JP2011006731A - Core material for divided motor - Google Patents

Core material for divided motor Download PDF

Info

Publication number
JP2011006731A
JP2011006731A JP2009150168A JP2009150168A JP2011006731A JP 2011006731 A JP2011006731 A JP 2011006731A JP 2009150168 A JP2009150168 A JP 2009150168A JP 2009150168 A JP2009150168 A JP 2009150168A JP 2011006731 A JP2011006731 A JP 2011006731A
Authority
JP
Japan
Prior art keywords
less
motor
iron loss
rolling
inclusions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009150168A
Other languages
Japanese (ja)
Other versions
JP5515451B2 (en
Inventor
Yoshihiko Oda
善彦 尾田
Masaaki Kono
雅昭 河野
Akira Fujita
藤田  明
Yoshiaki Zaizen
善彰 財前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009150168A priority Critical patent/JP5515451B2/en
Publication of JP2011006731A publication Critical patent/JP2011006731A/en
Application granted granted Critical
Publication of JP5515451B2 publication Critical patent/JP5515451B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a material in which magnetic properties, particularly, core loss is not deteriorated even in the case compressive force is applied, and which is suitable for the divided core of a motor.SOLUTION: The core material has a componential composition comprising, by mass, 2 to 5% Si, ≤0.004% Al, ≤2% Mn, ≤0.005% S, ≤0.004% Ti, ≤0.005% V, ≤0.003% Nb, ≤0.06% Cr, ≤0.005% N, ≤0.005% O, and the balance Fe with inevitable impurities, and in which the number of inclusions with a diameter of ≥5 μm is ≤10 pieces/mm, and also, magnetic flux density and core loss satisfy a prescribed relation.

Description

本発明は、分割コアをそなえる分割型のモータに用いるコア材料に関するものである。   The present invention relates to a core material used for a split type motor having a split core.

家庭用エアコンのコンプレッサーのモータでは、可変速運転が行われており、その最高周波数は200〜400Hz程度となっており、PWM制御等により数100〜数kHzのキャリア周波数が重畳した状態で使用されている。また、最近、急速に普及しているハイブリッド電気自動車の駆動モータや発電機も高出力、小型化の観点から数kHzの周波数で駆動されている。このようなモータのコア材として使用される無方向性電磁鋼板には、高周波鉄損の低い電磁鋼板が要望されており、Si+Al=3〜4%程度の高グレードの電磁鋼板が使用されている。   Compressor motors for home air conditioners are operated at variable speeds, and the maximum frequency is about 200 to 400 Hz, which is used with a carrier frequency of several hundreds to several kHz superimposed by PWM control. ing. Recently, drive motors and generators of hybrid electric vehicles, which are rapidly spreading, are also driven at a frequency of several kHz from the viewpoint of high output and miniaturization. For non-oriented electrical steel sheets used as the core material of such motors, electrical steel sheets with low high-frequency iron loss are desired, and high grade electrical steel sheets with Si + Al = 3-4% are used. .

ところで、最近、これら高効率モータに分割コアが使用されるようになってきている。分割コアとは、一般にティースが電磁鋼板の圧延方向に、かつバックヨークが圧延直角方向となるように、コアを打ち抜き加工し、それらを組み合わせることによりモータのステータを構成するものである。このため、材料歩留まりが著しく向上するとともに、磁気特性に優れた圧延方向をティースとすることができるため、モータ効率の向上も期待できる。   Recently, split cores have been used for these high-efficiency motors. The split core generally constitutes a motor stator by punching the cores and combining them so that the teeth are in the rolling direction of the electromagnetic steel sheet and the back yoke is in the direction perpendicular to the rolling. For this reason, since the material yield is remarkably improved and the rolling direction with excellent magnetic properties can be used as the teeth, the motor efficiency can be expected to be improved.

この分割モータ用の電磁鋼板として、例えば特許文献1には、Si+Alを2〜6%とし、かつAl/(Si+Al):0.3〜0.9とし、飽和磁束密度Bsと圧延方向に磁化力5000A/mで励磁した場合の磁束密度B50Lの比(B50L/Bs)が0.85以上である電磁鋼板が開示されている。しかし、分割コアを使用したモータでは、コア締結に焼き嵌めが行われており、従って、該コアのバックヨークの周方向に40〜100MPa程度の圧縮力が加わった状態で使用されているため、焼き嵌めによる鉄損劣化を考慮した材料設計を行わないと、実機モータでは期待された特性が得られないという問題がある。 As an electromagnetic steel sheet for this divided motor, for example, in Patent Document 1, Si + Al is set to 2 to 6% and Al / (Si + Al): 0.3 to 0.9, and the saturation magnetic flux density Bs and the magnetizing force 5000 A / in the rolling direction. A magnetic steel sheet is disclosed in which the ratio of magnetic flux density B 50L (B 50L / Bs) when excited at m is 0.85 or more. However, in a motor using a split core, shrink fitting is performed for core fastening, and therefore, it is used in a state where a compressive force of about 40 to 100 MPa is applied in the circumferential direction of the back yoke of the core. Unless material design is performed in consideration of iron loss deterioration due to shrink fitting, there is a problem that expected characteristics cannot be obtained with an actual motor.

特開2008-260996号公報JP 2008-260996 A

そこで、本発明は、圧縮力が付与された場合にあっても磁気特性、とりわけ鉄損が劣化することのない、モータの分割コアに適した材料を提供することを目的とする。   Therefore, an object of the present invention is to provide a material suitable for a split core of a motor, in which magnetic characteristics, particularly iron loss, do not deteriorate even when a compressive force is applied.

本発明者らが上記課題について鋭意検討したところ、Al量を低減するとともに、鋼中介在物量を低減し、さらに焼き嵌め後の鉄損を分割コアに適した範囲に規定することにより、焼き嵌め等にて圧縮力が付与された場合にあっても磁気特性の劣化が抑制されることを見出し、本発明を完成するに至った。
すなわち、本発明の要旨は以下の通りである。
(1)質量%で、Si:2〜5%、Al:0.004%以下、Mn:2%以下、S:0.005%以下、Ti:0.004%以下、V:0.005%以下、Nb:0.003%以下、Cr:0.06%以下、N:0.005%以下およびO:0.005%以下を含み、残部Feおよび不可避不純物の成分組成を有し、直径5μm以上の介在物が10個/mm以下、かつ磁束密度および鉄損が下記の関係を満たすことを特徴とする分割モータ用コア材料。

50L≧1.75T …(1)
(W10/400L+W10/400C)/2≦25W/kg …(2)
ここで、
10/400L:無応力の場合の圧延方向の鉄損(周波数400Hz、B=1.0T)
10/400C:圧縮応力50MPaの場合の圧延直角方向の鉄損(周波数400Hz、B=1.0T)
The present inventors diligently studied the above-mentioned problems, and reduced the Al content, reduced the amount of inclusions in the steel, and further specified the iron loss after shrink fitting to a range suitable for the split core, thereby shrink fitting. The inventors have found that the deterioration of the magnetic properties is suppressed even when a compressive force is applied by the above method, and have completed the present invention.
That is, the gist of the present invention is as follows.
(1) In mass%, Si: 2 to 5%, Al: 0.004% or less, Mn: 2% or less, S: 0.005% or less, Ti: 0.004% or less, V: 0.005% or less, Nb: 0.003% or less, Cr: 0.06% or less, N: 0.005% or less, and O: 0.005% or less, the composition of the remaining Fe and inevitable impurities, including 10 μm / mm 2 or more inclusions with a diameter of 5 μm or more, and magnetic flux density A core material for a divided motor, wherein the iron loss satisfies the following relationship.
B 50L ≧ 1.75T (1)
(W 10 / 400L + W 10 / 400C ) / 2 ≦ 25W / kg (2)
here,
W 10 / 400L : Iron loss in the rolling direction when no stress is applied (frequency: 400 Hz, B = 1.0 T)
W 10 / 400C : Iron loss in the direction perpendicular to rolling when the compressive stress is 50MPa (frequency 400Hz, B = 1.0T)

(2)結晶粒径が40〜140μmであることを特徴とする請求項1に記載の分割モータ用コア材料。 (2) The core material for a split motor according to claim 1, wherein the crystal grain size is 40 to 140 μm.

(3)前記成分組成として、さらに、質量%で、
Sb:0.001〜0.05%および
Sn:0.002〜0.1%
の1種もしくは2種を含むことを特徴とする請求項1または2に記載の分割モータ用コア材料。
(3) As the component composition, further, in mass%,
Sb: 0.001 to 0.05% and
Sn: 0.002 to 0.1%
The core material for a split motor according to claim 1, comprising one or two of the following.

(4)板厚が0.05〜0.35mmである請求項1、2または3に記載の分割モータ用コア材料。 (4) The core material for a divided motor according to claim 1, 2 or 3, wherein the plate thickness is 0.05 to 0.35 mm.

本発明によれば、焼き嵌め等にて圧縮力が付与された場合にあっても磁気特性の劣化が抑制された、分割コアに適した特性を有する材料を提供することができる。従って、本材料を用いることにより焼き嵌め、樹脂モールド等によりコア材料に圧縮力が付与される分割コア型のエアコンコンプレッサーモータ、ハイブリッドEV用駆動モータ、EV用駆動モータ、FCEV用駆動モータおよび高速発電機の高周波回転機の鉄損を低減することが可能となる。   According to the present invention, it is possible to provide a material having characteristics suitable for a split core, in which deterioration of magnetic characteristics is suppressed even when compressive force is applied by shrink fitting or the like. Therefore, split-core type air conditioner compressor motor, hybrid EV drive motor, EV drive motor, FCEV drive motor, and high-speed power generation that are shrink-fitted by using this material and compressive force is applied to the core material by resin mold, etc. It is possible to reduce the iron loss of the high-frequency rotating machine.

圧延方向のB50とトルク定数との関係を示す図である。Is a diagram showing the relationship between the rolling direction of B 50 and torque constant. Al量と圧延方向のB50との関係を示す図である。Is a diagram showing the relationship between the Al content and the rolling direction of B 50. 焼き嵌め相当時の鉄損WH10/400とモータ効率との関係を示す図である。It is a figure which shows the relationship between the iron loss WH10 / 400 at the time of shrink fitting, and motor efficiency. 直径5μm以上の介在物量とモータ効率との関係を示す図である。It is a figure which shows the relationship between the amount of inclusions 5 micrometers or more in diameter, and motor efficiency.

以下、本発明の分割モータ用コア材料について、まず、実験結果に基づいて詳細に説明する。
最初に、分割モータのトルク定数に及ぼす素材特性の影響について調査するため、Si量の異なる板厚0.35mmの種々の材料を用いて、その特性を評価した。ここで、本材料を用いて8極、12スロットのIPMモータを作製した。ここで、ステータ外径は100mm、ロータ外径は70mm、積み厚は60mmである。ステータは、分割コアにて作製し、素材の圧延方向がティースとなるようにした。また、コアを固定するために、焼き嵌め代:50μmで焼き嵌めを行った。この際、コアバック中央部の周方向の応力を測定したところ、50MPaの圧縮となっていた。
Hereinafter, the core material for a divided motor of the present invention will be described in detail based on experimental results.
First, in order to investigate the influence of the material characteristics on the torque constant of the split motor, the characteristics were evaluated using various materials having a thickness of 0.35 mm with different Si contents. Here, an 8-pole, 12-slot IPM motor was fabricated using this material. Here, the stator outer diameter is 100 mm, the rotor outer diameter is 70 mm, and the stacking thickness is 60 mm. The stator was made of a split core so that the rolling direction of the material was teeth. In order to fix the core, shrink fitting was performed with a shrinkage allowance of 50 μm. At this time, when the stress in the circumferential direction of the central portion of the core back was measured, the compression was 50 MPa.

図1に、素材の圧延方向の磁束密度とトルク定数との関係を示す。ここで、磁束密度として、圧延方向の特性を用いたのは、分割コアでは一体打ち抜きのコアと異なり、常にティース方向に圧延方向を揃えることができ、ティースの磁束密度とモータ特性との相関が高いと考えられるためである。図1より、圧延方向の磁束密度が1.75T以上で高いトルク定数が得られることがわかる。
なお、トルク定数は、評価モータをブレーキモータに接続し、電流を8A流した際のトルクを計測し、トルクを電流値で割ることにより求めた。
FIG. 1 shows the relationship between the magnetic flux density in the rolling direction of the material and the torque constant. Here, the characteristics of the rolling direction are used as the magnetic flux density. Unlike the integrally punched core in the split core, the rolling direction can always be aligned in the teeth direction, and there is a correlation between the magnetic flux density of the teeth and the motor characteristics. This is because it is considered high. FIG. 1 shows that a high torque constant can be obtained when the magnetic flux density in the rolling direction is 1.75 T or more.
The torque constant was obtained by connecting the evaluation motor to the brake motor, measuring the torque when a current of 8 A was passed, and dividing the torque by the current value.

次に、圧延方向の磁束密度を高めるための条件について検討した。すなわち、Si:3.20%、Al:0〜100ppm、Mn:0.20%、S:0.0010%、Ti:0.0010%、Nb:0.0010%、V:0.0015%、Cr:0.01%、N:0.0020%およびO:0.0030%を含み、残部Feおよび不可避不純物の成分組成からなる鋼を、実験室にて溶製してインゴットとした。その後、熱間圧延により板厚を2.3mmとし、1000℃×30sの熱延板焼鈍を行い、第1回の冷間圧延により板厚を0.8mmとし、中間焼鈍を950℃にて30s行い、引き続き、第2回の冷間圧延により板厚を0.25mmとし、900℃×10sの仕上焼鈍を行い、圧延方向から長さ180mmおよび幅30mmの単板サンプルを作製した。   Next, the conditions for increasing the magnetic flux density in the rolling direction were examined. That is, Si: 3.20%, Al: 0 to 100 ppm, Mn: 0.20%, S: 0.0010%, Ti: 0.0010%, Nb: 0.0010%, V: 0.0015%, Cr: 0.01%, N: 0.0020% and O: A steel containing 0.0030% and the balance of Fe and inevitable impurities was melted in the laboratory to obtain an ingot. After that, hot rolled to a thickness of 2.3 mm and annealed at 1000 ° C. for 30 s, first cold rolled to a thickness of 0.8 mm, and intermediate annealed at 950 ° C. for 30 s, Subsequently, the plate thickness was reduced to 0.25 mm by the second cold rolling, and finish annealing was performed at 900 ° C. × 10 s to produce a single plate sample having a length of 180 mm and a width of 30 mm from the rolling direction.

また、比較として、中間焼鈍を施すことなく1回の冷間圧延にて板厚を0.25mmとする以外は、同様の条件にて単板サンプルを作製することも行った。   For comparison, a single plate sample was also produced under the same conditions except that the plate thickness was changed to 0.25 mm by one cold rolling without intermediate annealing.

得られた単板サンプルについて、その圧延方向の磁束密度を調査した。その結果を、Alの含有量との関係において、図2に示す。ここで、Al量は酸可溶性Alを示している。図2より、まず、1回法冷間圧延と2回法冷間圧延とを比較すると、2回法では磁束密度が高くなっていることがわかる。   About the obtained single plate sample, the magnetic flux density of the rolling direction was investigated. The result is shown in FIG. 2 in relation to the Al content. Here, the amount of Al indicates acid-soluble Al. FIG. 2 shows that the magnetic flux density is higher in the two-time method when the first-time method cold rolling and the two-time method cold rolling are compared.

さらに、2回法冷間圧延において、Al量が40ppmを超えると、磁束密度が低下していることがわかる。この理由は明らかではないが、Alが40ppmを超えて存在する場合、AlNの析出量が多くなるため仕上げ焼鈍時にゴス粒の成長が妨げられるためと考えられる。
以上のことから、Al量は40ppm以下とする。好ましくは、20ppm以下とする。
Furthermore, in the two-time cold rolling, it can be seen that when the Al content exceeds 40 ppm, the magnetic flux density is lowered. The reason for this is not clear, but it is thought that when Al is present in excess of 40 ppm, the amount of AlN deposited increases, which prevents goth grain growth during finish annealing.
From the above, the Al content is 40 ppm or less. Preferably, it is 20 ppm or less.

なお、本発明において圧延方向の磁束密度を高める方法はどのような手法でも構わないが、上述したように、Alを40ppm以下とした鋼に中間焼鈍を挟んだ2回の冷間圧延もしくは温間圧延を施すことが推奨される。   In the present invention, any method for increasing the magnetic flux density in the rolling direction may be used. However, as described above, two cold rolling or warm operations in which an intermediate annealing is sandwiched between steels having Al of 40 ppm or less. Rolling is recommended.

次に、焼き嵌め時の鉄損を調査するための実験を行った。すなわち、Si:3.25%、Al:0.001%、Mn:0.20%、S:0.0010%、Ti:0.0005%、Nb:0.0010%、V:0.0012%、Cr:0.01%、N:0.0018%およびO:0.0035%を含み、残部Feおよび不可避不純物の成分組成からなる鋼を、実験室にて溶製し、インゴットとした。その後、熱間圧延により板厚を2.3mmとし、1000℃×30sの熱延板焼鈍を施し、冷間圧延を行って板厚を0.8mmとし、950℃および30sの中間焼鈍を行ってから冷間圧延により板厚を0.25mmとし、900℃×10sの仕上焼鈍を行い、圧延直角方向から長さ180mmおよび幅30mmの単板サンプルを作製した。本サンプルを無応力の状態および、磁化方向に50MPaの圧縮応力を付与することにより焼き嵌めを模擬した状態において、磁気測定を行った。その測定結果を表1に示す。   Next, an experiment was conducted to investigate the iron loss during shrink fitting. That is, Si: 3.25%, Al: 0.001%, Mn: 0.20%, S: 0.0010%, Ti: 0.0005%, Nb: 0.0010%, V: 0.0012%, Cr: 0.01%, N: 0.0018% and O: 0.0035 %, And the steel composed of the remaining Fe and the inevitable impurities was melted in the laboratory to form an ingot. After that, hot rolled to a thickness of 2.3 mm, annealed at 1000 ° C for 30 s, and then cold rolled to a thickness of 0.8 mm, followed by intermediate annealing at 950 ° C and 30 s before cooling. The plate thickness was 0.25 mm by hot rolling, and finish annealing was performed at 900 ° C. × 10 s to produce a single plate sample having a length of 180 mm and a width of 30 mm from the direction perpendicular to the rolling. This sample was subjected to magnetic measurement in a stress-free state and in a state where shrink fitting was simulated by applying a compressive stress of 50 MPa in the magnetization direction. The measurement results are shown in Table 1.

Figure 2011006731
Figure 2011006731

表1より焼き嵌めを模擬した圧縮力の付与により、鉄損は1.8倍程度に劣化していることがわかる。この原因を調査するため、鉄損をヒステリシス損と渦電流損とに分離して調査したところ、ヒステリシス損、渦電流損ともに圧縮応力付与により増加しており、特に、渦電流損の劣化比率が大きいことが明らかとなった。ヒステリシス損の劣化原因に関しては、上記成分のような鋼板においては正磁歪を有しているため、鋼板を磁化した際に、鋼板は磁化方向に伸びることとなるが、磁化方向に圧縮力が付与されていると鋼板が伸びることができず、磁化が困難となり、鉄損が増加したものと考えられる。
一方、渦電流損の増加原因に関しては、圧縮応力の付与により磁化ベクトルが板面方向を向きやすくなり、この状態で外部磁場を付与することにより板面内の渦電流が流れたためと考えられる。
From Table 1, it can be seen that the iron loss has deteriorated by about 1.8 times due to the application of compressive force simulating shrink fitting. In order to investigate this cause, the iron loss was separated into the hysteresis loss and the eddy current loss, and both the hysteresis loss and the eddy current loss increased due to the application of compressive stress. It became clear that it was big. As for the cause of the deterioration of hysteresis loss, since the steel plate like the above component has positive magnetostriction, when the steel plate is magnetized, the steel plate will extend in the magnetization direction, but compressive force is applied to the magnetization direction. If this is done, the steel sheet cannot be stretched, magnetization becomes difficult, and iron loss is considered to have increased.
On the other hand, the cause of the increase in eddy current loss is considered to be that the magnetization vector is easily directed in the plate surface direction by applying compressive stress, and the eddy current in the plate surface flows by applying an external magnetic field in this state.

以上のことより、焼き嵌め時の鉄損は無応力の鉄損と全く異なっており、モータ特性を向上させるためには焼き嵌め時の鉄損の低い材料を使用する必要があるものと考えられる。   From the above, the iron loss at the time of shrink fitting is completely different from the stressless iron loss, and it is thought that it is necessary to use a material with low iron loss at the time of shrink fitting in order to improve the motor characteristics. .

そこで、焼き嵌め相当時の素材鉄損とモータ効率との関係を調査するため、圧延方向および圧延直角方向から30mm×180mmのサンプルを切り出し、圧延方向のサンプルは無応力で、圧延直角方向は50MPaの圧縮応力を付与して磁気測定を行った。
なお、鉄損WH10/400は以下の式に従って求めた。
H10/400=(W10/400L+W10/400C)/2
ここで、
10/400L:無応力の場合の圧延方向の鉄損(周波数400Hz、B=1.0T)
10/400C:圧縮応力50MPaの場合の圧延直角方向の鉄損(周波数400Hz、B=1.0T)
このようにして求めた鉄損WH10/400が15〜40W/kgの材料を用いて8極、12スロットのIPMモータを作製した。図3に、素材鉄損とモータ効率との関係を示す。これより焼き嵌めを模擬した素材鉄損WH10/400が25W/kg以下の場合にモータ効率が高くなっていることがわかる。ここで、モータ効率は、モータを6000rpmで回転させ、トルク4N・mとなる場合の出力を入力で割ることにより求めた。
Therefore, in order to investigate the relationship between material iron loss and motor efficiency at the time of shrink fitting, a sample of 30 mm x 180 mm was cut from the rolling direction and the direction perpendicular to the rolling, the sample in the rolling direction was no stress, and the direction perpendicular to the rolling was 50 MPa. A magnetic measurement was performed by applying a compressive stress of.
The iron loss WH10 / 400 was determined according to the following formula.
WH10 / 400 = ( W10 / 400L + W10 / 400C ) / 2
here,
W 10 / 400L : Iron loss in the rolling direction when no stress is applied (frequency: 400 Hz, B = 1.0 T)
W 10 / 400C : Iron loss in the direction perpendicular to rolling when the compressive stress is 50MPa (frequency 400Hz, B = 1.0T)
An 8-pole, 12-slot IPM motor was manufactured using a material having an iron loss WH10 / 400 of 15 to 40 W / kg determined in this manner. FIG. 3 shows the relationship between material iron loss and motor efficiency. This shows that the motor efficiency is high when the material iron loss WH10 / 400 simulating shrink fitting is 25 W / kg or less. Here, the motor efficiency was obtained by rotating the motor at 6000 rpm and dividing the output when the torque was 4 N · m by the input.

なお、WH10/400を25W/kg以下とするためには、どのような手法でもよいが、少なくとも、Si量を2%以上とする必要がある。さらに、板厚を0.35mm以下、より好ましくは0.30mm以下とすること、そして結晶粒径を40〜140μmとすることにより安定して25W/kg以下とすることができる。 In order to set WH10 / 400 to 25 W / kg or less, any method may be used, but at least the Si amount needs to be 2% or more. Furthermore, by setting the plate thickness to 0.35 mm or less, more preferably 0.30 mm or less, and the crystal grain size to 40 to 140 μm, it can be stably reduced to 25 W / kg or less.

ところで、上記モータ評価を繰り返したところ、素材の鉄損値は25W/kg以下となっているにも関わらず、モータ効率が低い材料がみとめられた。この原因を調査するため、分割コアのバックヨークの端面を観察したところ、効率の低い材料では破断面比率が高くなっていることが明らかとなった。さらに、破断面比率の高い材料では粗大な介在物が多数認められた。これは、磁束密度を向上させるためにAl量を低減したために脱酸が不十分となり介在物が増加したものと考えられた。破断面比率の増加によるモータ効率の劣化の原因は明白ではないが、以下のように考えられる。   By the way, when the motor evaluation was repeated, a material with low motor efficiency was found although the iron loss value of the material was 25 W / kg or less. In order to investigate this cause, the end face of the back yoke of the split core was observed, and it was revealed that the fracture surface ratio was high in the material with low efficiency. Furthermore, many coarse inclusions were observed in the material having a high fracture surface ratio. This was thought to be due to the fact that the amount of inclusions increased due to insufficient deoxidation because the amount of Al was reduced to improve the magnetic flux density. The cause of motor efficiency degradation due to an increase in fracture surface ratio is not clear, but is considered as follows.

すなわち、分割コアにおいて、ヨークの剪断面は焼き嵌めにより隙間が生じないように押さえつけられているが、破断面は空隙となっており、磁気抵抗の高い状態となっている。このため、ヨークの磁束は剪断面に集中することとなり、剪断面比率が小さい場合には、コア表面から磁束が漏れ、上下のコアに板面方向から磁束が進入することとなる。その結果、板面渦電流損が増え効率が低下したのではないかと考えられる。   That is, in the split core, the shearing surface of the yoke is pressed so as not to generate a gap by shrink fitting, but the fracture surface is a gap and is in a high magnetic resistance state. For this reason, the magnetic flux of the yoke is concentrated on the shearing surface. When the shearing surface ratio is small, the magnetic flux leaks from the core surface, and the magnetic flux enters the upper and lower cores from the plate surface direction. As a result, it is thought that the plate surface eddy current loss increased and the efficiency decreased.

そこで、破断面比率を著しく増加させる直径5μm以上の介在物に着目した。なぜなら、介在物径が5μm以上になると、打抜き時に介在物を起点として割れが生じ、破断面比率が高くなるためである。そして、直径5μm以上の介在物量とモータ効率との関係を調査した。その調査結果を、介在物量とモータ効率との関係として図4に示す。同図より、介在物量が10個/mm超でモータ効率が低下することがわかる。
以上のことから直径5μm以上の介在物量は10個/mm2以下とする。
Therefore, attention was focused on inclusions having a diameter of 5 μm or more that significantly increase the fracture surface ratio. This is because if the inclusion diameter is 5 μm or more, cracking occurs from the inclusion as the starting point during punching, and the fracture surface ratio increases. Then, the relationship between the amount of inclusions having a diameter of 5 μm or more and the motor efficiency was investigated. The result of the investigation is shown in FIG. 4 as the relationship between the amount of inclusions and the motor efficiency. From the figure, it can be seen that the motor efficiency decreases when the amount of inclusions exceeds 10 / mm 2 .
From the above, the amount of inclusions with a diameter of 5 μm or more is 10 pieces / mm 2 or less.

次に、その他の成分の限定理由について説明する。
Si:2〜5%
Siは、固有抵抗を上げて鉄損を低減できるため、2%以上、好ましくは25%以上含有させる。一方、5%を超えた場合には、飽和磁化の低下により磁束密度が低下するため、上限を5%とする。
Next, the reasons for limiting other components will be described.
Si: 2 to 5%
Since Si can increase the specific resistance and reduce the iron loss, it is contained at 2% or more, preferably 25% or more. On the other hand, if it exceeds 5%, the magnetic flux density decreases due to a decrease in saturation magnetization, so the upper limit is made 5%.

Mn:2%以下
Mnは、2%を超えた場合には、飽和磁化の低下により磁束密度が低下するため上限を2%とする。
Mn: 2% or less
When Mn exceeds 2%, the upper limit is set to 2% because the magnetic flux density decreases due to the decrease in saturation magnetization.

S:0.005%以下
Sは、含有量が多い場合には硫化物を形成し、鉄損が増大するため上限を0.005%とする。
S: 0.005% or less Since S forms a sulfide when the content is large and the iron loss increases, the upper limit is made 0.005%.

Ti:0.004%以下
Tiは、Ti系の窒化物を形成するが、Alが多く添加されている一般の高グレード電磁鋼板では窒素の大部分がAlNとして析出するため、微量Tiがゴス粒の成長挙動に影響を及ぼすことは少ない。しかし、Alを40ppm以下とした鋼では、微量なTiNの存在により粒成長挙動が影響を受け、仕上げ焼鈍時のゴス粒の集積を低下させるため、上限を0.004%とする。
Ti: 0.004% or less
Ti forms Ti-based nitrides, but in general high-grade electrical steel sheets containing a large amount of Al, most of the nitrogen precipitates as AlN, so a small amount of Ti affects the growth behavior of goth grains. There are few things. However, in steel with Al of 40 ppm or less, the grain growth behavior is affected by the presence of a small amount of TiN, and the accumulation of goth grains during finish annealing is reduced, so the upper limit is made 0.004%.

V:0.005%以下
Nb:0.003%以下
Cr:0.06%以下
V、NbおよびCrもTi同様、窒化物を形成しゴス粒の集積を低下させることとなるため、上限をそれぞれ0.005%、0.003%および0.06%とする。
V: 0.005% or less
Nb: 0.003% or less
Cr: 0.06% or less V, Nb and Cr, like Ti, form nitrides and reduce the accumulation of goth grains, so the upper limits are made 0.005%, 0.003% and 0.06%, respectively.

N:0.005%以下
Nは、0.005%を超えると窒化物量が増えるため鉄損が高くなる。このため上限を0.005%とする。
N: 0.005% or less If N exceeds 0.005%, the amount of nitride increases, so the iron loss increases. For this reason, the upper limit is made 0.005%.

O:0.005%以下
Oは、含有量が多い場合には介在物が多くなり、材料が割れやすくなるため0.01%以下とする。
O: 0.005% or less O is contained in an amount of 0.01% or less because the inclusion increases when the content is large and the material is easily cracked.

(製造方法)
本発明においては、成分、介在物量、磁気特性が所定の範囲内となっていることが重要であり、そのための手法として、例えば、溶銑を転炉で吹練し、溶鋼を脱ガス処理し所定の成分、介在物量に調整し、引き続き鋳造を行いスラブとする。ここで、本発明鋼ではAlを0.004%以下とするため、通常のAl脱酸された電磁鋼板に比べ粗大なSi系介在物量が多くなる。このため真空脱ガス処理を20分以上行うことにより鋼中の介在物量を所定の範囲内となるように十分低減する必要がある。その後、スラブを通常の方法にて熱間圧延、次いで、中間焼鈍を挟んだ2回以上の冷間または温間圧延により所定の板厚とした後に、仕上焼鈍を行うことにより、本発明の鋼板を得ることができる。
(Production method)
In the present invention, it is important that the components, the amount of inclusions, and the magnetic properties are within a predetermined range. For example, the molten metal is blown in a converter and the molten steel is degassed to obtain a predetermined value. The amount of inclusion and the amount of inclusions are adjusted, and casting is continued to form a slab. Here, since Al is 0.004% or less in the steel according to the present invention, the amount of coarse Si-based inclusions is increased as compared with a normal Al-deoxidized electromagnetic steel sheet. Therefore, it is necessary to sufficiently reduce the amount of inclusions in the steel within a predetermined range by performing the vacuum degassing treatment for 20 minutes or more. Thereafter, the steel sheet of the present invention is subjected to finish annealing after hot rolling by a normal method, followed by two or more cold or warm rolling sandwiching the intermediate annealing to a predetermined thickness. Can be obtained.

ここで、熱間圧延時の仕上温度、巻取り温度は特に規定する必要はなく、通常の条件でかまわない。また、熱延後の熱延板焼鈍は行っても良いが必須ではない。次に、仕上げ焼鈍は結晶粒径が40〜140μmとなるように制御することが好ましい。特に、仕上げ焼鈍時の昇温速度を遅くすると、結晶粒が粗大になるため、10℃/s以上の昇温速度が好ましい。   Here, the finishing temperature and the coiling temperature at the time of hot rolling need not be specified, and may be normal conditions. Moreover, although hot-rolled sheet annealing after hot rolling may be performed, it is not essential. Next, the finish annealing is preferably controlled so that the crystal grain size is 40 to 140 μm. In particular, if the rate of temperature increase during finish annealing is slowed, crystal grains become coarse, and therefore a rate of temperature increase of 10 ° C./s or more is preferable.

板厚は焼き嵌め時の鉄損低減の観点から0.35mm以下が好ましく、より好ましくは0.30mm以下である。下限は、生産性の観点から0.05mm以上とすることが好ましい。   The plate thickness is preferably 0.35 mm or less, and more preferably 0.30 mm or less from the viewpoint of reducing iron loss during shrink fitting. The lower limit is preferably 0.05 mm or more from the viewpoint of productivity.

表2に組成を示す鋼を用い、転炉で吹練した後に脱ガス処理を、所定の時間で行うことにより所定の成分に調整し、その後鋳造してスラブとした。このスラブを1140℃で1h加熱した後、表2に示す板厚まで熱間圧延を行った。熱延仕上げ温度は800℃とした。巻取り温度は610℃とし、巻取り後、900℃×30sの熱延板焼鈍を施した。その後、酸洗を行い、0.8〜1.2mmまで冷間圧延(一次冷間圧延)を行い、1000℃×30sの中間焼鈍を行った。なお、一部の試料は中間焼鈍を施すことなしに、一次冷間圧延にて最終板厚に仕上げた。その後、表2に示す板厚まで冷間圧延(二次冷間圧延)を行い、表2に示す仕上焼鈍条件で焼鈍を行った。   Steels having compositions shown in Table 2 were used, and after defoaming in a converter, degassing treatment was performed for a predetermined time to adjust to predetermined components, and then cast into slabs. The slab was heated at 1140 ° C. for 1 h, and then hot-rolled to the plate thickness shown in Table 2. The hot rolling finishing temperature was 800 ° C. The coiling temperature was 610 ° C., and after coiling, hot rolled sheet annealing at 900 ° C. × 30 s was performed. Thereafter, pickling was performed, cold rolling (primary cold rolling) was performed to 0.8 to 1.2 mm, and intermediate annealing at 1000 ° C. × 30 s was performed. Some samples were finished to the final plate thickness by primary cold rolling without intermediate annealing. Then, cold rolling (secondary cold rolling) was performed to the plate thickness shown in Table 2, and annealing was performed under the finish annealing conditions shown in Table 2.

かくして得られた試料から、圧延方向より長さ180mmの単板サンプルを切り出し、無応力下で単板磁気測定を行うとともに、圧延直角方向から長さ180mmの単板サンプルを切り出し、長手方向に50MPaの圧縮力を付与し、圧縮力付与方向の磁気特性を測定した。
介在物はSEMにて1000倍で10視野観察し、直径5μm以上の介在物の存在頻度を求めた。また、結晶粒径はJIS G 0552の線分法で平均粒径を求めた。
これらの測定結果を表2に併記するように、成分、磁気特性、介在物量を本発明の範囲内とすることにより、モータ特性に優れた分割コアを得ることが可能となる。
一方、No.1の比較例は、冷間圧延を1回で行うものであり、モータ特性に劣っている。No.6,7,21,27,28,29,30,35および36の比較例は、成分組成が本発明の範囲から外れるものであり、十分な磁気特性が得られていない。No.13および14の比較例は、介在物量が多いために、モータ特性に劣っている。
From the sample thus obtained, a single plate sample having a length of 180 mm was cut out from the rolling direction, a single plate magnetic measurement was performed under no stress, and a single plate sample having a length of 180 mm was cut from the direction perpendicular to the rolling direction, and 50 MPa in the longitudinal direction. The compressive force was applied, and the magnetic characteristics in the compressive force applying direction were measured.
Inclusions were observed by SEM at 10 magnifications at 10 fields, and the presence frequency of inclusions having a diameter of 5 μm or more was determined. The crystal grain size was determined by the line segment method of JIS G 0552.
As these measurement results are also shown in Table 2, it is possible to obtain a split core having excellent motor characteristics by setting the components, magnetic characteristics, and amounts of inclusions within the scope of the present invention.
On the other hand, the comparative example of No. 1 performs cold rolling at once and is inferior in motor characteristics. In the comparative examples of Nos. 6, 7, 21, 27, 28, 29, 30, 35 and 36, the component composition is out of the scope of the present invention, and sufficient magnetic properties are not obtained. The comparative examples of No. 13 and No. 14 are inferior in motor characteristics due to the large amount of inclusions.

Figure 2011006731
Figure 2011006731

Claims (4)

質量%で、Si:2〜5%、Al:0.004%以下、Mn:2%以下、S:0.005%以下、Ti:0.004%以下、V:0.005%以下、Nb:0.003%以下、Cr:0.06%以下、N:0.005%以下およびO:0.005%以下を含み、残部Feおよび不可避不純物の成分組成を有し、直径5μm以上の介在物が10個/mm以下、かつ磁束密度および鉄損が下記の関係を満たすことを特徴とする分割モータ用コア材料。

50L≧1.75T …(1)
(W10/400L+W10/400C)/2≦25W/kg …(2)
ここで、
10/400L:無応力の場合の圧延方向の鉄損(周波数400Hz、B=1.0T)
10/400C:圧縮応力50MPaの場合の圧延直角方向の鉄損(周波数400Hz、B=1.0T)
In mass%, Si: 2 to 5%, Al: 0.004% or less, Mn: 2% or less, S: 0.005% or less, Ti: 0.004% or less, V: 0.005% or less, Nb: 0.003% or less, Cr: 0.06 %, N: 0.005% or less, and O: 0.005% or less, with the composition of the remaining Fe and inevitable impurities, 10 inclusions / mm 2 or more inclusions with a diameter of 5 μm or more, and magnetic flux density and iron loss. A core material for a split motor characterized by satisfying the following relationship.
B 50L ≧ 1.75T (1)
(W 10 / 400L + W 10 / 400C ) / 2 ≦ 25W / kg (2)
here,
W 10 / 400L : Iron loss in the rolling direction when no stress is applied (frequency: 400 Hz, B = 1.0 T)
W 10 / 400C : Iron loss in the direction perpendicular to rolling when the compressive stress is 50MPa (frequency 400Hz, B = 1.0T)
結晶粒径が40〜140μmであることを特徴とする請求項1に記載の分割モータ用コア材料。   The core material for a divided motor according to claim 1, wherein the crystal grain size is 40 to 140 µm. 前記成分組成として、さらに、質量%で、
Sb:0.001〜0.05%および
Sn:0.002〜0.1%
の1種もしくは2種を含むことを特徴とする請求項1または2に記載の分割モータ用コア材料。
As the component composition, further, in mass%,
Sb: 0.001 to 0.05% and
Sn: 0.002 to 0.1%
The core material for a split motor according to claim 1, comprising one or two of the following.
板厚が0.05〜0.35mmである請求項1、2または3に記載の分割モータ用コア材料。   The core material for a split motor according to claim 1, 2 or 3, wherein the plate thickness is 0.05 to 0.35 mm.
JP2009150168A 2009-06-24 2009-06-24 Core material for split motor Active JP5515451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009150168A JP5515451B2 (en) 2009-06-24 2009-06-24 Core material for split motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009150168A JP5515451B2 (en) 2009-06-24 2009-06-24 Core material for split motor

Publications (2)

Publication Number Publication Date
JP2011006731A true JP2011006731A (en) 2011-01-13
JP5515451B2 JP5515451B2 (en) 2014-06-11

Family

ID=43563705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009150168A Active JP5515451B2 (en) 2009-06-24 2009-06-24 Core material for split motor

Country Status (1)

Country Link
JP (1) JP5515451B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012161138A (en) * 2011-01-31 2012-08-23 Jfe Steel Corp Motor core having small degradation in iron loss under compressive stress
JP2012161139A (en) * 2011-01-31 2012-08-23 Jfe Steel Corp Motor core having small deterioration in iron loss under compressive stress and method of manufacturing the same
JP2015122891A (en) * 2013-12-24 2015-07-02 Jfeスチール株式会社 Motor core and manufacturing method of the same
JP2015122893A (en) * 2013-12-24 2015-07-02 Jfeスチール株式会社 Manufacturing method of motor core
WO2018131712A1 (en) * 2017-01-16 2018-07-19 新日鐵住金株式会社 Non-oriented electromagnetic steel sheet
JP2019099854A (en) * 2017-11-30 2019-06-24 日本製鉄株式会社 Nonoriented electromagnetic steel sheet
EP3556891A4 (en) * 2016-12-19 2019-12-04 Posco Non-oriented electrical steel sheet and manufacturing method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001271147A (en) * 2000-03-27 2001-10-02 Kawasaki Steel Corp Non-oriented silicon steel sheet excellent in magnetic property
JP2002146491A (en) * 2000-11-09 2002-05-22 Kawasaki Steel Corp Silicon steel sheet for iron core of motor having excellent high frequency magnetic property and mechanical strength property and its manufacturing method
JP2002302745A (en) * 2001-04-06 2002-10-18 Kawasaki Steel Corp Electromagnetic steel sheet for core
JP2003027193A (en) * 2001-07-10 2003-01-29 Nkk Corp Nonoriented silicon steel sheet having excellent calking property

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001271147A (en) * 2000-03-27 2001-10-02 Kawasaki Steel Corp Non-oriented silicon steel sheet excellent in magnetic property
JP2002146491A (en) * 2000-11-09 2002-05-22 Kawasaki Steel Corp Silicon steel sheet for iron core of motor having excellent high frequency magnetic property and mechanical strength property and its manufacturing method
JP2002302745A (en) * 2001-04-06 2002-10-18 Kawasaki Steel Corp Electromagnetic steel sheet for core
JP2003027193A (en) * 2001-07-10 2003-01-29 Nkk Corp Nonoriented silicon steel sheet having excellent calking property

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012161138A (en) * 2011-01-31 2012-08-23 Jfe Steel Corp Motor core having small degradation in iron loss under compressive stress
JP2012161139A (en) * 2011-01-31 2012-08-23 Jfe Steel Corp Motor core having small deterioration in iron loss under compressive stress and method of manufacturing the same
JP2015122891A (en) * 2013-12-24 2015-07-02 Jfeスチール株式会社 Motor core and manufacturing method of the same
JP2015122893A (en) * 2013-12-24 2015-07-02 Jfeスチール株式会社 Manufacturing method of motor core
EP3556891A4 (en) * 2016-12-19 2019-12-04 Posco Non-oriented electrical steel sheet and manufacturing method therefor
US11254997B2 (en) 2016-12-19 2022-02-22 Posco Non-oriented electrical steel sheet and manufacturing method therefor
WO2018131712A1 (en) * 2017-01-16 2018-07-19 新日鐵住金株式会社 Non-oriented electromagnetic steel sheet
KR20190093619A (en) * 2017-01-16 2019-08-09 닛폰세이테츠 가부시키가이샤 Non-oriented electronic steel sheet
JPWO2018131712A1 (en) * 2017-01-16 2019-11-07 日本製鉄株式会社 Non-oriented electrical steel sheet
US11053574B2 (en) 2017-01-16 2021-07-06 Nippon Steel Corporation Non-oriented electrical steel sheet
KR102286319B1 (en) 2017-01-16 2021-08-06 닛폰세이테츠 가부시키가이샤 non-oriented electrical steel sheet
JP2019099854A (en) * 2017-11-30 2019-06-24 日本製鉄株式会社 Nonoriented electromagnetic steel sheet

Also Published As

Publication number Publication date
JP5515451B2 (en) 2014-06-11

Similar Documents

Publication Publication Date Title
JP4855222B2 (en) Non-oriented electrical steel sheet for split core
JP5699642B2 (en) Motor core
JP5995002B2 (en) High magnetic flux density non-oriented electrical steel sheet and motor
JP6651759B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
KR102225229B1 (en) Non-oriented electrical steel sheet and method of producing same
JP6057082B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties
JP5515451B2 (en) Core material for split motor
JP6665794B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JPWO2003002777A1 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP4855220B2 (en) Non-oriented electrical steel sheet for split core
JP2014040622A (en) Nonoriented electromagnetic steel sheet having reduced deterioration in core loss caused by punching method
JP2012149337A (en) High strength electromagnetic steel sheet, and manufacturing method therefor
JP6319465B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2003213385A (en) Nonoriented silicon steel sheet
JP2007031754A (en) Method for manufacturing non-oriented electromagnetic steel sheet to be aged
JP5939190B2 (en) Electrical steel sheet
JP6123234B2 (en) Electrical steel sheet
JP6048282B2 (en) Electrical steel sheet
JP2007039754A (en) METHOD FOR PRODUCING Cu-CONTAINING NONORIENTED ELECTRICAL STEEL SHEET
JP5515485B2 (en) Split motor core
JP5614063B2 (en) High tension non-oriented electrical steel sheet with excellent high-frequency iron loss
JP5526701B2 (en) Motor core
JP2011099163A (en) Method for manufacturing non-oriented electromagnetic steel sheet for aging heat treatment
JP5493411B2 (en) Non-oriented electrical steel sheet
JP6685491B2 (en) Non-oriented electrical steel sheet for motor and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140317

R150 Certificate of patent or registration of utility model

Ref document number: 5515451

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250