WO2018117749A1 - Grain-oriented electrical steel sheet and manufacturing method therefor - Google Patents

Grain-oriented electrical steel sheet and manufacturing method therefor Download PDF

Info

Publication number
WO2018117749A1
WO2018117749A1 PCT/KR2017/015384 KR2017015384W WO2018117749A1 WO 2018117749 A1 WO2018117749 A1 WO 2018117749A1 KR 2017015384 W KR2017015384 W KR 2017015384W WO 2018117749 A1 WO2018117749 A1 WO 2018117749A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
annealing
grain
oriented electrical
electrical steel
Prior art date
Application number
PCT/KR2017/015384
Other languages
French (fr)
Korean (ko)
Inventor
고현석
권민석
서진욱
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to JP2019534751A priority Critical patent/JP6842550B2/en
Priority to CN201780080330.8A priority patent/CN110114479B/en
Publication of WO2018117749A1 publication Critical patent/WO2018117749A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1266Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel

Definitions

  • It relates to a grain-oriented electrical steel sheet and a method of manufacturing the same.
  • a grain-oriented electrical steel sheet is a soft magnetic material having excellent magnetic properties in the rolling direction composed of grains having a Goss orientation, in which the crystal orientation of the steel sheet is ⁇ 1 10 ⁇ ⁇ 001>.
  • the oriented electrical steel sheet is rolled to a final thickness through hot rolling, hot rolled sheet annealing, cold rolling after slab heating, and then manufactured through high temperature annealing for primary recrystallization annealing and secondary recrystallization.
  • the high temperature annealing rate is known to be excellent magnetic properties as the degree of integration of the Goss orientation secondary recrystallization increases.
  • high temperature annealing of oriented electrical steel sheet is less than 15 ° C per hour, it takes only 2-3 days at elevated temperature and requires more than 40 hours of pure annealing.
  • the current final high temperature annealing process is subjected to batch annealing in a coil state, the following difficulties occur in the process. First, the temperature difference between the outer and inner parts of the coil due to the heat treatment in the coil state causes the same heat treatment pattern to not be applied to each part, which causes magnetic deviations in the outer and inner parts.
  • the step of annealing the hot rolled sheet may include a decarburization process.
  • the annealing of the hot rolled sheet may include annealing at a temperature of 850 ° C. to 95 ° C. and a dew point temperature of 50 ° C. or more, and annealing at 100 ° C. to 1200 ° C. and a dew point temperature of ⁇ ° C. or less.
  • the decarburizing annealing of the primary cold rolled steel sheet may include annealing at a temperature of 850 ° C to 950 ° C and a dew point temperature of 50 ° C or higher, and annealing at KXXrc to 1200 ° C and a dew point temperature of o ° c or lower. It may include.
  • the decarburizing annealing of the primary rolled steel sheet and the second cold rolling of the decarburization annealing completed steel sheet may be repeated two or more times.
  • Final annealing step is between 850 ° C and 1000 ° C temperature and dew point temperature
  • the pickling step may be performed for 5 seconds to 100 seconds at a temperature of 50 to 100 ° C, using an acid aqueous solution of 5 to 50 weight ⁇ 3 ⁇ 4.
  • the forming of the ceramic coating layer may supply the ceramic powder to a heat source in which the inert gas is plasma-formed to form the ceramic coating layer.
  • the ceramic powder may comprise A1 2 0 3 , Si0 2 , Ti0 2 or Zr0 2 .
  • the first cold rolling step to form the ceramic coating layer may be performed continuously
  • the balance include a substrate comprising Fe and other unavoidable impurities and a ceramic coating layer formed on the surface of the substrate, the substrate having a thickness of the steel sheet Goth grains having a ratio (D2 / D1) of the diameter (D1) of the circumscribed circle to the diameter (D2) of the circumscribed circle with respect to the plane perpendicular to the direction include at least 95 area% of the total goth grains.
  • the substrate may comprise an oxygen depletion layer formed into the substrate from the surface of the substrate.
  • the oxygen depletion layer may contain less than 500 ppm of oxygen.
  • the oxygen depletion layer may include up to 100 ppm of Mg.
  • the thickness of the ceramic coating layer may be 10nm to 4 ⁇ .
  • the ceramic coating layer may include A1 2 0 3 , Si0 2 , T1O2 or Zr0 2 .
  • the ceramic coating layer can form a pattern having a width (w) of 10 to 100 mm and a distance (d) of 10 to 100 mm in the rolling direction. .
  • the substrate may have a ratio of grains having a grain size of 20 to 500 / ⁇ of 80% or more.
  • the production method of the grain-oriented electrical steel sheet according to the 'embodiment of the present invention can provide a grain-oriented electrical steel sheet that does not use a crystal grain growth inhibitor. Also, the annealing annealing can be omitted.
  • FIG. 1 is a schematic cross-sectional view of a grain-oriented electrical steel sheet according to an embodiment of the present invention.
  • Figure 2 shows a schematic perspective view of a grain-oriented electrical steel sheet according to another embodiment of the present invention.
  • Figure 3 is a photograph showing the Goss grain distribution on the surface perpendicular to the thickness direction of the substrate in the preparation example through an EBSD analysis.
  • first, second, and third are used to describe various parts, component regions, fillings and / or sections, but are not limited to these. These terms are only used to distinguish one part, component, region, layer or section from another part, component, region, layer or section. Accordingly, the first part, component, region, layer or section described below may be referred to as the second part, component, region, layer or section without departing from the scope of the invention.
  • % means weight% and lppm is 0.00 2 weight%.
  • crystal orientation of goss grain ⁇ 1 10 ⁇ refers to grains having an orientation within 15 degrees from ⁇ 001>.
  • the meaning of further including additional elements means to include iron (Fe), which is the balance by the additional amount of the additional elements.
  • Fe iron
  • the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.
  • Method for producing a grain-oriented electrical steel sheet according to an embodiment of the present invention first, in weight%, Si: 1.0% to 4.0%, C: 0.1% to 0.4% and the balance is Fe and other unavoidable stray Provide a slab to contain.
  • the slab may further include Mn: more than 0% and 0.1% or less and S: 0% or more and 0.005% or less by weight.
  • the slab may include a Bi: 0.001% to 0.1% by weight. The reason for limiting the composition is as follows.
  • Si improves iron loss by lowering the magnetic anisotropy and increasing the resistivity of electrical steel sheets. If the Si content is less than 1.0%, iron loss is inferior, and if it is more than 4.0%, brittleness increases. Therefore, the content of Si in the grain-oriented electrical steel sheet after the slab and the final annealing step may be 1.0% to 4.0%.
  • Carbon (C) requires a process where C at the center exits to the surface in order for the Goss grains at the surface to diffuse into the center during intermediate and final decarbonization . Therefore, the content of C in the slab may be 0.1 to 0.4 weight ⁇ 3 ⁇ 4. In addition, the carbon amount in the grain-oriented electrical steel sheet after the final annealing step is completed decarburization may be less than 0.0020% by weight.
  • Mn and S form MnS precipitates that hinder the growth of Goss grains that diffuse into the center during decarburization. Therefore, it is preferable that Mn and S are not added.
  • Mn, S in the grain-oriented electrical steel sheet is preferably controlled to Mn: 0.1% or less, S: 0.005% or less.
  • Bismuth (B0 is a highly volatile segregation element, which, when placed on the surface layer, volatilizes from the surface to make grains coarse at the surface layer.
  • bismuth (B0) has the effect of refining grains at the center of the steel. If less than o.ooi% by weight, the effect may be negligible. On the contrary, when added in excess of ⁇ % by weight, it is preferable to add 0.001 to 0.1% by weight since it causes unevenness of the surface grain size.
  • the slabs of the composition as described above are reheated.
  • the slab reheating temperature may be between 1 KX C and 1350 ° C higher than the normal reheating temperature.
  • the hot rolled tissue is coarsened to adversely affect the magnetism.
  • the hot rolled structure is not coarsened even when the slab reheating temperature is high because the carbon content is higher than that of the prior art. It is advantageous.
  • the hot rolled slab is hot rolled to produce a hot rolled steel sheet.
  • the hot rolled sheet is annealed.
  • the hot rolled sheet annealing may include a decarburization process.
  • the hot-rolled sheet annealing may include annealing at a temperature of 85 ° C. to 950 ° C. and a dew point temperature of 5 ° C. or higher, and annealing at 1000 ° C. to i20 crc temperature and dew point temperature of o ° c. .
  • the hot rolled sheet is subjected to decarburization annealing, followed by pickling, followed by primary rolling to prepare a cold rolled steel sheet.
  • the cold rolled steel sheet is decarbonized and annealed.
  • the step of decarburizing and annealing may be performed in an austenite single phase region or a region in which a composite phase of ferrite and austenite is present.
  • the method may include annealing at a temperature of 85CTC to 95C C and a dew point temperature of 5 (rc or more and annealing at locxrc to i2ocrc temperature and a dew point temperature of o ° c or less.
  • the amount of decarburization during decarburization annealing is 0.0300wt.
  • the atmosphere may be a mixed gas atmosphere of hydrogen and nitrogen
  • the grain size of the surface of the electrical steel sheet grows coarsely, but the grain inside the electrical steel sheet It remains as a fine tissue
  • the size of the surface ferrite grains after such decarburization annealing may be 150 to 25.
  • the manufacturing method of the grain-oriented electrical steel sheet according to an embodiment of the present invention is to diffuse the Goss grains in the surface layer portion by internal diffusion of the Goss grains generated by decarburization annealing and rolling between the grains without using abnormal grain growth of the Goss grains. It is advantageous to form a large number distribution. Therefore, when cold rolling is performed at 50% to 70% reduction ratio during cold rolling, a large number of Goss textures may be formed at the surface layer portion. Or 55% to 65%.
  • the decarburizing annealing of the above-mentioned quenched steel sheet and the secondary cold rolling of the steel sheet having completed decarburization annealing may be repeated two or more times. By repeating two or more times, a large number of Goss textures can be formed at the surface layer.
  • Final annealing in the method for producing a grain-oriented electrical steel sheet according to an embodiment of the present invention is annealing at a temperature of 850 ° C to 100 CTC temperature and dew point temperature below 70 ° C and KXXrC to 1200 ° C temperature and H 2 50 ' volume% or more And annealing in an atmosphere.
  • the atmosphere of the second stage may be more than 90% by volume of H 2 .
  • the cold rolled sheet is subjected to decarburization annealing so that the amount of carbon steel remains 40 to 60% by weight relative to the minimum amount of carbon in the slab. Therefore, in the first step during final annealing, the crystal grains formed on the surface layer portion are diffused into the carbon as the carbon is released. In the first step, decarburization may be performed so that the carbon amount in the steel sheet is 0.01% by weight or less.
  • the second stage has a goth bearing diffused in the first stage.
  • the organization grows.
  • the goose texture may have a grain size of less than 1 mm ' unlike when grains are grown by conventional abnormal grain growth. Therefore, it is possible to have an aggregate structure in which a plurality of goth grains having a smaller grain size than the conventional grain-oriented electrical steel sheet exist.
  • the Goth crystal grains having a ratio (D2 / D1) of the diameter (D1) of the circumscribed circle and the diameter (D2) of the circumscribed circle (D2 / D1) of 0.5 or more with respect to the surface perpendicular to the thickness direction of the steel plate are 95 area% or more of the total Goth crystal grains. It may include.
  • the grain-oriented electrical steel plate mentioned later is demonstrated concretely.
  • MgO coating layer is present because the conventional annealing separator based on MgO is applied during final annealing in the form of a batch, but the grain-oriented electrical steel sheet according to an embodiment of the present invention is not in a batch form but in a continuous manner.
  • the Mg content from the surface of the steel sheet to a depth of 2 I to 5 may be 100 ppm or less.
  • the steel plate on which the final annealing is completed is pickled.
  • the pickling process removes the oxides that naturally form on the surface of the steel sheet.
  • an oxygen depletion layer containing not more than 500 ppm of oxygen is formed from the surface portion of the steel sheet to 2 kPa to 5 depths.
  • an annealing separator such as MgO in the final annealing process and removing the nonmetallic layer again, even if the nonmetallic layer is removed, it is diffused from the nonmetallic layer. Oxygen remains partially in the surface layer of the steel sheet, and the surface layer contains oxygen.
  • the pickling step may use 5 to 50% by weight of an acid aqueous solution.
  • an aqueous solution containing an inorganic acid such as hydrochloric acid, nitric acid or sulfuric acid may be used as the acid aqueous solution. If the concentration of the acid aqueous solution is too small, proper pickling may not be achieved. In addition, when the concentration of the acid aqueous solution is too large, the roughness of the surface of the steel sheet is too high, may adversely affect the magnetic.
  • the pickling step may be carried out at a temperature of 50 to 100 t. Temperature If it is too low, problems with pickling may not occur properly. If the temperature is too high, problems with reoxidation may occur.
  • the pickling step may be pickling for 5 seconds to 100 seconds. If the time is too short, the removal of the oxide layer may not be performed well. If the time is too long, the magnetism may be poor due to the nonuniformity of pickling ability between the grains and the grain boundaries. More specifically, the pickling step may be pickling for 15 to 35 seconds.
  • an oxygen depletion layer is formed into the substrate through a pickling process under appropriate conditions, and the magnetic domains are smoothly moved, thereby reducing the magnetic history loss and further improving the magnetism.
  • a ceramic coating layer is formed on the steel plate on which pickling is completed.
  • the forming of the ceramic coating layer may use plasma.
  • the ceramic coating layer may be formed by supplying ceramic powder to a heat source in which an inert gas is plasma-formed.
  • a coating method using plasma may be used.
  • the ceramic powder may comprise A1 2 0 3 , Si0 2 , Ti0 2 or Zr0 2 .
  • the inert gas can include argon gas.
  • the final annealing process operated in a conventional batch form may be operated as a continuous annealing process, and the step of forming the ceramic coating layer from the first rolling may be continuously performed.
  • 1 schematically shows a cross section of a grain-oriented electrical steel sheet according to an embodiment of the present invention.
  • the grain-oriented electrical steel sheet 100 according to an embodiment of the present invention includes a substrate 10 and a ceramic coating layer 20 formed on the surface of the substrate 10.
  • the X direction means the width direction of the steel sheet
  • the z direction means the thickness direction of the steel sheet.
  • the y direction means the rolling direction of the steel sheet.
  • the substrate includes Si: 1.0% to 4.0%, C: 0.002% or less (not including 0%), and the balance includes Fe and other unavoidable impurities.
  • the element content and reason of the substrate have been described in detail with reference to the above-described method for producing a grain-oriented electrical steel sheet, and thus redundant descriptions thereof will be omitted.
  • the carbon content in the substrate may include 0.002 weight ⁇ 3 ⁇ 4 or less, unlike the carbon content in the slab.
  • the substrate may further include Mn: more than 0% and 0.1% or less, and S: 0% or more and 0.005% or less by weight%.
  • the substrate may further include Bi: 0.001% to 0.1% by weight.
  • the base material may include at least 95 area% of the total Goth grains in a Goth grain having a ratio (D2 / D1) of the diameter (D1) of the circumscribed circle and the diameter (D2) of the circumscribed circle to a plane perpendicular to the thickness direction of the steel sheet.
  • the circumscribed circle means the smallest circle among the imaginary circles surrounding the outside of the grain
  • the circumscribed circle means the largest circle among the imaginary circles included in the grain.
  • the existing grain-oriented electrical steel sheet than the tissue according to an embodiment of the present invention is produced in the shape of the liver oval crystal grains.
  • the size of the crystal grains of the substrate according to an embodiment of the present invention may be 20 / to 500 ⁇ may be 80% or more of the total grains.
  • the substrate 10 is the substrate 10. And an oxygen depletion layer 11 formed from the surface into the substrate. More specifically, the oxygen depletion layer 11 may be formed at a depth of 2 to 5 um into the substrate from the surface of the substrate 10.
  • the oxygen depletion layer 11 may contain oxygen at 500 ppm or less.
  • the remaining composition is the same as the alloy composition described above.
  • the oxygen depletion layer may be formed on the surface of the steel sheet by removing the naturally occurring oxidized worm through pickling.
  • the oxygen depletion layer 11 may include oxygen at less than 100 ppm.
  • oxygen since the base coating layer containing forsterite is not formed, oxygen.
  • Mg is included in an impurity range. Specifically, Mg may be included in an amount of lOOppm or less.
  • a ceramic coating layer 20 is formed on the surface of the substrate 10.
  • the ceramic coating layer 20 may be formed on the oxygen depletion layer 11.
  • the strong tension may be applied to the steel sheet by the ceramic coating layer 20, and thus the effect of miniaturization of magnetic domains and iron loss improvement may be maximized.
  • the thickness of the ceramic coating layer 20 may be 10nm to 4 / / m. If the thickness is too thin, the tension effect is unlikely to occur. If the thickness is too thick, the effect of improving the iron loss no longer occurs, but rather, it may cause the transformer no-load loss to increase due to a drop in the drop rate when used as a transformer core after lamination of steel sheets.
  • the ceramic coating layer 20 may include A1 2 0 3 , Si0 2 , Ti0 2 or Zr0 2 .
  • the ceramic coating layer 20 may be formed on the entire surface of the substrate 10, but may be formed only on a portion of the surface of the substrate. When formed in a part of the surface of the substrate, it is also possible to form a pattern. Specifically, the ceramic coating layer 20 may form a pattern having a width (w) of 10 to 100 mm and a distance (d) of 10 to 100 mm in the rolling direction. 2 schematically shows an example in which the ceramic coating layer 20 forms a pattern. As such, when the ceramic coating layer 20 forms a pattern, magnetism may be further improved.
  • a slab containing Si: 3.23% and C: 0.25% by weight and consisting of the balance Fe and unavoidable impurities is heated at a temperature of 125 CTC and then hot rolled to a thickness of 1.6 mm, followed by annealing at 870 ° C and dew point temperature of 60 After annealing at 120 ° C for 120 seconds, conduct annealing at 1100 ° C and 200 seconds for annealing temperature below 0 ° C in hydrogen, nitrogen gas mixture, and after annealing, pickling and pickling at 60%. Cold-rolled. The hot rolled plate was then annealed again at annealing temperature of 870 ° C and dew point of 6C C for 60 seconds .
  • Annealing was performed for 3 minutes in an H 2 atmosphere.
  • the carbon content of the final steel sheet was 30 ppm.
  • the Goss grain distribution on the plane perpendicular to the thickness direction is shown in FIG. 3 through an EBSD analysis.
  • Table 1 is a table measuring the relative sizes of the inscribed circle and the circumscribed circle of the Goss grains in the preparation example shown in Figure 3 and showing the ratio (D2 / D1).
  • the ratio (D2 / D1) of all Goss grains is 0.5 or more.
  • a slab containing Si: 3.23% and C: 0.25% by weight and consisting of the balance Fe and unavoidable impurities is heated at a temperature of 1250 ° C and then hot rolled to a thickness of 1.6 mm, followed by a dew point temperature of 0 ° C or less.
  • the annealing temperature liocrc and the hot rolled sheet annealing were performed for 200 seconds in an atmosphere of hydrogen, nitrogen, and mixed gas, followed by pickling, followed by cold rolling to a thickness of 288 kPa.
  • the cold rolled plate was annealed again at annealing temperature of 87C C and dew point temperature of 60 ° C. for 60 seconds, followed by hydrogen annealing temperature of 0 ° C. or lower, hydrogen and nitrogen mixed gas atmosphere, annealing temperature of 1 XC and 50 seconds of decarbonization annealing. Final annealing was performed for 3 minutes in a 100% H 2 atmosphere of 105 C C.
  • the Goss grain distribution on the surface perpendicular to the thickness direction is shown in FIG. 4 by EBSD analysis.
  • Table 2 is a table measuring the relative size of the inscribed circle and the circumscribed circle of the grain-oriented electrical steel sheet shown in Figure 4 and showing the ratio (D2 / D1).
  • the value of D2 / D1 may be smaller than that of the substrate according to one embodiment of the present invention.
  • the grain-oriented electrical steel sheet prepared in Preparation Example was pickled using an aqueous solution of HC1 at a concentration of 25% by weight of 80 ° C. Thereafter, an A1 2 0 3 film was formed to a thickness of 3 ⁇ over the entire surface of the steel sheet.
  • Table 3 shows the changes in the steel sheet thickness and magnetic properties with pickling time.
  • the amount of oxygen in the oxygen depletion layer from the surface to the depth 3 / / m was measured and shown in Table 3 below.
  • the iron loss magnetic flux density was measured using a single sheet measurement method, and it was magnetized to 1.7 Tesla at 50 Hz.
  • the magnetic flux density (B 10) is derived under the iron loss (W 17/50) and lOOOA / m magnetic field to the time was measured. The results are summarized in Table 3 below. .
  • the grain-oriented electrical steel sheet prepared in Preparation Example was pickled using an aqueous solution of HC1 at a concentration of 25% by weight ⁇ % at 80 ° C. Thereafter, ceramic powder was supplied to a heat source in which argon (Ar) gas was converted into plasma at an output of 200 kW to form a ceramic coating layer. At this time, a pattern was formed with a 30 mm coating width (w) and a 20 mm coating interval (d). Types of ceramics, the thickness of the ceramic coating layer was changed as shown in Table 4, and the changes in the magnetic properties accordingly are summarized in Table 4.
  • oriented electrical steel sheet 10 base material

Abstract

According to one embodiment of the present invention, a method for manufacturing a grain-oriented electrical steel sheet comprises the steps of: providing a slab including, by wt%, 1.0-4.0% of Si, 0.1%-0.4% of C, and the balance of Fe and other inevitably mixed in impurities; reheating the slab; hot-rolling the slab so as to manufacture a hot rolled steel sheet; hot band-annealing the hot rolled steel sheet; primarily cold-rolling the hot band-annealed hot rolled steel sheet; decarbonization-annealing the primarily cold-rolled steel pipe; secondarily cold-rolling the steel sheet having been completely decarbonization-annealed; finally annealing the steel sheet having been completely secondarily cold-rolled; pickling the steel sheet having been completely finally annealed; and forming a ceramic coating layer on the steel sheet having been completely pickled.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
방향성 전기강판 및 이의 제조방법  Oriented electrical steel sheet and manufacturing method thereof
【기술분야】  Technical Field
방향성 전기강판 및 이의 제조방법에 관한 것이다.  It relates to a grain-oriented electrical steel sheet and a method of manufacturing the same.
【발명의 배경이 되는 기술】  [Technique to become background of invention]
방향성 전기강판은 강판의 결정방위가 {1 10}<001 >인 일명 고스 (Goss) 방위를 갖는 결정립들로 이루어진 압연방향의 자기적 특성이 뛰어난 연자성 재료이다.  A grain-oriented electrical steel sheet is a soft magnetic material having excellent magnetic properties in the rolling direction composed of grains having a Goss orientation, in which the crystal orientation of the steel sheet is {1 10} <001>.
이러한 방향성 전기강판은 슬라브 가열 후 열간 압연, 열연판 소둔, 냉간 압연을 통하여 최종두께로 압연된 다음, 1차 재결정 소둔과 2차 재결정 형성을 위하여 고온소둔을 거쳐 제조된다.  The oriented electrical steel sheet is rolled to a final thickness through hot rolling, hot rolled sheet annealing, cold rolling after slab heating, and then manufactured through high temperature annealing for primary recrystallization annealing and secondary recrystallization.
이때, 고온소둔시에는 승온율이 느릴수록 2차 재결정되는 Goss 방위의 집적도가 높아져 자성이 우수한 것으로 알려져 있다. 통상 방향성 전기강판의 고온소둔 중 승은율은 시간당 15 °C 이하로써 승온으로만 2~3일이 소요될 뿐만 아니라 40시간 이상의 순화소둔이 필요하므로 에너지 소모가 심한 공정이라고 할 수 있다. 또한 현재의 최종 고온소둔 공정은 코일 상태에서 배치 (Batch)형태의 소둔을 실시하기 때문에 공정상의 다음과 같은 어려움이 발생하게 된다. 첫째, 코일상태에서의 열처리로 인한 코일의 외권.부와 내권부 온도 편차가 발생하여 각 부분에서 동일한 열처리 패턴을 적용할 수 없어 외권부와 내권부의 자성편차가 발생한다. 둘째, 탈탄 소둔 후 MgO를 표면에 코팅하고 고온소둔 중 Base coating을 형성하는 과정에서 다양한 표면 결함이 발생하기 때문에 실수율을 떨어뜨리게 된다. 셋째, 탈탄 소둔이 끝난 탈탄판을 코일형태로 감은 후 고온소둔 후 다시 평관화소둔을 거쳐 절연코팅을 하기 때문에 생산공정이 3단계로 나누어지게 됨으로써 실수율이 떨어지는 문제점이 발생한다. At this time, the high temperature annealing rate is known to be excellent magnetic properties as the degree of integration of the Goss orientation secondary recrystallization increases. In general, high temperature annealing of oriented electrical steel sheet is less than 15 ° C per hour, it takes only 2-3 days at elevated temperature and requires more than 40 hours of pure annealing. In addition, the current final high temperature annealing process is subjected to batch annealing in a coil state, the following difficulties occur in the process. First, the temperature difference between the outer and inner parts of the coil due to the heat treatment in the coil state causes the same heat treatment pattern to not be applied to each part, which causes magnetic deviations in the outer and inner parts. Secondly, since the various surface defects occur in the process of coating MgO on the surface after decarburization annealing and forming the base coating during high temperature annealing, the error rate is lowered. Third, after the decarburization annealing is finished in the form of a coil wound coil after high temperature annealing and then through an insulating coating through a flattened annealing, the production process is divided into three stages, a problem that the error rate is lowered.
【발명의 내용】  [Content of invention]
【해결하고자 하는 과제】  Problem to be solved
본 발명의 일 실시예에서는 방향성 전기강판의 제조방법 및 이에 의하여 제조된 방향성 전기강판을 제공하고자 한다. 【과제의 해결 수단】 In one embodiment of the present invention to provide a method for producing a grain-oriented electrical steel sheet and a grain-oriented electrical steel sheet thereby produced. [Measures of problem]
본 발명의 일 실시예에 의한 방향성 전기강판의 제조방법은, 중량 %로, Method for producing a grain-oriented electrical steel sheet according to an embodiment of the present invention, in weight%,
Si: 1.0% 내지 4.0%, C:0.1% 내지 0.4% 및 잔부는 Fe 및 기타 불가피하게 흔입되는 불순물을 포함하는 슬라브를 제공하는 단계; 슬라브를 재가열하는 단계; 슬라브를 열간 압연하여 열연 강판을 제조하는 단계; 열연 강판을 열연판 소둔하는 단계; 열연판 소둔된 열연 강판을 1차 넁간 압연하는 단계; 1차 냉간 압연된 강판을 탈탄 소둔하는 단계; 탈탄 소둔이 완료된 강판을 2차 냉간 압연하는 단계; 2차 넁간 압연이 완료된 강판을 최종 소둔하는 단계; 최종 소둔이 완료된 강판을 산세하는 단계; 및 산세가 완료된 강판에 세라믹 코팅층을 형성하는 단계를 포함한다. Providing a slab comprising Si: 1.0% to 4.0%, C: 0.1% to 0.4% and the balance comprising Fe and other inevitable impurities; Reheating the slab; Hot rolling the slab to produce a hot rolled steel sheet; Annealing the hot rolled steel sheet; Primary rolling the hot rolled hot rolled steel sheet; Decarburizing annealing the primary cold rolled steel sheet; Secondary cold rolling of the steel sheet on which decarburization annealing is completed; Final annealing of the steel sheet after the secondary rolling has been completed; Pickling the steel sheet after the final annealing is completed; And forming a ceramic coating layer on the pickled steel sheet.
열연판 소둔하는 단계에서 탈탄과정을 포함할 수 있다.  In the step of annealing the hot rolled sheet may include a decarburization process.
열연판 소둔하는 단계는 850 °C 내지 95C C 온도 및 이슬점 온도 50 °C이상에서 소둔하는 단계 및 lOOCrc 내지 1200 °C 온도 및 이슬점 온도 ◦ °C이하에서 소둔하는 단계를 포함할 수 있다. The annealing of the hot rolled sheet may include annealing at a temperature of 850 ° C. to 95 ° C. and a dew point temperature of 50 ° C. or more, and annealing at 100 ° C. to 1200 ° C. and a dew point temperature of ◦ ° C. or less.
1차 냉간 압연된 강판을 탈탄 소둔하는 단계는 850 °C 내지 950°C 온도 및 이슬점 온도 50°C이상에서 소둔하는 단계 및 KXXrc 내지 1200°C 온도 및 이슬점 온도 o°c이하에서 소둔하는 단계를 포함할 수 있다. The decarburizing annealing of the primary cold rolled steel sheet may include annealing at a temperature of 850 ° C to 950 ° C and a dew point temperature of 50 ° C or higher, and annealing at KXXrc to 1200 ° C and a dew point temperature of o ° c or lower. It may include.
1차 넁간 압연된 강판을 탈탄 소둔하는 단계 및 상기 탈탄 소둔이 완료된 강판을 2차 냉간 압연하는 단계는 2회 이상 반복할 수 있다.  The decarburizing annealing of the primary rolled steel sheet and the second cold rolling of the decarburization annealing completed steel sheet may be repeated two or more times.
최종 소둔하는 단계는 850°C 내지 1000 °C 온도 및 이슬점 온도Final annealing step is between 850 ° C and 1000 ° C temperature and dew point temperature
70°C이하에서 소둔하는 단계 및 1000 °C 내지 1200°C 온도 및 H2 50 부피 % 이상의 분위기에서 소둔하는 단계를 포함할 수 있다. Annealing at 70 ° C. or less and annealing at 1000 ° C. to 1200 ° C. temperature and 50% by volume of H 2 .
산세하는 단계는 5 내지 50 중량 <¾의 산 수용액을 이용하여, 50 내지 100°C 온도에서 5초 내지 100초 동안 산세할 수 있다. The pickling step may be performed for 5 seconds to 100 seconds at a temperature of 50 to 100 ° C, using an acid aqueous solution of 5 to 50 weight < ¾.
세라믹 코팅층을 형성하는 단계는 불활성 가스를 플라즈마화한 열원에 세라믹 분말을 공급하여 세라믹 코팅층을 형성할 수 있다.  The forming of the ceramic coating layer may supply the ceramic powder to a heat source in which the inert gas is plasma-formed to form the ceramic coating layer.
세라믹 분말은 A1203, Si02, Ti02 또는 Zr02를 포함할 수 있다. The ceramic powder may comprise A1 2 0 3 , Si0 2 , Ti0 2 or Zr0 2 .
1차 냉간 압연하는 단계 내지 상기 세라믹 코팅층을 형성하는 단계는 연속하여 이루질 수 있다ᅳ  The first cold rolling step to form the ceramic coating layer may be performed continuously
본 발명의 일 실시예에 의한 방향성 전기강판은, 중량 %로, Si: 1.0% 내지 4.0%, CO.002% 이하 (0%를 포함하지 않는다) 및 잔부는 Fe 및 기타 불가피하게 흔입되는 불순물을 포함하는 기재 및 기재의 표면 상에 형성된 세라믹 코팅층을 포함하고, 기재는 강판의 두께 방향과 수직하는 면에 대하여, 외접원의 지름 (D1)과 내접원의 지름 (D2)의 비 (D2/D1)가 0.5이상인 고스 결정립이 전체 고스 결정립 중 95 면적 % 이상 포함한다. In the grain-oriented electrical steel sheet according to an embodiment of the present invention, in weight%, Si: 1.0% To 4.0%, CO.002% or less (does not include 0%) and the balance include a substrate comprising Fe and other unavoidable impurities and a ceramic coating layer formed on the surface of the substrate, the substrate having a thickness of the steel sheet Goth grains having a ratio (D2 / D1) of the diameter (D1) of the circumscribed circle to the diameter (D2) of the circumscribed circle with respect to the plane perpendicular to the direction include at least 95 area% of the total goth grains.
기재는 기재의 표면으로부터 기재 내부로 형성된 산소 결핍층을 포함할 수 있다.  The substrate may comprise an oxygen depletion layer formed into the substrate from the surface of the substrate.
산소 결핍층은 산소를 500ppm 이하 포함할 수 있다. • The oxygen depletion layer may contain less than 500 ppm of oxygen.
산소 결핍층은 Mg를 lOOppm 이하 포함할 수 있다.  The oxygen depletion layer may include up to 100 ppm of Mg.
세라믹 코팅층의 두께는 10nm 내지 4卿일 수 있다.  The thickness of the ceramic coating layer may be 10nm to 4 卿.
세라믹 코팅층은 A1203, Si02, T1O2 또는 Zr02를 포함할 수 있다. 세라믹 코팅충은 압연 방향으로, 폭 (w)아 10 내지 100mm이고, 간격 (d)이 10 내지 100mm인 패턴을 형성할 수 있다. . The ceramic coating layer may include A1 2 0 3 , Si0 2 , T1O2 or Zr0 2 . The ceramic coating layer can form a pattern having a width (w) of 10 to 100 mm and a distance (d) of 10 to 100 mm in the rolling direction. .
기재는 결정립 크기가 20 내지 500/ΛΙΙ인 결정립의 비율이 80%이상일 수 있다.  The substrate may have a ratio of grains having a grain size of 20 to 500 / ΛΙΙ of 80% or more.
【발명의 효과】  【Effects of the Invention】
본 발명의 일 실시예에 의하면, 최종 소둔시 코일 상태에서 배치 (Batch)형태의 소둔을 실시하지 않고 연속적인 소둔을 실시할 수 있는 방향성 전기강판의 제조 방법을 제공할 수 있다.  According to one embodiment of the present invention, it is possible to provide a method for manufacturing a grain-oriented electrical steel sheet which can be subjected to continuous annealing without performing batch annealing in a coil state at the time of final annealing.
또한, 단시간의 소둔만으로도 방향성 전기강판을 생산할 수 있다. 또한, 종래의 방향성 전기강판의 제조 방법과 달리 넁연강판을 권취하는 공정이 필요 없다.  In addition, it is possible to produce a grain-oriented electrical steel sheet only by annealing for a short time. In addition, unlike the conventional method for producing a grain-oriented electrical steel sheet, the step of winding the thin steel sheet is not necessary.
또한, 본 발명의' 일 실시예에 의한 방향성 전기강판의 제조방법은, 결정립 성장 억제제를 사용하지 않는 방향성 전기강판을 제공할 수 있다. 또한, 침질 소둔을 생략할 수 있다. In addition, the production method of the grain-oriented electrical steel sheet according to the 'embodiment of the present invention can provide a grain-oriented electrical steel sheet that does not use a crystal grain growth inhibitor. Also, the annealing annealing can be omitted.
【도면의 간단한 설명】  [Brief Description of Drawings]
도 1 은 본 발명의 일 실시예에 의한 방향성 전기강판의 개략적인 단면을 나타낸다.  1 is a schematic cross-sectional view of a grain-oriented electrical steel sheet according to an embodiment of the present invention.
도 2 는 본 발명의 또 다른 일 실시예에 의한 방향성 전기강판의 개략적인 사시도를 나타낸다. 도 3는 제조예에서 기재의 두께 방향과 수직하는 면에 대한 Goss결정립 분포를 EBSD 분석을 통하여 나타낸 사진이다. Figure 2 shows a schematic perspective view of a grain-oriented electrical steel sheet according to another embodiment of the present invention. Figure 3 is a photograph showing the Goss grain distribution on the surface perpendicular to the thickness direction of the substrate in the preparation example through an EBSD analysis.
도 4 는 비교제조예에서 기재의 두께 방향과 수직하는 면에 대한 결정립 분포를 표시한 사진이다.  4 is a photograph showing grain distribution on a plane perpendicular to the thickness direction of the substrate in the comparative manufacturing example.
【발명을 실시하기 위한 구체적인 내용】  [Specific contents to carry out invention]
제 1, 제 2 및 제 3 등의 용어들은 다양한 부분, 성분ᅳ 영역, 충 및 /또는 섹션들을 설명하기 위해 사용되나 이들에 한정되지 않는다. 이들 용어들은 어느 부분, 성분, 영역, 층 또는 섹션을 다른 부분, 성분, 영역, 층 또는 섹션과 구별하기 위해서만 사용된다. 따라서, 이하에서 서술하는 제 1 부분, 성분, 영역, 층 또는 섹션은 본 발명의 범위를 벗어나지 않는 범위 내에서 제 2 부분, 성분, 영역, 층 또는 섹션으로 언급될 수 있다ᅳ  Terms such as first, second, and third are used to describe various parts, component regions, fillings and / or sections, but are not limited to these. These terms are only used to distinguish one part, component, region, layer or section from another part, component, region, layer or section. Accordingly, the first part, component, region, layer or section described below may be referred to as the second part, component, region, layer or section without departing from the scope of the invention.
여기서 사용되는 전문 용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 명세서에서 사용되는 "포함하는' '의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및 /또는 성분을 구체화하며, 다른 특성, 영역, 정수, 단계, 동작, 요소 및 /또는 성분의 존재나 부가를 제외시키는 것은 아니다.  The terminology used herein is for reference only to specific embodiments and is not intended to limit the invention. As used herein, the singular forms “a,” “an,” and “the” include plural forms as well, unless the phrases clearly indicate the opposite. As used in this specification, the meaning of "comprising" specifies a particular characteristic, region, integer, step, operation, element and / or component, and the presence of another characteristic, region, integer, step, operation, element and / or component. I do not exclude wealth.
어느 부분이 다른 부분의 "위에" 또는 "상에'' 있다고 언급하는 경우, 이는 바로 다른 부분의 위에 또는 상에 있을 수 있거나 그 사이에 다른 부분이 수반될 수 있다. 대조적으로 어느 부분이 다른 부분의 "바로 위에" 있다고 언급하는 경우, 그 사이에 다른 부분이 개재되지 않는다.  When a part is referred to as being "on" or "on" another part, it may be directly on or above another part, or may be accompanied by another part in between. If it says "just above", no other part is intervened between them.
다르게 정의하지는 않았지만, 여기에 사용되는 기술용어 및 과학용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미를 가진다. 보통 사용되는 사전에 정의된 용어들은 관련기술문헌과 현재 개시된 내용에 부합하는 의미를 가지는 것으로 추가 해석되고, 정의되지 않는 한 이상적이거나 매우 공식적인 의미로 해석되지 않는다.  Although not defined otherwise, all terms including technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art. Commonly defined terms used are additionally interpreted to have a meaning consistent with the related technical literature and the presently disclosed contents, and are not interpreted in an ideal or very formal sense unless defined.
또한, 특별히 언급하지 않는 한 %는 중량 %를 의미하며, lppm 은 0.00이중량%이다. 또한 고스 (goss) 결정립이란 결정방위가 { 1 10} <001〉로부터 15도 이내의 방위를 갖는 결정립을 의미한다. In addition, unless otherwise indicated,% means weight% and lppm is 0.00 2 weight%. In addition, the crystal orientation of goss grain {1 10} refers to grains having an orientation within 15 degrees from <001>.
본 발명의 일 실시예에서 추가 원소를 더 포함하는 것의 의미는 추가 원소의 추가량 만큼 잔부인 철 (Fe)을 대체하여 포함하는 것올 의미한다. 이하, 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.  In the embodiment of the present invention, the meaning of further including additional elements means to include iron (Fe), which is the balance by the additional amount of the additional elements. Hereinafter, embodiments of the present invention will be described in detail so that those skilled in the art can easily practice. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.
본 발명의 일 실시예에 따른 방향성 전기강판의 제조방법은, 먼저, 중량 %로, Si: 1.0% 내지 4.0%, C:0.1 % 내지 0.4% 및 잔부는 Fe 및 기타 불가피하게 흔입되는 붙순물을 포함하는 슬라브를 제공한다. 또한, 슬라브는 중량 %로, Mn: 0%초과 0.1 %이하, S:0%초과 0.005%이하를 더 포함할 수 있다. 또한, 슬라브는 중량 %로, Bi:0.001% 내지 0.1 % 더 포함할 수 있다. 조성을 한정한 이유는 하기와 같다.  Method for producing a grain-oriented electrical steel sheet according to an embodiment of the present invention, first, in weight%, Si: 1.0% to 4.0%, C: 0.1% to 0.4% and the balance is Fe and other unavoidable stray Provide a slab to contain. In addition, the slab may further include Mn: more than 0% and 0.1% or less and S: 0% or more and 0.005% or less by weight. In addition, the slab may include a Bi: 0.001% to 0.1% by weight. The reason for limiting the composition is as follows.
실리콘 (Si)는 전기강판의 자기이방성을 낮추고 비저항을 증가시켜 철손을 개선한다. Si 함량이 1.0% 미만인 경우에는 철손이 열위하게 되며, 4.0% 초과인 경우 취성이 증가한다. .따라서, 슬라브 및 최종 소둔 단계 이후 방향성 전기강판에서의 Si의 함량은 1.0% 내지 4.0% 일 수 있다.  Silicon (Si) improves iron loss by lowering the magnetic anisotropy and increasing the resistivity of electrical steel sheets. If the Si content is less than 1.0%, iron loss is inferior, and if it is more than 4.0%, brittleness increases. Therefore, the content of Si in the grain-oriented electrical steel sheet after the slab and the final annealing step may be 1.0% to 4.0%.
탄소 (C)는 중간 탈탄소둔 및 최종 탈탄소둔중에 표층부의 Goss 결정립이 중심부로 확산하기 위하여 중심부의 C가 표층부로 빠져 나오는 과정이 필요하기 .때문에 슬라브 중 C의 함량은 0.1 내지 0.4 중량 <¾ 일 수 있다. 또한, 탈탄이 완료된 최종 소둔 단계 이후 방향성 전기강판에서의 탄소량은 0.0020 중량 % 이하일 수 있다. Carbon (C) requires a process where C at the center exits to the surface in order for the Goss grains at the surface to diffuse into the center during intermediate and final decarbonization . Therefore, the content of C in the slab may be 0.1 to 0.4 weight < ¾. In addition, the carbon amount in the grain-oriented electrical steel sheet after the final annealing step is completed decarburization may be less than 0.0020% by weight.
망간 (Mn) 및 황 (S) 는 MnS 석출물을 형성하여 탈탄 과정 중 중심부로 확산하는 Goss 결정립의 성장을 방해한다. 따라서 Mn, S 는 첨가되지 않는 것이 바람직하다. 그러나 제강 공정 중 불가피하게 흔입되는 양을 고려하여 슬라브 및 최종 소둔 단계 이후 방향성 전기강판에서의 Mn, S 는 Mn: 0.1 %이하, S: 0.005%이하로 제어하는 것이 바람직하다.  Manganese (Mn) and sulfur (S) form MnS precipitates that hinder the growth of Goss grains that diffuse into the center during decarburization. Therefore, it is preferable that Mn and S are not added. However, in consideration of the inevitably shaken amount during the steelmaking process, after the slab and the final annealing step, Mn, S in the grain-oriented electrical steel sheet is preferably controlled to Mn: 0.1% or less, S: 0.005% or less.
비스무스 (B0는 휘발성이 강한 편석원소로서 표층부에 위치할 경우 표면에서 휘발하게 되어 표층부의 결정립을 조대하게 만드는 특징이 있으며 이와는 반대로 강의 중심부에서는 결정립을 미세화시키는 효과가 있다. o.ooi 중량 % 미만으로 포함할 경우, 그 효과가 미미할 수 있다. 반대로 αι 중량 % 초과하여 첨가시에는 표면 결정립 크기의 불균일성을 초래하므로 0.001 내지 0.1 중량 %로 첨가하는 것이 바람직하다. Bismuth (B0 is a highly volatile segregation element, which, when placed on the surface layer, volatilizes from the surface to make grains coarse at the surface layer. On the other hand, bismuth (B0) has the effect of refining grains at the center of the steel. If less than o.ooi% by weight, the effect may be negligible. On the contrary, when added in excess of αι% by weight, it is preferable to add 0.001 to 0.1% by weight since it causes unevenness of the surface grain size.
상기와 같은 조성의 슬라브를 재가열을 한다. 슬라브 재가열 온도는 통상의 재가열 온도보다 높은 1 KX C 내지 1350°C일 수 있다. The slabs of the composition as described above are reheated. The slab reheating temperature may be between 1 KX C and 1350 ° C higher than the normal reheating temperature.
슬라브 가열시 온도가 높을 경우 열연 조직이 조대화되어 자성에 악영향을 미치게 되는 문제점이 있다. 그러나 본 발명의 일 실시예에 의한 방향성 전기강판의 제조 방법은 탄소의 함량이 종래보다 많아 슬라브 재가열 온도가 높더라도 열연 조직이 조대화 되지 않으며, 통상의 경우 보다 높은 온도에서 재가열 함으로써 , 열간 압연시 유리하다.  When the slab is heated when the temperature is high, there is a problem that the hot rolled tissue is coarsened to adversely affect the magnetism. However, in the method of manufacturing a grain-oriented electrical steel sheet according to an embodiment of the present invention, the hot rolled structure is not coarsened even when the slab reheating temperature is high because the carbon content is higher than that of the prior art. It is advantageous.
다음으로 가열이 완료된 슬라브를 열간 압연하여 열연 강판을 제조한다.  Next, the hot rolled slab is hot rolled to produce a hot rolled steel sheet.
다음으로 열연 강판을 열연판 소둔한다. 이때 열연판 소둔은 탈탄 과정올 포함할 수 있다. 구체적으로 열연판 소둔은 85()°C 내지 950°C 온도 및 이슬점 온도 5( C이상에서 소둔하는 단계 및 1000 °c 내지 i20crc 온도 및 이슬점 온도 o°c이하에서 소둔하는 단계를 포함할 수 있다. Next, the hot rolled sheet is annealed. At this time, the hot rolled sheet annealing may include a decarburization process. Specifically, the hot-rolled sheet annealing may include annealing at a temperature of 85 ° C. to 950 ° C. and a dew point temperature of 5 ° C. or higher, and annealing at 1000 ° C. to i20 crc temperature and dew point temperature of o ° c. .
다음으로 열연판 탈탄 소둔을 실시한 후 산세를 하고 1차 넁간 압연을 실시하여 냉연강판을 제조한다.  Next, the hot rolled sheet is subjected to decarburization annealing, followed by pickling, followed by primary rolling to prepare a cold rolled steel sheet.
다음으로 냉연강판을 탈탄 소둔한다. 이 때, 탈탄 ,소둔하는 단계는 오스테나이트 단상영역 또는 페라이트 및 오스테나이트의 복합상이 존재하는 영역에서 실시할 수 있다. 구체적으로 85CTC 내지 95C C 온도 및 이슬점 온도 5(rc이상에서 소둔하는 단계 및 locxrc 내지 i2ocrc 온도 및 이슬점 온도 o°c이하에서 소둔하는 단계를 포함할 수 있다. 또한, 탈탄 소둔시 탈탄량은 0.0300wt% 내지 0.0600wt% 일 수 있다. 또한, 분위기는 수소 및 질소의 흔합가스 분위기일 수 있다. 이러한 탈탄 소둔 과정에서 전기강판의 표면의 결정립의 크기는 조대하게 성장 하게 되지만 전기강판의 내부의 결정립은 미세한 조직으로 남게된다. 이러한 탈탄 소둔 이후 표면 페라이트 결정립의 크기는 150 내지 25 일 수 있다. Next, the cold rolled steel sheet is decarbonized and annealed. At this time, the step of decarburizing and annealing may be performed in an austenite single phase region or a region in which a composite phase of ferrite and austenite is present. Specifically, the method may include annealing at a temperature of 85CTC to 95C C and a dew point temperature of 5 (rc or more and annealing at locxrc to i2ocrc temperature and a dew point temperature of o ° c or less. In addition, the amount of decarburization during decarburization annealing is 0.0300wt. In addition, the atmosphere may be a mixed gas atmosphere of hydrogen and nitrogen In this decarburization annealing process, the grain size of the surface of the electrical steel sheet grows coarsely, but the grain inside the electrical steel sheet It remains as a fine tissue The size of the surface ferrite grains after such decarburization annealing may be 150 to 25.
다음으로, 탈탄 소둔이 완료된 강판을 2차 넁간 압연한다. 통상의 고자속밀도 방향성 전기강판의 제조 공정에 있어서 넁간 압연은 90%에 가까운 고압하율로 1회 실시하는 것이 효과적인 것으로 알려져 있다. 이것이Next, the steel sheet on which decarburization annealing is completed is secondary rolled. In the normal manufacturing process of high magnetic flux density oriented electrical steel sheet, rolling is 90% It is known that it is effective to perform it once at a close high pressure reduction rate. this
1차 재결정립 중 Goss 결정립만이 입자성장하기 유리한 환경을 만들어주기 때문이다. This is because only Goss grains in the primary recrystallized grains create an environment favorable for grain growth.
그러나 본 발명의 일 실시예에 따른 방향성 전기강판의 제조방법은 Goss 방위 결정립의 비정상 입자 성장을 이용하지 않고 탈탄 소둔 및 넁간 압연에 의하여 발생한 표층부의 Goss 결정립을 내부 확산시키는 것이므로 표층부에서 Goss 방위 결정립을 다수 분포하도록 형성하는 것이 유리하다. 따라서, 냉간 압연시 압하율 50% 내지 70%에서 넁간 압연을 실시하는 경우 Goss 집합조직이 표층부에서 다수 형성 될 수 있다. 또는 55% 내지 65% 일 수 있다.  However, the manufacturing method of the grain-oriented electrical steel sheet according to an embodiment of the present invention is to diffuse the Goss grains in the surface layer portion by internal diffusion of the Goss grains generated by decarburization annealing and rolling between the grains without using abnormal grain growth of the Goss grains. It is advantageous to form a large number distribution. Therefore, when cold rolling is performed at 50% to 70% reduction ratio during cold rolling, a large number of Goss textures may be formed at the surface layer portion. Or 55% to 65%.
전술한 넁연강판을 탈탄 소둔하는 단계 및 탈탄 소둔이 완료된 강판을 2차 냉간 압연하는 단계는 2회 이상 반복하여 실시할 수 있다. 2회 이상 반복하여 실시함으로써, Goss 집합조직이 표층부에서 다수 형성 될 수 있다.  The decarburizing annealing of the above-mentioned quenched steel sheet and the secondary cold rolling of the steel sheet having completed decarburization annealing may be repeated two or more times. By repeating two or more times, a large number of Goss textures can be formed at the surface layer.
다음으로 탈탄 소둔 및 2차 냉간 압연이 완료된 전기강판은 최종 소둔을 실시한다.  Next, the decarburization annealing and the second cold rolling is completed, the final steel annealing.
본 발명의 일 실시예에 의한 방향성 전기강판의 제조방법.에서는 기존의 배치 (batch)방식과 달리 냉간 압연에 이어 연속으로 최종 소둔을 실시할 수 있다.  In the method of manufacturing a grain-oriented electrical steel sheet according to an embodiment of the present invention, unlike the conventional batch (batch) method can be subjected to the final annealing continuously after cold rolling.
본 발명의 일 실시예에 의한 방향성 전기강판의 제조방법에서 최종 소둔은 850 °C 내지 100CTC 온도 및 이슬점 온도 70 °C이하에서 소둔하는 단계 및 KXXrC 내지 1200 °C 온도 및 H2 50' 부피 % 이상의 분위기에서 소둔하는 단계를 포함할 수 있다. 또한 2번째 단계의 분위기는 H2 90 부피 %이상 일 수 있다. Final annealing in the method for producing a grain-oriented electrical steel sheet according to an embodiment of the present invention is annealing at a temperature of 850 ° C to 100 CTC temperature and dew point temperature below 70 ° C and KXXrC to 1200 ° C temperature and H 2 50 ' volume% or more And annealing in an atmosphere. In addition, the atmosphere of the second stage may be more than 90% by volume of H 2 .
최종 소둔 전 냉연판은 탈탄 소둔이 진행되어 소강 탄소량이 최소 슬라브의 탄소량 대비 40 중량 % 내지 60 중량 % 남아있는 상태이다. 따라서 최종 소둔 시 제 1 단계에서는 탄소가 빠져나가면서 표층부에 형성된 결정립이 내부로 확산된다. 제 1 단계에서는 강판 중의 탄소량을 0.01 중량 % 이하가 되도록 탈탄을 실시할 수 있다.  Before the final annealing, the cold rolled sheet is subjected to decarburization annealing so that the amount of carbon steel remains 40 to 60% by weight relative to the minimum amount of carbon in the slab. Therefore, in the first step during final annealing, the crystal grains formed on the surface layer portion are diffused into the carbon as the carbon is released. In the first step, decarburization may be performed so that the carbon amount in the steel sheet is 0.01% by weight or less.
이 후, 제 2 단계에서는 1 단계에서 확산된 고스 방위를 가진 집합조직이 성장하게 된다. 본 발명의 일 실시예에 의한 방향성 전기강판의 제조방법에서는 고스 집합조직은 종래의 비정상 입자성장에 의하여 결정립이 성장된 경우와 달리 결정립의 입경은 1 mm '이내 일 수 있다. 따라서, 종래의 방향성 전기강판에 비하여 결정립의 크기가 작은 고스 결정립이 다수개 존재하는 집합조직을 가질 수 있다. After that, the second stage has a goth bearing diffused in the first stage. The organization grows. In the method for manufacturing a grain-oriented electrical steel sheet according to an embodiment of the present invention, the goose texture may have a grain size of less than 1 mm ' unlike when grains are grown by conventional abnormal grain growth. Therefore, it is possible to have an aggregate structure in which a plurality of goth grains having a smaller grain size than the conventional grain-oriented electrical steel sheet exist.
이렇게 제조된 강판은 강판의 두께 방향과 수직하는 면에 대하여, 외접원의 지름 (D1)과 내접원의 지름 (D2)의 비 (D2/D1)가 0.5이상인 고스 결정립이 전체 고스 결정립 중 95 면적 % 이상 포함할 수 있다. 강판의 결정 조직에 대해서는 후술할 방향성 전기강판에 대하여 구체적으로 설명한다. 한편, 종래 배치 (Batch) 형태로 최종 소둔시 MgO를 주성분으로 하는 소둔 분리제를 도포하기 때문에 MgO 코팅층이 존재하게 되지만, 본 발명의 일 실시예에 의한 방향성 전기강판은 배치 형태가 아닌 연속식으로 최종소둔을 실시할 수 있으므로 MgO 코팅층이 존재하지 않을 수 있다. . 이에 의하여 본 발명의 일 실시예에 의한 방향성 전기강판에서 강판의 표면으로부터 2 I 내지 5 깊이 까지의 Mg 함량은 lOOppm 이하일 수 있다.  In the steel sheet thus manufactured, the Goth crystal grains having a ratio (D2 / D1) of the diameter (D1) of the circumscribed circle and the diameter (D2) of the circumscribed circle (D2 / D1) of 0.5 or more with respect to the surface perpendicular to the thickness direction of the steel plate are 95 area% or more of the total Goth crystal grains. It may include. About the crystal structure of a steel plate, the grain-oriented electrical steel plate mentioned later is demonstrated concretely. On the other hand, MgO coating layer is present because the conventional annealing separator based on MgO is applied during final annealing in the form of a batch, but the grain-oriented electrical steel sheet according to an embodiment of the present invention is not in a batch form but in a continuous manner. Since the final annealing can be carried out there may be no MgO coating layer. . As a result, in the grain-oriented electrical steel sheet according to one embodiment of the present invention, the Mg content from the surface of the steel sheet to a depth of 2 I to 5 may be 100 ppm or less.
다음으로, 최종 소둔이 완료된 강판을 산세한다. 산세하는 공정을 통해 강판의 표면에 자연스럽게 형성되는 산화충이 제거된다. 결국, 강판의 표면부로부터 2 卿 내지 5 깊이 까지는 산소를 500ppm 이하로 포함하는 산소 결핍층이 형성된다. 반면, 최종 소둔 공정에서 MgO 등의 소둔 분리제를 이용하여 비금속 층 (베이스 코팅층)을 형성하고, 이 비금속 층을 다시 제거하는 이른바 글라스리스 방법의 경우, 비금속 층을 제거하더라도, 비금속 층으로부터 확산된 산소가 강판의 표면층에 일부 잔존하여, 표면층에 산소를 포함하게 된다.  Next, the steel plate on which the final annealing is completed is pickled. The pickling process removes the oxides that naturally form on the surface of the steel sheet. As a result, an oxygen depletion layer containing not more than 500 ppm of oxygen is formed from the surface portion of the steel sheet to 2 kPa to 5 depths. On the other hand, in the so-called glassless method of forming a nonmetallic layer (base coating layer) using an annealing separator such as MgO in the final annealing process and removing the nonmetallic layer again, even if the nonmetallic layer is removed, it is diffused from the nonmetallic layer. Oxygen remains partially in the surface layer of the steel sheet, and the surface layer contains oxygen.
. 산세하는 단계는 5 내지 50 중량 %의 산 수용액올 이용할 수 있다. 이 때 산 수용액은 염산, 질산 또는 황산 등 무기산을 포함하는 수용액을 사용할 수 있다. 산 수용액의 농도가 너무 작은 경우, 적절한 산세가 이루어지지 않을 수 있다. 또한, 산 수용액의 농도가 너무 큰 경우, 강판 표면의 조도가 너무 높아져, 자성에 악영향을 줄 수 있다.  . The pickling step may use 5 to 50% by weight of an acid aqueous solution. In this case, an aqueous solution containing an inorganic acid such as hydrochloric acid, nitric acid or sulfuric acid may be used as the acid aqueous solution. If the concentration of the acid aqueous solution is too small, proper pickling may not be achieved. In addition, when the concentration of the acid aqueous solution is too large, the roughness of the surface of the steel sheet is too high, may adversely affect the magnetic.
산세하는 단계는 50 내지 100t의 온도에서 수행될 수 있다. 온도가 너무 낮은 경우 산세가 적절히 이루어지지 않는 문제가 발생할 수 있다. 온도가 너무 높은 경우, 재산화의 문제가 발생할 수 있다. The pickling step may be carried out at a temperature of 50 to 100 t. Temperature If it is too low, problems with pickling may not occur properly. If the temperature is too high, problems with reoxidation may occur.
산세하는 단계는 5초 내지 100초 동안 산세할 수 있다. 시간이 너무 짧은 경우, 산화층의 제거가 층분히 이루어지지 않을 수 있다. 시간이 너무 긴 경우, 결정립 내부와 결정립경 간의 산세능의 불균일성으로 인하여 오히려 자성이 열악해질 수 있다. 더욱 구체적으로 산세하는 단계는 15 내지 35초간 산세할 수 있다.  The pickling step may be pickling for 5 seconds to 100 seconds. If the time is too short, the removal of the oxide layer may not be performed well. If the time is too long, the magnetism may be poor due to the nonuniformity of pickling ability between the grains and the grain boundaries. More specifically, the pickling step may be pickling for 15 to 35 seconds.
이처럼 적절한 조건의 산세 공정을 통해 기재 내부로 산소 결핍층이 형성되며, 자구 이동이 원활해져 자기이력손실이 감소하여, 자성이 더욱 향상될 수 있다.  As such, an oxygen depletion layer is formed into the substrate through a pickling process under appropriate conditions, and the magnetic domains are smoothly moved, thereby reducing the magnetic history loss and further improving the magnetism.
다음으로, 산세가 완료된 강판에 세라믹 코팅층을 형성한다. ' 세라믹 코팅층을 형성하는 단계는 플라즈마를 이용할 수 있다. 구체적으로 불활성 가스를 플라즈마화한 열원에 세라믹 분말을 공급하여 세라믹 코팅층을 형성할 수 있다. 세라믹 코팅층을 형성하는 방법으로, 본 발명의 일 실시예에서는 플라즈마를 이용한 코팅 방법을 사용할 수 있다. 세라믹 분말은 A1203, Si02, Ti02 또는 Zr02를 포함할 수 있다. 불활성 가스는 아르곤 가스를 포함할 수 있다. Next, a ceramic coating layer is formed on the steel plate on which pickling is completed. The forming of the ceramic coating layer may use plasma. Specifically, the ceramic coating layer may be formed by supplying ceramic powder to a heat source in which an inert gas is plasma-formed. As a method of forming the ceramic coating layer, in one embodiment of the present invention, a coating method using plasma may be used. The ceramic powder may comprise A1 2 0 3 , Si0 2 , Ti0 2 or Zr0 2 . The inert gas can include argon gas.
전술하였듯이, 본 발명의 일 실시예에서는 종래 배치 형태로 운영되는 최종 소둔 공정을 연속 소둔 공정으로 운영할 수 있으며, 1차 넁간 압연하는 단계 내지 세라믹 코팅층을 형성하는 단계는 연속하여 이루어 질 수 있다. 도 1에서는 본 발명의 일 실시예에 의한 방향성 전기강판의 단면을 개략적으로 나타낸다. 도 1에 나타나듯이, 본 발명의 일 실시예에 의한 방향성 전기강판 (100)은 기재 (10) 및 기재 (10)의 표면 상에 형성된 세라믹 코팅층 (20)을 포함한다. 이하에서는 각 구성별로 상세히 설명한다. 도 1에서 X 방향은 강판의 폭 방향, z 방향은 강판의 두께 방향을 의미한다. 도 1에 도시되지 아니하였으나, y 방향은 강판의 압연 방향을 의미한다.  As described above, in an embodiment of the present invention, the final annealing process operated in a conventional batch form may be operated as a continuous annealing process, and the step of forming the ceramic coating layer from the first rolling may be continuously performed. 1 schematically shows a cross section of a grain-oriented electrical steel sheet according to an embodiment of the present invention. As shown in FIG. 1, the grain-oriented electrical steel sheet 100 according to an embodiment of the present invention includes a substrate 10 and a ceramic coating layer 20 formed on the surface of the substrate 10. Hereinafter, each configuration will be described in detail. In FIG. 1, the X direction means the width direction of the steel sheet, and the z direction means the thickness direction of the steel sheet. Although not shown in Figure 1, the y direction means the rolling direction of the steel sheet.
기재는 Si: 1.0% 내지 4.0%, C:0.002% 이하 (0%를 포함하지 않는다) 및 잔부는 Fe 및 기타 불가피하게 흔입되는 불순물을 포함한다. 기재의 원소 함량 및 이유에 대해서는 전술한 방향성 전기강판의 제조 방법과 관련해서 구체적으로 설명하였으므로, 중복되는 설명은 생략한다. 전술하였듯이, 제조 과정에서 탈탄 과정을 포함하므로, 기재 내의 탄소 함량은 슬라브 내의 탄소 함량과 달리 0.002 중량 <¾ 이하로 포함할 수 있다. 또한, 기재는 중량 %로, Mn: 0%초과 0.1%이하, S:0%초과 0.005%이하를 더 포함할 수 있다. 또한, 기재는 중량 %로, Bi:0.001% 내지 0.1% 더 포함할 수 있다. The substrate includes Si: 1.0% to 4.0%, C: 0.002% or less (not including 0%), and the balance includes Fe and other unavoidable impurities. The element content and reason of the substrate have been described in detail with reference to the above-described method for producing a grain-oriented electrical steel sheet, and thus redundant descriptions thereof will be omitted. As described above, since the decarburization process is included in the manufacturing process, the carbon content in the substrate may include 0.002 weight < ¾ or less, unlike the carbon content in the slab. In addition, the substrate may further include Mn: more than 0% and 0.1% or less, and S: 0% or more and 0.005% or less by weight%. In addition, the substrate may further include Bi: 0.001% to 0.1% by weight.
기재는 강판의 두께 방향과 수직하는 면에 대하여, 외접원의 지름 (D1)과 내접원의 지름 (D2)의 비 (D2/D1)가 으5이상인 고스 결정립이 전체 고스 결정립 중 95 면적 % 이상 포함할 수 있다. 여기서, 외접원이란 결정립의 외부를 둘러싸는 가상의 원 중 가장 작은 원올 의미하고, 내접원이란 결정립의 내부에 포함되는 가상의 원 중 가장 큰 원을 의미한다. 본 발명의 일 실시예에 의한 기재의 조직은, 표면의 고스 결정립이 강판의 내부로 성장하게 되므로 둥근 형태의 결정립이 생성된다. 반면, 기존의 방향성 전기강판은 본 발명의 일 실시예에 의한 조직보다 간 타원 형태의 결정립이 생성된다.  The base material may include at least 95 area% of the total Goth grains in a Goth grain having a ratio (D2 / D1) of the diameter (D1) of the circumscribed circle and the diameter (D2) of the circumscribed circle to a plane perpendicular to the thickness direction of the steel sheet. Can be. Here, the circumscribed circle means the smallest circle among the imaginary circles surrounding the outside of the grain, and the circumscribed circle means the largest circle among the imaginary circles included in the grain. In the structure of the substrate according to the embodiment of the present invention, since the Goth crystal grains on the surface grow into the steel sheet, round crystal grains are generated. On the other hand, the existing grain-oriented electrical steel sheet than the tissue according to an embodiment of the present invention is produced in the shape of the liver oval crystal grains.
이처럼 본 발명의 일 실시예에 의한 특유의 기재 조직으로 인하여, 더욱 우수한 자성을 얻을 수 있다.  Thus, due to the unique substrate structure according to an embodiment of the present invention, it is possible to obtain more excellent magnetic properties.
본 발명의 일 실시예에 의한 기재의 결정립의 크기는 20/ 내지 500μηι 인 것이 전체 결정립 중 80% 이상일 수 있다.  The size of the crystal grains of the substrate according to an embodiment of the present invention may be 20 / to 500μηι may be 80% or more of the total grains.
기재 (10)는 기재 (10)의 . 표면으로부터 기재 내부로 형성된 산소 결핍층 (11)을 포함할 수 있다. 더욱 구체적으로 산소 결핍층 (11) 기재 (10)의 표면으로부터 기재 내부로 2 내지 5 um 깊이로 형성될 수 있다.  The substrate 10 is the substrate 10. And an oxygen depletion layer 11 formed from the surface into the substrate. More specifically, the oxygen depletion layer 11 may be formed at a depth of 2 to 5 um into the substrate from the surface of the substrate 10.
산소 결핍층 (11)은 산소를 500ppm 이하로 포함할 수 있다. 나머지 조성은 전술한 기재의 합금 조성과 동일하다. 기존의 베이스 코팅 프리 강판과는 달리, 베이스 코팅을 형성한 후, 이를 제거하는 것이 아니기 때문에, 자연스럽게 형성되는 산화충을 산세를 통해 제거함으로써, 강판 표면부에 산소 결핍층을 형성할 수 있다.  The oxygen depletion layer 11 may contain oxygen at 500 ppm or less. The remaining composition is the same as the alloy composition described above. Unlike the existing base coating free steel sheet, since the base coating is not formed and then removed, the oxygen depletion layer may be formed on the surface of the steel sheet by removing the naturally occurring oxidized worm through pickling.
산소 결핍층 (11)의 형성에 의해, 자구 이동이 원활해져 자기이력손실이 감소하여, 자성이 더욱 향상될 수 있다. 더욱 구체적으로 산소 결핍층 (11)은 산소를 lOOppm 이하로 포함할 수 있다. 또한, 포스테라이트를 포함하는 베이스 코팅층을 형성하지 않기 때문에, 산소. 결핍층 (11) 내에는 Mg를 불순물 범위로 포함하게 된다. 구체적으로 Mg를 lOOppm 이하로 포함할 수 있다. By the formation of the oxygen depletion layer 11, the magnetic domain movement is smoothed, the magnetic history loss is reduced, and the magnetism can be further improved. More specifically, the oxygen depletion layer 11 may include oxygen at less than 100 ppm. In addition, since the base coating layer containing forsterite is not formed, oxygen. In the depletion layer 11, Mg is included in an impurity range. Specifically, Mg may be included in an amount of lOOppm or less.
기재 (10)의 표면 상에는 세라믹 코팅층 (20)이 형성된다. 기재 (10) 내에 산소 결핍층 (1 1)을 포함하는 경우, 산소 결핍층 (11) 상에 세라믹 코팅층 (20)이 형성될 수 있다. 세라믹 코팅층 (20)에 의해 강력한 장력이 강판에 작용될 수 있으며, 이로 인한 자구 미세화 및 철손 개선의 효과가 극대화 될 수 있다.  On the surface of the substrate 10, a ceramic coating layer 20 is formed. When the oxygen depletion layer 11 is included in the substrate 10, the ceramic coating layer 20 may be formed on the oxygen depletion layer 11. The strong tension may be applied to the steel sheet by the ceramic coating layer 20, and thus the effect of miniaturization of magnetic domains and iron loss improvement may be maximized.
세라믹 코팅층 (20)의 두께는 10nm 내지 4//m가 될 수 있다. 두께가 너무 얇으면 장력 효과가 발생하기 어렵다. 두께가 너무 두꺼우면, 철손 개선 효과가 더 이상 발생하지 아니하며, 오히려, 강판의 적층 후 변압기 철심으로 사용할 때의 점적율이 떨어져 변압기 무부하손이 증가하는 원인이 될 수 있다.  The thickness of the ceramic coating layer 20 may be 10nm to 4 / / m. If the thickness is too thin, the tension effect is unlikely to occur. If the thickness is too thick, the effect of improving the iron loss no longer occurs, but rather, it may cause the transformer no-load loss to increase due to a drop in the drop rate when used as a transformer core after lamination of steel sheets.
세라믹 코팅층 (20)은 A1203, Si02, Ti02 또는 Zr02를 포함할 수 있다. 세라믹 코팅층 (20)은 기재 (10)의 표면 전체에 형성될 수 있으나, 기재 표면의 일 부분에만 형성될 수 있다. 기재 표면의 일 부분에 형성되는 경우, 패턴을 형성하는 것도 가능하다. 구체적으로 세라믹 코팅층 (20)은 압연 방향으로, 폭 (w)이 10 내지 100mm이고, 간격 (d)이 10 내지 100mm인 패턴을 형성할 수 있다. 도 2에서는 세라믹 코팅층 (20)이 패턴을 형성한 경우의 예를 개략적으로 나타낸다. 이와 같이 세라믹 코팅층 (20)이 패턴을 형성하는 경우, 자성이 더욱 향상될 수 있다. The ceramic coating layer 20 may include A1 2 0 3 , Si0 2 , Ti0 2 or Zr0 2 . The ceramic coating layer 20 may be formed on the entire surface of the substrate 10, but may be formed only on a portion of the surface of the substrate. When formed in a part of the surface of the substrate, it is also possible to form a pattern. Specifically, the ceramic coating layer 20 may form a pattern having a width (w) of 10 to 100 mm and a distance (d) of 10 to 100 mm in the rolling direction. 2 schematically shows an example in which the ceramic coating layer 20 forms a pattern. As such, when the ceramic coating layer 20 forms a pattern, magnetism may be further improved.
이하, 실시예를 통해 상세히 설명한다. 단 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다.  Hereinafter, the embodiment will be described in detail. However, the following examples are merely to illustrate the invention, but the content of the present invention is not limited by the following examples.
제조예 : 방향성 전기강판 기재의 제조  Manufacture example Manufacture of grain-oriented electrical steel base material
중량 %로 Si:3.23%, C:0.25%를 함유하고 잔부 Fe 및 불가피한 불순물로 이루어진 슬라브를 125CTC의 온도에서 가열한 다음 1.6mm 두께로 열간압연하고, 이어 소둔은도 870 °C , 이슬점 온도 60°C 에서 120초간 소둔 후, 이슬점 온도 0 °C이하 수소, 질소 흔합가스 분위기에서 소둔온도 1100°C 및 200초간 열연판 소둔을 실시하고 넁각한 후 산세를 실시하고, 60%의 압하율로 1차 냉간압연하였다. 넁간 압연된 판은 다시 소둔온도 870°C , 이슬점 온도 6C C 에서 60초간 소둔 후, 수소, 이슬점 온도. 0°C이하 수소, 질소 흔합가스 분위기에서 소둔온도 licxrc 및 50초간 탈탄소둔을 실시하고 냉각한 후 산세를 실시하고, 60%의 압하율로 2차 넁간압연하였다. 최종 두께는 288 1였다. A slab containing Si: 3.23% and C: 0.25% by weight and consisting of the balance Fe and unavoidable impurities is heated at a temperature of 125 CTC and then hot rolled to a thickness of 1.6 mm, followed by annealing at 870 ° C and dew point temperature of 60 After annealing at 120 ° C for 120 seconds, conduct annealing at 1100 ° C and 200 seconds for annealing temperature below 0 ° C in hydrogen, nitrogen gas mixture, and after annealing, pickling and pickling at 60%. Cold-rolled. The hot rolled plate was then annealed again at annealing temperature of 870 ° C and dew point of 6C C for 60 seconds . After the annealing temperature licxrc and decarbonization annealing for 50 seconds in an atmosphere of hydrogen and nitrogen mixed gas below 0 ° C., cooling and pickling were carried out, and secondary rolling was carried out at a reduction ratio of 60%. The final thickness was 288 1.
이후 최종 소둔시에는 900 °C의 은도에서 수소, 질소의 습윤 (이슬점 온도 6(rc) 흔합가스 분위기에서 60초간 소둔을 실시한 후 io5(rc의 ιοο%After the final annealing, wetting of hydrogen and nitrogen at 900 ° C in silver (an dew point temperature of 6 (rc) in an atmosphere of mixed gas for 60 seconds, followed by io5 (rc ιοο%
H2 분위기에서 3분 동안 소둔을 실시하였다. 최종 강판의 탄소 함량은 30ppm 이었다. Annealing was performed for 3 minutes in an H 2 atmosphere. The carbon content of the final steel sheet was 30 ppm.
두께 방향과 수직하는 면에 대한 Goss결정립 분포를 EBSD 분석올 통하여 나타낸 사진을 도 3에 나타내었다.  The Goss grain distribution on the plane perpendicular to the thickness direction is shown in FIG. 3 through an EBSD analysis.
표 1 은 도 3에 나타난 제조예에서의 Goss 결정립의 내접원과 외접원의 상대적인 크기를 측정하고 그 비 (D2/D1)를 나타낸 표이다.  Table 1 is a table measuring the relative sizes of the inscribed circle and the circumscribed circle of the Goss grains in the preparation example shown in Figure 3 and showing the ratio (D2 / D1).
【표 1】 Table 1
Figure imgf000014_0001
1.8 1 0.56
Figure imgf000014_0001
1.8 1 0.56
1.7 0.9 0.53  1.7 0.9 0.53
1.2 0.8 0.67  1.2 0.8 0.67
1.3 1 0.77  1.3 1 0.77
2 1 0.5  2 1 0.5
1.5 0.9 0.6  1.5 0.9 0.6
1.2 0.7 0.58  1.2 0.7 0.58
표 1에서 나타나듯이, 모든 Goss 결정립의 비 (D2/D1)가 0.5 이상임을 확인할 수 있다ᅳ  As shown in Table 1, it can be seen that the ratio (D2 / D1) of all Goss grains is 0.5 or more.
비교제조예 : 방향성 전기강판 기재의 제조  Comparative Production Example : Fabrication of grain-oriented electrical steel sheet substrate
중량 %로 Si:3.23%, C:0.25%를 함유하고 잔부 Fe 및 블가피한 불순물로 이루어진 슬라브를 1250°C의 온도에서 가열한 다음 1.6mm 두께로 열간압연하고, 이어 이슬점 온도 0°C이하 수소, 질소 흔합가스 분위기에서 소둔온도 liocrc 및 200초간 열연판 소둔을 실시하고 넁각한 후 산세를 실시하고, 288卿 두께로 냉간압연하였다. A slab containing Si: 3.23% and C: 0.25% by weight and consisting of the balance Fe and unavoidable impurities is heated at a temperature of 1250 ° C and then hot rolled to a thickness of 1.6 mm, followed by a dew point temperature of 0 ° C or less. The annealing temperature liocrc and the hot rolled sheet annealing were performed for 200 seconds in an atmosphere of hydrogen, nitrogen, and mixed gas, followed by pickling, followed by cold rolling to a thickness of 288 kPa.
냉간 압연된 판은 다시 소둔온도 87C C , 이슬점 온도 60°C 에서 60초간 소둔 후, 수소, 이슬점 온도 0°C이하 수소, 질소 흔합가스 분위기에서 소둔온도 1 X C 및 50초간 탈탄소둔을 실시하고, 105C C의 100% H2 분위기에서 3분 동안 최종 소둔을 실시하였다. The cold rolled plate was annealed again at annealing temperature of 87C C and dew point temperature of 60 ° C. for 60 seconds, followed by hydrogen annealing temperature of 0 ° C. or lower, hydrogen and nitrogen mixed gas atmosphere, annealing temperature of 1 XC and 50 seconds of decarbonization annealing. Final annealing was performed for 3 minutes in a 100% H 2 atmosphere of 105 C C.
두께 방향과 수직하는 면에 대한 Goss결정립 분포를 EBSD 분석을 통하여 나타낸 사진을 도 4에 나타내었다.  The Goss grain distribution on the surface perpendicular to the thickness direction is shown in FIG. 4 by EBSD analysis.
표 2 는 도 4 에 나타난 방향성 전기강판의 내접원과 외접원의 상대적인 크기를 측정하고 그 비 (D2/D1)를 나타낸 표이다.  Table 2 is a table measuring the relative size of the inscribed circle and the circumscribed circle of the grain-oriented electrical steel sheet shown in Figure 4 and showing the ratio (D2 / D1).
【표 2]  [Table 2]
Figure imgf000015_0001
4.7 1.7 0.36
Figure imgf000015_0001
4.7 1.7 0.36
1.1 0.5 0.45 1.1 0.5 0.45
2.5 0.9 0.362.5 0.9 0.36
1 0.5 0.51 0.5 0.5
2.3 1.4 0.612.3 1.4 0.61
1.2 - 0.9 0.751.2-0.9 0.75
5.1 2.3 0.455.1 2.3 0.45
1.9 0.7 0.371.9 0.7 0.37
3.6 2.1 0.583.6 2.1 0.58
2.7 1.7 0.632.7 1.7 0.63
1.4 0.6 0.431.4 0.6 0.43
0.8 0.4 0.50.8 0.4 0.5
1.3 0.5 0.381.3 0.5 0.38
0.7 0.3 0.430.7 0.3 0.43
1.8 1.1 0.611.8 1.1 0.61
1.1 0.5 0.451.1 0.5 0.45
0.9 0.35 0.39 표 2에서 나타나듯이, 비교제조예에서 제조한 기재는 조직이 긴 타원 형태의 결정립이므로 D2/D1의 값은 본 발명의 일 실시예에 의한 기재 보다 작은 값을 나타나게 됨을 확인할 수 있다. 0.9 0.35 0.39 As shown in Table 2, since the substrate prepared in Comparative Preparation Example is a long elliptic crystal grain, the value of D2 / D1 may be smaller than that of the substrate according to one embodiment of the present invention.
실시예 1  Example 1
제조예에서 제조한 방향성 전기강판 기재에 80°C의 25 중량 % 농도의 HC1 수용액을 이용하여 산세하였다. 이후, 강판 표면 전체에 A1203 피막을 3 ηι 두께로 형성하였다. The grain-oriented electrical steel sheet prepared in Preparation Example was pickled using an aqueous solution of HC1 at a concentration of 25% by weight of 80 ° C. Thereafter, an A1 2 0 3 film was formed to a thickness of 3 ηι over the entire surface of the steel sheet.
산세 시간에 따른 소지 강판 두께의 변화와 자기적 특성 변화를 표 3에 나타내었다. 또한 표면으로부터 3//m 깊이 까지의 산소 결핍층 내의 산소량을 측정하여 하기 표 3에 표시하였다. 또한, 철손 자속밀도를 single sheet 측정법을 이용하여 측정하였고, 50Hz에서 1.7Tesla로 자화될 때까지의 철손 (W17/50) 및 lOOOA/m 자기장 하에서 유도되는 자속밀도 (B10)을 측정하였다. 그 결과를 하기 표 3에 정리하였다. . Table 3 shows the changes in the steel sheet thickness and magnetic properties with pickling time. In addition, the amount of oxygen in the oxygen depletion layer from the surface to the depth 3 / / m was measured and shown in Table 3 below. In addition, the iron loss magnetic flux density was measured using a single sheet measurement method, and it was magnetized to 1.7 Tesla at 50 Hz. The magnetic flux density (B 10) is derived under the iron loss (W 17/50) and lOOOA / m magnetic field to the time was measured. The results are summarized in Table 3 below. .
【표 3】  Table 3
Figure imgf000017_0002
Figure imgf000017_0002
표 3에서 나타나듯이, 산세 공정을 전혀 실시하지 않은 비교재 1에 비해, 산세 공정을 실시한 발명재 1 내지 발명재 7이 자성이 우수함을 확인할 수 있다. 특히, 산세 시간을 15 내지 30초로 수행한 발명재 3 내지 발명재 6이 다른 발명재에 비해 자성이 더욱 우수함을 확인할 수 있다. 실시예 2  As shown in Table 3, it can be confirmed that Inventive Materials 1 to 7 which were subjected to the pickling process are superior in magnetic properties, as compared to Comparative Material 1 which did not perform the pickling process at all. In particular, it can be seen that the invention material 3 to 6, which performed the pickling time in 15 to 30 seconds is more excellent magnetic than other invention materials. Example 2
제조예에서 제조한 방향성 전기강판 기재에 80 °C의 25 중량 <% 농도의 HC1 수용액을 이용하여 산세하였다. 이후, 아르곤 (Ar) 가스를 200kW의 출력으로 플라즈마화한 열원에 세라믹 분말을 공급하여 세라믹 코팅층을 형성하였다. 이 때, 30mm 코팅 폭 (w) 및 20mm 코팅 간격 (d)으로 패턴을 형성하였다. 세라믹 종류, 세라믹 코팅층의 두께를 하기 표 4와 같이 변경하였으며, 그에 따른 자기적 특성의 변화를 표 4에 정리하였다. The grain-oriented electrical steel sheet prepared in Preparation Example was pickled using an aqueous solution of HC1 at a concentration of 25% by weight < % at 80 ° C. Thereafter, ceramic powder was supplied to a heat source in which argon (Ar) gas was converted into plasma at an output of 200 kW to form a ceramic coating layer. At this time, a pattern was formed with a 30 mm coating width (w) and a 20 mm coating interval (d). Types of ceramics, the thickness of the ceramic coating layer was changed as shown in Table 4, and the changes in the magnetic properties accordingly are summarized in Table 4.
Figure imgf000017_0001
A1203 2.4 1.92 0.94 발명재 10
Figure imgf000017_0001
A1 2 0 3 2.4 1.92 0.94 Invention 10
A1203 3.5 1.91 0.93 발명재 11A1 2 0 3 3.5 1.91 0.93 Invention 11
Si02 0.5 1.91 0.99 발명재 12Si0 2 0.5 1.91 0.99 Invention 12
Si02 0.9 1.92 0.96 발명재 13Si0 2 0.9 1.92 0.96 Invention 13
Si02 1.2 1.92 0.94 발명재 14Si0 2 1.2 1.92 0.94 Invention 14
Si02 - 2.5 1.92 0.92 발명재 15Si0 2 - 2.5 1.92 0.92 invention material 15
Si02 3.5 1.91 0.93 발명재 16Si0 2 3.5 1.91 0.93 Invention 16
Ti02 0.4 1.91 0.98 발명재 17Ti0 2 0.4 1.91 0.98 Invention 17
Ti02 0.7 1.92 0.96 발명재 18Ti0 2 0.7 1.92 0.96 Invention 18
Ti02 1.1 1.92 0.94 발명재 19Ti0 2 1.1 1.92 0.94 Invention 19
Ti02 1.5 1.92 0.91 발명재 20Ti0 2 1.5 1.92 0.91 Invention 20
Ti02 2.3 1.92 0.90 발명재 21Ti0 2 2.3 1.92 0.90 Invention 21
Ti02 3.3 1.91 0.90 . 발명재 22Ti 0 2 3.3 1.91 0.90 . Invention Material 22
Zr02 1.0 1.91 0.97 발명재 23Zr0 2 1.0 1.91 0.97 Invention 23
Zr02 3.4 191 0.95 발명재 24 표 2에 나타난 것과 같이, 세라믹 코팅충을 적절히 형성함으로써, 자성 향상을 더욱 도모할 수 있다. Zr0 2 3.4 191 0.95 Invention 24 As shown in Table 2, by appropriately forming a ceramic coating, the magnetic improvement can be further improved.
이상 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.  Although the embodiments of the present invention have been described above with reference to the accompanying drawings, those skilled in the art to which the present invention pertains may implement the present invention in other specific forms without changing the technical spirit or essential features thereof. I can understand that.
그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변경된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.  Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive. The scope of the present invention is shown by the following claims rather than the detailed description, and all changes or modifications derived from the meaning and scope of the claims and their equivalents should be construed as being included in the scope of the present invention. .
【부호의 설명】  [Explanation of code]
100: 방향성 전기강판 10: 기재  100: oriented electrical steel sheet 10: base material
11: 산소 결핍층 20: 세라믹 코팅층  11: oxygen depletion layer 20 ceramic coating layer

Claims

【청구범위】 [Claim]
【청구항 1】  [Claim 1]
증량 %로, Si: 1.0% 내지 4.0%, CO.1% 내지 0.4% 및 잔부는 Fe 및 기타 불가피하게 흔입되는 볼순물을 포함하는 슬라브를 제공하는 단계; 상기 슬라브를 재가열하는 단계;  Providing a slab comprising, in% by weight, Si: 1.0% to 4.0%, CO.1% to 0.4% and the balance comprising Fe and other inevitably shaken balls; Reheating the slab;
상기 슬라브를 열간 압연하여 열연 강판을 제조하는 단계;  Hot rolling the slab to produce a hot rolled steel sheet;
상기 열연 강판을 열연판소둔하는 단계;  Hot-rolled sheet annealing the hot rolled steel sheet;
상기 열연판 소둔된 열연 강판을 1차 넁간 압연하는 단계;  Primary rolling the hot rolled steel sheet annealed hot rolled sheet;
상기 1차 냉간 압연된 강판을 탈탄 소둔하는 단계;  Decarburizing annealing the primary cold rolled steel sheet;
상기 탈탄 소둔이 완료된 강판을 2차 넁간 압연하는 단계;  Secondary rolling the steel sheet on which decarburization annealing is completed;
상기 2차 냉간 압연이 완료된 강판을 최종 소둔하는 단계;  Finally annealing the steel sheet on which the second cold rolling is completed;
최종 소둔이 완료된 강판을 산세하는 단계; 및  Pickling the steel sheet after the final annealing is completed; And
산세가 완료된 강판에 세라믹 코팅층을 형성하는 단계  Forming a ceramic coating layer on the pickled steel sheet
를 포함하는 방향성 전기강판의 제조방법.  Method for producing a grain-oriented electrical steel sheet comprising a.
【청구항 2】  [Claim 2]
거 U항에 있어서, .  According to U,.
상기 열연판 소둔하는 단계에서 탈탄과정을 포함하는 방향성 전기강판의 제조방법.  Method of producing a grain-oriented electrical steel sheet comprising a decarburization process in the step of annealing the hot rolled sheet.
【청구항 3】  [Claim 3]
게 1항에 있어서,  According to claim 1,
상기 열연판 소둔하는 단계는 850 °C 내지 950 °C 온도 및 이슬점 온도 5(rc이상에서 소둔하는 단계 및 Kxxrc 내지 i20crc 온도 및 이슬점 온도 o °c이하에서 소둔하는 단계를 포함하는 방향성 전기강판의 제조방법ᅳ The annealing of the hot rolled sheet may include the annealing at a temperature of 850 ° C to 950 ° C and a dew point temperature of 5 (rc or higher) and annealing at a temperature of Kxxrc to i20crc and below the dew point temperature of o ° c. How to
【청구항 4】 [Claim 4]
제 1항에 있어서,  The method of claim 1,
상기 1차 냉간 압연된 강판을 탈탄 소둔하는 단계는 85C C 내지 9501 온도 및 이슬점 온도 50°C이상에서 소둔하는 단계 및 1000°C 내지 1200 °C 온도 및 이슬점 온도 0 °C이하에서 소둔하는 단계를 포함하는 방향성 전기강판의 제조방법. The decarburizing annealing of the first cold rolled steel sheet may include annealing at 85C C to 9501 temperature and dew point temperature of 50 ° C or higher and annealing at 1000 ° C to 1200 ° C temperature and dew point temperature of 0 ° C or lower. Method for producing a grain-oriented electrical steel sheet comprising.
【청구항 5】 제 1항에 있어서, [Claim 5] The method of claim 1,
상기 1차 냉간 압연된 강판을 탈탄 소둔하는 단계 및 상기 탈탄 소둔이 완료된 강판을 2차 넁간 압연하는 단계는 2회 이상 반복되는 방향성 전기강판의 제조방법. ―  Decarburizing annealing the primary cold-rolled steel sheet and secondary rolling step of the decarburizing annealing is completed is a method of producing a grain-oriented electrical steel sheet is repeated two or more times. ―
【청구항 6】  [Claim 6]
제 1항에 있어서,  The method of claim 1,
상기 최종 소둔하는 단계는 85C C 내지 1000 °C 온도 및 이슬점 온도 70 °C이하에서 소둔하는 단계 및 KXX C 내지 1200°C 온도 및 H2 50 부피 % 이상의 분위기에서 소둔하는 단계를 포함하는 방향성 전기강판의 제조방법. The final annealing step is an oriented electrical steel sheet comprising the annealing at 85 ° C to 1000 ° C temperature and dew point temperature below 70 ° C and annealing at KXX C to 1200 ° C temperature and H 2 50 volume% or more atmosphere Manufacturing method.
【청구항 7】  [Claim 7]
제 1항에 있어서,  The method of claim 1,
상기 산세하는 단계는 5 내지 50 중량 %의 산 수용액을 이용하여, 50 내지 10C C 온도에서 5초 내지 100초 동안 산세하는 방향성 전기강판의 제조방법.  The pickling step is a method for producing a grain-oriented electrical steel sheet using 5 to 50% by weight of an aqueous acid solution, pickling for 5 seconds to 100 seconds at a temperature of 50 to 10C C.
【청구항 8】  [Claim 8]
제 1항에 있어서,  The method of claim 1,
상기 세라믹 코팅층을 형성하는 단계는 불활성 가스를 플라즈마화한 열원에 세라믹 분말을 공급하여 세라믹 코팅층을 형성하는 방향성 전기강판의 제조방법.  Forming the ceramic coating layer is a method of manufacturing a grain-oriented electrical steel sheet to form a ceramic coating layer by supplying ceramic powder to a heat source in the plasma of the inert gas.
【청구항 9】  [Claim 9]
제 8항에 있어서,  The method of claim 8,
상기 세라믹 분말은 A1203, Si02, Ti02 또는 Ό2를 포함하는 방향성 전기강판의 제조방법. The ceramic powder is a method for producing a grain-oriented electrical steel sheet comprising A1 2 0 3 , Si0 2 , Ti0 2 or Ό2.
【청구항 10】  [Claim 10]
제 1항에 있어서,  The method of claim 1,
상기 1차 냉간 압연하는 단계 내지 상기 세라믹 코팅층을 형성하는 단계는 연속하여 이루어지는 방향성 전기강판의 제조방법.  The first cold rolling step to form the ceramic coating layer is a method of manufacturing a grain-oriented electrical steel sheet made in succession.
【청구항 11】  [Claim 11]
중량 %로, Si: 1.0% 내지 4.0%, C:0.002 이하 (0%를 포함하지 않는다) 및 잔부는 Fe 및 기타 불가피하게 흔입되는 불순물을 포함하는 기재 및 상기 기재의 표면 상에 형성된 세라믹 코팅층을 포함하고, By weight%, Si: 1.0% to 4.0%, C: 0.002 or less (does not include 0%) And the balance comprises a substrate comprising Fe and other inevitable impurities, and a ceramic coating layer formed on the surface of the substrate,
상기 기재는 강판의 두께 방향과 수직하는 면에 대하여, 외접원의 지름 (D1)과 내접원의 지름 (D2)의 비 (D2/D1)가 0.5이상인 고스 결정립이 전체 고스 결정립 중 95 면적 % 이상 포함하는 방향성 전기강판.  The base material comprises 95% or more of Goth grains having a ratio (D2 / D1) of the diameter (D1) of the circumscribed circle and the diameter (D2) of the circumscribed circle to the surface perpendicular to the thickness direction of the steel sheet. Oriented electrical steel sheet.
【청구항 12】  [Claim 12]
제 11항에 있어서,  The method of claim 11,
상기 기재는 상기 기재의 표면으로부터 기재 내부로 형성된 산소 결핍층을 포함하는 방향성 전기강판.  The substrate is a grain-oriented electrical steel sheet comprising an oxygen depletion layer formed into the substrate from the surface of the substrate.
【청구항 13】  [Claim 13]
제 12항에 있어서,  The method of claim 12,
상기 산소 결핍층은 산소를 500ppm 이하 포함하는 방향성 전기강판.  The oxygen deficient layer is a grain-oriented electrical steel sheet containing less than 500ppm oxygen.
【청구항 14】 . 【Claim 14】.
제 12항에 있어서,  The method of claim 12,
상기 산소 결핍층은 Mg를 lOOppm 이하 포함하는 방향성 전기강판. The oxygen-deficient layer is a grain-oriented electrical steel sheet containing less than 100ppm Mg.
【청구항 15】 [Claim 15]
거 U 1항에 있어서,  According to U 1
상기 세라믹 코팅층의 두께는 lOnm 내지 4 ι인 방향성 전기강판.  The ceramic coating layer has a thickness of lOnm to 4 ι oriented electrical steel sheet.
【청구항 16】 [Claim 16]
제 11항에 있어세  In claim 11
상기 세라믹 코팅층은 A1203, Si02, Ti02 또는 Zr02를 포함하는 방향성 전기강판. The ceramic coating layer is a grain-oriented electrical steel sheet comprising A1 2 0 3 , Si0 2 , Ti0 2 or Zr0 2 .
【청구항 17】  [Claim 17]
제 11항에 있어서,  The method of claim 11,
상기 세라믹 코팅층은 압연 방향으로, 폭 (w)이 10 내지 100mm이고, 간격 (d)이 10 내지 100mm인 패턴을 형성하는 방향성 전기강판.  The ceramic coating layer is a grain-oriented electrical steel sheet to form a pattern in the rolling direction, the width (w) is 10 to 100mm, the spacing (d) is 10 to 100mm.
【청구항 18】  [Claim 18]
제 1.1항에 있어서,  The method of claim 1.1,
상기 기재는 결정립 크기가 20/ 내지 500卿인 결정립의 비율이 80%이상인 방향성 전기강판.  The substrate is a grain-oriented electrical steel sheet having a grain size of 20/500 ~ 500 卿 ratio of more than 80%.
PCT/KR2017/015384 2016-12-23 2017-12-22 Grain-oriented electrical steel sheet and manufacturing method therefor WO2018117749A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019534751A JP6842550B2 (en) 2016-12-23 2017-12-22 Directional electrical steel sheet and its manufacturing method
CN201780080330.8A CN110114479B (en) 2016-12-23 2017-12-22 Oriented electrical steel sheet and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0178404 2016-12-23
KR1020160178404A KR101919527B1 (en) 2016-12-23 2016-12-23 Oriented electrical steel sheet and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2018117749A1 true WO2018117749A1 (en) 2018-06-28

Family

ID=62626716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/015384 WO2018117749A1 (en) 2016-12-23 2017-12-22 Grain-oriented electrical steel sheet and manufacturing method therefor

Country Status (4)

Country Link
JP (1) JP6842550B2 (en)
KR (1) KR101919527B1 (en)
CN (1) CN110114479B (en)
WO (1) WO2018117749A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110724808B (en) * 2019-10-09 2021-01-26 马鞍山钢铁股份有限公司 Method for producing electrical steel by cold rolling of 3.01-4.5 mm hot rolled coil
KR102438473B1 (en) * 2019-12-20 2022-08-31 주식회사 포스코 Grain oreinted electrical steel sheet and manufacturing method of the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02243754A (en) * 1989-03-15 1990-09-27 Nippon Steel Corp Production of grain-oriented silicon steel sheet reduced in iron loss
JPH0665755A (en) * 1992-08-21 1994-03-08 Nippon Steel Corp Low-iron loss grain-oriented electrical steel sheet
KR20140084892A (en) * 2012-12-27 2014-07-07 주식회사 포스코 Oriented electrical steel steet and method for the same
KR20160063895A (en) * 2014-11-27 2016-06-07 주식회사 포스코 Oriented electrical steel sheet and method for manufacturing the same
KR20160074350A (en) * 2014-12-18 2016-06-28 주식회사 포스코 Oriented electrical steel sheet and method for manufacturing the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0565029B1 (en) * 1992-04-07 1999-10-20 Nippon Steel Corporation Grain oriented silicon steel sheet having low core loss and method of manufacturing same
JPH10245667A (en) * 1997-03-06 1998-09-14 Kawasaki Steel Corp Production of grain oriented extremely thin silicon steel sheet having ultralow core loss
JP3882103B2 (en) * 2000-04-25 2007-02-14 Jfeスチール株式会社 Low iron loss unidirectional electrical steel sheet with tension-applying anisotropic coating
CN101348855A (en) * 2008-09-05 2009-01-21 首钢总公司 Production method of common orientated electrical steel having higher magnetic strength
KR101223115B1 (en) * 2010-12-23 2013-01-17 주식회사 포스코 Grain-oriented electrical steel sheet with extremely low iron loss and method for manufacturing the same
EP2933350A1 (en) * 2014-04-14 2015-10-21 Mikhail Borisovich Tsyrlin Production method for high-permeability grain-oriented electrical steel
JP6260513B2 (en) * 2014-10-30 2018-01-17 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02243754A (en) * 1989-03-15 1990-09-27 Nippon Steel Corp Production of grain-oriented silicon steel sheet reduced in iron loss
JPH0665755A (en) * 1992-08-21 1994-03-08 Nippon Steel Corp Low-iron loss grain-oriented electrical steel sheet
KR20140084892A (en) * 2012-12-27 2014-07-07 주식회사 포스코 Oriented electrical steel steet and method for the same
KR20160063895A (en) * 2014-11-27 2016-06-07 주식회사 포스코 Oriented electrical steel sheet and method for manufacturing the same
KR20160074350A (en) * 2014-12-18 2016-06-28 주식회사 포스코 Oriented electrical steel sheet and method for manufacturing the same

Also Published As

Publication number Publication date
KR20180074382A (en) 2018-07-03
JP2020510751A (en) 2020-04-09
JP6842550B2 (en) 2021-03-17
KR101919527B1 (en) 2018-11-16
CN110114479A (en) 2019-08-09
CN110114479B (en) 2021-04-02

Similar Documents

Publication Publication Date Title
JP4823719B2 (en) Method for producing grain-oriented electrical steel sheet with extremely excellent magnetic properties
EP1108794B1 (en) Electrical steel sheet suitable for compact iron core and manufacturing method therefor
EP3225704B1 (en) Method for manufacturing grain-oriented electrical steel sheet
JPH0717961B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent magnetic and film properties
JP6436316B2 (en) Method for producing grain-oriented electrical steel sheet
EP3225703A1 (en) Grain-oriented electrical steel sheet and manufacturing method therefor
WO2017111547A1 (en) Grain oriented electrical steel sheet and method for manufacturing same
WO2017111509A1 (en) Grain-oriented electrical steel sheet and manufacturing method therefor
WO2018117749A1 (en) Grain-oriented electrical steel sheet and manufacturing method therefor
JP2003171718A (en) Manufacturing method of magnetic steel sheet of excellent mean magnetic characteristic in rolled surface
KR102044319B1 (en) Grain oriented electrical steel sheet and method for manufacturing the same
JP3948284B2 (en) Method for producing grain-oriented electrical steel sheet
JP4258185B2 (en) Oriented electrical steel sheet and manufacturing method thereof
KR101675318B1 (en) Oriented electrical steel sheet and method for manufacturing the same
JP6842549B2 (en) Directional electrical steel sheet and its manufacturing method
JP6056675B2 (en) Method for producing grain-oriented electrical steel sheet
JP2017122269A (en) Double-oriented electrical steel sheet and production method of double- oriented electrical steel sheet
JP2560579B2 (en) Method for manufacturing high silicon steel sheet having high magnetic permeability
JP2022512498A (en) Directional electrical steel sheet and its manufacturing method
JP2003213335A (en) Method of producing grain oriented silicon steel sheet having excellent magnetic property in longitudinal direction and cross direction
JP2001303131A (en) Method for producing high magnetic flux density grain oriented silicon steel sheet extremely small in surface defect and also excellent in magnetic property
JPWO2019131853A1 (en) Low iron loss grain-oriented electrical steel sheet and its manufacturing method
JP2760208B2 (en) Method for producing silicon steel sheet having high magnetic flux density
KR102493771B1 (en) Double oriented electrical steel sheet method for manufacturing the same
JP7312255B2 (en) Grain-oriented electrical steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17884048

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019534751

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17884048

Country of ref document: EP

Kind code of ref document: A1