

災旌斑土 連続鋳造によって得られたC : 0.035%、Si
:3.05%、Mn : 0.075%、S:0.01
7%およびSb:0.014%を含有する215 mm
厚のスラブをガス燃焼炉によって、1180℃まで加熱
した後、直ちにN2ガスを導入したスラブ誘導加熱炉に
装入し、1440℃で30分間の加熱処理を施し、他方
比較材として同一の組成のスラブに均熱処理時間を70
分間としてほかは同様のスラブ加熱処理を施した。
C: 0.035%, Si obtained by continuous casting
: 3.05%, Mn: 0.075%, S: 0.01
215 mm containing 7% and Sb: 0.014%
After a thick slab was heated to 1180°C in a gas combustion furnace, it was immediately charged into a slab induction heating furnace into which N2 gas was introduced and heat treated at 1440°C for 30 minutes. 70 soaking time for slab
The slab was heated in the same manner except for a minute.

両者を誘導加熱するに際し、炉内の02濃度は15%と
した。両者はスラブ加熱後、215 rrrm厚→13
50℃で160 mm厚に(26%) →1280’c
で95mm厚に(41%)→1200℃で75mm厚に
(21%)→1130℃で60mm厚に(20%)→1
080’Cで45mm厚(25%)の粗圧延を施し、次
いで7スタンドのタンデム圧延機で2.6InIn厚の
熱延鋼帯とした後酸洗し、0.8.mmの中間厚にして
から950℃で2分間の中間焼鈍を施した後、0.30
mmの最終板厚まで冷間圧延を施し、840 ”Cで2
分間の脱炭焼鈍を施した後、鋼板表面にMgOを主成分
とする焼鈍分離剤を塗布し、次いで1200℃で10時
間の仕上焼鈍を施した。かくして得られた製品の線状模
様発生率と磁気特性について調べた結果を表5に示す。
When heating both by induction, the 02 concentration in the furnace was set to 15%. After heating the slab, both have a thickness of 215 rrrm → 13
160 mm thick at 50℃ (26%) →1280'c
95mm thick at (41%) → 75mm thick at 1200℃ (21%) → 60mm thick at 1130℃ (20%) → 1
The steel strip was roughly rolled to a thickness of 45 mm (25%) at 080'C, then made into a hot rolled steel strip of 2.6 InIn thickness using a 7-stand tandem rolling mill, and then pickled to a thickness of 0.8. After making the intermediate thickness of 0.30 mm and performing intermediate annealing at 950°C for 2 minutes,
Cold rolled to a final thickness of mm and rolled at 840”C to 2
After performing decarburization annealing for 1 minute, an annealing separator containing MgO as a main component was applied to the surface of the steel sheet, and then final annealing was performed at 1200° C. for 10 hours. Table 5 shows the results of examining the linear pattern occurrence rate and magnetic properties of the product thus obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は誘導加熱炉でのスラブ加熱温度と製品の表面性
状との関係を雰囲気中の0□濃度およびスラブへのsb
金含有ついて示したグラフ、第2図はスラブが誘導加熱
炉で加熱されたときの表層酸化物の様相がsbの有無に
よって変化することを示す金属組織写真、 第3図は、sbの含有量と線状模様発生率との関係を示
したグラフである。 特許出願人  川崎製鉄株式会社 (発明の効果) この発明によればけい素鋼スラブの扁温度での内部発熱
型加熱に由来する製品の表面性状の劣化を有利に回避し
、よって高品質の方向性けい素鋼板を製造することがで
きる。 第1図 0008%5b−−一・− 一〇− スフ7パ誘導加た偶Jx℃) (b)
Figure 1 shows the relationship between the slab heating temperature in an induction heating furnace and the surface texture of the product.
Graph showing the gold content; Figure 2 is a metallographic photograph showing that the appearance of the surface layer oxide changes depending on the presence or absence of sb when the slab is heated in an induction heating furnace; Figure 3 is the content of sb. It is a graph showing the relationship between the linear pattern occurrence rate and the linear pattern occurrence rate. Patent Applicant: Kawasaki Steel Corporation (Effects of the Invention) According to this invention, the deterioration of the surface quality of the product resulting from the internal heat generation type heating at the flat temperature of the silicon steel slab can be advantageously avoided, thereby improving the quality of the product. It is possible to produce silicon steel sheets. (b)

Claims (1)

【特許請求の範囲】[Claims] 1、Si:2〜4.5wt%およびSb:0.004〜
0.080wt%を含むけい素鋼スラブを、非酸化性ガ
スを導入した内部発熱型加熱炉にて1400℃以上の温
度に加熱してこの温度域で60分間以内の均熱処理を施
し、次いで1250℃以上の温度で圧下率が40%以上
の圧延を少なくとも1パスは行う粗圧延を含む熱間圧延
を施し、その後1回もしくは中間焼鈍を挟む2回の冷間
圧延を施したのち、脱炭焼鈍を施し、次いで鋼板表面に
焼鈍分離剤を塗布してから仕上焼鈍を施す表面性状およ
び磁気特性に優れた方向性けい素鋼板の製造方法。
1, Si: 2 to 4.5 wt% and Sb: 0.004 to
A silicon steel slab containing 0.080wt% was heated to a temperature of 1400°C or higher in an internal heat-generating heating furnace into which non-oxidizing gas was introduced, and subjected to soaking treatment within this temperature range for 60 minutes, and then soaked at 1250°C. Hot rolling including rough rolling is performed at least one pass of rolling with a rolling reduction of 40% or more at a temperature of ℃ or higher, followed by cold rolling once or twice with intermediate annealing, and then decarburization. A method for producing a grain-oriented silicon steel sheet with excellent surface properties and magnetic properties, which comprises annealing the steel sheet, applying an annealing separator to the surface of the steel sheet, and then subjecting the steel sheet to final annealing.
JP31183688A 1988-12-12 1988-12-12 Method for producing grain-oriented silicon steel sheet having excellent surface properties and magnetic properties Expired - Fee Related JPH0713267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31183688A JPH0713267B2 (en) 1988-12-12 1988-12-12 Method for producing grain-oriented silicon steel sheet having excellent surface properties and magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31183688A JPH0713267B2 (en) 1988-12-12 1988-12-12 Method for producing grain-oriented silicon steel sheet having excellent surface properties and magnetic properties

Publications (2)

Publication Number Publication Date
JPH02159319A true JPH02159319A (en) 1990-06-19
JPH0713267B2 JPH0713267B2 (en) 1995-02-15

Family

ID=18021985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31183688A Expired - Fee Related JPH0713267B2 (en) 1988-12-12 1988-12-12 Method for producing grain-oriented silicon steel sheet having excellent surface properties and magnetic properties

Country Status (1)

Country Link
JP (1) JPH0713267B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201517A (en) * 2002-01-10 2003-07-18 Jfe Steel Kk Method of producing grain oriented silicon steel sheet having stably excellent magnetic property
CN113857251A (en) * 2021-09-26 2021-12-31 马鞍山钢铁股份有限公司 Electrical steel cold rolling device and method for increasing reduction rate
JP2022514794A (en) * 2018-12-19 2022-02-15 ポスコ Directional electrical steel sheet and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201517A (en) * 2002-01-10 2003-07-18 Jfe Steel Kk Method of producing grain oriented silicon steel sheet having stably excellent magnetic property
JP2022514794A (en) * 2018-12-19 2022-02-15 ポスコ Directional electrical steel sheet and its manufacturing method
CN113857251A (en) * 2021-09-26 2021-12-31 马鞍山钢铁股份有限公司 Electrical steel cold rolling device and method for increasing reduction rate
CN113857251B (en) * 2021-09-26 2024-03-22 马鞍山钢铁股份有限公司 Cold rolling device and cold rolling method for electrical steel with increased reduction rate

Also Published As

Publication number Publication date
JPH0713267B2 (en) 1995-02-15

Similar Documents

Publication Publication Date Title
JP2782086B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic and film properties
WO2016059101A1 (en) Process for producing grain-oriented electrical steel strip and grain-oriented electrical steel strip obtained according to said process related applications
JPH09118964A (en) Grain-directional silicon steel having high volume resistivity
US20170283903A1 (en) Process for producing grain-oriented electrical steel strip and grain-oriented electrical steel strip obtained according to said process
WO2016059099A1 (en) Process for producing grain-oriented electrical steel strip and grain-oriented electrical steel strip obtained according to said process
KR950005793B1 (en) Process for producing grain-oriented electrical steel strip having high magnetic flux density
JPH01283324A (en) Production of grain-oriented electrical steel sheet having high magnetic flux density
JP2022514794A (en) Directional electrical steel sheet and its manufacturing method
WO1995013401A1 (en) Production method of directional electromagnetic steel sheet of low temperature slab heating system
JPH04173923A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property as well as in film characteristic
JP2599867B2 (en) Method for manufacturing low iron loss grain-oriented silicon steel sheet
JPH03294427A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
US5330586A (en) Method of producing grain oriented silicon steel sheet having very excellent magnetic properties
JP5920387B2 (en) Method for producing grain-oriented electrical steel sheet
KR100831756B1 (en) Process for the control of inhibitors distribution in the production of grain oriented electrical steel strips
JPH04120216A (en) Manufacture of grain oriented silicon steel sheet excellent in magnetic characteristic
JPH02159319A (en) Manufacture of grain-oriented silicon steel sheet excellent in surface characteristic and magnetic property
JPH02294428A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density
JPH02228425A (en) Production of grain-oriented silicon steel sheet with high magnetic flux density
JPH0733548B2 (en) Method of manufacturing bidirectional electrical steel sheet with high magnetic flux density
JPS6148761B2 (en)
JP2002129236A (en) Method for stably manufacturing grain oriented silicon steel sheet
JPH0331421A (en) Method for heating grain oriented silicon steel slab
JPH0762437A (en) Production of grain oriented silicon steel sheet having extremely low iron loss
JPH0699751B2 (en) Method for producing grain-oriented silicon steel sheet having good electromagnetic characteristics

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees