JP4604827B2 - Manufacturing method of unidirectional electrical steel sheet - Google Patents

Manufacturing method of unidirectional electrical steel sheet Download PDF

Info

Publication number
JP4604827B2
JP4604827B2 JP2005139584A JP2005139584A JP4604827B2 JP 4604827 B2 JP4604827 B2 JP 4604827B2 JP 2005139584 A JP2005139584 A JP 2005139584A JP 2005139584 A JP2005139584 A JP 2005139584A JP 4604827 B2 JP4604827 B2 JP 4604827B2
Authority
JP
Japan
Prior art keywords
annealing
less
temperature
steel sheet
secondary recrystallization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005139584A
Other languages
Japanese (ja)
Other versions
JP2006316314A (en
Inventor
広朗 戸田
敬 寺島
峰男 村木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005139584A priority Critical patent/JP4604827B2/en
Publication of JP2006316314A publication Critical patent/JP2006316314A/en
Application granted granted Critical
Publication of JP4604827B2 publication Critical patent/JP4604827B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、磁気特性と被膜特性に優れた一方向性電磁鋼板を、低コストで製造する方法に関するものである。   The present invention relates to a method for producing a unidirectional electrical steel sheet having excellent magnetic properties and coating properties at a low cost.

方向性電磁鋼板は、主として変圧器その他の電気機器の鉄心材料として使用され、磁束密度および鉄損値などの磁気特性に優れることが必要である。その一般的な製造方法としては、厚さ:100〜300mmのスラブを約1350℃以上の高温に加熱後、熱間圧延し、ついで必要に応じて熱延板焼鈍を施したのち、1回または中間焼鈍を挟む2回以上の冷間圧延によって最終板厚とし、脱炭焼鈍後、焼鈍分離剤を塗布してから、二次再結晶および純化を目的とした最終仕上げ焼鈍を行うという複雑な工程が採られており、最終仕上げ焼鈍時の二次再結晶によって{110}<001>方位の結晶粒を成長させている。   The grain-oriented electrical steel sheet is mainly used as an iron core material for transformers and other electric devices, and is required to have excellent magnetic properties such as magnetic flux density and iron loss value. As a general manufacturing method, a slab having a thickness of 100 to 300 mm is heated to a high temperature of about 1350 ° C. or more, hot-rolled, and then subjected to hot-rolled sheet annealing as necessary, or once or A complex process in which the final sheet thickness is obtained by cold rolling at least twice with intermediate annealing, and after decarburization annealing, an annealing separator is applied, followed by final finishing annealing for the purpose of secondary recrystallization and purification. The crystal grains of {110} <001> orientation are grown by secondary recrystallization during final finish annealing.

このような二次再結晶を効果的に発現させるためには、まず一次再結晶粒の成長を抑制するインヒビターと呼ばれる析出分散相を、均一かつ適切なサイズに分散させることが必要とされている。このようなインヒビターとしては、MnS,MnSe,AlNおよびBNに代表される硫化物、Se化合物、窒化物のような鋼中への溶解度が低いものが用いられており、熱間圧延前のスラブ加熱時にインヒビターを完全に固溶させ、その後の工程で微細に析出させる方法が採用されている。この場合、インヒビターを十分に固溶させるためには、約1350〜1400℃程度の温度でスラブ加熱を行う必要があり、普通鋼のスラブ加熱温度に比べると約200℃も高温である。   In order to effectively develop such secondary recrystallization, it is necessary to first disperse a precipitated dispersed phase called an inhibitor that suppresses the growth of primary recrystallized grains to a uniform and appropriate size. . As such an inhibitor, those having low solubility in steel such as sulfides, Se compounds and nitrides represented by MnS, MnSe, AlN and BN are used, and slab heating before hot rolling is used. At times, a method in which the inhibitor is completely dissolved and finely precipitated in the subsequent steps is employed. In this case, in order to sufficiently dissolve the inhibitor, it is necessary to perform slab heating at a temperature of about 1350 to 1400 ° C., which is about 200 ° C. higher than the slab heating temperature of ordinary steel.

しかしながら、上記したような高温スラブ加熱には、以下のような欠点がある。
(a)高温加熱を行うためにエネルギー原単位が高い。
(b)溶融スケールが発生し易く、またスラブ垂れも生じ易いため、製品の表面欠陥を生じ易い。
(c)スラブ表層の過脱炭が生じ易い。
However, high temperature slab heating as described above has the following drawbacks.
(A) The energy intensity is high for high temperature heating.
(B) Melt scale is likely to occur and slab sag is likely to occur, so that surface defects of the product are likely to occur.
(C) Overdecarburization of the slab surface layer is likely to occur.

上記(b),(c)の問題を解決するために、誘導加熱炉が採用されているが、エネルギーコストの増大という問題は残されたままである。従って、省エネルギー化と低コスト化のために、スラブ加熱温度の低温化を図る研究がこれまで数多くなされてきた。   In order to solve the problems (b) and (c), an induction heating furnace is employed, but the problem of an increase in energy cost remains. Therefore, many studies have been made to reduce the slab heating temperature in order to save energy and reduce costs.

例えば、特許文献1には、Mnを0.08〜0.45%、Sを0.007%以下とすることによってスラブ加熱を低温化する技術が開示され、また特許文献2には、これにCrを添加することによって二次再結晶の安定化を図る技術が開示されている。これらはいずれも、S量を低減してスラブ加熱時のMnSの固溶を図るのが特徴である。しかしながら、これらの技術は、コイル幅方向や長手方向での磁気特性のバラツキが生じ易いという問題があり、研究室規模の製造手段に止まっていた。その原因としては、MnSに代替するインヒビターの機能不足による二次再結晶の不安定化が挙げられる。上記の技術は、酸可溶性Alを0.010〜0.060%,Nを0.0030〜0.0130%含有し、インヒビターとしてAlNを用いるものであったが、スラブ加熱温度が低くAlNを完全固溶させることができないため、インヒビターの抑制力不足あるいは部分的な抑制力の変動が大きいことにより、磁気特性は安定化しなかった。   For example, Patent Document 1 discloses a technique for lowering the slab heating by setting Mn to 0.08 to 0.45% and S to 0.007% or less, and Patent Document 2 discloses adding Cr to this. A technique for stabilizing secondary recrystallization is disclosed. All of these are characterized in that the amount of S is reduced to achieve solid solution of MnS during slab heating. However, these techniques have a problem that variations in magnetic characteristics in the coil width direction and the longitudinal direction are likely to occur, and have been limited to laboratory-scale manufacturing means. The cause is destabilization of secondary recrystallization due to insufficient function of an inhibitor that substitutes for MnS. The above-mentioned technique contains 0.010 to 0.060% of acid-soluble Al and 0.0030 to 0.0130% of N and uses AlN as an inhibitor. However, since the slab heating temperature is low and AlN cannot be completely dissolved, The magnetic properties were not stabilized due to insufficient inhibitory force or partial fluctuations in inhibitory force.

かような欠点を補う手段として、特許文献3には、二次再結晶焼鈍中に窒素吸収を促進させて、二次再結晶を安定化させる技術が開示されている。焼鈍分離剤中に窒化物を添加することで二次再結晶焼鈍中に窒化させ、二次再結晶を安定化させる同様な技術は、特許文献4にも開示されている。しかしながら、二次再結晶焼鈍中に窒化させる技術は、コイルの長手方向や幅方向で窒化量に差が生じるために、依然として、十分に二次再結晶の発現を安定化させることはできなかった。   As means for making up for such drawbacks, Patent Document 3 discloses a technique for stabilizing secondary recrystallization by promoting nitrogen absorption during secondary recrystallization annealing. A similar technique for nitriding during secondary recrystallization annealing by adding nitride in the annealing separator and stabilizing secondary recrystallization is also disclosed in Patent Document 4. However, the technique of nitriding during secondary recrystallization annealing still cannot sufficiently stabilize the expression of secondary recrystallization due to differences in the amount of nitriding in the longitudinal and width directions of the coil. .

上記問題を解決するために、脱炭焼鈍後、二次再結晶焼鈍前に鋼板を窒化処理して二次再結晶を安定化させる技術が、特許文献5や特許文献6、特許文献7において開示された。しかしながら、二次再結晶焼鈍前に窒化処理を施す方法は 、新たな設備を必要とし、コストが増大するという問題があった。   In order to solve the above problems, Patent Document 5, Patent Document 6, and Patent Document 7 disclose techniques for stabilizing secondary recrystallization by nitriding a steel plate after decarburization annealing and before secondary recrystallization annealing. It was done. However, the method of performing the nitriding treatment before the secondary recrystallization annealing has a problem of requiring new equipment and increasing the cost.

一方、これまで必要不可欠とされてきたインヒビターを使用せずに方向性電磁鋼板を製造する試みも種々行われてきた。例えば、特許文献8、特許文献9、特許文献10および特許文献11には、三次再結晶を利用する技術が開示されているが、これらはいずれも表面エネルギー差を利用する方法であるため、板厚が薄いものに限られる。従って、現在、製品として使用されている方向性電磁鋼板の板厚は0.20mm以上がほとんどであるため、通常の製品を上記の方法で製造することは困難である。   On the other hand, various attempts have been made to produce grain-oriented electrical steel sheets without using inhibitors that have been considered essential so far. For example, Patent Literature 8, Patent Literature 9, Patent Literature 10, and Patent Literature 11 disclose techniques that utilize tertiary recrystallization. However, since these are all methods that utilize a surface energy difference, Limited to thin thickness. Therefore, the thickness of the grain-oriented electrical steel sheet currently used as a product is almost 0.20 mm or more, and it is difficult to manufacture a normal product by the above method.

ところが、近年になって、二次再結晶発現の重要なポイントして、インヒビターの存在の他に、一次再結晶組織において隣り合う結晶粒の方位差角が注目されるようになってきた。すなわち、方位差角が20〜45°である粒界(高エネルギー粒界)が重要な役割を果たしていることが、非特許文献1で報告され、これに基づいて、インヒビターを使用しない方向性電磁鋼板の研究が再び盛んに行われるようになってきた。
例えば、特許文献12において、鋼スラブ中にインヒビター成分を含有させなくても、工業的に方向性電磁鋼板が製造できる技術(インヒビターレス法)が開示されている。
However, in recent years, as an important point in the development of secondary recrystallization, in addition to the presence of an inhibitor, the orientation difference angle between adjacent crystal grains in the primary recrystallization structure has attracted attention. That is, it is reported in Non-Patent Document 1 that a grain boundary (high energy grain boundary) having an azimuth difference angle of 20 to 45 ° plays an important role, and based on this, a directional electromagnetic without using an inhibitor is reported. Steel plate research has been actively conducted again.
For example, Patent Document 12 discloses a technique (inhibitorless method) capable of industrially producing a grain-oriented electrical steel sheet without including an inhibitor component in a steel slab.

このインヒビターレス法で製造する方向性電磁鋼板の特性向上・安定化を図るために、特許文献13では、NおよびSの含有量を〔ppmN〕2+[ppmS]2≦6400に従って抑制すると共に、脱炭焼鈍の600℃から750℃にかけての昇温速度を15℃/s以上に制御し、かつ脱炭焼鈍の均熱過程の水素分圧に対する水蒸気分圧の比である雰囲気酸化性P(H2O)/P(H2)を0.6以下の範囲に制御する技術が、また特許文献14では、焼鈍分離剤として、MgO:100重量部に対してTi酸化物を0.1〜9.0重量部含有するものを用い、最終仕上げ焼鈍は、900℃以上1050℃以下の温度域における5時間以上15時間以下の保持を不活性ガスの含有率が50vol%以上の雰囲気中にて行う工程を含み、かつこの工程における950℃以上の温度域に2時間以上10時間以下で滞留させる技術が、さらに特許文献15では、一次再結晶焼鈍後の鋼板における結晶粒径を8〜25μm の範囲とし、二次再結晶焼鈍の昇温過程における 800〜900℃の平均昇温速度を0.5〜5℃/hの範囲とし、二次再結晶焼鈍の昇温過程にて、900℃と800℃での鋼板窒素量差を−10ppm〜+25ppmの範囲とすることを特徴とする技術が開示されている。 In order to improve and stabilize the properties of the grain-oriented electrical steel sheet produced by this inhibitorless method, Patent Document 13 suppresses the contents of N and S according to [ppmN] 2 + [ppmS] 2 ≦ 6400, The rate of temperature increase from 600 ° C. to 750 ° C. in decarburization annealing is controlled to 15 ° C./s or more, and the atmospheric oxidizing property P (H, which is the ratio of water vapor partial pressure to hydrogen partial pressure in the soaking process of decarburization annealing 2 O) / P (H 2 ) is a technique for controlling the range to 0.6 or less, and Patent Document 14 contains 0.1 to 9.0 parts by weight of Ti oxide as an annealing separator with respect to 100 parts by weight of MgO. And the final finish annealing includes a step of holding in the temperature range of 900 ° C. to 1050 ° C. for 5 hours to 15 hours in an atmosphere having an inert gas content of 50 vol% or more. A technology that retains in the temperature range of 950 ° C or higher in the process for 2 hours or more and 10 hours or less is more special In Reference 15, the crystal grain size in the steel sheet after the primary recrystallization annealing is in the range of 8 to 25 μm, and the average heating rate of 800 to 900 ° C. in the temperature raising process of the secondary recrystallization annealing is 0.5 to 5 ° C./h. A technique is disclosed in which the difference in the amount of nitrogen in the steel sheet between 900 ° C. and 800 ° C. is set in the range of −10 ppm to +25 ppm in the temperature raising process of the secondary recrystallization annealing.

特開昭59−56522号公報JP 59-56522 特開昭59−190325号公報JP 59-190325 A 特開昭62−70521号公報JP 62-70521 A 特開昭62−40315号公報Japanese Patent Laid-Open No. 62-40315 特開平2−200732号公報JP-A-2-200732 特開平4−183817号公報JP-A-4-183817 特開平4−235222号公報JP-A-4-235222 特開昭64−55339号公報JP-A-64-55339 特開平2−57635号公報JP-A-2-57635 特開平7−76732号公報Japanese Unexamined Patent Publication No. 7-76732 特開平7−197126号公報Japanese Unexamined Patent Publication No. 7-197126 特開2000−129356号公報JP 2000-129356 JP 特開2001−158919号公報Japanese Patent Laid-Open No. 2001-158919 特開2004−190053号公報Japanese Patent Laid-Open No. 2004-190053 特開2004−218024号公報JP 2004-218024 A Act Material 45巻 (1997) 1285頁Act Material 45 (1997) 1285

しかしながら、従来のインヒビターを利用して製造した方向性電磁鋼板と比べた場合、その磁気特性や被膜特性の安定性には依然として劣るものがあり、特に鋼板をコイル状に巻き取って最終仕上げ焼鈍を行うことに起因して、ストリップの幅方向あるいは長手方向で磁気特性や被膜特性が劣化する場合があり、優れた品質を有する製品を安定して生産し、さらなる歩留り向上を図るためには、いまだ改善の余地を残すものであった。   However, when compared to grain-oriented electrical steel sheets manufactured using conventional inhibitors, there are still inferior magnetic properties and stability of the coating properties, especially when the steel sheet is wound into a coil and subjected to final finish annealing. Due to the fact that the magnetic properties and film properties may deteriorate in the width direction or longitudinal direction of the strip, it is still necessary to stably produce products with excellent quality and further improve the yield. It left room for improvement.

本発明は、上記の現状に鑑み開発されたもので、コイルの全幅および全長にわたって欠陥のない均一で密着性に優れたフォルステライト質絶縁被膜を有し、かつ磁気特性にも優れた方向性電磁鋼板を、低コストで製造することができる方法を提案することを目的とする。   The present invention has been developed in view of the above-described situation, and has a uniform forsterite insulating coating that has no defects over the entire width and length of the coil and that has excellent adhesion, and has excellent magnetic properties. It aims at proposing the method which can manufacture a steel plate at low cost.

以下、本発明の解明経緯について説明する。
さて、発明者らは、まず既に提案した特許文献14と特許文献15の技術を基に、さらに磁気特性と被膜特性を改善・安定化することを試みた。なお、成分に関する「%」表示は特に断らない限り質量%を意味するものとする。
The elucidation process of the present invention will be described below.
The inventors first tried to improve and stabilize the magnetic characteristics and film characteristics based on the techniques of Patent Documents 14 and 15 already proposed. Unless otherwise specified, “%” in relation to ingredients means mass%.

第1に素材成分についてであるが、酸可溶性AlおよびNの上限は上記技術と同様、それぞれ100ppm未満、60ppm未満にする必要があったが、酸可溶性Alについては40ppm以上の微量を含有させることにより、脱炭焼鈍時に鋼板表面に形成される酸化膜が緻密になり、二次再結晶焼鈍時の窒素の増減が抑制されて、二次再結晶粒のゴス方位への集積が向上し、磁気特性が改善されることが判明した。従って、酸可溶性Alの成分範囲は40ppm以上 100ppm未満とした。また、Nについても二次再結晶焼鈍時の窒素の増減を抑制するためには、30ppm以上含有させた方がよいことが判明したので、その成分範囲は30ppm以上 60ppm未満とした。さらに、インヒビターレス法で方向性電磁鋼板を製造するためには、(S+0.405Se)の上限は50ppm未満にする必要がある。この理由は、これらの合計量が50ppm以上になると、二次再結晶が困難となり、磁気特性が劣化するからである。   First, regarding the material components, the upper limits of acid-soluble Al and N were required to be less than 100 ppm and less than 60 ppm, respectively, as in the above technology, but acid-soluble Al should contain a trace amount of 40 ppm or more. Therefore, the oxide film formed on the steel sheet surface during decarburization annealing becomes dense, the increase and decrease in nitrogen during secondary recrystallization annealing is suppressed, and the accumulation of secondary recrystallized grains in the Goss orientation improves, and the magnetic It has been found that the properties are improved. Therefore, the component range of acid-soluble Al is set to 40 ppm or more and less than 100 ppm. Further, N was found to be contained in an amount of 30 ppm or more in order to suppress the increase or decrease in nitrogen during secondary recrystallization annealing, so the component range was set to 30 ppm or more and less than 60 ppm. Furthermore, in order to produce a grain-oriented electrical steel sheet by the inhibitorless method, the upper limit of (S + 0.405Se) needs to be less than 50 ppm. This is because, when the total amount of these is 50 ppm or more, secondary recrystallization becomes difficult and the magnetic properties deteriorate.

さらに、Sbは二次再結晶焼鈍時の鋼板窒素量の増加を非常に効果的に抑制するので、優れた磁気特性を得るためおよび磁気特性を安定化させるためには必須の元素であり、その効果を充分に発揮させるには0.03%以上添加する必要がある。しかしながら、0.30%を超えて含有させると脱炭焼鈍時の脱炭性が非常に悪くなり、工業的大量生産には不適となるので、その成分範囲は0.03%以上 0.30%以下とする必要がある。
しかしながら、一方でSbは、脱炭焼鈍時の鋼板の酸化速度を低減する効果が非常に大きいので、Sb添加量が増すと、脱炭焼鈍板サブスケールの酸化物量が少なくなることに起因すると思われる製品被膜の欠陥が増大した。
Furthermore, Sb very effectively suppresses the increase in the amount of steel sheet nitrogen during secondary recrystallization annealing, so it is an indispensable element for obtaining excellent magnetic properties and stabilizing magnetic properties. In order to exert the effect sufficiently, it is necessary to add 0.03% or more. However, if it exceeds 0.30%, the decarburization at the time of decarburization annealing becomes very bad and unsuitable for industrial mass production, so the component range must be 0.03% or more and 0.30% or less. .
However, Sb, on the other hand, is very effective in reducing the oxidation rate of the steel sheet during decarburization annealing, so increasing the amount of Sb is thought to result from a decrease in the amount of oxide in the decarburized annealing plate subscale. Increased product coating defects.

そこで、この被膜欠陥を抑制する手段について鋭意検討を重ねた結果、この欠陥を抑制するには、Sb量に応じて鋼中Mn量を増すことが効果的であることを新たに見出した。
すなわち、Sb:0.03%以上 0.30%以下で、Mn:{0.04+Sb(%)}%以上 0.50%以下の時に、優れた磁気特性と被膜特性を有する方向性電磁鋼板を安定的に製造できることを見出したのである。なお、Mn量の上限は、Sb量の上限値が0.30%であるので、Mn量の上限は、少なくともその場合の下限値(0.34%)以上であればよいこと、また一定量以上の添加はコスト面で不利なだけでなく、磁束密度の低下を招くことから、0.50%とした。
Therefore, as a result of intensive investigations on means for suppressing this film defect, it has been newly found that increasing the amount of Mn in steel according to the amount of Sb is effective for suppressing this defect.
That is, when Sb: 0.03% or more and 0.30% or less and Mn: {0.04 + Sb (%)}% or more and 0.50% or less, it is found that a grain-oriented electrical steel sheet having excellent magnetic properties and film properties can be stably produced. It was. The upper limit of the Mn amount is 0.30% because the upper limit value of the Sb amount is 0.30%. Therefore, the upper limit of the Mn amount should be at least the lower limit value (0.34%) in that case. Not only is it disadvantageous in terms of cost, but also causes a decrease in magnetic flux density, so 0.50% was set.

第2に焼鈍分離剤の組成であるが、特許文献14にも開示されているように、インヒビターレス成分系においても、マグネシアにTi化合物を配合することは被膜特性改善に有効である。従って、本発明の成分系においてもTi化合物の適正配合量について検討した結果、マグネシア:100重量部に対して、Ti化合物をTi換算で0.3〜8重量部を含有する焼鈍分離剤を塗布することが被膜特性の改善に有効であることが判明した。   Secondly, regarding the composition of the annealing separator, as disclosed in Patent Document 14, even in the inhibitorless component system, it is effective to improve the film properties by adding a Ti compound to magnesia. Therefore, as a result of examining the proper blending amount of the Ti compound in the component system of the present invention, as a result of applying an annealing separator containing 0.3 to 8 parts by weight of the Ti compound in terms of Ti with respect to 100 parts by weight of magnesia. Has been found to be effective in improving coating properties.

最後に、二次再結晶焼鈍パターンであるが、特許文献15に開示の「二次再結晶焼鈍の昇温過程における、800℃から900℃までの平均昇温速度を0.5〜5℃/hの範囲にすること」という技術をベースに、本発明の成分系において二次再結晶焼鈍の昇温パターンを検討した結果、800℃以上 900℃以下の温度域における滞留時間を40時間以上 150時間以下にすることが磁気特性の改善に効果的であることが判明した。   Finally, as for the secondary recrystallization annealing pattern, disclosed in Patent Document 15 is “the average temperature increase rate from 800 ° C. to 900 ° C. in the temperature increase process of secondary recrystallization annealing is 0.5 to 5 ° C./h. Based on the technology of `` within the range '', as a result of examining the temperature increase pattern of secondary recrystallization annealing in the component system of the present invention, the residence time in the temperature range of 800 ° C to 900 ° C is 40 hours to 150 hours It has been found effective to improve the magnetic properties.

これらに加え、発明者らは、インヒビターレス成分系における熱間圧延時の仕上げ圧延条件がコイル長手方向の磁気特性の変動に及ぼす影響についても、研究を進めた。
その結果、仕上げ圧延時の入側温度を 940℃以上にすると共に、出側温度を 800℃以上900℃ 以下にすることによって、コイル長手方向の磁気特性の変動を抑制でき、磁気特性の向上に有効であることを新たに見出した。
In addition to these, the inventors have also studied the effect of the finish rolling conditions during hot rolling in the inhibitorless component system on the fluctuation of the magnetic properties in the coil longitudinal direction.
As a result, by changing the inlet temperature during finish rolling to 940 ° C or higher and the outlet temperature to 800 ° C or higher and 900 ° C or lower, fluctuations in the magnetic properties in the coil longitudinal direction can be suppressed, improving magnetic properties. Newly found to be effective.

すなわち、本発明のインヒビターレス成分系では、不純物としてのSおよびSeは少ないほうが望ましいが、実操業ではSが不純物としてある程度は含有されるので、MnSが、またCuが鋼中に存在する場合にはCuSが形成される。このMnSやCuSによる二次再結晶発現への影響がコイル長手方向で大きく変化した場合、コイル長手方向で磁気特性が大きく変動する原因になる。その変動をできるだけ抑制し、さらなる特性の向上を図るためには、上記の仕上げ圧延条件が極めて有効であることが究明されたのである。   That is, in the inhibitorless component system of the present invention, it is desirable that S and Se as impurities are less, but in actual operation, S is contained to some extent as an impurity, so that MnS and Cu are present in the steel. CuS is formed. When the influence on the secondary recrystallization expression by MnS or CuS greatly changes in the longitudinal direction of the coil, it causes the magnetic characteristics to fluctuate greatly in the longitudinal direction of the coil. In order to suppress the fluctuation as much as possible and further improve the characteristics, it has been determined that the above finish rolling conditions are extremely effective.

さらに、発明者らは、インヒビターレス成分系における焼鈍分離剤の配合物がフォルステライト質絶縁被膜の特性および磁気特性に及ぼす影響についても、研究を進めた。
というのは、焼鈍分離剤の配合物を制御することによって被膜特性や磁気特性を改善する技術としては、多くの提案がこれまでになされているが、そのほとんどは、MnS,MnSe,AlNなどのインヒビターを用いるものや脱炭焼鈍後の窒化処理によって(Al,Si)Nなどのインヒビターを形成させるものに関してであり、インヒビターレス成分系では、これらに関する研究がほとんどなされていなかったからである。
In addition, the inventors have also studied the influence of the composition of the annealing separator in the inhibitorless component system on the properties and magnetic properties of the forsterite insulating coating.
This is because many proposals have been made to improve the coating properties and magnetic properties by controlling the composition of the annealing separator, but most of them are MnS, MnSe, AlN, etc. This is because those using an inhibitor or those that form an inhibitor such as (Al, Si) N by nitriding after decarburization annealing, and in the inhibitorless component system, there has been little research on these.

そこで、焼鈍分離剤中に配合するTi化合物以外の添加物についても検討したところ、Ti化合物に加え、マグネシア:100重量部に対して、Sr化合物をSr換算で0.2〜5重量部を配合することが、磁気特性および被膜特性のさらなる向上に効果があることの知見を得た。
すなわち、鋼板をコイル状に巻き取って最終仕上げ焼鈍をする以上、コイルの内・中・外巻き部では、熱履歴や雰囲気などの焼鈍条件にある程度の差が生じてしまう。しかしながら、その差に起因する磁気特性や被膜特性の差をできるだけ抑制し、さらなる特性の向上を図る上で、上記の添加物を焼鈍分離剤中に配合することが極めて有効であることが判明したのである。
Therefore, when the additive other than the Ti compound to be blended in the annealing separator was examined, in addition to the Ti compound, magnesia: 100 parts by weight, and 0.2 to 5 parts by weight of the Sr compound in terms of Sr However, it has been found that there is an effect in further improving the magnetic characteristics and the film characteristics.
That is, as long as the steel sheet is wound into a coil shape and subjected to final finish annealing, there is a certain difference in annealing conditions such as heat history and atmosphere in the inner, middle, and outer winding portions of the coil. However, it has been found that it is extremely effective to add the above additives to the annealing separator in order to suppress the difference in magnetic properties and film properties due to the difference as much as possible and further improve the properties. It is.

本発明は、以上の知見に基づいて開発されたものであり、その要旨構成は次のとおりである。
(1)質量%で、C:0.01〜0.10%,Si:2.5〜4.5%,酸可溶性Al:40ppm以上 100ppm未満,N:30ppm以上 60ppm未満,Sb:0.03〜0.30%,Mn:{0.04+Sb(%)}%以上 0.50%以下および(S+0.405Se):50ppm未満を含有し、残部はFeおよび不可避的不純物の組成になるけい素鋼スラブを、1250℃以下の温度で加熱後、熱間圧延し、必要に応じて熱延板焼鈍を施したのち、1回または中間焼鈍を挟む2回以上の冷間圧延を行い、ついで脱炭・一次再結晶焼鈍後、マグネシアを主成分とする焼鈍分離剤を塗布してから、二次再結晶焼鈍および純化焼鈍からなる最終仕上げ焼鈍を施す一連の工程からなる一方向性電磁鋼板の製造方法において、
a) 熱間圧延時の仕上げ圧延入側温度を 940℃以上にすると共に、仕上げ圧延出側温度を800℃以上 900℃以下にすること、
b) 焼鈍分離剤中に、マグネシア:100重量部に対して、Ti化合物をTi換算で0.3〜8.0 重量部含有させること、
c) 二次再結晶焼鈍の昇温過程において、800℃以上 900℃以下の温度域における滞留時間を40時間以上 150時間以下とすること
を特徴とする一方向性電磁鋼板の製造方法。
The present invention has been developed based on the above findings, and the gist of the present invention is as follows.
(1) By mass%, C: 0.01 to 0.10%, Si: 2.5 to 4.5%, acid-soluble Al: 40 ppm to less than 100 ppm, N: 30 ppm to less than 60 ppm, Sb: 0.03 to 0.30%, Mn: {0.04 + Sb ( %)}% Or more and 0.50% or less and (S + 0.405Se): Hot rolling after heating a silicon steel slab containing less than 50 ppm and the balance of Fe and inevitable impurities at a temperature of 1250 ° C or less Then, after performing hot-rolled sheet annealing as necessary, perform cold rolling at least once with intermediate or intermediate annealing, followed by decarburization and primary recrystallization annealing, followed by annealing separation with magnesia as the main component In the method for producing a unidirectional electrical steel sheet comprising a series of steps for applying a final finishing annealing consisting of secondary recrystallization annealing and purification annealing after applying the agent,
a) The finish rolling entry temperature during hot rolling should be 940 ° C or more and the finish rolling exit temperature should be 800 ° C or more and 900 ° C or less,
b) In the annealing separator, magnesia: 0.3 to 8.0 parts by weight of Ti compound in terms of Ti with respect to 100 parts by weight,
c) In the Atsushi Nobori process of secondary recrystallization annealing, manufacturing method of an oriented electrical steel sheet you characterized in that the residence time in the temperature range of 800 ° C. or higher 900 ° C. or less than 40 hours or more 150 hours.

(2)上記(1)において、焼鈍分離剤中にさらに、マグネシア:100重量部に対して、Sr化合物をSr換算で0.2〜5重量部含有させることを特徴とする一方向性電磁鋼板の製造方法。 In (2) above (1), further in the annealing separator, magnesia with respect to 100 parts by weight of the Sr compound one oriented electrical steel sheet you characterized by the inclusion 0.2-5 parts by weight Sr terms Production method.

(3)上記(1)または(2)において、けい素鋼スラブが、さらに質量%で、Sn:0.03〜0.50%,Cu:0.03〜0.50%,Ni:0.03〜0.50%,Cr:0.03〜0.30%,P:0.01〜0.10%およびMo:0.005〜0.10%のうちから選んだ1種または2種以上を含有することを特徴とする一方向性電磁鋼板の製造方法。 (3) In the above (1) or (2), the silicon steel slab is further mass%, Sn: 0.03-0.50%, Cu: 0.03-0.50%, Ni: 0.03-0.50%, Cr: 0.03-0.30 %, P: 0.01~0.10% and Mo: 0.005 to 0.10% 1 kind or production method of an oriented electrical steel sheet you characterized by containing two or more kinds selected from among.

本発明によれば、鋼スラブにインヒビター成分が含有されない、すなわちAl,S等が不純物レベルである素材を用いて、低温スラブ加熱により、磁気特性と被膜特性に優れた方向性電磁鋼板を低コストで得ることができる。   According to the present invention, a grain-oriented electrical steel sheet having excellent magnetic properties and coating properties can be produced at low cost by low-temperature slab heating using a material in which an inhibitor component is not contained in the steel slab, that is, Al, S, etc. are at an impurity level. Can be obtained at

以下、本発明を由来するに至った実験結果について説明する。
(実験1)
C:0.02〜0.06%,Si:3.0〜3.5%,酸可溶性Al:40ppm以上 100ppm未満, N:30ppm以上 60ppm未満,Sb:0.01〜0.30%,Mn:0.05%以上 0.50%以下,(S+0.405Se):50ppm未満,Cu:0.01〜0.50%,Cr:0.01〜0.30%,P:0.002〜0.10%の成分範囲であり、残部はFeおよび不可避的不純物の組成になる多数の真空鋼塊を、1200℃に加熱後、熱間圧延し、950〜1100℃の熱延板焼鈍を施したのち、冷間圧延にて最終板厚:0.29mmまで圧延した。その後、H2−H2O−N2中、800〜900℃の温度で脱炭・一次再結晶焼鈍を施した後、マグネシアを主成分とし、マグネシア:100重量部に対して0.1〜20.0重量部のTiO2を含有する焼鈍分離剤を塗布してから、二次再結晶焼鈍の昇温過程において、800℃以上 900℃以下の温度域における滞留時間を10時間以上 200時間以下とする二次再結晶焼鈍および純化焼鈍からなる最終仕上げ焼鈍を施した。その後、水洗して未反応の焼鈍分離剤を除去し、試料の被膜外観を調査した後、りん酸マグネシウム、コロイダルシリカおよびクロム酸を主成分とするコーティングを施した。
かくして得られた試料の磁気特性(磁束密度B8,鉄損W17/50 )と被膜密着性について調査した。なお、被膜密着性は、被膜の曲げ密着性として、5mm間隔の種々の径を有する丸棒に試験片を巻き付け、被膜が剥離しない最小径で評価した。
Hereinafter, the experimental results that led to the present invention will be described.
(Experiment 1)
C: 0.02 to 0.06%, Si: 3.0 to 3.5%, acid-soluble Al: 40 ppm to less than 100 ppm, N: 30 ppm to less than 60 ppm, Sb: 0.01 to 0.30%, Mn: 0.05% to 0.50%, (S + 0.405Se ): Less than 50 ppm, Cu: 0.01 to 0.50%, Cr: 0.01 to 0.30%, P: 0.002 to 0.10% of the component range, with the balance being a large number of vacuum steel ingots with a composition of Fe and inevitable impurities, 1200 After heating to ° C., hot rolling was performed, and after hot-rolled sheet annealing at 950 to 1100 ° C., the final sheet thickness was rolled to 0.29 mm by cold rolling. Then, after decarburization and primary recrystallization annealing at a temperature of 800 to 900 ° C. in H 2 —H 2 O—N 2 , magnesia is the main component, and magnesia: 0.1 to 20.0 weight with respect to 100 parts by weight After applying a part of TiO 2 containing annealing separator, in the secondary recrystallization annealing temperature rise process, the residence time in the temperature range of 800 ° C or more and 900 ° C or less is set to 10 hours or more and 200 hours or less A final finish annealing consisting of recrystallization annealing and purification annealing was performed. Thereafter, the sample was washed with water to remove the unreacted annealing separator, and after the appearance of the coating film of the sample was examined, a coating containing magnesium phosphate, colloidal silica and chromic acid as main components was applied.
The magnetic properties (magnetic flux density B 8 , iron loss W 17/50 ) and film adhesion of the samples thus obtained were investigated. The coating adhesion was evaluated by the minimum diameter at which the coating was not peeled off by winding a test piece around a round bar having various diameters at intervals of 5 mm as the bending adhesion of the coating.

まず、多数の試料のうち、Mnが0.08〜0.14%、Sbが0.04〜0.06%を満足する成分で、焼鈍分離剤中に添加したTiO2量が被膜密着性に及ぼす影響について調べた結果を、図1に示す。
同図に示したとおり、一部の例外はあるものの、マグネシア:100重量部に対して TiO2をTi換算で0.3〜8重量部添加した場合に、比較的良好な被膜密着性が得られることが分かる。
First, among the large number of samples, Mn is 0.08 to 0.14%, Sb is 0.04 to 0.06%, and the results of investigating the effect of the amount of TiO 2 added in the annealing separator on the film adhesion. As shown in FIG.
As shown in the figure, although there are some exceptions, magnesia: When TiO 2 is added 0.3 to 8 parts by weight in terms of Ti with respect to 100 parts by weight, relatively good film adhesion can be obtained. I understand.

同様に、Mn:0.08〜0.14%かつSb:0.04〜0.06%を満足する成分で、二次再結晶焼鈍の昇温過程において、800℃以上 900℃以下の温度域での滞留時間が磁気特性に及ぼす影響について調べた結果を、図2に示す。
同図に示したとおり、一部の例外はあるものの、800℃以上 900℃以下の温度域における滞留時間が40時間以上 150時間以下の場合に、比較的優れた磁気特性が得られることが分かる。
Similarly, it is a component that satisfies Mn: 0.08-0.14% and Sb: 0.04-0.06%. During the temperature increase process of secondary recrystallization annealing, the residence time in the temperature range of 800 ° C or higher and 900 ° C or lower becomes the magnetic property. The result of investigating the influence is shown in FIG.
As shown in the figure, although there are some exceptions, it can be seen that relatively excellent magnetic properties can be obtained when the residence time in the temperature range of 800 ° C to 900 ° C is 40 hours to 150 hours. .

上記の解析結果を踏まえ、マグネシア:100重量部に対してTiO2をTi換算で0.3〜8重量部添加し、かつ二次再結晶焼鈍の昇温過程において 800℃以上 900℃以下の温度域における滞留時間を40時間以上 150時間以下とした条件で、素材中のMn,Sb量が磁気特性と被膜特性に及ぼす影響について調査した。得られた結果を図3(a), (b)に示す。
同図によれば、Sb:0.03%以上で、かつMn:{0.04+Sb(%)}%以上の場合に、磁気特性と被膜特性の両者に優れた方向性電磁鋼板が得られることがわかる。
Based on the above analysis results, magnesia: 0.3 to 8 parts by weight of TiO 2 in terms of Ti is added to 100 parts by weight, and in the temperature range of 800 ° C to 900 ° C in the temperature rising process of secondary recrystallization annealing. The effect of the amount of Mn and Sb in the material on the magnetic properties and film properties was investigated under the condition that the residence time was 40 hours or more and 150 hours or less. The obtained results are shown in FIGS. 3 (a) and 3 (b).
According to the figure, when Sb is 0.03% or more and Mn: {0.04 + Sb (%)}% or more, it is understood that a grain-oriented electrical steel sheet excellent in both magnetic properties and film properties can be obtained.

なお、鋼中Mn量を増すことで被膜特性を改善する技術としては、特許文献3等に開示の技術があるが、実施例をみると、これらは酸可溶性Alを0.02〜0.03%含みインヒビターとしてAlNを用いるもの、酸可溶性Alを0.02〜0.03%含む素材で脱炭焼鈍後に窒化処理を行う、あるいは二次再結晶中に窒素吸収を促進させてAlNをインヒビターとして利用するものであった。また、Mn量を増やす目的は、仕上げ焼鈍中、鋼板表層に高温酸化によるMnOを適正量形成させることで、フォルステライト被膜の張力や密着性などを改善するところにあった。   In addition, as a technique for improving the film properties by increasing the amount of Mn in steel, there is a technique disclosed in Patent Document 3 and the like. However, according to examples, these contain 0.02 to 0.03% of acid-soluble Al as an inhibitor. A material using AlN, a material containing 0.02 to 0.03% of acid-soluble Al was subjected to nitriding after decarburization annealing, or nitrogen absorption was promoted during secondary recrystallization to use AlN as an inhibitor. The purpose of increasing the amount of Mn was to improve the tension and adhesion of the forsterite film by forming an appropriate amount of MnO by high-temperature oxidation on the steel sheet surface layer during finish annealing.

しかしながら、本発明のインヒビターレス成分系は、上記の技術とは異なり、素材成分中の酸可溶性Alは100ppm未満である。酸可溶性Alが0.02%程度以上含まれた場合の被膜形成過程は、「Journal of Materials Engineering and performance Vol.3 (1994) 214頁(“Glass Film Structure of Grain-Oriented Silicon Steel Using Aluminum Nitride as Inhibitor”)」や「材料とプロセス CAMP-ISIJ, Vol.6 (1993)-676(方向性珪素鋼板の仕上げ焼鈍皮膜の構造解析)」に報告されているように、酸可溶性Alがほとんどない場合や少ない場合と異なる。従って、鋼中Mn量の影響についても、酸可溶性Alが0.02〜0.03%含まれる場合とそうでない場合とでは異なると推定できる。
すなわち、前記した知見は、従来のインヒビターを用いた方向性電磁鋼板の素材成分とは異なるインヒビターレス成分系の下で、特にSb量との関係で得られた新規知見である。
However, unlike the above technique, the inhibitor-less component system of the present invention contains less than 100 ppm of acid-soluble Al in the raw material component. The film formation process when acid-soluble Al is contained in an amount of about 0.02% or more is described in “Journal of Materials Engineering and performance Vol.3 (1994) p. 214 (“ Glass Film Structure of Grain-Oriented Silicon Steel Using Aluminum Nitride as Inhibitor ” ) ”And“ Materials and Processes CAMP-ISIJ, Vol.6 (1993) -676 (Structural Analysis of Finished Annealed Films on Directional Silicon Steel Sheets) ”. Different from the case. Therefore, it can be estimated that the influence of the amount of Mn in steel is different between the case where the acid-soluble Al content is 0.02 to 0.03% and the case where it is not.
That is, the above-described findings are novel findings obtained particularly in relation to the amount of Sb under an inhibitorless component system different from the material component of the grain-oriented electrical steel sheet using the conventional inhibitor.

さらに、インヒビターレス成分系で、Sb量に応じて鋼中Mn量を増した時に、被膜特性が改善する理由も上記した従来技術の機構とは異なる。すなわち、前述したように、Sbは脱炭焼鈍時の鋼板の酸化速度を低減する効果が非常に大きいので、Sb量が増加すると、図4に示すように、脱炭焼鈍板サブスケールの酸化物量が少なくなり、それに起因すると推定される製品被膜の欠陥が増大した。
これに対して、鋼中Mn量を増加すると、図5に示すように、脱炭焼鈍時に生成する酸化物量が増すので、Sb量増によるサブスケール量の低減を補うことができる。
Furthermore, in the inhibitorless component system, when the amount of Mn in steel is increased in accordance with the amount of Sb, the reason why the coating properties are improved is also different from the mechanism of the prior art described above. That is, as described above, Sb is very effective in reducing the oxidation rate of the steel sheet during decarburization annealing. Therefore, when the amount of Sb increases, as shown in FIG. And the defects of the product coating presumed to be increased.
On the other hand, when the amount of Mn in the steel is increased, as shown in FIG. 5, the amount of oxide generated during the decarburization annealing increases, so that the reduction in the subscale amount due to the increase in the Sb amount can be compensated.

また、サブスケールの酸化物として、Mn増によりファイヤライトとシリカの生成量が増大するが、特に(S+0.405Se)量が50ppm未満である成分系では、Mn量を増加した場合、(Fe,Mn)2SiO4の化学式で表されるファイヤライト生成量が増すことも被膜改善に寄与する。すなわち、本発明の構成要件のひとつである昇温過程800℃以上 900℃以下の滞留時間を40時間以上 150時間以下にする二次再結晶焼鈍では、800℃以上 900℃以下の温度域での被膜形成の主反応は、マグネシアとシリカが直接に反応してフォルステライトを形成する下記(1)式の反応ではなく、ファイヤライト中のFeあるいはMnの一部がMgに置換する下記(2)式の反応(オリビン形成反応)なので、脱炭焼鈍板サブスケール中にある程度のファイヤライトが存在した方が被膜形成が進行し易く、最終的な被膜特性が向上すると考えられる。
さらに、(Fe,Mn)2SiO4でMn比が増した方が、上記オリビン形成反応において、Mgの置換が進行し易い、すなわちオリビン形成反応が進行し易いことも、鋼中Mn量が増すと被膜特性が向上する理由の一つと考えられる。なお、Mn量を一定にしてSb量を増すと、オリビン形成反応は遅くなる。従って、Sb量を増すと被膜特性が劣化する原因は、脱炭焼鈍板サブスケールの酸化物量が減少することと、二次再結晶焼鈍過程でオリビン形成反応が遅くなることの二点と考えられるが、Mn量を増すことにより両者を同時に改善できることが、Sb増量による被膜特性の劣化をMn増量により補える理由と考えられる。
2MgO+SiO2→Mg2SiO4 --- (1)
(Fe,Mn)2SiO4+MgO→(Fe,Mn)2-XMgXSiO4+[Mg1-X, (Fe,Mn)X]O --- (2)
In addition, as sub-scale oxides, the amount of firelite and silica produced increases as Mn increases. Especially in the component system in which the amount of (S + 0.405Se) is less than 50 ppm, when the amount of Mn is increased, (Fe, An increase in the amount of firelite generated represented by the chemical formula of Mn) 2 SiO 4 also contributes to the improvement of the coating. That is, in the secondary recrystallization annealing in which the residence time of the temperature rising process of 800 ° C. or more and 900 ° C. or less, which is one of the constituent elements of the present invention, is 40 hours or more and 150 hours or less, in the temperature range of 800 ° C. or more and 900 ° C. or less. The main reaction of film formation is not the reaction of the following formula (1) in which magnesia and silica react directly to form forsterite, but a part of Fe or Mn in the firelite is substituted with Mg (2) Since the reaction is an olivine formation reaction (olivine formation reaction), it is considered that the formation of a film is more likely to proceed when a certain amount of firelite is present in the decarburized annealed plate subscale, and the final film characteristics are improved.
Further, when the Mn ratio is increased in (Fe, Mn) 2 SiO 4 , the substitution of Mg is more likely to proceed in the olivine formation reaction, that is, the olivine formation reaction is likely to proceed, and the amount of Mn in the steel is increased. This is considered to be one of the reasons why the film properties are improved. In addition, when the amount of Sb is increased while keeping the amount of Mn constant, the olivine formation reaction becomes slower. Therefore, the reason why the coating properties deteriorate when the Sb content is increased is thought to be due to the fact that the oxide content of the decarburized annealing plate subscale decreases and the olivine formation reaction slows down during the secondary recrystallization annealing process. However, the fact that both can be improved at the same time by increasing the Mn content is considered to be a reason why the increase in Mn can compensate for the deterioration of the coating properties due to the increase in Sb.
2MgO + SiO 2 → Mg 2 SiO 4 --- (1)
(Fe, Mn) 2 SiO 4 + MgO → (Fe, Mn) 2-X Mg X SiO 4 + [Mg 1-X , (Fe, Mn) X ] O --- (2)

図6は、素材成分の異なる脱炭焼鈍板にマグネシアを主体とする焼鈍分離剤を塗布してから、850℃で50時間保持した後、引き出した試料表面をフーリエ変換赤外線吸収スペクトル法(FT-IR)で測定した結果である。
(a)Mn:0.09%+Sb:0.04%の試料に比べて、(b)Mn:0.09%+Sb:0.06%の試料では、(a)で約1030cm-1にみられるピークが低波数側に止まっていてオリビン形成が遅いことが分かるが、(c)Mn:0.12%+Sb:0.06%の試料では、オリビン形成が(b)よりも進行し、(a)並み以上になっていることが分かる。
Fig. 6 shows that after applying an annealing separator mainly composed of magnesia to a decarburized annealing plate with different raw material components, holding the sample at 850 ° C for 50 hours, and then extracting the sample surface by Fourier transform infrared absorption spectroscopy (FT- (IR).
(a) Compared to the sample with Mn: 0.09% + Sb: 0.04%, the sample at (b) Mn: 0.09% + Sb: 0.06% stopped at the low wavenumber side at about 1030cm -1 in (a). It can be seen that olivine formation is slow, but in the sample of (c) Mn: 0.12% + Sb: 0.06%, olivine formation progresses more than (b), and it is understood that (a) is equal to or higher.

なお、特開平6−184638号公報には、脱炭焼鈍工程において生成する酸化膜成分{(Fe,Mn)O}a・{SiO2}b中のFe,Mn分が(FeO+MnO)/酸化膜中全SiO2として0.10〜0.50、かつ酸化膜中全SiO2が0.6〜1.7 g/m2となるようにして脱炭焼鈍することで、均一なグラス被膜を有し、磁気特性の優れた方向性電磁鋼板を製造する技術が開示されているが、この技術の目的は、脱炭焼鈍後に窒化処理を行い、(Al,Si)N主体のインヒビターを形成する方向性電磁鋼板の製造法で良好な被膜特性と磁気特性を得ることにあり、インヒビターレス成分系で優れた磁気特性と被膜特性を有する方向性電磁鋼板を製造しようとする本発明とは技術内容が異なる。 In JP-A-6-184638, the Fe and Mn content in the oxide film component {(Fe, Mn) O} a · {SiO 2 } b generated in the decarburization annealing step is (FeO + MnO) / oxide film. among by total SiO 2 as 0.10 to 0.50, and the oxide film in the total SiO 2 is decarburization annealing as a 0.6 to 1.7 g / m 2, it has a uniform glass film, excellent direction of the magnetic properties Although the technology for producing a tempered electrical steel sheet is disclosed, the purpose of this technique is good in the method of producing a directional electrical steel sheet in which a nitriding treatment is performed after decarburization annealing to form an (Al, Si) N-based inhibitor. Therefore, the technical contents are different from those of the present invention which is intended to produce a grain-oriented electrical steel sheet having excellent magnetic characteristics and film characteristics in an inhibitorless component system.

(実験2)
実験1の結果に基づき、素材Mn,Sb量が、Sb:0.03%以上かつMn:{0.04+Sb(%)}%以上の成分系で工場実験を行ったところ、コイル長手方向の磁気特性の変動が大きい場合があった。特に、熱間圧延時、コイル長手方向の尾端部側にかけて磁気特性の劣化が顕著になる傾向が認められた。
工場コイルでは、コイル長手方向の尾端側になるに従って、仕上げ圧延時の入側温度が低下する一方、圧延速度が速くなるために仕上げ圧延出側温度は高くなる。
そこで、熱間圧延時の仕上げ圧延入側温度と仕上げ圧延出側温度が磁気特性に及ぼす影響を調べるための実験を行った。
(Experiment 2)
Based on the results of Experiment 1, when a factory experiment was conducted with a component system with Mn and Sb contents of Sb: 0.03% or more and Mn: {0.04 + Sb (%)}% or more, fluctuations in the magnetic characteristics in the coil longitudinal direction There was a case. In particular, during hot rolling, there was a tendency for the magnetic characteristics to deteriorate significantly toward the tail end in the longitudinal direction of the coil.
In the factory coil, as it reaches the tail end in the longitudinal direction of the coil, the entry temperature during finish rolling decreases, while the rolling speed increases and the finish rolling exit temperature increases.
Therefore, an experiment was conducted to investigate the influence of the finish rolling entry temperature and the finish rolling exit temperature on the magnetic properties during hot rolling.

すなわち、C:0.04%,Si:3.2%,酸可溶性Al:50ppm,N:35ppm,Sb:0.04%,Mn:0.10%,(S+0.405Se):25ppmの成分であり、残部はFeおよび不可避的不純物の組成になる方向性けい素鋼板用スラブを、1200℃に加熱後、熱間圧延により板厚:2.2mmの熱延板とした。その際、熱間圧延時の仕上げ圧延入側温度を900〜1100℃、仕上げ圧延出側温度を740〜1000℃の間で種々に変化させた。その後、1050℃で30秒間の熱延板焼鈍を行ってから、冷間圧延により最終冷延板厚:0.29mmとした。ついで、これらの冷延板を脱脂して表面を清浄化したのち、H2−H2O−N2雰囲気中にて脱炭焼鈍を施した。 That is, C: 0.04%, Si: 3.2%, acid-soluble Al: 50ppm, N: 35ppm, Sb: 0.04%, Mn: 0.10%, (S + 0.405Se): 25ppm, the balance being Fe and inevitable A slab for grain-oriented silicon steel sheet having an impurity composition was heated to 1200 ° C. and then hot rolled into a hot rolled sheet having a thickness of 2.2 mm. At that time, the finish rolling entry temperature during hot rolling was variously changed between 900-1100 ° C. and the finish rolling exit temperature was varied between 740-1000 ° C. Thereafter, hot-rolled sheet annealing was performed at 1050 ° C. for 30 seconds, and then the final cold-rolled sheet thickness was 0.29 mm by cold rolling. Subsequently, these cold-rolled sheets were degreased to clean the surface, and then decarburized and annealed in an H 2 —H 2 O—N 2 atmosphere.

その後、マグネシアを主成分とし、マグネシア:100重量部に対して4重量部のTiO2を配合した焼鈍分離剤を塗布してから、二次再結晶焼鈍の昇温過程において、800℃以上900℃以下の温度域における滞留時間を60時間とする二次再結晶焼鈍および純化焼鈍からなる最終仕上げ焼鈍を施した。その後、水洗して未反応の焼鈍分離剤を除去したのち、りん酸マグネシウム、コロイダルシリカおよびクロム酸を主成分とするコーティングを施した。
かくして得られた各製品の磁気特性(磁束密度B8)について調査した。
得られた結果を、横軸を熱間圧延時の仕上げ圧延入側温度、縦軸を仕上げ圧延出側温度として、図7に示す。
After that, after applying an annealing separator containing magnesia as a main component and 4 parts by weight of TiO 2 with respect to 100 parts by weight of magnesia, 800 ° C. to 900 ° C. in the temperature raising process of the secondary recrystallization annealing. Final finish annealing was performed, which consisted of secondary recrystallization annealing and purification annealing with a residence time in the following temperature range of 60 hours. Then, after washing with water and removing the unreacted annealing separator, a coating containing magnesium phosphate, colloidal silica and chromic acid as main components was applied.
The magnetic properties (magnetic flux density B 8 ) of each product thus obtained were investigated.
The obtained results are shown in FIG. 7 where the horizontal axis is the finish rolling entry temperature during hot rolling and the vertical axis is the finish rolling exit temperature.

同図に示したとおり、仕上げ圧延入側温度が 940℃以上で、かつ仕上げ圧延出側温度が800℃以上 900℃以下の場合に 良好な磁気特性が得られることが分かる。   As shown in the figure, good magnetic properties can be obtained when the finish rolling entry temperature is 940 ° C or higher and the finish rolling exit temperature is 800 ° C or more and 900 ° C or less.

この理由は、この条件下では不純物として含有されるSに起因するMnSあるいはCuSの析出状態に大きな変化が生じないためと考えられる。
従って、コイル全長にわたり、この条件に適合するように熱間圧延を行うことで、コイル長手方向の磁気特性の変動を抑制できると考えられる。
This is presumably because no significant change occurs in the precipitation state of MnS or CuS due to S contained as an impurity under these conditions.
Therefore, it is considered that the fluctuation of the magnetic characteristics in the coil longitudinal direction can be suppressed by performing hot rolling so as to meet this condition over the entire length of the coil.

(実験3)
C:0.05%,Si:3.35%, 酸可溶性Al:70ppm, N:40ppm,Sb:0.05%,Mn:0.12%,(S+0.405Se):20ppm, Cu:0.10%,Cr:0.05%,P:0.015%の成分であり、残部はFeおよび不可避的不純物の組成になる多数の方向性けい素鋼板用スラブを、1200℃に加熱後、熱間圧延により板厚:2.0mmの熱延板とした。その際、コイル全長にわたって、仕上げ圧延入側温度が940〜1100℃、仕上げ圧延出側温度が800〜900℃の範囲になるように熱間圧延を行った。その後、1025℃で30秒間の熱延板焼鈍を行ってから、冷間圧延により最終冷延板厚:0.285mmとした。このとき、最終冷間圧延は、少なくとも1パスは圧延ロール出側直後の鋼板温度が150〜250℃になるような圧延とした。ついで、これらの冷延板を脱脂して表面を清浄化したのち、H2−H2O−N2雰囲気中にて脱炭焼鈍を施した。
(Experiment 3)
C: 0.05%, Si: 3.35%, acid-soluble Al: 70ppm, N: 40ppm, Sb: 0.05%, Mn: 0.12%, (S + 0.405Se): 20ppm, Cu: 0.10%, Cr: 0.05%, P: A slab for directional silicon steel sheets with a composition of 0.015%, the balance being Fe and inevitable impurities, and heated to 1200 ° C, and hot rolled into a hot rolled sheet with a thickness of 2.0mm . At that time, hot rolling was performed so that the finish rolling entry temperature was in the range of 940 to 1100 ° C. and the finish rolling exit temperature was in the range of 800 to 900 ° C. over the entire length of the coil. Thereafter, hot-rolled sheet annealing was performed at 1025 ° C. for 30 seconds, and then the final cold-rolled sheet thickness was 0.285 mm by cold rolling. At this time, the final cold rolling was performed such that the steel plate temperature immediately after the exit side of the rolling roll was 150 to 250 ° C. for at least one pass. Subsequently, these cold-rolled sheets were degreased to clean the surface, and then decarburized and annealed in an H 2 —H 2 O—N 2 atmosphere.

その後、マグネシアを主成分とし、マグネシア:100重量部に対しTi換算で0〜10重量部のTiO2およびSr換算で0〜8重量部のSrSO4あるいはSr(OH)2・8H2Oを配合した焼鈍分離剤を塗布してから、二次再結晶焼鈍の昇温過程において、800℃以上 900℃以下の温度域における滞留時間を80時間とする二次再結晶焼鈍および純化焼鈍からなる最終仕上げ焼鈍に供した。その後、水洗して未反応の焼鈍分離剤を除去した後、りん酸マグネシウム、コロイダルシリカおよびクロム酸を主成分とするコーティングを施した。
かくして得られた各製品コイルの磁気特性(磁束密度B8,鉄損W17/50)、被膜外観および被膜密着性を評価した。なお、被膜密着性は、被膜の曲げ密着性として、5mm間隔の種々の径を有する丸棒に試験片を巻き付け、被膜が剥離しない最小径で評価した。
得られた結果を、横軸をマグネシア:100重量部に対するTiO2配合量(Ti換算)、縦軸をマグネシア100重量部に対するSr化合物配合量(Sr換算)にして、図8に示す。
同図より、マグネシア:100重量部に対してTiO2をTi換算で0.3〜8重量部配合した場合に優れた製品特性が得られていることが分かる。中でも、マグネシア:100重量部に対してSr化合物をSr換算で0.2〜5重量部併用して配合した場合に、とりわけ優れた製品特性が得られていることが分かる。
Then, magnesia as the main component, magnesia: 100 parts by weight, 0-10 parts by weight of TiO 2 in terms of Ti and 0-8 parts by weight of SrSO 4 or Sr (OH) 2 · 8H 2 O in terms of Sr The final finish consisting of secondary recrystallization annealing and purification annealing with a residence time of 80 hours in the temperature range of 800 ° C or higher and 900 ° C or lower in the temperature increase process of secondary recrystallization annealing after the applied annealing separator It was subjected to annealing. Then, after washing with water to remove the unreacted annealing separator, a coating containing magnesium phosphate, colloidal silica and chromic acid as main components was applied.
The magnetic characteristics (magnetic flux density B 8 , iron loss W 17/50 ), coating appearance and coating adhesion of each product coil thus obtained were evaluated. The coating adhesion was evaluated by the minimum diameter at which the coating was not peeled off by winding a test piece around a round bar having various diameters at intervals of 5 mm as the bending adhesion of the coating.
The obtained results are shown in FIG. 8 with the horizontal axis representing magnesia: TiO 2 content relative to 100 parts by weight (Ti equivalent) and the vertical axis representing Sr compound content relative to 100 parts by weight magnesia (Sr equivalent).
From the figure, it can be seen that excellent product characteristics are obtained when 0.3 to 8 parts by weight of TiO 2 in terms of Ti is added to 100 parts by weight of magnesia. In particular, it is found that particularly excellent product characteristics are obtained when the Sr compound is used in combination with 0.2 to 5 parts by weight in terms of Sr with respect to 100 parts by weight of magnesia.

次に、本発明において、けい素鋼スラブの成分組成を前記の範囲に限定した理由について説明する。
C:0.01〜0.10%
Cは、一次再結晶組織を改善するために必要な元素であるが、含有量が0.01%に満たないと良好な一次再結晶組織が得られず、一方0.10%を超えると脱炭焼鈍時の脱炭負荷が増大して生産性が低下することから、C量は0.01〜0.10%に限定する。
Next, the reason why the component composition of the silicon steel slab is limited to the above range in the present invention will be described.
C: 0.01-0.10%
C is an element necessary for improving the primary recrystallization structure. However, if the content is less than 0.01%, a good primary recrystallization structure cannot be obtained. On the other hand, if it exceeds 0.10%, decarburization annealing is not possible. Since the decarburization load increases and the productivity decreases, the C amount is limited to 0.01 to 0.10%.

Si:2.5〜4.5%
Siは、鋼の電気抵抗を高くして渦電流損を低下させるために有用な元素であり、本発明では2.5%以上含有させる必要がある。しかしながら、4.5%を超えると冷間圧延が著しく困難になるため、Si量は2.5〜4.5%に限定する。
Si: 2.5-4.5%
Si is an element useful for increasing the electrical resistance of steel and reducing eddy current loss, and in the present invention, it is necessary to contain 2.5% or more. However, if it exceeds 4.5%, cold rolling becomes extremely difficult, so the Si content is limited to 2.5-4.5%.

酸可溶性Al:40ppm以上 100ppm未満
インヒビターレス法で二次再結晶を発現させて方向性電磁鋼板を製造するためには、不純物元素であるAlは100ppm未満にする必要がある。しかしながら、40ppm以上の微量な酸可溶性Alは、脱炭焼鈍時に鋼板表面に形成される酸化膜を緻密にし、二次再結晶焼鈍時の窒素の増減を抑制して、二次再結晶粒のゴス方位への集積を向上させ、磁気特性を改善するのに有効なので、本発明では酸可溶性Alを40ppm以上 100ppm未満の範囲で含有させるものとする。
Acid-soluble Al: 40 ppm or more and less than 100 ppm In order to produce a grain-oriented electrical steel sheet by producing secondary recrystallization by an inhibitorless method, the impurity element Al needs to be less than 100 ppm. However, a small amount of acid-soluble Al of 40 ppm or more densifies the oxide film formed on the steel sheet surface during decarburization annealing, suppresses the increase and decrease of nitrogen during secondary recrystallization annealing, and reduces the gossip of secondary recrystallized grains. Since it is effective for improving the accumulation in the orientation and improving the magnetic properties, in the present invention, the acid-soluble Al is contained in the range of 40 ppm or more and less than 100 ppm.

N:30ppm以上 60ppm未満
同様に、インヒビターレス法で二次再結晶を発現させて方向性電磁鋼板を製造するためには、不純物元素であるNは60ppm未満にする必要がある。但し、二次再結晶焼鈍時における窒素の増減を抑制するためには、30ppm以上含有させた方がよいので、本発明ではNは30ppm以上 60ppm未満の範囲で含有させるものとする。
N: 30 ppm or more and less than 60 ppm Similarly, in order to produce a grain-oriented electrical steel sheet by causing secondary recrystallization by an inhibitorless method, N as an impurity element needs to be less than 60 ppm. However, in order to suppress the increase and decrease of nitrogen during the secondary recrystallization annealing, it is better to contain 30 ppm or more. Therefore, in the present invention, N is contained in the range of 30 ppm or more and less than 60 ppm.

Sb:0.03〜0.30%
Sbは、二次再結晶焼鈍時の鋼板窒素量の増加を非常に効果的に抑制するので、優れた磁気特性を得るためおよび磁気特性を安定化させるためには必須の元素であり、その効果を十分に発揮させるには0.03%以上添加する必要がある。しかしながら、含有量が0.30%を超えると脱炭焼鈍時の脱炭性が非常に悪くなり、工業的大量生産には不適となるので、Sb量は0.03〜0.30%に限定する。
Sb: 0.03-0.30%
Sb very effectively suppresses the increase in the amount of steel sheet nitrogen during secondary recrystallization annealing, so it is an indispensable element for obtaining excellent magnetic properties and stabilizing magnetic properties. It is necessary to add 0.03% or more in order to fully exhibit. However, if the content exceeds 0.30%, the decarburization property at the time of decarburization annealing becomes very bad and unsuitable for industrial mass production, so the Sb content is limited to 0.03 to 0.30%.

Mn:{0.04+Sb(%)}%以上 0.50%以下
インヒビターレス成分系でSbを利用して優れた磁気特性と被膜特性を有する方向性電磁鋼板を製造する際の問題点は、Sb添加量を増した時の被膜特性の劣化にある。この問題を解決するのには、Sb量に応じてMn量を増すことが効果的であるので、Mn量の下限は{0.04+Sb(%)}%とした。なお、上限は、Sb量の上限値が0.30%であるので、Mn量の上限は、少なくともその場合の下限値(0.34%)以上であればよいこと、また一定量以上の添加はコスト面で不利なだけでなく、磁束密度の低下を招くことから、0.50%とした。
Mn: {0.04 + Sb (%)}% or more and 0.50% or less The problem with producing grain-oriented electrical steel sheets with excellent magnetic properties and coating properties using Sb in an inhibitorless component system is the amount of Sb added. It is in the deterioration of the film properties when increased. In order to solve this problem, it is effective to increase the amount of Mn according to the amount of Sb, so the lower limit of the amount of Mn was set to {0.04 + Sb (%)}%. Since the upper limit of the Sb amount is 0.30%, the upper limit of the Mn amount should be at least the lower limit (0.34%) in that case, and addition of a certain amount or more is cost Not only is it disadvantageous, but also causes a decrease in magnetic flux density, so 0.50% was set.

(S+0.405Se):50ppm未満
不純物元素であるSおよびSeは、インヒビターレス法で二次再結晶を発現させて方向性電磁鋼板を製造するためには、(S+0.405Se)で50ppm未満にする必要がある。というのは、(S+0.405Se)量が50ppm以上である場合には、二次再結晶が困難となり、磁気特性の劣化を招くからである。
(S + 0.405Se): less than 50 ppm Impurity elements S and Se are made less than 50 ppm with (S + 0.405Se) in order to produce a grain-oriented electrical steel sheet by producing secondary recrystallization by an inhibitorless method. There is a need. This is because when the amount of (S + 0.405Se) is 50 ppm or more, secondary recrystallization becomes difficult and the magnetic properties are deteriorated.

以上、基本成分について説明したが、本発明では、磁気特性および被膜特性の向上を目的として以下の元素を適宜含有させることができる。
Sn:0.03〜0.50%
Snは、磁気特性の向上・安定化作用を有する元素であるが、含有量が0.03%に満たないとその添加効果に乏しく、一方0.50%を超えると良好な一次再結晶組織が得られないので、Sn量は0.03〜0.50%の範囲にするのが好ましい。
The basic components have been described above. In the present invention, the following elements can be appropriately contained for the purpose of improving magnetic properties and film properties.
Sn: 0.03-0.50%
Sn is an element that improves and stabilizes magnetic properties. However, if the content is less than 0.03%, the effect of addition is poor. On the other hand, if it exceeds 0.50%, a good primary recrystallized structure cannot be obtained. , Sn content is preferably in the range of 0.03-0.50%.

Cu:0.03〜0.50%
Cuは、鋼板表層の酸窒化を抑制することによって、磁気特性の劣化を抑制する作用を有する元素である。しかしながら、含有量が0.03%に満たないとその添加効果に乏しく、一方0.50%を超えると表面に「へげ」と呼ばれる欠陥が発生し易くなるので、Cu量は0.03〜0.50%の範囲にするのが好ましい。
Cu: 0.03-0.50%
Cu is an element having an action of suppressing deterioration of magnetic properties by suppressing oxynitriding of the steel sheet surface layer. However, if the content is less than 0.03%, the effect of addition is poor. On the other hand, if it exceeds 0.50%, defects called “baldness” tend to occur on the surface, so the Cu content is in the range of 0.03 to 0.50%. Is preferred.

Ni:0.03〜0.50%
Niは、集合組織を改善して磁束密度を向上させる作用効果を有する元素である。しかしながら、含有量が0.03%に満たないとその添加効果に乏しく、一方0.50%を超えて添加してもそれ以上の効果に乏しいばかりか、圧延性が劣化するおそれがあるので、Ni量は0.03〜0.50%の範囲にするのが好ましい。
Ni: 0.03-0.50%
Ni is an element having an effect of improving the texture and improving the magnetic flux density. However, if the content is less than 0.03%, the effect of addition is poor. On the other hand, even if added over 0.50%, not only the effect is insufficient, but the rolling property may be deteriorated. It is preferable to be in the range of ~ 0.50%.

Cr:0.03〜0.30%
Crは、被膜特性の改善に有効な元素であるが、0.03%未満では目立った改善効果が得られず、一方0.30%を超えると磁気特性が劣化する傾向にあるので、Cr量は0.03〜0.30%の範囲にするのが好ましい。
Cr: 0.03-0.30%
Cr is an element effective for improving the film properties, but if it is less than 0.03%, a remarkable improvement effect cannot be obtained. On the other hand, if it exceeds 0.30%, the magnetic properties tend to deteriorate, so the Cr content is 0.03 to 0.30. % Is preferable.

P:0.01〜0.10%
Pは、粒界偏析により冷延−再結晶後の集合組織を改善して磁束密度を向上させる働きがある。しかしながら、含有量が0.01%未満では十分な効果が得られず、一方0.10%を超えると良好な一次再結晶組織が得られないので、P量は0.01〜0.10%の範囲にするのが好ましい。
P: 0.01-0.10%
P has a function of improving the magnetic flux density by improving the texture after cold rolling and recrystallization by grain boundary segregation. However, if the content is less than 0.01%, a sufficient effect cannot be obtained. On the other hand, if it exceeds 0.10%, a good primary recrystallized structure cannot be obtained. Therefore, the P content is preferably in the range of 0.01 to 0.10%.

Mo:0.005〜0.10%
Moは、表面性状を改善する効果がある。しかしながら、含有量が0.005%未満では十分な効果が得られず、一方0.10%を超えると脱炭焼鈍時の脱炭性が劣化するので、Mo量は0.005〜0.10%の範囲にするのが好ましい。
Mo: 0.005-0.10%
Mo has the effect of improving the surface properties. However, if the content is less than 0.005%, a sufficient effect cannot be obtained. On the other hand, if it exceeds 0.10%, the decarburization property during decarburization annealing deteriorates, so the Mo amount is preferably in the range of 0.005 to 0.10%. .

次に、本発明の方向性電磁鋼板の好適製造条件について説明する。
従来から用いられている製鋼法で、上記成分に調整した溶鋼を、連続鋳造法あるいは造塊法で鋳造し、必要に応じて分塊工程を挟んでスラブを製造する。また、直接鋳造法を用いて100mm以下の厚さの薄鋳片を直接製造してもよい。
Next, preferred production conditions for the grain-oriented electrical steel sheet of the present invention will be described.
The molten steel adjusted to the above components is cast by a continuous steel casting method or an ingot-making method by a steel making method conventionally used, and a slab is produced with a lump process interposed as necessary. Further, a thin cast piece having a thickness of 100 mm or less may be directly produced using a direct casting method.

ついで、スラブを、通常の方法に従い加熱した後、熱間圧延により熱延コイルとする。この時のスラブ加熱温度は、エネルギーコスト低減のために1250℃以下とする。というのは、1250℃を超える高温スラブ加熱は、インヒビターレス法による本発明では無意味であり、コストアップとなるばかりだからである。   Next, the slab is heated according to a normal method, and then hot rolled to form a hot rolled coil. The slab heating temperature at this time shall be 1250 degrees C or less for energy cost reduction. This is because high-temperature slab heating exceeding 1250 ° C. is meaningless in the present invention by the inhibitorless method and only increases the cost.

上記の熱間圧延工程では、前掲図7に示したとおり、仕上げ圧延時の入側温度を940℃以上、かつ仕上げ圧延後の出側温度を800℃以上 900℃以下にとることが重要であり、これによりコイル長手方向の磁気特性の変動を効果的に抑制することができる。   In the above hot rolling process, as shown in FIG. 7, it is important to set the inlet temperature during finish rolling to 940 ° C or higher and the outlet temperature after finish rolling to 800 ° C or higher and 900 ° C or lower. As a result, fluctuations in the magnetic characteristics in the coil longitudinal direction can be effectively suppressed.

上記の熱間圧延後、必要に応じて熱延板焼鈍を行ったのち、1回の冷間圧延あるいは中間焼鈍を挟む2回以上の冷間圧延により、最終板厚の冷延板とする。冷間圧延は、常温で行っても良いし、あるいは常温よりも高い温度、例えば150〜300℃程度に上げて圧延する温間圧延としてもよい。また、冷間圧延途中で150〜300℃の範囲での時効処理を1回または複数回行ってもよい。   After the above-described hot rolling, hot-rolled sheet annealing is performed as necessary, and then a cold-rolled sheet having a final thickness is obtained by one or more cold rolling or two or more cold rollings sandwiching intermediate annealing. The cold rolling may be performed at room temperature, or may be performed at a temperature higher than room temperature, for example, about 150 to 300 ° C. for rolling. Moreover, you may perform the aging treatment in the range of 150-300 degreeC in the middle of cold rolling once or several times.

ついで、最終冷間圧延板に湿水素雰囲気中にて脱炭・一次再結晶焼鈍を施す。この脱炭焼鈍により、残留C量を0.004%以下にすることが望ましい。
その後、この脱炭焼鈍を施した鋼板表面に、マグネシアを主体とした焼鈍分離剤をスラリー状にして塗布した後、乾燥させる。ここで、良好な被膜特性を得るためには、マグネシア:100重量部に対して、Ti化合物をTi換算で0.3〜8重量部配合した焼鈍分離剤を塗布する必要がある。ここに、Ti化合物としては、TiO2、TiO3・H2O、TiO・(OH)2、Ti(OH)4などを用いることができる。また、マグネシア:100重量部に対してSr換算で0.2〜5重量部のSr化合物を併用して配合することは、更なる磁気特性と被膜特性の向上・安定化に効果がある。かようなSr化合物としては、SrSO4、Sr(OH)2・8H2O、SrCO3、Sr(NO)3などを用いることができる。
Next, decarburization and primary recrystallization annealing are performed on the final cold rolled sheet in a wet hydrogen atmosphere. It is desirable that the residual C content be 0.004% or less by this decarburization annealing.
Thereafter, an annealing separator mainly composed of magnesia is applied to the surface of the steel plate subjected to the decarburization annealing as a slurry, and then dried. Here, in order to obtain good film properties, it is necessary to apply an annealing separator containing 0.3 to 8 parts by weight of Ti compound in terms of Ti with respect to 100 parts by weight of magnesia. Here, as the Ti compound, TiO 2 , TiO 3 .H 2 O, TiO. (OH) 2 , Ti (OH) 4 or the like can be used. In addition, combining 0.2 to 5 parts by weight of an Sr compound in terms of Sr with respect to 100 parts by weight of magnesia is effective in further improving and stabilizing magnetic properties and film properties. As such an Sr compound, SrSO 4 , Sr (OH) 2 .8H 2 O, SrCO 3 , Sr (NO) 3 and the like can be used.

なお、被膜特性の均一性の一層の向上を目的として、焼鈍分離剤中に、さらにCaOのような酸化物、MgSO4・7H2OやSnSO4のような硫化物、Na2B4O7のようなB系化合物、Sb2O3やSb2(SO4)3のようなSb系化合物のうちから選んだ1種または2種以上を適宜添加することもできる。 In addition, for the purpose of further improving the uniformity of the film properties, in the annealing separator, oxides such as CaO, sulfides such as MgSO 4 .7H 2 O and SnSO 4 , Na 2 B 4 O 7 One or more selected from B compounds such as Sb 2 O 3 and Sb 2 (SO 4 ) 3 can also be added as appropriate.

また、焼鈍分離剤に用いるマグネシアは、水和量(20℃,60分間にて水和後、1000℃,1時間の強熱による減量)が1〜5%の範囲のものを用いるのが好ましい。というのは、マグネシアの水和量が1%未満ではフォルステライト質被膜の生成が不十分となり、一方5%を超えるとコイル層間への持込み水分量が多くなりすぎて鋼板の追加酸化量が多くなるため、良好なフォルステライト質被膜が得られなくなるおそれが生じるからである。また、30℃でのクエン酸活性度(CAA40)は30秒から160秒のものを用いることが好ましい。というのは、クエン酸活性度(CAA40)が30秒未満では反応性が強すぎてフォルステライトが急激に生成して剥離し易くなり、一方160秒を超えると反応性が弱すぎてフォルステライト生成が進行しないからである。   Moreover, it is preferable to use the magnesia used for the annealing separator in the range of 1 to 5% of hydration amount (reduced by ignition at 1000 ° C. for 1 hour after hydration at 20 ° C. for 60 minutes). . This is because if the amount of hydration of magnesia is less than 1%, the formation of forsterite film is insufficient, while if it exceeds 5%, the amount of moisture brought between the coil layers becomes too large and the amount of additional oxidation of the steel sheet is large. Therefore, there is a possibility that a good forsterite film cannot be obtained. The citric acid activity (CAA40) at 30 ° C. is preferably 30 to 160 seconds. The reason is that if the citric acid activity (CAA40) is less than 30 seconds, the reactivity is too strong and the forsterite is generated abruptly and easily peels off. On the other hand, if it exceeds 160 seconds, the reactivity is too weak and the forsterite is generated. This is because does not progress.

さらに、焼鈍分離剤は、鋼板片面当たり4〜10 g/m2程度の範囲で塗布するのが好ましい。というのは、塗布量が4g/m2より少ないとフォルステライトの生成が不十分となり、一方10g/m2を超えるとフォルステライト質被膜が過剰に生成し厚くなるため、占積率の低下を招くからである。 Further, the annealing separator is preferably applied in a range of about 4 to 10 g / m 2 per one side of the steel sheet. This is because if the coating amount is less than 4 g / m 2, the formation of forsterite becomes insufficient. On the other hand, if it exceeds 10 g / m 2 , the forsterite film is excessively formed and becomes thick. Because it invites.

その後、二次再結晶焼鈍および純化焼鈍からなる最終仕上げ焼鈍を行うが、ここで、二次再結晶焼鈍は、昇温過程において 800℃以上 900℃以下の温度域における滞留時間を40時間以上 150時間以下とする必要がある。
というのは、800℃以上 900℃以下の温度域における滞留時間が上記の範囲を外れると、前掲図2に示したように、磁気特性の低下を招くからである。
After that, final finish annealing consisting of secondary recrystallization annealing and purification annealing is performed. Here, the secondary recrystallization annealing is performed in the temperature range of 800 ° C to 900 ° C for a residence time of 40 hours to 150 hours. It is necessary to keep the time below.
This is because if the residence time in the temperature range of 800 ° C. or more and 900 ° C. or less is out of the above range, the magnetic characteristics are deteriorated as shown in FIG.

その後、鋼板表面に、りん酸塩系の絶縁コーティング好ましくは張力を付与する絶縁コーティングを施して製品とする。絶縁被膜の種類については、特に限定されないが、従来公知のあらゆる絶縁被膜が適合する。例えば、特開昭50−79442号公報や特開昭48−39338号公報に記載されている、りん酸塩−クロム酸−コロイダルシリカを含有する塗布液を鋼板に塗布し、800℃程度で焼き付ける方法が好適である。
さらに、最終冷延後、最終仕上げ焼鈍後あるいは絶縁コーティングの被成後に、既知の磁区細分化処理を行うことは、更なる鉄損の低減に有効である。
Thereafter, a phosphate-based insulating coating, preferably an insulating coating that imparts tension, is applied to the steel sheet surface to obtain a product. The type of insulating coating is not particularly limited, but any conventionally known insulating coating is suitable. For example, a coating solution containing phosphate-chromic acid-colloidal silica described in JP-A-50-79442 and JP-A-48-39338 is applied to a steel plate and baked at about 800 ° C. The method is preferred.
Furthermore, performing a known magnetic domain refinement after the final cold rolling, after the final finish annealing, or after forming the insulating coating is effective in further reducing iron loss.

実施例1
表1に示す成分組成になる鋼スラブを、ガス加熱炉により1200℃に加熱した後、熱間圧延により板厚:2.2mmの熱延板とした。この熱間圧延に際しては、コイル全長にわたり仕上げ圧延時の入側温度と出側温度を、表2に示す範囲に制御した。
ついで、1050℃で30秒間の熱延板焼鈍後、冷間圧延にて最終板厚:0.29mmとした。その後、脱炭・一次再結晶焼鈍を行った後、マグネシアを主体とする焼鈍分離剤を塗布し、二次再結晶焼鈍と純化焼鈍からなる最終仕上げ焼鈍を行った。表2に、焼鈍分離剤の配合と二次再結晶焼鈍条件(800℃以上 900℃以下の滞留時間)を示す。その後、りん酸マグネシウム、クロム酸およびコロイダルシリカを主成分とする絶縁コーティングを施した。
Example 1
A steel slab having the component composition shown in Table 1 was heated to 1200 ° C. in a gas heating furnace, and then hot rolled into a hot rolled sheet having a sheet thickness of 2.2 mm. During this hot rolling, the entry side temperature and the exit side temperature during finish rolling were controlled within the ranges shown in Table 2 over the entire length of the coil.
Then, after hot-rolled sheet annealing at 1050 ° C. for 30 seconds, the final sheet thickness was 0.29 mm by cold rolling. Thereafter, after decarburization and primary recrystallization annealing, an annealing separator mainly composed of magnesia was applied, and final finishing annealing consisting of secondary recrystallization annealing and purification annealing was performed. Table 2 shows the composition of the annealing separator and the secondary recrystallization annealing conditions (retention time of 800 ° C. or more and 900 ° C. or less). Thereafter, an insulating coating mainly composed of magnesium phosphate, chromic acid and colloidal silica was applied.

かくして得られた各製品について、磁束密度(B8),鉄損(W17/50)、被膜外観および被膜密着性について調べた結果を、表2に併記する。
なお、被膜密着性は、被膜の曲げ密着性として、5mm間隔の種々の径を有する丸棒に試験片を巻き付け、被膜が剥離しない最小径で評価した。
Table 2 shows the results of examining the magnetic flux density (B 8 ), iron loss (W 17/50 ), coating appearance and coating adhesion for each product thus obtained.
The coating adhesion was evaluated by the minimum diameter at which the coating was not peeled off by winding a test piece around a round bar having various diameters at intervals of 5 mm as the bending adhesion of the coating.

Figure 0004604827
Figure 0004604827

Figure 0004604827
Figure 0004604827

表2から明らかなように、本発明に従う条件で製造した発明例は、いずれも良好な磁気特性および被膜特性が得られている。   As is apparent from Table 2, all of the inventive examples produced under the conditions according to the present invention have good magnetic properties and coating properties.

実施例2
表3に示す成分組成になる鋼スラブを、ガス加熱炉により1200℃に加熱した後、熱間圧延により板厚:2.0mmの熱延板とした。この熱間圧延に際しては、コイル全長にわたり仕上げ圧延時の入側温度と出側温度を、表4に示す範囲に制御した。
ついで、1035℃で60秒間の熱延板焼鈍後、冷間圧延にて最終板厚:0.285mmとした。このとき、最終冷間圧延は、少なくとも1パスは圧延ロール出側直後の鋼板温度が150〜250℃になるような圧延とした。その後、脱炭・一次再結晶焼鈍を行ったのち、マグネシアを主体とする焼鈍分離剤を塗布し、二次再結晶焼鈍と純化焼鈍からなる最終仕上げ焼鈍を行った。表4に、焼鈍分離剤の配合と二次再結晶焼鈍条件(800℃以上 900℃以下の滞留時間)を示す。その後、りん酸マグネシウム、クロム酸およびコロイダルシリカを主成分とする絶縁コーティングを施した。
Example 2
A steel slab having the composition shown in Table 3 was heated to 1200 ° C. in a gas heating furnace, and then hot rolled to form a hot rolled sheet having a thickness of 2.0 mm. During this hot rolling, the entry side temperature and the exit side temperature during finish rolling were controlled within the ranges shown in Table 4 over the entire length of the coil.
Then, after hot-rolled sheet annealing at 1035 ° C. for 60 seconds, the final sheet thickness was 0.285 mm by cold rolling. At this time, the final cold rolling was performed such that the steel plate temperature immediately after the exit side of the rolling roll was 150 to 250 ° C. for at least one pass. Then, after decarburization and primary recrystallization annealing, an annealing separator mainly composed of magnesia was applied, and final finishing annealing consisting of secondary recrystallization annealing and purification annealing was performed. Table 4 shows the composition of the annealing separator and the secondary recrystallization annealing conditions (retention time of 800 ° C. or more and 900 ° C. or less). Thereafter, an insulating coating mainly composed of magnesium phosphate, chromic acid and colloidal silica was applied.

かくして得られた各製品について、磁束密度(B8),鉄損(W17/50)、被膜外観および被膜密着性について調べた結果を、表4に併記する。 Table 4 shows the results of examining the magnetic flux density (B 8 ), iron loss (W 17/50 ), coating appearance, and coating adhesion of each product thus obtained.

Figure 0004604827
Figure 0004604827

Figure 0004604827
Figure 0004604827

表4から明らかなように、本発明に従う条件で製造した発明例は、いずれも良好な磁気特性および被膜特性が得られた。   As is apparent from Table 4, all of the inventive examples produced under the conditions according to the present invention obtained good magnetic properties and coating properties.

実施例3
表5に示す成分組成になる鋼スラブを、ガス加熱炉により1240℃に加熱した後、熱間圧延により板厚:2.7mmの熱延板とした。この熱間圧延に際しては、コイル全長にわたり仕上げ圧延時の入側温度と出側温度を、表6に示す範囲に制御した。
ついで、冷間圧延により板厚:1.6mmとし、1020℃で45秒間の中間焼鈍を行った後、 冷間圧延により最終板厚:0.22mmとした。このとき、最終冷間圧延は、少なくとも1パスは圧延ロール出側直後の鋼板温度が150〜250℃になるような圧延とした。ついで、脱炭・一次再結晶焼鈍を行った後、マグネシアを主体とする焼鈍分離剤を塗布し、二次再結晶焼鈍と鈍化焼鈍からなる最終仕上げ焼鈍を行った。表6に、焼鈍分離剤の配合と二次再結晶焼鈍条件(800℃以上 900℃以下の滞留時間)を示す。その後、りん酸マグネシウム、クロム酸およびコロイダルシリカを主成分とする絶縁コーティング施した。
Example 3
A steel slab having the composition shown in Table 5 was heated to 1240 ° C. in a gas heating furnace, and then hot rolled to form a hot rolled sheet having a sheet thickness of 2.7 mm. During this hot rolling, the inlet side temperature and outlet side temperature during finish rolling were controlled within the ranges shown in Table 6 over the entire length of the coil.
Then, the sheet thickness was 1.6 mm by cold rolling, and after intermediate annealing at 1020 ° C. for 45 seconds, the final sheet thickness was 0.22 mm by cold rolling. At this time, the final cold rolling was performed such that the steel plate temperature immediately after the exit side of the rolling roll was 150 to 250 ° C. for at least one pass. Next, after decarburization and primary recrystallization annealing, an annealing separator mainly composed of magnesia was applied, and final finish annealing including secondary recrystallization annealing and blunt annealing was performed. Table 6 shows the composition of the annealing separator and the secondary recrystallization annealing conditions (retention time of 800 ° C. or higher and 900 ° C. or lower). Thereafter, an insulating coating mainly composed of magnesium phosphate, chromic acid and colloidal silica was applied.

かくして得られた各製品について、磁束密度(B8),鉄損(W17/50)、被膜外観および被膜密着性について調べた結果を、表6に併記する。 Table 6 shows the results of examining the magnetic flux density (B 8 ), iron loss (W 17/50 ), coating appearance and coating adhesion of each product thus obtained.

Figure 0004604827
Figure 0004604827

Figure 0004604827
Figure 0004604827

表6から明らかなように、本発明に従う条件で製造した発明例は、いずれも良好な磁気特性および被膜特性を示している。   As is apparent from Table 6, all of the inventive examples produced under the conditions according to the present invention exhibit good magnetic properties and coating properties.

焼鈍分離剤中のTiO2量が被膜密着性に及ぼす影響を示す図である。TiO 2 content in annealing separator is a diagram showing the effect on film adhesion. 二次再結晶焼鈍の昇温過程において、800℃以上900℃以下の温度域における滞留時間が磁気特性に及ぼす影響を示す図である。It is a figure which shows the influence which the residence time in the temperature range of 800 degreeC or more and 900 degrees C or less has on a magnetic characteristic in the temperature rising process of secondary recrystallization annealing. 素材中のMn,Sb量が磁気特性と被膜特性に及ぼす影響を示す図である。It is a figure which shows the influence which the amount of Mn and Sb in a raw material has on a magnetic characteristic and a film characteristic. 素材中のSb量が脱炭焼鈍板サブスケールの酸素目付け量(片面当たり)に及ぼす影響を示す図である。It is a figure which shows the influence which the amount of Sb in a raw material has on the oxygen basis weight (per one side) of a decarburization annealing board subscale. 素材中のMn量が脱炭焼鈍板サブスケールの酸素目付け量(片面当たり)に及ぼす影響を示す図である。It is a figure which shows the influence which the amount of Mn in a raw material has on the amount of oxygen areal weight (per one side) of a decarburization annealing board subscale. 二次再結晶焼鈍中、850℃で50時間焼鈍した後の鋼板表面のFT-IR測定結果を示す図である。It is a figure which shows the FT-IR measurement result of the steel plate surface after annealing for 50 hours at 850 degreeC during secondary recrystallization annealing. 熱間圧延時の仕上げ圧延入側温度および仕上げ圧延出側温度が磁気特性に及ぼす影響を示す図である。It is a figure which shows the influence which the finish rolling entrance temperature and the finish rolling exit side temperature at the time of hot rolling exert on a magnetic characteristic. 焼鈍分離剤中のTiO2およびSr化合物配合量が製品特性に及ぼす影響を示す図である。TiO 2 and Sr compound amount in the annealing separator is a diagram showing the effect on product properties.

Claims (3)

質量%で、C:0.01〜0.10%,Si:2.5〜4.5%,酸可溶性Al:40ppm以上 100ppm未満,N:30ppm以上 60ppm未満,Sb:0.03〜0.30%,Mn:{0.04+Sb(%)}%以上 0.50%以下および(S+0.405Se):50ppm未満を含有し、残部はFeおよび不可避的不純物の組成になるけい素鋼スラブを、1250℃以下の温度で加熱後、熱間圧延し、必要に応じて熱延板焼鈍を施したのち、1回または中間焼鈍を挟む2回以上の冷間圧延を行い、ついで脱炭・一次再結晶焼鈍後、マグネシアを主成分とする焼鈍分離剤を塗布してから、二次再結晶焼鈍および純化焼鈍からなる最終仕上げ焼鈍を施す一連の工程からなる一方向性電磁鋼板の製造方法において、
a) 熱間圧延時の仕上げ圧延入側温度を 940℃以上にすると共に、仕上げ圧延出側温度を800℃以上 900℃以下にすること、
b) 焼鈍分離剤中に、マグネシア:100重量部に対して、Ti化合物をTi換算で0.3〜8.0 重量部含有させること、
c) 二次再結晶焼鈍の昇温過程において、800℃以上 900℃以下の温度域における滞留時間を40時間以上 150時間以下とすること
を特徴とする一方向性電磁鋼板の製造方法。
In mass%, C: 0.01-0.10%, Si: 2.5-4.5%, acid-soluble Al: 40ppm or more, less than 100ppm, N: 30ppm or more, less than 60ppm, Sb: 0.03-0.30%, Mn: {0.04 + Sb (%)} % Or more and 0.50% or less and (S + 0.405Se): less than 50ppm, the balance is Fe and unavoidable impurities, silicon steel slab is heated at a temperature of 1250 ℃ or less, then hot-rolled and necessary Depending on the condition, after hot-rolled sheet annealing is performed, cold rolling is performed once or two or more times with intermediate annealing, followed by decarburization and primary recrystallization annealing, and then an annealing separator mainly composed of magnesia is applied. Then, in the method for producing a unidirectional electrical steel sheet comprising a series of steps of performing final finishing annealing consisting of secondary recrystallization annealing and purification annealing,
a) The finish rolling entry temperature during hot rolling should be 940 ° C or more and the finish rolling exit temperature should be 800 ° C or more and 900 ° C or less,
b) In the annealing separator, magnesia: 0.3 to 8.0 parts by weight of Ti compound in terms of Ti with respect to 100 parts by weight,
c) In the Atsushi Nobori process of secondary recrystallization annealing, manufacturing method of an oriented electrical steel sheet you characterized in that the residence time in the temperature range of 800 ° C. or higher 900 ° C. or less than 40 hours or more 150 hours.
請求項1において、焼鈍分離剤中にさらに、マグネシア:100重量部に対して、Sr化合物をSr換算で0.2〜5重量部含有させることを特徴とする一方向性電磁鋼板の製造方法。 According to claim 1, further in the annealing separating agent, magnesia To 100 parts by weight, manufacturing method of an oriented electrical steel sheet you characterized by the inclusion 0.2-5 parts by weight of Sr compound Sr terms. 請求項1または2において、けい素鋼スラブが、さらに質量%で、Sn:0.03〜0.50%,Cu:0.03〜0.50%,Ni:0.03〜0.50%,Cr:0.03〜0.30%,P:0.01〜0.10%およびMo:0.005〜0.10%のうちから選んだ1種または2種以上を含有することを特徴とする一方向性電磁鋼板の製造方法。 3. The silicon steel slab according to claim 1, wherein the silicon steel slab is further mass%, Sn: 0.03-0.50%, Cu: 0.03-0.50%, Ni: 0.03-0.50%, Cr: 0.03-0.30%, P: 0.01- 0.10% and Mo: 0.005 to 0.10% manufacturing method of an oriented electrical steel sheet you characterized in that it contains one or more kinds selected from among.
JP2005139584A 2005-05-12 2005-05-12 Manufacturing method of unidirectional electrical steel sheet Expired - Fee Related JP4604827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005139584A JP4604827B2 (en) 2005-05-12 2005-05-12 Manufacturing method of unidirectional electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005139584A JP4604827B2 (en) 2005-05-12 2005-05-12 Manufacturing method of unidirectional electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2006316314A JP2006316314A (en) 2006-11-24
JP4604827B2 true JP4604827B2 (en) 2011-01-05

Family

ID=37537242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005139584A Expired - Fee Related JP4604827B2 (en) 2005-05-12 2005-05-12 Manufacturing method of unidirectional electrical steel sheet

Country Status (1)

Country Link
JP (1) JP4604827B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9953752B2 (en) 2012-12-28 2018-04-24 Jfe Steel Corporation Production method for grain-oriented electrical steel sheet and primary recrystallized steel sheet for production of grain-oriented electrical steel sheet
KR101980940B1 (en) * 2012-12-28 2019-05-21 제이에프이 스틸 가부시키가이샤 Production method for grain-oriented electrical steel sheet and primary recrystallized steel sheet for production of grain-oriented electrical steel sheet
JP6171887B2 (en) * 2013-11-20 2017-08-02 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003193134A (en) * 2001-12-28 2003-07-09 Jfe Steel Kk Method of producing grain oriented silicon steel sheet having excellent magnetic property and coating property
JP2003193142A (en) * 2001-12-27 2003-07-09 Jfe Steel Kk Method of producing grain oriented silicon steel sheet having excellent magnetic property
JP2003201517A (en) * 2002-01-10 2003-07-18 Jfe Steel Kk Method of producing grain oriented silicon steel sheet having stably excellent magnetic property
JP2004169179A (en) * 2002-10-29 2004-06-17 Jfe Steel Kk Method for manufacturing grain oriented silicon steel sheet of excellent bend characteristic

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003193142A (en) * 2001-12-27 2003-07-09 Jfe Steel Kk Method of producing grain oriented silicon steel sheet having excellent magnetic property
JP2003193134A (en) * 2001-12-28 2003-07-09 Jfe Steel Kk Method of producing grain oriented silicon steel sheet having excellent magnetic property and coating property
JP2003201517A (en) * 2002-01-10 2003-07-18 Jfe Steel Kk Method of producing grain oriented silicon steel sheet having stably excellent magnetic property
JP2004169179A (en) * 2002-10-29 2004-06-17 Jfe Steel Kk Method for manufacturing grain oriented silicon steel sheet of excellent bend characteristic

Also Published As

Publication number Publication date
JP2006316314A (en) 2006-11-24

Similar Documents

Publication Publication Date Title
JP5011711B2 (en) Manufacturing method of unidirectional electrical steel sheet
KR101963990B1 (en) Grain-oriented electrical steel sheet and method of manufacturing same
JP5954347B2 (en) Oriented electrical steel sheet and manufacturing method thereof
KR102057126B1 (en) Grain-oriented electrical steel sheet and method for manufacturing the same
JP5040131B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP4258349B2 (en) Method for producing grain-oriented electrical steel sheet
JP3386751B2 (en) Method for producing grain-oriented silicon steel sheet with excellent coating and magnetic properties
JPWO2017145907A1 (en) Method for producing grain-oriented electrical steel sheet
US7399369B2 (en) Ultra-high magnetic flux density grain-oriented electrical steel sheet excellent in iron loss at a high magnetic flux density and film properties and method for producing the same
JP4604827B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP4569353B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP2000144249A (en) Production of grain oriented silicon steel sheet excellent in coating film characteristic and magnetic property
JPH04173923A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property as well as in film characteristic
JP5920387B2 (en) Method for producing grain-oriented electrical steel sheet
JP4206665B2 (en) Method for producing grain-oriented electrical steel sheet having excellent magnetic properties and coating properties
KR101410474B1 (en) Gran-oriented electrical steel sheet and manufacturing method for the same
JP5011712B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP4258185B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP2603130B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet
JP4239456B2 (en) Method for producing grain-oriented electrical steel sheet
CN115066508A (en) Method for producing grain-oriented electromagnetic steel sheet
KR950009760B1 (en) Method of manufacturing grain oriented silicon steel sheet
JP3716608B2 (en) Method for producing grain-oriented electrical steel sheet
JP2001123229A (en) Method for producing high magnetic flux density grain oriented silicon steel sheet excellent in film characteristic
RU2805838C1 (en) Method for producing anisotropic electrical steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100810

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100920

R150 Certificate of patent or registration of utility model

Ref document number: 4604827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees