JP2012161139A - Motor core having small deterioration in iron loss under compressive stress and method of manufacturing the same - Google Patents
Motor core having small deterioration in iron loss under compressive stress and method of manufacturing the same Download PDFInfo
- Publication number
- JP2012161139A JP2012161139A JP2011018008A JP2011018008A JP2012161139A JP 2012161139 A JP2012161139 A JP 2012161139A JP 2011018008 A JP2011018008 A JP 2011018008A JP 2011018008 A JP2011018008 A JP 2011018008A JP 2012161139 A JP2012161139 A JP 2012161139A
- Authority
- JP
- Japan
- Prior art keywords
- mass
- motor core
- less
- core
- compressive stress
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title abstract description 74
- 229910052742 iron Inorganic materials 0.000 title abstract description 37
- 230000006866 deterioration Effects 0.000 title abstract description 9
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 30
- 239000010959 steel Substances 0.000 claims abstract description 30
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 7
- 238000004080 punching Methods 0.000 claims description 7
- 239000012535 impurity Substances 0.000 claims description 6
- 239000011162 core material Substances 0.000 abstract description 83
- 239000011248 coating agent Substances 0.000 abstract description 5
- 238000000576 coating method Methods 0.000 abstract description 5
- 238000009413 insulation Methods 0.000 abstract 1
- 230000004907 flux Effects 0.000 description 8
- 229910000976 Electrical steel Inorganic materials 0.000 description 6
- 229910000565 Non-oriented electrical steel Inorganic materials 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 230000005381 magnetic domain Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 229910001220 stainless steel Inorganic materials 0.000 description 6
- 239000010935 stainless steel Substances 0.000 description 6
- 238000012545 processing Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 238000005096 rolling process Methods 0.000 description 4
- 239000002131 composite material Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Substances OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 230000005415 magnetization Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- BGPVFRJUHWVFKM-UHFFFAOYSA-N N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] Chemical compound N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] BGPVFRJUHWVFKM-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- SOCTUWSJJQCPFX-UHFFFAOYSA-N dichromate(2-) Chemical compound [O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O SOCTUWSJJQCPFX-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
Landscapes
- Manufacturing Cores, Coils, And Magnets (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
Abstract
Description
本発明は、家庭用エアコンのコンプレッサーモータや、ハイブリッド電気自動車(EV;Electric Vehicle)の駆動モータや発電機(以降、単に「モータ」という。)などに用いられるモータコアとその製造方法に関し、具体的には、圧縮応力の存在下においても鉄損劣化が小さい(鉄損増加が小さい)モータコアとその製造方法に関するものである。 The present invention relates to a motor core used for a compressor motor of a home air conditioner, a drive motor or a generator (hereinafter simply referred to as “motor”) of a hybrid electric vehicle (EV), and a manufacturing method thereof. The present invention relates to a motor core having a small iron loss deterioration (small increase in iron loss) even in the presence of compressive stress and a method for manufacturing the same.
家庭用エアコンのコンプレッサーモータは、一般に最高周波数が200〜400Hz程度で可変速運転が行われており、さらに、PWM(Pulse Width Modulation)方式のインバータ制御がなされているものでは、数kHzのキャリア周波数が重畳されて使用されている。また、最近、急速に普及しているハイブリッド電気自動車の駆動モータや発電機も、高出力化や小型化を図る観点から、数kHz程度の周波数で駆動されている。 Compressor motors for home air conditioners are generally operated at variable speeds with a maximum frequency of about 200 to 400 Hz, and are further controlled by PWM (Pulse Width Modulation) type inverter control. Are superimposed and used. Recently, drive motors and generators of hybrid electric vehicles that are rapidly spreading are also driven at a frequency of about several kHz from the viewpoint of achieving high output and miniaturization.
上記のようなモータのステータ(固定子)やロータ(回転子)等のコアに用いられる素材(コア材)には、エネルギー効率を向上する観点から、鉄損が低いことが求められる。そこで、上記モータコア材には、使用される高周波域における鉄損を低減するため、SiとAlを合計で3〜4mass%程度添加したハイグレードの無方向性電磁鋼板が使用されている。 A material (core material) used for a core such as a stator (stator) or a rotor (rotor) of the motor as described above is required to have low iron loss from the viewpoint of improving energy efficiency. Therefore, high-grade non-oriented electrical steel sheets to which Si and Al are added in a total amount of about 3 to 4 mass% are used for the motor core material in order to reduce iron loss in the high frequency range to be used.
ところで、エアコンのコンプレッサーモータやハイブリッド電気自動車のモータでは、ステータをハウジング(モータケース)に固定する方法として、焼き嵌め法や圧入法が採用されており、これに起因して、ステータの円周方向には数10〜100MPa程度の圧縮応力が発生している。また、ハイブリッド電気自動車の駆動モータには、一般に樹脂モールドが施されるため、やはりモータコアには圧縮応力が加わることとなる。このような圧縮応力の存在下では、コアを構成する電磁鋼板の磁気特性が大きく劣化する(鉄損が増加する)ことが知られている。 By the way, in a compressor motor of an air conditioner or a motor of a hybrid electric vehicle, a shrink fitting method or a press-fitting method is adopted as a method for fixing the stator to the housing (motor case). , A compressive stress of about several tens to 100 MPa is generated. Moreover, since the resin motor is generally applied to the drive motor of the hybrid electric vehicle, a compression stress is also applied to the motor core. In the presence of such compressive stress, it is known that the magnetic properties of the electrical steel sheet constituting the core are greatly deteriorated (iron loss increases).
そのため、圧縮応力による鉄損劣化が小さい電磁鋼板の開発が望まれており、斯かる材料としては、例えば、特許文献1には、Si:2.6〜4mass%を添加して比抵抗を50〜75×10−8Ωmとし、さらに、平均結晶粒径を60μm超165μm以下とした無方向性電磁鋼板が開示されている。
Therefore, it is desired to develop an electromagnetic steel sheet with small iron loss degradation due to compressive stress. As such a material, for example, Si: 2.6 to 4 mass% is added to
しかしながら、特許文献1の無方向性電磁鋼板は、現在市販されているハイグレード電磁鋼板と同等レベルの固有抵抗、結晶粒径でしかない。そのため、この材料を用いてモータコアを製造したとしても、圧縮応力による鉄損劣化の程度は従来材と大きく異なるものではない。そのため、鉄損の応力依存性をさらに小さくできる技術の開発が求められている。
However, the non-oriented electrical steel sheet of
そこで、本発明の目的は、圧縮応力の存在下においても高周波での鉄損特性の劣化が小さいモータコアを提供するとともに、その有利な製造方法を提案することにある。 SUMMARY OF THE INVENTION An object of the present invention is to provide a motor core in which deterioration of iron loss characteristics at high frequencies is small even in the presence of compressive stress, and to propose an advantageous manufacturing method thereof.
発明者らは、上記課題の解決に向けて鋭意検討した。その結果、積層されてステータコアを構成する電磁鋼板(以降、「ステータコア材」とも称する。)のバックヨーク部に加工歪を付与することにより、圧縮応力による鉄損特性の劣化を抑制できることを見出し、本発明を完成させた。 The inventors diligently studied to solve the above problems. As a result, it was found that deterioration of iron loss characteristics due to compressive stress can be suppressed by imparting processing strain to the back yoke portion of the electromagnetic steel sheets (hereinafter also referred to as “stator core material”) that are stacked to constitute the stator core. The present invention has been completed.
すなわち、本発明は、周方向に10MPa以上の圧縮応力が付与される、電磁鋼板を積層したモータコアにおいて、上記モータコアを構成する電磁鋼板のバックヨーク部表面の全面または一部に微小凹部を多数形成してなることを特徴とするモータコアである。 That is, according to the present invention, in a motor core in which electromagnetic steel sheets are laminated and a compressive stress of 10 MPa or more is applied in the circumferential direction, a large number of minute recesses are formed on the entire surface or part of the back yoke portion surface of the electromagnetic steel sheets constituting the motor core. It is a motor core characterized by being formed.
本発明のモータコアにおける上記微小凹部は、深さが10〜50μm、直径が0.05〜2mmで、最近接間距離が0.2〜5mmの間隔で形成されてなることを特徴とする。 The minute recesses in the motor core of the present invention have a depth of 10 to 50 μm, a diameter of 0.05 to 2 mm, and a distance between nearest neighbors of 0.2 to 5 mm.
また、本発明のモータコアにおける上記微小凹部は、コア形状に打抜加工する金型表面に形成された凸部でプレス成形されてなることを特徴とする。 The minute recesses in the motor core of the present invention are characterized in that they are press-molded with projections formed on the surface of a die that is punched into a core shape.
また、本発明のモータコアにおける上記電磁鋼板は、Si:7mass%以下、Al:3mass%以下、Mn:5mass%以下、S:0.01mass%以下、N:0.005mass%以下、O:0.01mass%以下を含有し、残部がFeおよび不可避不純物からなる成分組成を有することを特徴とする。 In the motor core of the present invention, Si: 7 mass% or less, Al: 3 mass% or less, Mn: 5 mass% or less, S: 0.01 mass% or less, N: 0.005 mass% or less, O: 0.00. It is characterized in that it contains not more than 01 mass% and the remainder has a component composition consisting of Fe and inevitable impurities.
また、本発明は、電磁鋼板をモータコア形状に打抜加工したコア材を積層して、周方向に10MPa以上の圧縮応力が付与されるモータコアを製造する方法において、上記打抜加工の際、モーアコアのバックヨーク部に接する面の全面または一部に微小凸部を多数形成した打抜金型を用いて行うことを特徴とするモータコアの製造方法を提案する。 The present invention also relates to a method of manufacturing a motor core in which a compressive stress of 10 MPa or more is applied in the circumferential direction by laminating core materials obtained by punching electromagnetic steel sheets into a motor core shape. A manufacturing method of a motor core is proposed, which is performed using a punching die in which a large number of minute convex portions are formed on the entire surface or a part of the surface in contact with the back yoke portion.
本発明によれば、圧縮応力の存在下においても高周波での鉄損増加が小さいモータコアを提供することができる。したがって、本発明のモータコアは、焼き嵌めや圧入あるいは樹脂モールド等によって圧縮応力が付与された状態で使用されるエアコンのコンプレッサ用モータや、ハイブリッド自動車(HV)や電気自動車(EV)の駆動モータや発電機、燃料電池自動車(FCEV)の駆動モータ、高速発電機の高周波回転機等に好適に用いることができる。 According to the present invention, it is possible to provide a motor core with a small increase in iron loss at high frequencies even in the presence of compressive stress. Accordingly, the motor core of the present invention is a compressor motor for an air conditioner used in a state where compressive stress is applied by shrink fitting, press fitting, resin molding, or the like, a drive motor for a hybrid vehicle (HV) or an electric vehicle (EV), It can be suitably used for a generator, a drive motor of a fuel cell vehicle (FCEV), a high-frequency rotating machine of a high-speed generator, and the like.
先ず、本発明の基本的な技術思想について説明する。
家電用エアコンのコンプレッサ用モータやハイブリッド電気自動車用等の駆動モータでは、コアをモータケースに固定する手段として、一般に焼き嵌め法や圧入法が採用されている。この焼き嵌め法や圧入法によってモータコアの周方向に付与される圧縮応力は、20〜150MPa程度であると言われている。この圧縮応力は、モータコアを構成する電磁鋼板の鉄損特性を劣化させ、ひいては、モータ効率を大きく低下させる。そのため、圧縮応力下においても鉄損特性の劣化が小さいモータコアが望まれている。
First, the basic technical idea of the present invention will be described.
In drive motors such as compressor motors for home appliance air conditioners and hybrid electric vehicles, shrink fitting or press-fitting methods are generally employed as means for fixing the core to the motor case. It is said that the compressive stress applied in the circumferential direction of the motor core by this shrink-fitting method or press-fitting method is about 20 to 150 MPa. This compressive stress degrades the iron loss characteristics of the electrical steel sheet that constitutes the motor core, and consequently greatly reduces the motor efficiency. Therefore, there is a demand for a motor core with little deterioration in iron loss characteristics even under compressive stress.
発明者らは、モータのステータを構成する電磁鋼板の圧縮応力下における高周波鉄損特性について調査したところ、圧縮応力の存在下では、ヒステリシス損だけでなく、渦電流損も増加していることが明らかとなった。なお、エアコンのコンプレッサ用モータやハイブリッド自動車等のモータは、基本周波数が高周波であることに加えて、インバータ制御するために数kHzの高調波も重畳されて駆動されているのが一般的である。したがって、高周波鉄損特性を改善するには、渦電流損の増加を抑制することが重要な課題となる。 The inventors investigated the high-frequency iron loss characteristics under the compressive stress of the magnetic steel sheet constituting the stator of the motor, and found that not only the hysteresis loss but also the eddy current loss increased in the presence of the compressive stress. It became clear. In general, motors such as compressor motors for air conditioners and hybrid vehicles are driven with harmonics of several kHz superimposed on them in order to control the inverter in addition to the high fundamental frequency. . Therefore, in order to improve the high frequency iron loss characteristic, it is an important issue to suppress an increase in eddy current loss.
そこで、圧縮応力の存在下で渦電流損が増加する原因について調査したところ、材料に圧縮応力が付与されると、鋼板内の磁化ベクトルは、圧縮応力を緩和するため、鋼板の板面内で圧縮応力と直角方向に向くよう変化する。そのため、この鋼板を磁化しようとすると、圧縮応力がない場合と比べて磁化ベクトルの向きを大きく変化させることが必要となり、そのための渦電流が鋼板板面内に流れるため、無応力のときに比べて渦電流損が増加することが明らかとなった。 Therefore, when the cause of the increase in eddy current loss in the presence of compressive stress was investigated, when compressive stress was applied to the material, the magnetization vector in the steel plate relaxed within the plate surface of the steel plate to relieve the compressive stress. It changes to face the direction perpendicular to the compressive stress. Therefore, when trying to magnetize this steel plate, it is necessary to change the direction of the magnetization vector greatly compared to the case where there is no compressive stress, and the eddy current for that flow flows in the steel plate surface. As a result, eddy current loss increased.
さらに、発明者らは、圧縮応力が付与されても、渦電流損が増大しないモータコア(ステータ)について検討を重ねた。その結果、ステータを構成する積層された電磁鋼板(ステータコア材)のバックヨーク部の磁区幅を小さくすることができれば、焼き嵌めにより発生する圧縮応力に起因する鉄損特性の劣化を抑制できるのではないかと考えた。そして、その磁区幅を低減する手段として、打抜加工に用いる金型の表面に特殊加工を施すことで、バックヨーク部に加工歪を付与することに想到し、以下の実験を行った。 Furthermore, the inventors have studied a motor core (stator) in which eddy current loss does not increase even when compressive stress is applied. As a result, if the magnetic domain width of the back yoke portion of the laminated electromagnetic steel sheets (stator core material) constituting the stator can be reduced, it is possible to suppress the deterioration of the iron loss characteristics due to the compressive stress generated by shrink fitting. I thought. Then, as means for reducing the magnetic domain width, the following experiment was conducted by conceiving that processing distortion is imparted to the back yoke portion by applying special processing to the surface of the die used for punching.
Si:3.3mass%、Al:0.5mass%、Mn:0.5mass%、S:0.002mass%、N:0.0015mass%、O:0.0012mass%の成分組成からなる板厚:0.35mmの鋼板表面に、絶縁被膜として有機樹脂−無機混合被膜(重クロム酸アルミニウム−アクリル樹脂エマルジョン−エチレングリコール)を被成した無方向性電磁鋼板を用いて、外径:100mmφ、バックヨーク幅:20mmで、12スロットのステータコア材を打抜加工した。
この際、上記打抜加工に用いる金型には、コアバックが接する部分の金型表面に高さ30μm、直径0.3mmの半球状の凸部を3mm間隔で正方格子状に配設(格子の交点に凸部を形成)した特殊金型と、上記凸部のない従来の金型の2種類を用いた。
Thickness: 0 consisting of component composition of Si: 3.3 mass%, Al: 0.5 mass%, Mn: 0.5 mass%, S: 0.002 mass%, N: 0.0015 mass%, O: 0.0012 mass%: 0 Using a non-oriented electrical steel sheet coated with an organic resin-inorganic mixed coating (aluminum dichromate-acrylic resin emulsion-ethylene glycol) as an insulating coating on the surface of a 35 mm steel plate, outer diameter: 100 mmφ, back yoke width : 20-mm, 12-slot stator core material was punched.
At this time, in the die used for the punching process, hemispherical projections having a height of 30 μm and a diameter of 0.3 mm are arranged in a square lattice pattern at intervals of 3 mm on the surface of the die in contact with the core back. Two types were used: a special mold in which convex portions were formed at the intersections of the above and a conventional mold having no convex portions.
次いで、上記ステータコア材を積み厚30mmに積層してステータコアを作製し、モータケースを模した非磁性のステンレス製リングに、焼き嵌め代を変化させて固定し、バックヨーク部に発生する周方向の圧縮応力を0〜100MPaの範囲で変化させた。なお、上記周方向の圧縮応力はバックヨーク中央部に歪みゲージを貼り付けて測定した。ここで、焼き嵌め代が0μmとは、ステータコアがリングにまったく固定されていないフリーな状態を意味している。 Next, the stator core material is laminated to a stack thickness of 30 mm, and a stator core is manufactured. The stator core material is fixed to a non-magnetic stainless steel ring imitating a motor case by changing the shrinkage, and the circumferential direction generated in the back yoke portion is fixed. The compressive stress was changed in the range of 0 to 100 MPa. The circumferential compressive stress was measured by attaching a strain gauge to the center of the back yoke. Here, the shrinkage allowance of 0 μm means a free state in which the stator core is not fixed to the ring at all.
次いで、上記ステンレス製リングに固定したステータコアに、図2のように、ステンレス製リングも含めてバックヨーク部の周囲に励磁コイルおよびピックアップコイルを巻き線し、モータコア円周方向の高周波鉄損(W10/3k)を測定した。図3は、上記測定の結果を、焼き嵌めによって発生したステータ周方向の圧縮応力と高周波鉄損との関係として示したものである。 Next, an excitation coil and a pickup coil are wound around the back yoke portion including the stainless steel ring on the stator core fixed to the stainless steel ring, as shown in FIG. 10 / 3k ). FIG. 3 shows the result of the above measurement as a relationship between the compressive stress in the circumferential direction of the stator generated by shrink fitting and the high-frequency iron loss.
図3から、焼き嵌めを行わない圧縮応力が0PMaのモータコアでは、歪を付与することにより鉄損は増加すること、しかし、歪を付与しないモータコアでは、圧縮応力が大きくなるのにともなって鉄損は急激に上昇するが、歪を付与したモータコアでは、圧縮応力による鉄損の上昇が小さいこと、その結果、焼き嵌めによる圧縮応力が10MPa以上発生しているモーコアでは、バックヨーク部に歪を付与することによって、歪を付与しない場合よりも圧縮応力による鉄損の増大を抑制できることがわかる。 From FIG. 3, in the motor core having a compressive stress of 0 PMa without shrink fitting, the iron loss increases by applying the strain. However, in the motor core not applying the strain, the iron loss increases as the compressive stress increases. Increases rapidly, but in a motor core with strain, the increase in iron loss due to compressive stress is small. As a result, in a mocore in which compressive stress due to shrink fitting is generated at 10 MPa or more, strain is applied to the back yoke. By doing, it turns out that the increase in the iron loss by a compressive stress can be suppressed rather than the case where distortion is not provided.
そこで、歪付与によって鉄損が低下する原因を調査するため、焼き嵌めしたコアの鉄損分離を行ったところ、ヒステリシス損は歪付与によって若干増加するが、渦電流損は、歪付与によって大きく低下していることが明らかとなった。歪付与によって渦電流損が低下する原因は、歪付与によりバックヨーク部の磁区が細分化されためと考えられる。 Therefore, when investigating the cause of the decrease in iron loss due to strain application, when the core loss of the shrink-fit core was separated, the hysteresis loss increased slightly due to strain application, but the eddy current loss decreased greatly due to strain application. It became clear that The reason why the eddy current loss is reduced by applying the strain is considered to be because the magnetic domain of the back yoke portion is subdivided by applying the strain.
また、焼き嵌めしない(圧縮応力0)コアで、歪付与により鉄損が増加した理由は、歪付与によってヒステリシス損が増加したためと考えられる。したがって、焼き嵌め応力が発生していないティース部に歪付与することは、却って鉄損の上昇を招くことになるので、本発明では、歪の付与は、圧縮応力が付与されるコアバック部のみに行うこととした。
本発明は、上記の知見に基づいて開発したものである。
Moreover, the reason why the iron loss increased by applying strain in the core that does not shrink fit (compression stress 0) is considered to be that the hysteresis loss increased by applying strain. Therefore, imparting strain to the teeth portion where no shrink-fit stress has occurred causes an increase in iron loss. Therefore, in the present invention, strain is imparted only to the core back portion to which compressive stress is imparted. I decided to do it.
The present invention has been developed based on the above findings.
次に、本発明のモータコアに用いる電磁鋼板について説明する。まず、本発明のモータコアに用いる電磁鋼板は、下記の成分組成を有するものであることが好ましい。
Si:7mass%以下
Siは、鋼の固有抵抗を高めるのに有効な元素であるが、7mass%を超えて添加すると、飽和磁束密度の低下に伴い、モータコアの磁束密度も低下するようになる。また、最終板厚に圧延する際、たとえ温間圧延しても板破断を起こすおそれがあるため、上限は7mass%とするのが好ましい。なお、下限は特に制限しないが、固有抵抗を高める観点からは、0.1mass%以上であることが好ましい。より好ましくは0.5〜6.5mass%の範囲である。
Next, the electromagnetic steel sheet used for the motor core of the present invention will be described. First, the electrical steel sheet used for the motor core of the present invention preferably has the following component composition.
Si: 7 mass% or less Si is an element effective for increasing the specific resistance of steel. However, when added in excess of 7 mass%, the magnetic flux density of the motor core also decreases as the saturation magnetic flux density decreases. Further, when rolling to the final plate thickness, there is a possibility that the plate breaks even if it is warm-rolled, so the upper limit is preferably 7 mass%. In addition, although a minimum in particular is not restrict | limited, From a viewpoint of raising specific resistance, it is preferable that it is 0.1 mass% or more. More preferably, it is the range of 0.5-6.5 mass%.
Al:3mass%以下
Alは固有抵抗を高めるのに有効な元素であるが、3mass%を超えると飽和磁束密度が低下するのに伴い、モータコアの磁束密度も低下するため、上限は3mass%とするのが好ましい。より好ましくは2mass%以下である。
Al: 3 mass% or less Al is an element effective for increasing the specific resistance. However, if it exceeds 3 mass%, the magnetic flux density of the motor core decreases as the saturation magnetic flux density decreases. Therefore, the upper limit is set to 3 mass%. Is preferred. More preferably, it is 2 mass% or less.
Mn:5mass%以下
Mnは、固有抵抗を高め、また、Sによる赤熱脆性を防止するために必要な元素であり、0.05mass%以上添加するのが好ましい。一方、5mass%を超えて添加すると、飽和磁束密度が低下するため、上限は5mass%とするのが好ましい。より好ましくは、0.1〜4mass%の範囲である。
Mn: 5 mass% or less Mn is an element necessary for increasing specific resistance and preventing red heat embrittlement due to S, and it is preferably added in an amount of 0.05 mass% or more. On the other hand, if the addition exceeds 5 mass%, the saturation magnetic flux density decreases, so the upper limit is preferably 5 mass%. More preferably, it is the range of 0.1-4 mass%.
S:0.01mass%以下
Sは、不可避的に混入してくる不純物であり、その含有量が多くなると、MnS等硫化物系介在物が多量に形成されて、鉄損が増加する原因となる。よって、本発明では、上限を0.01mass%とするのが好ましい。より好ましくは0.005mass%以下である。
S: 0.01 mass% or less S is an impurity that is inevitably mixed. When the content of S is increased, a large amount of sulfide inclusions such as MnS are formed, which causes an increase in iron loss. . Therefore, in the present invention, the upper limit is preferably set to 0.01 mass%. More preferably, it is 0.005 mass% or less.
N:0.005mass%以下
Nは、Sと同様、不可避的に混入してくる不純物であり、含有量が多いとAlNが多量に形成されて、鉄損が増加する原因となるため、上限は0.005mass%とするのが好ましい。
N: 0.005 mass% or less N is an impurity that is inevitably mixed in as in S, and if the content is large, a large amount of AlN is formed and iron loss increases, so the upper limit is It is preferable to set it as 0.005 mass%.
O:0.01mass%以下
Oは、SやNと同様、不可避的に混入してくる不純物であり、含有量が多いと酸化物系介在物が多量に形成されて、鉄損が増加する原因となるため、上限は0.01mass%とするのが好ましい。
O: 0.01 mass% or less O, like S and N, is an impurity that is inevitably mixed in. If the content is large, a large amount of oxide inclusions are formed, and the iron loss increases. Therefore, the upper limit is preferably set to 0.01 mass%.
本発明のモータコアに用いる電磁鋼板は、上記成分以外の残部はFeおよび不可避不純物である。ただし、本発明の効果を害さない範囲内であれば、上記以外の成分の含有を拒むものではない。 In the electrical steel sheet used for the motor core of the present invention, the balance other than the above components is Fe and inevitable impurities. However, as long as the effects of the present invention are not impaired, the inclusion of components other than those described above is not rejected.
また、本発明のモータコアに用いる電磁鋼板は、上記成分組成を有する鋼板表面に絶縁被膜を塗布したものが好ましい。上記絶縁被膜としては、有機成分のみや無機成分のみ、有機・無機複合物などのものを用いることができる。具体的には、有機成分としては、アクリル系、アクリルシリコン系、ポリエステル系、エポキシ系、フッ素系の樹脂等が、無機成分としては、クロム酸塩系、重クロム酸塩系、ホウ酸塩系、リン酸塩系、珪酸塩系等が挙げられ、また、有機・無機複合物(半有機)としては、前述した有機成分と無機成分の複合物等が挙げられる。 Moreover, the electrical steel sheet used for the motor core of the present invention is preferably one in which an insulating coating is applied to the steel sheet surface having the above component composition. As the insulating film, only an organic component, an inorganic component, an organic / inorganic composite, or the like can be used. Specifically, the organic component includes acrylic, acrylic silicon, polyester, epoxy, and fluorine resins, and the inorganic component includes chromate, dichromate, and borate. , Phosphate-based, silicate-based, and the like, and examples of the organic / inorganic composite (semi-organic) include the composite of the organic component and the inorganic component described above.
また、本発明のモータコアは、素材の電磁鋼板を所定のモータコア(ステータコア)に打ち抜き加工する際、バックヨーク部に磁区細分化のための加工歪を付与したものであることが必要である。ここで、上記加工歪は、深さが5〜50μm、直径が0.05〜2mmの微小凹部であることが好ましい。微小凹部の深さが5μm未満あるいは直径が0.05mm未満では、磁区細分化に必要な十分な歪付与することができず、一方、深さが50μm超えあるいは直径が2mm超えでは、歪が大きくなり過ぎ、ヒステリシス損が増大するからである。なお、上記凹部の形状は、半球状、円柱状、円錐状、三角錐状、四角錐状等、いずれでも構わない。ただし、半球状、円柱状以外の場合の直径は、凹部の面積に相当する円の直径とする。 In addition, the motor core of the present invention needs to be provided with a processing strain for magnetic domain subdivision in the back yoke portion when a magnetic steel sheet as a material is punched into a predetermined motor core (stator core). Here, the processing strain is preferably a minute recess having a depth of 5 to 50 μm and a diameter of 0.05 to 2 mm. When the depth of the minute recess is less than 5 μm or the diameter is less than 0.05 mm, sufficient strain necessary for magnetic domain subdivision cannot be imparted. On the other hand, when the depth exceeds 50 μm or the diameter exceeds 2 mm, the strain is large. This is because the hysteresis loss increases. The shape of the concave portion may be any of a hemispherical shape, a cylindrical shape, a conical shape, a triangular pyramid shape, a quadrangular pyramid shape, and the like. However, the diameter in cases other than the hemispherical shape and the cylindrical shape is a diameter of a circle corresponding to the area of the recess.
また、微小凹部の間隔は、最近接間距離が0.2〜5mmとなるよう形成するのが好ましい。間隔が0.2mm未満では、鋼板表面に大きな歪が導入されるため、打ち抜いたコアが変形を起こすおそれがある。一方、5mmを超えると、磁区細分化の効果を十分に得られなくなるからである。ただし、上記微小凹部の配列は、ランダムに配列しても、あるいは正方格子状、長方格子状、三角格子状、六方格子状等に規則的に配列してもよく、いずれでも構わない。 Moreover, it is preferable to form the space | interval of a micro recessed part so that the distance between nearest neighbors may be 0.2-5 mm. If the distance is less than 0.2 mm, a large strain is introduced into the surface of the steel sheet, so that the punched core may be deformed. On the other hand, if the thickness exceeds 5 mm, the effect of magnetic domain fragmentation cannot be obtained sufficiently. However, the minute recesses may be arranged at random, or may be regularly arranged in a square lattice shape, a rectangular lattice shape, a triangular lattice shape, a hexagonal lattice shape, or the like.
また、モータコアのバックヨーク部への微小凹部の形成は、打抜加工に用いる金型のバックヨーク部が接する表面に、上記凹部を形成するための凸部を形成しておき、この金型を用いて打抜加工することで行うことができる。ただし、この場合、転写率を考慮して凸部の寸法を決定するのが好ましい。 In addition, the minute recesses are formed in the back yoke portion of the motor core by forming the protrusions for forming the recesses on the surface of the die used for the punching process in contact with the die. It can be performed by using and punching. However, in this case, it is preferable to determine the dimension of the convex portion in consideration of the transfer rate.
また、本発明のモータコアは、上記のようにして打抜加工したコア材を積層したものであるが、上記コア材を積層する前に、歪を付与した鋼板表面に絶縁被膜を再塗布することによって、より確実に鉄損を低減することが可能となる。これは、歪付与によって絶縁被膜が局所的に破壊され、短絡を起こして積層間の層間抵抗が低下するのを防止するためである。歪付与後の絶縁被膜の塗布は、全面あるいは歪付与部分だけでも構わない。また、上塗りする絶縁被膜は、層間抵抗を高めることができればよく、前述した有機樹脂または有機樹脂−無機混合の絶縁被膜のいずれでも構わない。 In addition, the motor core of the present invention is obtained by laminating the core material stamped as described above. Before the core material is laminated, the insulating film is reapplied on the surface of the steel plate to which strain is applied. As a result, the iron loss can be more reliably reduced. This is to prevent the insulating film from being locally broken by the application of strain and causing a short circuit to reduce the interlayer resistance between the stacked layers. The insulating film after the application of strain may be applied to the entire surface or only the strained portion. The insulating film to be overcoated may be any of the above-described organic resin or organic resin-inorganic mixed insulating film as long as the interlayer resistance can be increased.
また、本発明において、モータコアに発生した圧縮応力の値を10MPa以上に制限する理由は、10MPa未満ではモータコアを充分に固定することができないことのほか、図3に示したように、歪付与による鉄損低減効果が得られないからである。 Further, in the present invention, the reason why the value of the compressive stress generated in the motor core is limited to 10 MPa or more is that the motor core cannot be sufficiently fixed if it is less than 10 MPa, and as shown in FIG. This is because the iron loss reduction effect cannot be obtained.
なお、本発明のモータコアが適用できるモータは、モータコアに圧縮応力が付与されるものであれば、いずれの形式のものでもよく、例えば、集中巻形式の永久磁石モータ、分布巻き形式の永久磁石モータ、分割コアタイプの永久磁石モータ、誘導モータ、リラクタンスモータ等に適用することができる。 The motor to which the motor core of the present invention can be applied may be of any type as long as compressive stress is applied to the motor core. For example, a concentrated winding type permanent magnet motor or a distributed winding type permanent magnet motor. It can be applied to a split core type permanent magnet motor, an induction motor, a reluctance motor, and the like.
転炉−脱ガス処理等の通常公知の精錬プロセスで、表1に示す成分組成の鋼を溶製し、連続鋳造して鋼スラブとした。次いで、この鋼スラブを1120℃×1hrの再加熱後、仕上圧延終了温度を850℃とする熱間圧延で板厚2.0mmの熱延板とし、600℃で巻き取った後、この熱延板を1000℃×30secで熱延板焼鈍し、酸洗し、冷間圧延して、板厚が0.30mmおよび0.20mmの冷延板とし、1000℃×10secの仕上焼鈍を施した後、重クロム酸アルミニウム−アクリル樹脂エマルジョン−エチレングリコールの有機樹脂−無機混合の絶縁被膜を被成して、無方向性電磁鋼板を製造した。 Steel having the composition shown in Table 1 was melted and continuously cast into a steel slab by a generally known refining process such as converter-degassing. Next, this steel slab was reheated at 1120 ° C. × 1 hr, and hot rolled to a finish rolling finish temperature of 850 ° C. to obtain a hot rolled sheet having a thickness of 2.0 mm. After hot-rolling sheet annealing at 1000 ° C. × 30 sec, pickling, cold rolling to form cold-rolled sheets with thicknesses of 0.30 mm and 0.20 mm, and finishing annealing at 1000 ° C. × 10 sec A non-oriented electrical steel sheet was manufactured by applying an insulating film of aluminum dichromate-acrylic resin emulsion-ethylene glycol organic resin-inorganic mixture.
上記電磁鋼板について、以下の評価を行った。
<磁束密度B50の測定>
上記電磁鋼板から、幅30mm、長さ280mmのエプスタイン試験片を圧延方向および圧延直角方向より採取し、JIS C2550に準拠して、5000A/mで磁化したときの磁束密度B50を測定した。
<モータコアの鉄損測定>
上記無方向性電磁鋼板を、図1と同じ12スロットで、外径:100mmφ、バックヨーク幅:20mmのステータコア材に打抜加工する際、ステータコア材のバックヨーク部に接する金型表面部分に、半球状の凸部を間隔0.1〜6.0mmで正方格子状、正三角格子状あるいはランダムのいずれかに配列した金型を用いて行うことにより、コアバック部に、高さ4〜70μm、直径0.03〜3.0mmの半球状の凹部を形成し、その後、再度、前述したのと同じ絶縁被膜を塗布した。なお、一部のものでは再塗布を省略した。
次いで、上記打抜加工したコア材を積み厚:30mmに積層し、ステータコアを作製し、このステータコアを、内径が約100mmφの非磁性ステンレスリングに、焼き嵌め代を変えて焼き嵌めして、ステータの周方向に0〜100MPaの圧縮応力を発生させた。なお、上記圧縮応力は、ステータのバックヨーク中央部に貼り付けた歪みゲージを用いて測定した。次いで、図2に示したように、ステンレス製リングも含めてバックヨーク部の周囲に励磁コイルおよびピックアップコイルを巻き線し、周波数1kHz、最大磁束密度1Tにおけるモータコア円周方向の鉄損W10/3kを測定した。
The following evaluation was performed on the electromagnetic steel sheet.
<Measurement of magnetic flux density B 50 >
From the magnetic steel sheet, an Epstein test piece having a width of 30 mm and a length of 280 mm was taken from the rolling direction and the direction perpendicular to the rolling direction, and the magnetic flux density B 50 when magnetized at 5000 A / m was measured according to JIS C2550.
<Motor core iron loss measurement>
When the non-oriented electrical steel sheet is stamped into a stator core material having the same 12 slots as in FIG. 1 and having an outer diameter of 100 mmφ and a back yoke width of 20 mm, the die surface portion in contact with the back yoke portion of the stator core material is By using a mold in which hemispherical convex portions are arranged in a square lattice shape, a regular triangular lattice shape, or a random shape at intervals of 0.1 to 6.0 mm, the core back portion has a height of 4 to 70 μm. A hemispherical recess having a diameter of 0.03 to 3.0 mm was formed, and then the same insulating coating as described above was applied again. In some cases, recoating was omitted.
Next, the punched core material is laminated to a stacking thickness of 30 mm to produce a stator core, and this stator core is shrink-fitted to a non-magnetic stainless steel ring having an inner diameter of about 100 mmφ by changing the shrink-fitting allowance. A compressive stress of 0 to 100 MPa was generated in the circumferential direction. The compressive stress was measured using a strain gauge attached to the center of the back yoke of the stator. Next, as shown in FIG. 2, an excitation coil and a pickup coil including the stainless steel ring are wound around the back yoke portion, and the iron loss W 10 / in the circumferential direction of the motor core at a frequency of 1 kHz and a maximum magnetic flux density of 1T. 3k was measured.
表1に、上記測定の結果を併記して示した。この結果から、本発明に適合する条件でバックヨーク部に加工歪を付与したステータコアは、圧縮応力下における鉄損特性の劣化を抑制できることが確認された。 Table 1 also shows the results of the above measurements. From this result, it was confirmed that the stator core in which the working strain was imparted to the back yoke portion under the conditions suitable for the present invention can suppress the deterioration of the iron loss characteristic under the compressive stress.
本発明のモータコア技術は、ハイブリッド電気自動車の駆動モータや発電機、エアコンのコンプレッサ用モータ、工作機械の主軸モータ等、焼き嵌めして固定される高速モータに適用することができる。 The motor core technology of the present invention can be applied to high-speed motors that are fixed by shrinkage fitting, such as drive motors and generators for hybrid electric vehicles, compressor motors for air conditioners, and spindle motors for machine tools.
1:ステータコア
2:歪付与部分
3:ロータ
4:永久磁石
5:ステンレス製リング(非磁性)
6:巻き線
1: Stator core 2: Strain imparted portion 3: Rotor 4: Permanent magnet 5: Stainless steel ring (non-magnetic)
6: Winding
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011018008A JP5691571B2 (en) | 2011-01-31 | 2011-01-31 | Motor core with low iron loss degradation under compressive stress and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011018008A JP5691571B2 (en) | 2011-01-31 | 2011-01-31 | Motor core with low iron loss degradation under compressive stress and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012161139A true JP2012161139A (en) | 2012-08-23 |
JP5691571B2 JP5691571B2 (en) | 2015-04-01 |
Family
ID=46841241
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011018008A Active JP5691571B2 (en) | 2011-01-31 | 2011-01-31 | Motor core with low iron loss degradation under compressive stress and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5691571B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020175420A (en) * | 2019-04-19 | 2020-10-29 | 株式会社小松精機工作所 | Metal mold for punching, method for manufacture thereof, punching method and processed product |
JP7032675B1 (en) | 2020-09-30 | 2022-03-09 | ダイキン工業株式会社 | Cores, rotating electromechanical machines, and resting machines |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63228945A (en) * | 1987-03-18 | 1988-09-22 | Mitsubishi Electric Corp | Manufacture of electrical rotary machine stator core |
JP2002313623A (en) * | 2001-04-17 | 2002-10-25 | Nippon Steel Corp | Welded iron core having superior iron loss characteristic |
JP2007239009A (en) * | 2006-03-08 | 2007-09-20 | Jfe Steel Kk | Method for manufacturing grain-oriented silicon steel sheet |
JP4023183B2 (en) * | 2002-02-26 | 2007-12-19 | 住友金属工業株式会社 | Non-oriented electrical steel sheet for rotating machine and manufacturing method thereof |
JP2010252463A (en) * | 2009-04-14 | 2010-11-04 | Jfe Steel Corp | Stator core and motor |
JP2011006731A (en) * | 2009-06-24 | 2011-01-13 | Jfe Steel Corp | Core material for divided motor |
-
2011
- 2011-01-31 JP JP2011018008A patent/JP5691571B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63228945A (en) * | 1987-03-18 | 1988-09-22 | Mitsubishi Electric Corp | Manufacture of electrical rotary machine stator core |
JP2002313623A (en) * | 2001-04-17 | 2002-10-25 | Nippon Steel Corp | Welded iron core having superior iron loss characteristic |
JP4023183B2 (en) * | 2002-02-26 | 2007-12-19 | 住友金属工業株式会社 | Non-oriented electrical steel sheet for rotating machine and manufacturing method thereof |
JP2007239009A (en) * | 2006-03-08 | 2007-09-20 | Jfe Steel Kk | Method for manufacturing grain-oriented silicon steel sheet |
JP2010252463A (en) * | 2009-04-14 | 2010-11-04 | Jfe Steel Corp | Stator core and motor |
JP2011006731A (en) * | 2009-06-24 | 2011-01-13 | Jfe Steel Corp | Core material for divided motor |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020175420A (en) * | 2019-04-19 | 2020-10-29 | 株式会社小松精機工作所 | Metal mold for punching, method for manufacture thereof, punching method and processed product |
JP7032675B1 (en) | 2020-09-30 | 2022-03-09 | ダイキン工業株式会社 | Cores, rotating electromechanical machines, and resting machines |
WO2022071359A1 (en) * | 2020-09-30 | 2022-04-07 | ダイキン工業株式会社 | Core, rotating electrical machine, and stationary apparatus |
JP2022056579A (en) * | 2020-09-30 | 2022-04-11 | ダイキン工業株式会社 | Core, rotating electromechanical machine, and resting machine |
Also Published As
Publication number | Publication date |
---|---|
JP5691571B2 (en) | 2015-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5609057B2 (en) | Motor core | |
JP2011246810A (en) | Nonoriented magnetic steel sheet and motor core using the same | |
JP2012036459A (en) | Non-oriented magnetic steel sheet and production method therefor | |
JP5515451B2 (en) | Core material for split motor | |
JP2012036455A (en) | Non-oriented magnetic steel sheet and production method therefor | |
JP5646745B2 (en) | Steel plate for rotor core of IPM motor and manufacturing method thereof | |
JP5876210B2 (en) | Motor core with low iron loss degradation under compressive stress | |
JP5691571B2 (en) | Motor core with low iron loss degradation under compressive stress and manufacturing method thereof | |
JP5561148B2 (en) | Motor core with low iron loss degradation under compressive stress | |
JP6339768B2 (en) | Steel plate for rotor core of IPM motor excellent in field weakening and manufacturing method thereof | |
JP5671872B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
JP5671871B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
JP2005060811A (en) | High-tensile non-oriented magnetic steel sheet and its production method | |
JP5671870B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
WO2019220770A1 (en) | Motor | |
JP2012161138A (en) | Motor core having small degradation in iron loss under compressive stress | |
JP5526701B2 (en) | Motor core | |
JP5732718B2 (en) | Motor core | |
JP6554805B2 (en) | Electromagnetic steel sheet, manufacturing method thereof and claw pole motor | |
JP5732716B2 (en) | Motor core | |
JP5561094B2 (en) | Motor core with low iron loss degradation under compressive stress | |
CN105871084B (en) | A kind of excitation component and manufacturing method of generator | |
JP2016180176A (en) | Steel sheet for rotor iron core of ipm motor, manufacturing method thereof, rotor iron core of ipm rotor, and ipm motor | |
JP5561068B2 (en) | Motor core with low iron loss degradation under compressive stress | |
JP5707816B2 (en) | Motor core with low iron loss degradation under compressive stress |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130823 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140613 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140624 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140807 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150106 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150119 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5691571 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |