JP5609057B2 - Motor core - Google Patents

Motor core Download PDF

Info

Publication number
JP5609057B2
JP5609057B2 JP2009243420A JP2009243420A JP5609057B2 JP 5609057 B2 JP5609057 B2 JP 5609057B2 JP 2009243420 A JP2009243420 A JP 2009243420A JP 2009243420 A JP2009243420 A JP 2009243420A JP 5609057 B2 JP5609057 B2 JP 5609057B2
Authority
JP
Japan
Prior art keywords
motor
core
steel sheet
mass
compressive stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009243420A
Other languages
Japanese (ja)
Other versions
JP2011091936A (en
Inventor
尾田 善彦
善彦 尾田
善彰 財前
善彰 財前
河野 雅昭
雅昭 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009243420A priority Critical patent/JP5609057B2/en
Publication of JP2011091936A publication Critical patent/JP2011091936A/en
Application granted granted Critical
Publication of JP5609057B2 publication Critical patent/JP5609057B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)

Description

本発明は、家庭用エアコンのコンプレッサーモータやハイブリッド電気自動車(EV;Electric Vehicle)の駆動モータや発電機(以降、単に「モータ」という。)などに用いられるモータコアに関し、具体的には、圧縮応力の存在下においても鉄損の増加が小さいモータコアに関するものである。   The present invention relates to a motor core used for a compressor motor of a home air conditioner, a drive motor or a generator (hereinafter simply referred to as “motor”) of a hybrid electric vehicle (EV), and specifically, compressive stress. The present invention relates to a motor core in which the increase in iron loss is small even in the presence of.

家庭用エアコンのコンプレッサーモータは、基本波周波数が50〜300Hz程度で可変速運転が行われており、さらに、最近では、PWM(Pulse Width Modulation)方式のインバータ制御等のため、数kHzのキャリア周波数を重畳した状態で使用されている。また、最近、急速に普及しているハイブリッド電気自動車の駆動モータも、高出力化や小型化を図る観点から、数kHzの周波数で駆動されている。   Compressor motors for home air conditioners operate at a variable speed with a fundamental frequency of about 50 to 300 Hz, and recently, a carrier frequency of several kHz for PWM (Pulse Width Modulation) type inverter control, etc. Is used in a superimposed state. Recently, a drive motor of a hybrid electric vehicle that has been rapidly spread is also driven at a frequency of several kHz from the viewpoint of achieving high output and miniaturization.

上記モータのステータ(固定子)やロータ(回転子)等に用いられるコア材(電磁鋼板)には、エネルギー効率を向上する観点から、鉄損が低いことが求められている。そこで、上記モータのコア材には、使用される高周波域における鉄損を低減するために、SiとAlを合計で3〜4mass%程度添加した高グレードの無方向性電磁鋼板が使用されている。   The core material (electromagnetic steel sheet) used for the stator (stator) and rotor (rotor) of the motor is required to have low iron loss from the viewpoint of improving energy efficiency. Therefore, a high grade non-oriented electrical steel sheet to which about 3 to 4 mass% in total of Si and Al are added is used for the core material of the motor in order to reduce iron loss in the high frequency range to be used. .

ところで、エアコンのコンプレッサーモータやハイブリッド電気自動車のモータでは、モータコアのステータをハウジングに固定する方法として、焼き嵌め法や圧入法が採用されており、これに起因して、ステータの円周方向には30〜150MPa程度の圧縮応力が発生する。また、ハイブリッド電気自動車の駆動モータには、一般に樹脂モールドが施されるため、やはりモータコアには圧縮応力が加わることとなる。このような圧縮応力の存在下では、コアを構成する電磁鋼板の磁気特性が大きく劣化する(鉄損が増加する)ことが知られており、圧縮応力による鉄損劣化が小さい電磁鋼板の開発が望まれている。   By the way, in a compressor motor of an air conditioner or a motor of a hybrid electric vehicle, a shrink fitting method or a press-fitting method is adopted as a method for fixing the stator of the motor core to the housing, and as a result, in the circumferential direction of the stator A compressive stress of about 30 to 150 MPa is generated. Moreover, since the resin motor is generally applied to the drive motor of the hybrid electric vehicle, a compression stress is also applied to the motor core. In the presence of such compressive stress, it is known that the magnetic properties of the electrical steel sheet constituting the core are greatly deteriorated (iron loss increases). It is desired.

圧縮応力下での鉄損特性を改善した材料としては、例えば、特許文献1には、Si:2.6〜4mass%を含有し、比抵抗が50〜75×10−8Ωm、平均結晶粒径が60μm超165μm以下で、平均鉄損値W15/200が16W/kgである無方向性電磁鋼板が開示されている。 As a material with improved iron loss characteristics under compressive stress, for example, Patent Document 1 contains Si: 2.6 to 4 mass%, specific resistance is 50 to 75 × 10 −8 Ωm, average crystal grain A non-oriented electrical steel sheet having a diameter of more than 60 μm and not more than 165 μm and an average iron loss value W 15/200 of 16 W / kg is disclosed.

特許第4023183号公報Japanese Patent No. 4023183

しかしながら、特許文献1の無方向性電磁鋼板は、現在市販されている高グレード電磁鋼板と同様の固有抵抗、結晶粒径でしかないため、この材料を用いてモータコアを製造したとしても、圧縮応力による鉄損劣化の程度は従来材と大きく異なるものではなく、より応力依存性を小さくする技術の開発が求められている。   However, since the non-oriented electrical steel sheet of Patent Document 1 has only the same specific resistance and crystal grain size as the high-grade electrical steel sheet currently on the market, even if a motor core is manufactured using this material, the compressive stress The degree of iron loss deterioration due to slag is not significantly different from that of conventional materials, and there is a need for the development of a technology that further reduces stress dependency.

そこで、本発明の目的は、圧縮応力の存在下においても高周波鉄損特性の劣化が小さいモータコアを提供することにある。   Accordingly, an object of the present invention is to provide a motor core in which the deterioration of high-frequency iron loss characteristics is small even in the presence of compressive stress.

上述したように、家電用エアコンのコンプレッサーモータやハイブリッド電気自動車のモータ等では、ステータコアを焼き嵌め法や圧入法でハウジングに固定しているため、コアの周方向には30〜150MPa程度の圧縮応力が発生し、鉄損が増加し、モータ効率を低下させる原因となっている。   As described above, in a compressor motor of an air conditioner for home appliances, a motor of a hybrid electric vehicle, and the like, the stator core is fixed to the housing by a shrink-fitting method or a press-fitting method. Therefore, a compressive stress of about 30 to 150 MPa in the circumferential direction of the core Occurs, which increases iron loss and reduces motor efficiency.

そこで、発明者らは、電磁鋼板の鉄損の応力依存性について検討したところ、圧縮応力下では、鋼板のヒステリシス損が増加するだけでなく、渦電流損も増加することが明らかとなった。前述したように、コンプレッサーモータやハイブリッド電気自動車のモータ等は、単に高周波域で駆動されるだけでなく、インバータ制御等のために数kHzの高調波も重畳した状態で使用されている。したがって、斯かるモータの高周波域での渦電流損の増加を抑制することは極めて重要となる。   Therefore, the inventors examined the stress dependence of the iron loss of the electromagnetic steel sheet, and found that not only the hysteresis loss of the steel sheet increases but also the eddy current loss increases under compressive stress. As described above, a compressor motor, a motor of a hybrid electric vehicle, and the like are not only driven in a high frequency range but also used in a state where a harmonic of several kHz is superimposed for inverter control or the like. Therefore, it is extremely important to suppress an increase in eddy current loss in the high frequency region of such a motor.

さらに、発明者らは、圧縮応力下で渦電流損が増加する原因について検討したところ、材料に圧縮応力が付与されると、この圧縮応力を緩和するために磁化ベクトルが鋼板板面方向に向くが、モータ稼動時には、それを矯正するために渦電流が板面内を流れるためであることを突き止めた。そして、圧縮応力による磁化ベクトルの鋼板板面方向への配向を抑制し、渦電流損の増加を低減するには、圧縮応力を受ける方向のコア材の磁歪定数を低減し、−0.1〜10×10−7の範囲の値としてやることが有効であること、そして、上記磁歪特性を有するコア材を適正に用いることにより、焼き嵌め等による圧縮応力下でも鉄損劣化が小さいモータを実現できることを見出し、本発明を開発した。 Furthermore, the inventors examined the cause of the increase in eddy current loss under compressive stress. When compressive stress is applied to the material, the magnetization vector is directed in the direction of the steel plate in order to relax the compressive stress. However, when the motor was in operation, it was found that eddy currents flow in the plate surface to correct it. And in order to suppress the orientation of the magnetization vector due to the compressive stress in the direction of the steel plate and reduce the increase in eddy current loss, the magnetostriction constant of the core material in the direction of receiving the compressive stress is reduced, and -0.1 Realizing a motor with low iron loss deterioration even under compressive stress due to shrink fitting, etc., by effectively using a value in the range of 10 × 10 −7 and appropriately using the core material having the magnetostrictive characteristics described above The present invention was developed by finding out what can be done.

すなわち、本発明は、ステータ周方向の圧縮応力が10MPa以上であるモータコアにおいて、上記ステータに用いる鋼板は、ステータ周方向に相当する方向の磁歪定数が−0.1〜10×10−7の範囲の値であり、かつ、Si:4.5〜6.6mass%、Al:1mass%以下、Mn:0.05〜2mass%、S:0.005mass%以下、N:0.005mass%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有するとともに、上記鋼板の圧延方向に直角な方向をコアの周方向とする分割コアから構成されてなることを特徴とするモータコアである。 That is, according to the present invention, in a motor core having a compressive stress in the circumferential direction of the stator of 10 MPa or more, the steel plate used for the stator has a magnetostriction constant in a range corresponding to the circumferential direction of the stator in the range of −0.1 to 10 × 10 −7 . And Si: 4.5 to 6.6 mass%, Al: 1 mass% or less, Mn: 0.05 to 2 mass%, S: 0.005 mass% or less, N: 0.005 mass% or less In addition , the motor core is characterized in that the remainder has a composition composed of Fe and inevitable impurities, and is composed of a split core having a direction perpendicular to the rolling direction of the steel sheet as a circumferential direction of the core .

本発明によれば、圧縮応力下においても高周波鉄損の小さいモータコアを提供することができる。したがって、本発明のモータコアは、焼き嵌めや圧入あるいは樹脂モールド等によって圧縮力が付与された状態で使用されるエアコンのコンプレッサーモータやハイブリッド電気自動車の駆動モータ、燃料電池自動車(FCEV)の駆動モータ、高速発電機の高周波回転機等の素材として好適に用いることができる。   According to the present invention, it is possible to provide a motor core having a small high-frequency iron loss even under compressive stress. Therefore, the motor core of the present invention includes a compressor motor for an air conditioner, a drive motor for a hybrid electric vehicle, a drive motor for a fuel cell vehicle (FCEV), which is used in a state where compression force is applied by shrink fitting, press-fitting or resin molding, It can be suitably used as a material for a high-frequency rotating machine of a high-speed generator.

磁歪が、鋼板の鉄損特性およびモータ効率に及ぼす影響を示すグラフである。It is a graph which shows the influence which magnetostriction has on the iron loss characteristic and motor efficiency of a steel plate.

まず、本発明のモータコアに用いる鋼板が有すべき磁歪特性について説明する。
磁歪λ10/400:−0.1〜10×10−7
本発明のモータコアに用いる鋼板のステータ周方向に相当する方向の磁歪定数λ10/400は、−0.1〜10×10−7の範囲の値であることが必要である。ここで、上記磁歪定数λ10/400は、コア材料(電磁鋼板)から、ステータ周方向に相当する方向、例えば鋼板の圧延方向に直角な方向が長さ方向になるようにして幅30mm×長さ280mm×板厚の試験片を切り出し、400Hz、1.0Tで励磁した時の圧延方向に直角な方向の歪をレーザー変位計で測定してバタフライカーブを描かせたときの1.0Tの歪量から0Tの歪量を差し引いた値である。
First, the magnetostriction characteristics that the steel sheet used for the motor core of the present invention should have will be described.
Magnetostriction λ 10/400 : −0.1 to 10 × 10 −7
The magnetostriction constant λ 10/400 in the direction corresponding to the circumferential direction of the stator of the steel sheet used for the motor core of the present invention needs to be a value in the range of −0.1 to 10 × 10 −7 . Here, the magnetostriction constant λ 10/400 is a width of 30 mm × length so that the direction corresponding to the circumferential direction of the stator, for example, the direction perpendicular to the rolling direction of the steel plate is the length direction from the core material (magnetic steel plate). A test piece having a thickness of 280 mm × thickness was cut out, and a strain of 1.0 T when a butterfly curve was drawn by measuring a strain in a direction perpendicular to the rolling direction when excited at 400 Hz and 1.0 T with a laser displacement meter. This is a value obtained by subtracting the strain amount of 0T from the amount.

また、上記磁歪の測定方向を、圧延方向と直角の方向とした理由は、通常、コア材(電磁鋼板)からの分割コア(ステータ)の切り出しは、鋼板の圧延方向に直角な方向がバックヨークの方向(ステータ周方向)となるように行われるため、焼き嵌め等により発生する圧縮応力の方向は、鋼板の圧延方向に直角な方向となるからである。   The reason why the magnetostriction measurement direction is a direction perpendicular to the rolling direction is that the split core (stator) is usually cut from the core material (electromagnetic steel sheet) when the direction perpendicular to the rolling direction of the steel sheet is the back yoke. This is because the direction of the compressive stress generated by shrink fitting or the like is a direction perpendicular to the rolling direction of the steel sheet.

図1は、種々のSi含有量の電磁鋼板(板厚0.25mm)における圧延方向に直角な方向の磁歪値と、その鋼板の圧延方向に直角な方向に50MPaの圧縮応力を付与したときの鉄損値W10/3k、およびその鋼板を用いて実機モータを作製し、トルク5Nmで、6000rpmで回転させたときのモータ効率との関係を示したものである。 FIG. 1 shows a magnetostriction value in a direction perpendicular to the rolling direction and a compressive stress of 50 MPa in a direction perpendicular to the rolling direction of the steel sheet having various Si contents (thickness 0.25 mm). This shows the relationship with the motor efficiency when an actual motor is manufactured using the iron loss value W 10 / 3k and the steel plate and rotated at 6000 rpm with a torque of 5 Nm.

ここで、上記モータは、ステータ外形:110mmφ、ロータ外形:75mmφ、積み厚:80mmの大きさの8極、12スロットのIPMモータ(内部磁石埋込型モータ)であり、上記モータのステータは、12分割の分割コアとし、上記鋼板の圧延方向に直角な方向がステータの周方向(ティースの長さ方向が圧延方向)となるように用いたものである。また、コア(ステータ)のハウジングへの固定は、焼き嵌め代を55μmとし、コアバック中央部の周方向に約50MPaの圧縮応力を発生させた。   Here, the motor is an 8-pole, 12-slot IPM motor (internal magnet embedded motor) having a stator outer shape: 110 mmφ, a rotor outer shape: 75 mmφ, and a stacking thickness: 80 mm. The core is used in such a manner that the direction perpendicular to the rolling direction of the steel sheet is the circumferential direction of the stator (the length direction of the teeth is the rolling direction). The core (stator) was fixed to the housing with a shrinkage allowance of 55 μm, and a compressive stress of about 50 MPa was generated in the circumferential direction of the central portion of the core back.

図1から、圧延方向に直角な方向(ステータの周方向)の磁歪定数10/400が−0.1〜10×10−7の範囲の値であれば、圧縮応力下の高周波鉄損W10/3kが低くなり、モータ効率も向上していることがわかる。なお、上記測定で鉄損をW10/3kで評価した理由は、高周波モータの使用周波数が3kHz程度であるからである。また、磁歪定数λとして400Hzでの値を用いた理由は、本来なら3kHzで測定すべきであるが、3kHzでの磁歪の測定は極めて難しく、正確に測定可能な最も高い周波数が400Hz程度であるためである。 From FIG. 1, if the magnetostriction constant 10/400 in the direction perpendicular to the rolling direction (the circumferential direction of the stator) is a value in the range of −0.1 to 10 × 10 −7 , the high-frequency iron loss W 10 under compressive stress. / 3k is low, and it can be seen that the motor efficiency is also improved. The reason why the iron loss was evaluated by W 10 / 3k in the above measurement is that the use frequency of the high-frequency motor is about 3 kHz. The reason why the value at 400 Hz is used as the magnetostriction constant λ should be measured at 3 kHz, but it is extremely difficult to measure magnetostriction at 3 kHz, and the highest frequency that can be accurately measured is about 400 Hz. Because.

図1のように、磁歪定数が鉄損特性およびモータ効率に影響を及ぼす原因について、発明者らは以下のように考えている。
通常の電磁鋼板のように、磁歪定数が大きな正の値である鋼板の場合には、圧延方向に直角な方向に圧縮応力が付与されると、磁化ベクトルは鋼板板面方向を向くように変化する。そして、これを磁化したときには、上記磁化ベクトルを磁化方向に向かせるための渦電流が鋼板板面内に流れて、無応力の状態に比べて渦電流損が増加する。一方、磁歪定数が小さな値である鋼板の場合には、圧延方向に直角な方向への圧縮応力の付与により、鋼板板面方向を向く磁化ベクトルが低下するため、渦電流は主に板厚断面内で流れて、圧縮応力による渦電流損の増大が抑制される。
As shown in FIG. 1, the inventors consider the reason why the magnetostriction constant affects the iron loss characteristic and the motor efficiency as follows.
In the case of a steel plate with a large positive value of magnetostriction constant like a normal electromagnetic steel plate, when compressive stress is applied in a direction perpendicular to the rolling direction, the magnetization vector changes to face the steel plate surface direction. To do. And when this is magnetized, the eddy current for directing the said magnetization vector to a magnetization direction flows in a steel plate surface, and an eddy current loss increases compared with a no-stress state. On the other hand, in the case of a steel sheet having a small magnetostriction constant, the eddy current is mainly a plate thickness cross section because the magnetization vector directed in the steel sheet surface direction decreases due to the application of compressive stress in the direction perpendicular to the rolling direction. The increase in eddy current loss due to compressive stress is suppressed.

次に、モータコア材(電磁鋼板)の圧延方向に直角な方向の磁歪定数を、上記のように−0.1〜10×10−7の範囲の値とする方法について説明する。
鋼板の圧延方向に直角な方向の磁歪定数を小さな値とする方法は、どのような方法でもよく、例えば、Siを4.5mass%以上添加した鋼を素材として電磁鋼板を製造する方法がある。ただし、後述するように、Siの6.6mass%を超える添加は、飽和磁束密度の低下に伴い磁束密度が低下するだけでなく、圧延して鋼板を製造することが難しくなるので、上限は6.6mass%とする必要がある。
Next, a method for setting the magnetostriction constant in the direction perpendicular to the rolling direction of the motor core material (magnetic steel sheet) to a value in the range of −0.1 to 10 × 10 −7 as described above will be described.
Any method may be used to set the magnetostriction constant in the direction perpendicular to the rolling direction of the steel sheet to a small value. For example, there is a method of manufacturing an electromagnetic steel sheet using steel added with 4.5 mass% or more of Si as a raw material. However, as will be described later, the addition of Si exceeding 6.6 mass% not only decreases the magnetic flux density as the saturation magnetic flux density decreases, but also makes it difficult to produce a steel sheet by rolling, so the upper limit is 6 .6 mass% is necessary.

また、電磁鋼板の製造において、連続焼鈍ライン等で仕上焼鈍する場合には、一般に、鋼板の蛇行を防止する観点から、鋼板の長手方向(圧延方向)に張力を付与しつつ通板しているが、このときの張力は、鋼板の板幅方向(圧延方向に直角方向)に圧縮応力を発生させる。   Moreover, in the manufacture of electromagnetic steel sheets, when finish annealing is performed in a continuous annealing line or the like, generally, from the viewpoint of preventing meandering of the steel sheet, the sheet is passed while applying tension in the longitudinal direction (rolling direction) of the steel sheet. However, the tension at this time generates a compressive stress in the sheet width direction of the steel sheet (the direction perpendicular to the rolling direction).

発明者らは、上記鋼板に付与する引張張力が、鋼板の磁歪特性に及ぼす影響について詳細に調査した。その結果、鋼板の板幅方向に圧縮応力を付与した状態で仕上焼鈍を行うと、焼鈍後の鋼板の磁区形態が張力のない場合と比べて異なるものとなり、圧延方向に直角な方向の磁歪定数が大きな正の値となること、したがって、張力付与による弊害を防止し、圧延方向に直角な方向の磁歪定数を−0.1〜10×10−7の範囲の値にするには、仕上焼鈍時の鋼板張力を2.94MPa以下に低減してやる必要があることを、新規に見出した。 The inventors investigated in detail about the influence which the tensile tension | tensile_strength provided to the said steel plate has on the magnetostriction characteristic of a steel plate. As a result, when finish annealing is performed in a state where compressive stress is applied in the sheet width direction of the steel sheet, the magnetic domain form of the steel sheet after annealing becomes different from that without tension, and the magnetostriction constant in the direction perpendicular to the rolling direction In order to prevent negative effects due to the application of tension and to set the magnetostriction constant in the direction perpendicular to the rolling direction to a value in the range of −0.1 to 10 × 10 −7 , the finish annealing is performed. It was newly found that it is necessary to reduce the steel plate tension at the time to 2.94 MPa or less.

なお、上記Siが磁歪特性に及ぼす影響と、仕上焼鈍時の張力が磁歪特性に及ぼす影響は独立別個であり、たとえSiの含有量を適正範囲に制御したとしても、仕上焼鈍時の張力が不適切であれば、鋼板の圧延方向に直角な方向の磁歪定数を上記範囲とすることはできない。したがって、素材の成分組成を適正範囲に制御した上で、なおかつ、仕上焼鈍時の鋼板張力を適正範囲に制御してやることが必要である。   Note that the effect of Si on magnetostrictive properties and the effect of tension during finish annealing on magnetostrictive properties are independent, and even if the Si content is controlled within an appropriate range, the tension during finish annealing is inadequate. If appropriate, the magnetostriction constant in the direction perpendicular to the rolling direction of the steel sheet cannot be in the above range. Therefore, it is necessary to control the component composition of the raw material within an appropriate range and to control the steel plate tension during finish annealing within the appropriate range.

次に、本発明のモータコアに用いる鋼板(モータコア材)が有すべき成分組成について説明する。
本発明のモータコア材(電磁鋼板)は、圧延方向に直角方向の磁歪定数λ10/400が−0.1〜10×10−7の範囲の値を示すものであれば、成分系はどのようなものでも構わないが、例えば、鋼素材がSi添加鋼である場合には、以下の成分組成を有するものであることが好ましい。
Next, the component composition that the steel plate (motor core material) used for the motor core of the present invention should have will be described.
The motor core material (electromagnetic steel sheet) of the present invention has any component system as long as the magnetostriction constant λ 10/400 in the direction perpendicular to the rolling direction exhibits a value in the range of −0.1 to 10 × 10 −7. For example, when the steel material is Si-added steel, it is preferable to have the following component composition.

Si:4.5〜6.6mass%
Siは、鋼の固有抵抗を高めて低鉄損を実現するのに有効な元素である。しかし、6.6mass%を超えて添加すると、飽和磁束密度の低下に伴い磁束密度が低下するだけでなく、圧延して鋼板を製造することが難しくなる。一方、Siが4.5mass%未満となると、磁歪定数が上昇して10×10−7を超えるようになる。よって、Siは4.5〜6.6mass%の範囲とするのが好ましい。より好ましくは、5.0〜6.5mass%の範囲である。
Si: 4.5 to 6.6 mass%
Si is an element effective in increasing the specific resistance of steel and realizing low iron loss. However, if added over 6.6 mass%, not only does the magnetic flux density decrease as the saturation magnetic flux density decreases, but it also becomes difficult to roll and produce a steel sheet. On the other hand, when Si is less than 4.5 mass%, the magnetostriction constant increases and exceeds 10 × 10 −7 . Therefore, Si is preferably in the range of 4.5 to 6.6 mass%. More preferably, it is in the range of 5.0 to 6.5 mass%.

Al:1mass%以下
Alは、Siと同様、鋼の固有抵抗を高めるのに有効な元素であるが、1mass%を超えて添加すると、磁歪定数を小さくするためのSi添加量が増加し、コア材料の脆化を招く。よって、上限は1mass%とするのが好ましい。より好ましくは、0.8mass%以下である。
Al: 1 mass% or less Al, like Si, is an element that is effective in increasing the specific resistance of steel, but if added over 1 mass%, the amount of Si added to reduce the magnetostriction constant increases, and the core It causes embrittlement of the material. Therefore, the upper limit is preferably set to 1 mass%. More preferably, it is 0.8 mass% or less.

Mn:0.05〜2mass%
Mnは、S等による赤熱脆性を防止するために必要な元素であり、0.05mass%以上添加するのが好ましい。一方、2mass%を超えて添加すると、磁歪定数を小さくするためSi添加量が増加し、コア材料の脆化を招く。よって、上限は2mass%とするのが好ましい。より好ましくは0.1〜0.5mass%の範囲である。
Mn: 0.05-2 mass%
Mn is an element necessary for preventing red heat brittleness due to S or the like, and it is preferable to add 0.05 mass% or more. On the other hand, if added over 2 mass%, the amount of Si added increases to reduce the magnetostriction constant, leading to embrittlement of the core material. Therefore, the upper limit is preferably set to 2 mass%. More preferably, it is the range of 0.1-0.5 mass%.

S:0.005mass%以下
Sは、不可避的に混入してくる不純物であり、含有量が多くなると、硫化物が多量に形成されて、鉄損が増加する原因となる。よって、本発明では、上限を0.005mass%とするのが好ましい。
S: 0.005 mass% or less S is an impurity that is inevitably mixed. When the content is increased, a large amount of sulfide is formed, which causes an increase in iron loss. Therefore, in the present invention, the upper limit is preferably set to 0.005 mass%.

N:0.005mass%以下
Nは、Sと同様、不可避的に混入してくる不純物であり、含有量が多いと窒化物が多量に形成されて、鉄損が増加する原因となるため、上限は0.005mass%とするのが好ましい。
N: 0.005 mass% or less N is an impurity that is inevitably mixed in as in S, and if the content is large, a large amount of nitride is formed, causing iron loss to increase. Is preferably 0.005 mass%.

鋼素材としてSi添加鋼を用いる場合、上記成分以外の残部は、Feおよび不可避的不純物である。ただし、本発明の効果を損なわない範囲であれば、上記以外の成分の添加を拒むものではない。   When Si-added steel is used as the steel material, the balance other than the above components is Fe and inevitable impurities. However, addition of components other than those described above is not rejected as long as the effects of the present invention are not impaired.

次に、本発明のモータコアに用いるモータコア材の製造方法について説明する。
本発明のモータコアに用いるコア材(電磁鋼板)の製造方法は、鋼板の圧延方向に直角な方向の磁歪λ10/400が−0.1〜10×10−7の範囲の値が得られれば、いずれの方法でもよく、例えば、転炉や電気炉等で鋼を溶製し、あるいはさらに脱ガス処理等の二次精錬を施して上述した所定の成分組成に調整し、鋳造して鋼スラブとし、次いで、その鋼スラブを熱間圧延し、一回の冷間または温間圧延、もしくは、中間焼鈍を挟む2回以上の冷間および/または温間圧延により所定の板厚とし、その後、仕上焼鈍を行うことにより製造することができる。なお、上記熱間圧延における圧延温度や巻取温度は、通常公知の条件であればよく、特に制限はない。また、熱間圧延後の熱延板焼鈍は、必要に応じて行うことができる。
Next, the manufacturing method of the motor core material used for the motor core of this invention is demonstrated.
The manufacturing method of the core material (electromagnetic steel sheet) used for the motor core of the present invention is such that the magnetostriction λ 10/400 in the direction perpendicular to the rolling direction of the steel sheet has a value in the range of −0.1 to 10 × 10 −7. Any method may be used. For example, steel is melted in a converter or an electric furnace, or further subjected to secondary refining such as degassing to adjust to the above-mentioned predetermined composition, and cast into a steel slab. Then, the steel slab is hot-rolled to a predetermined sheet thickness by one or more cold and / or warm rolling, or two or more cold and / or warm rolling sandwiching the intermediate annealing, and then It can be manufactured by performing finish annealing. In addition, the rolling temperature and winding temperature in the said hot rolling should just be normally well-known conditions, and there is no restriction | limiting in particular. Moreover, the hot-rolled sheet annealing after hot rolling can be performed as needed.

ただし、Siを多量に添加した鋼は、硬くて脆いため、圧延して所定の板厚の鋼板とすることが難しくなる。そこで、Si添加鋼を鋼素材として用いる場合には、製造性を改善するため、最終板厚に冷間圧延するまでの上流工程を、例えばSi≦4mass%の低Si材として製造し、その後、1000〜1250℃に加熱し、四塩化珪素(SiCl)を含む雰囲気ガスと接触させて浸珪処理し、さらに必要に応じて1000〜1400℃でSiの拡散処理を施して、所定量のSiを含有させる方法を採用してもよい。 However, since steel containing a large amount of Si is hard and brittle, it is difficult to roll it into a steel plate having a predetermined thickness. Therefore, when using Si-added steel as a steel material, in order to improve manufacturability, for example, an upstream process until cold rolling to the final sheet thickness is manufactured as a low Si material of, for example, Si ≦ 4 mass%, It is heated to 1000 to 1250 ° C., is contacted with an atmospheric gas containing silicon tetrachloride (SiCl 4 ), is subjected to a siliconization treatment, and is further subjected to a Si diffusion treatment at 1000 to 1400 ° C. as necessary to obtain a predetermined amount of Si. You may employ | adopt the method of containing.

また、連続焼鈍ライン等の連続ラインで仕上焼鈍を行う場合は、鋼板の圧延方向に直角な方向の磁歪定数を−0.1〜10×10−7以下の範囲の値とするため、800℃以上の温度域における鋼板張力を2.94MPa以下として焼鈍するのが好ましい。ここで、上記仕上焼鈍とは、最終板厚に冷間または温間圧延した後の600℃以上に加熱する最終の焼鈍を意味し、浸珪処理を施す場合には浸珪処理を、さらに拡散処理を施す場合には拡散処理を意味する。 Moreover, in the case of performing finish annealing in a continuous line such as a continuous annealing line, in order to set the magnetostriction constant in the direction perpendicular to the rolling direction of the steel sheet to a value in the range of −0.1 to 10 × 10 −7 or less, 800 ° C. It is preferable to anneal the steel sheet in the above temperature range with a tension of 2.94 MPa or less. Here, the above-mentioned finish annealing means the final annealing that is heated to 600 ° C. or higher after cold or warm rolling to the final plate thickness. When processing is performed, it means diffusion processing.

なお、本発明のモータコアに用いるコア材は、板厚については特に制限はないが、高周波鉄損を低減するという本発明の目的からは0.35mm以下が好ましく、0.2mm以下がより好ましい。一方、板厚の下限は、生産性を確保する観点から、0.05mm以上であるのが好ましい。   The core material used for the motor core of the present invention is not particularly limited with respect to the plate thickness, but is preferably 0.35 mm or less and more preferably 0.2 mm or less for the purpose of the present invention to reduce high-frequency iron loss. On the other hand, the lower limit of the plate thickness is preferably 0.05 mm or more from the viewpoint of ensuring productivity.

次に、本発明のモータコアについて説明する。
本発明のモータコアに用いるコア材は、圧縮応力の存在下において、1kHz以上の高周波域でも低い鉄損を示すので、高周波用モータのコアに好適に用いることができる。ここで、上記1kHz以上の高周波とは、基本波周波数が1kHz以上である場合のほか、キャリア周波数が1kHz以上である場合をも含むものである。
Next, the motor core of the present invention will be described.
Since the core material used for the motor core of the present invention exhibits low iron loss even in a high frequency region of 1 kHz or higher in the presence of compressive stress, it can be suitably used for the core of a high frequency motor. Here, the high frequency of 1 kHz or higher includes not only the case where the fundamental frequency is 1 kHz or higher but also the case where the carrier frequency is 1 kHz or higher.

ただし、本発明のモータコアに上記コア材を用いる場合には、鋼板の低磁歪定数の方向と使用時に受ける圧縮応力の方向とを揃えることが必要であり、例えば、低磁歪定数となる方向(例えば、鋼板の圧延方向に直角な方向)を、ステータの周方向とを揃えることが必要である。したがって、本発明では分割コアとし、ステータの周方向が全周にわたって圧延と直角な方向(ティースの長さ方向が圧延方向と平行)となるようにして用いるのが好ましい。ただし、圧延直角方向以外の磁歪定数も−0.1〜10×10−7の範囲の値であれば、分割コア以外の一体型のモータコアとして、焼き嵌め等の圧縮応力が付与されるモータに用いてもよいことは勿論である。 However, when using the above core material for the motor core of the present invention, it is necessary to align the direction of the low magnetostriction constant of the steel sheet and the direction of the compressive stress received during use, for example, the direction of the low magnetostriction constant (for example, It is necessary to align the direction perpendicular to the rolling direction of the steel plate with the circumferential direction of the stator. Therefore, in the present invention, it is preferable to use a split core so that the circumferential direction of the stator is a direction perpendicular to the rolling over the entire circumference (the length direction of the teeth is parallel to the rolling direction). However, if the magnetostriction constant other than the direction perpendicular to the rolling is also in the range of −0.1 to 10 × 10 −7 , the motor core to which compressive stress such as shrink fitting is applied as an integrated motor core other than the split core. Of course, it may be used.

また、モータコアをハウジングに固定する際には、焼き嵌め法または圧入法によって、ステータの円周方向に10MPa以上の圧縮応力を発生させることが必要である。10MPa未満では、十分な固定力が得られないからである。例えば、焼き嵌め法で固定する場合には、焼き嵌め代を50μm程度とすれば、ステータのコアバック中央部の円周方向には約50MPaの圧縮応力を発生させることができる。ただし、圧縮応力が大きくなると、焼き嵌めや圧入が難しくなるだけでなく、鉄損が増大し、モータ効率も大きく低下するようになるので、上限は200MPa程度とするのが好ましい。   Further, when the motor core is fixed to the housing, it is necessary to generate a compressive stress of 10 MPa or more in the circumferential direction of the stator by a shrink fitting method or a press fitting method. This is because if the pressure is less than 10 MPa, sufficient fixing force cannot be obtained. For example, when fixing by shrink fitting, if the shrinkage allowance is about 50 μm, a compressive stress of about 50 MPa can be generated in the circumferential direction of the central portion of the core back of the stator. However, as the compressive stress increases, not only shrink fitting or press fitting becomes difficult, but also iron loss increases and motor efficiency also decreases greatly. Therefore, the upper limit is preferably set to about 200 MPa.

真空溶解炉を用いて表1に示す成分組成を有する鋼を溶製し、鋳造して小スラブとし、その小スラブを1140℃×1hr加熱後、仕上圧延終了温度を800℃とする熱間圧延し、500℃で巻取り、板厚2.0mmの熱延板とし、1000℃×30secの熱延板焼鈍を施した。次いで、上記熱延板を酸洗後、400℃の温度で温間圧延して表1に示した板厚の冷延板とし、1000℃×10secの仕上焼鈍を施して電磁鋼板とした。
なお、上記仕上焼鈍における800℃以上での鋼板張力は、表1に示したように0.98〜4.90MPaの間で変動させて、鋼板の圧延方向に直角な方向の磁歪定数を変化させた。
A steel having the composition shown in Table 1 is melted and cast into a small slab using a vacuum melting furnace, and the small slab is heated to 1140 ° C. × 1 hr, and then the finish rolling finish temperature is 800 ° C. And it rolled up at 500 degreeC, it was set as the hot-rolled sheet of 2.0 mm in thickness, and 1000 degreeC * 30 second hot-rolled sheet annealing was performed. Next, after pickling the hot-rolled sheet, it was warm-rolled at a temperature of 400 ° C. to obtain a cold-rolled sheet having the thickness shown in Table 1, and subjected to finish annealing at 1000 ° C. × 10 sec to obtain an electromagnetic steel sheet.
Note that the steel plate tension at 800 ° C. or higher in the above finish annealing is varied between 0.98 and 4.90 MPa as shown in Table 1, and the magnetostriction constant in the direction perpendicular to the rolling direction of the steel plate is changed. It was.

次いで、上記表1に示した各種電磁鋼板を以下の測定に供した。
<磁歪測定>
上記電磁鋼板から、圧延方向に直角な方向が長さ方向になるようにして幅30mm×長さ280mm×板厚の試験片を切り出し、無応力の状態において、周波数400Hz、最大磁束密度1.0Tで励磁した時の圧延方向に直角な方向の歪をレーザー変位計で測定してバタフライカーブを描かせ、1.0Tの歪量から0Tの歪量を差し引いて、磁歪λ10/400を求めた。
<モータ効率>
上記電磁鋼板をステータの材料として用いて、ステータ外形:110mm、ロータ外形:75mm、積み厚:80mmで、8極、12スロットの内部磁石埋込型モータ(IPMモータ)を作製し、トルク5Nmにて6000rpmで回転させたときのモータ効率を測定した。なお、上記ステータは、鋼板の圧延方向に直角な方向がステータ周方向(圧延方向がティースの長さ方向)となるように用いた12分割の分割コアであり、このステータコアをハウジングに固定する際の焼き嵌め代は、ステータ周方向の圧縮応力が50MPaとなるように調整した。なお、圧縮応力は、歪みゲージを用いて測定した。
<磁気特性>
上記電磁鋼板から、圧延方向に直角な方向が長さ方向になるようにして幅30mm×長さ280mm×板厚の試験片を切り出し、上記モータのステータ周方向の圧縮応力と同じ大きさ(50MPa)の圧縮応力を付与しつつ、圧縮応力付与方向の鉄損W10/3k(周波数3000Hz、最大磁束密度1.0Tのときの鉄損)およびB50(磁界の強さ5000A/mにおける磁束密度)を測定した。
Next, the various electrical steel sheets shown in Table 1 were subjected to the following measurements.
<Magnetic strain measurement>
A test piece having a width of 30 mm, a length of 280 mm, and a plate thickness was cut out from the electromagnetic steel sheet so that the direction perpendicular to the rolling direction was the length direction, and in a no-stress state, the frequency was 400 Hz and the maximum magnetic flux density was 1.0 T. The magnetostriction λ 10/400 was obtained by measuring the strain in the direction perpendicular to the rolling direction when excited with a laser displacement meter to draw a butterfly curve and subtracting the strain amount of 0T from the strain amount of 1.0T . .
<Motor efficiency>
Using the above magnetic steel sheet as a stator material, a stator outer shape: 110 mm, a rotor outer shape: 75 mm, a stacking thickness: 80 mm, and an 8-pole, 12-slot embedded internal magnet motor (IPM motor) with a torque of 5 Nm The motor efficiency when rotating at 6000 rpm was measured. The stator is a 12-part split core used so that the direction perpendicular to the rolling direction of the steel sheet is the circumferential direction of the stator (the rolling direction is the length direction of the teeth), and when the stator core is fixed to the housing The shrinkage allowance was adjusted so that the compressive stress in the circumferential direction of the stator was 50 MPa. The compressive stress was measured using a strain gauge.
<Magnetic properties>
A test piece having a width of 30 mm, a length of 280 mm, and a plate thickness was cut out from the electromagnetic steel sheet so that the direction perpendicular to the rolling direction was the length direction, and the same magnitude as the compression stress in the stator circumferential direction of the motor (50 MPa) ) Of iron loss W 10 / 3k (iron loss at a frequency of 3000 Hz and a maximum magnetic flux density of 1.0 T) and B 50 (magnetic flux density at a magnetic field strength of 5000 A / m). ) Was measured.

上記測定の結果を、表1に併記して示した。この結果から、本発明に適合する磁歪特性を有する電磁鋼板(コア材料)を、本発明に適合する条件下で用いてモータコアを作製することにより、低鉄損かつ高効率の高周波用モータを実現できることがわかる。   The results of the above measurements are shown together in Table 1. From this result, a high-frequency motor with low iron loss and high efficiency is realized by producing a motor core using an electromagnetic steel sheet (core material) having magnetostriction characteristics suitable for the present invention under conditions suitable for the present invention. I understand that I can do it.

Figure 0005609057
Figure 0005609057

上記表1に示したNo.1および2の電磁鋼板を用いて、実施例1と同じIPMモータを作製し、実施例1と同様にして、モータ効率を測定した。なお、上記モータの作製に当たっては、ステータコアをハウジングに固定する際の焼き嵌め代を種々変えることによりステータ周方向の圧縮応力を表2に示したように0〜120MPaの範囲で変化させた。また、鋼板の磁気特性は、上記モータのステータ周方向に発生させた圧縮応力と同じ大きさの圧縮応力を付与しつつ、実施例1と同様にして圧縮応力付与方向の鉄損W10/3k(周波数3000Hz、最大磁束密度1.0Tのときの鉄損)およびB50(磁界の強さ5000A/mにおける磁束密度)を測定した。 No. shown in Table 1 above. The same IPM motor as in Example 1 was produced using the electrical steel sheets 1 and 2, and the motor efficiency was measured in the same manner as in Example 1. In manufacturing the motor, the compressive stress in the stator circumferential direction was changed in the range of 0 to 120 MPa as shown in Table 2 by changing the shrinkage allowance when the stator core was fixed to the housing. Further, the magnetic properties of the steel sheet were such that the iron loss W 10 / 3k in the compressive stress applying direction was applied in the same manner as in Example 1 while applying the same compressive stress as the compressive stress generated in the circumferential direction of the stator of the motor. (Iron loss at a frequency of 3000 Hz and maximum magnetic flux density of 1.0 T) and B 50 (magnetic flux density at a magnetic field strength of 5000 A / m) were measured.

上記測定の結果を表2に併記した。この結果から、本発明に適合するコア材をステータに用いると共に、その周方向の圧縮応力を10〜200MPaの範囲としてハウジングに強固に固定することにより、高効率の高周波モータを実現できることがわかる。   The results of the above measurements are also shown in Table 2. From this result, it can be seen that a high-efficiency high-frequency motor can be realized by using a core material suitable for the present invention for the stator and firmly fixing the circumferential compressive stress in the range of 10 to 200 MPa to the housing.

Figure 0005609057
Figure 0005609057

本発明の技術は、ハイブリッド電気自動車の駆動モータ、発電機やエアコンのコンプレッサーモータ、工作機械の主軸モータ等の焼き嵌め固定される高速モータに適用することができる。   The technology of the present invention can be applied to high-speed motors that are shrink-fitted and fixed, such as drive motors for hybrid electric vehicles, compressor motors for generators and air conditioners, and spindle motors for machine tools.

Claims (1)

ステータ周方向の圧縮応力が10MPa以上であるモータコアにおいて、
上記ステータに用いる鋼板は、ステータ周方向に相当する方向の磁歪定数が−0.1〜10×10−7の範囲の値であり、かつ、Si:4.5〜6.6mass%、Al:1mass%以下、Mn:0.05〜2mass%、S:0.005mass%以下、N:0.005mass%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有するとともに、
上記鋼板の圧延方向に直角な方向をコアの周方向とする分割コアから構成されてなることを特徴とするモータコア。
In the motor core where the compressive stress in the stator circumferential direction is 10 MPa or more,
The steel sheet used for the stator has a magnetostriction constant in a direction corresponding to the circumferential direction of the stator in a range of −0.1 to 10 × 10 −7 , Si: 4.5 to 6.6 mass%, Al: 1 mass% or less, Mn: 0.05 to 2 mass%, S: 0.005 mass% or less, N: 0.005 mass% or less, with the balance being composed of Fe and inevitable impurities ,
A motor core comprising a split core having a direction perpendicular to the rolling direction of the steel sheet as a circumferential direction of the core.
JP2009243420A 2009-10-22 2009-10-22 Motor core Active JP5609057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009243420A JP5609057B2 (en) 2009-10-22 2009-10-22 Motor core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009243420A JP5609057B2 (en) 2009-10-22 2009-10-22 Motor core

Publications (2)

Publication Number Publication Date
JP2011091936A JP2011091936A (en) 2011-05-06
JP5609057B2 true JP5609057B2 (en) 2014-10-22

Family

ID=44109654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009243420A Active JP5609057B2 (en) 2009-10-22 2009-10-22 Motor core

Country Status (1)

Country Link
JP (1) JP5609057B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5526701B2 (en) * 2009-10-22 2014-06-18 Jfeスチール株式会社 Motor core
WO2015063871A1 (en) 2013-10-29 2015-05-07 三菱電機株式会社 Permanent magnet embedded electric motor, compressor, and refrigerating and air-conditioning device
DE102015015762A1 (en) * 2015-12-01 2017-06-01 Kienle + Spiess Gmbh Method for producing a lamellar packet consisting of superimposed lamellae and device for carrying out such a method
EP3572535B1 (en) * 2017-03-30 2022-04-27 JFE Steel Corporation Method for manufacturing non-oriented electromagnetic steel plate, and method for manufacturing motor core
JP6738047B2 (en) 2017-05-31 2020-08-12 Jfeスチール株式会社 Non-oriented electrical steel sheet and its manufacturing method
JP6988631B2 (en) * 2018-03-27 2022-01-05 日本製鉄株式会社 Stator core and motor
JP6988633B2 (en) * 2018-03-27 2022-01-05 日本製鉄株式会社 Stator core and motor
EP3859032B1 (en) 2018-10-31 2023-03-29 JFE Steel Corporation Non-oriented electrical steel sheet and method for producing same, and motor core and method for producing same
KR20230135148A (en) * 2021-03-24 2023-09-22 제이에프이 스틸 가부시키가이샤 Battery-powered motors and motor drive systems

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0777171B2 (en) * 1990-11-30 1995-08-16 日本鋼管株式会社 Composite core
JP4023183B2 (en) * 2002-02-26 2007-12-19 住友金属工業株式会社 Non-oriented electrical steel sheet for rotating machine and manufacturing method thereof
JP5244363B2 (en) * 2007-10-11 2013-07-24 トヨタ自動車株式会社 Split stator and motor

Also Published As

Publication number Publication date
JP2011091936A (en) 2011-05-06

Similar Documents

Publication Publication Date Title
JP5609057B2 (en) Motor core
JP5699642B2 (en) Motor core
WO2015199211A1 (en) Electrical steel sheet
JP2014198896A (en) Nonoriented magnetic steel sheet excellent in magnetic properties
JP5515451B2 (en) Core material for split motor
JP4389691B2 (en) Non-oriented electrical steel sheet for rotor and manufacturing method thereof
JP2012036459A (en) Non-oriented magnetic steel sheet and production method therefor
JP5671869B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5526701B2 (en) Motor core
JP5646745B2 (en) Steel plate for rotor core of IPM motor and manufacturing method thereof
JP2004183002A (en) Non-oriented silicon steel sheet for automobile, and its production method
JP5876210B2 (en) Motor core with low iron loss degradation under compressive stress
JP6339768B2 (en) Steel plate for rotor core of IPM motor excellent in field weakening and manufacturing method thereof
JP2005060811A (en) High-tensile non-oriented magnetic steel sheet and its production method
JP5561148B2 (en) Motor core with low iron loss degradation under compressive stress
JP2006249555A (en) Silicon steel sheet having low core loss in high frequency region and method for producing the same
JP5515485B2 (en) Split motor core
JP2012161138A (en) Motor core having small degradation in iron loss under compressive stress
JP4265508B2 (en) Non-oriented electrical steel sheet for rotor and manufacturing method thereof
JP5691571B2 (en) Motor core with low iron loss degradation under compressive stress and manufacturing method thereof
JP6110097B2 (en) High power reluctance motor steel core steel plate and manufacturing method thereof, rotor for reluctance motor using the same, stator and reluctance motor
JP5561094B2 (en) Motor core with low iron loss degradation under compressive stress
JP2010185119A (en) Non-oriented electromagnetic steel sheet
JP5561068B2 (en) Motor core with low iron loss degradation under compressive stress
Kim et al. Efficiency Improvement of an Automotive Alternator by Heat Treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140818

R150 Certificate of patent or registration of utility model

Ref document number: 5609057

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250