JP5332707B2 - Method for producing grain-oriented electrical steel sheet with extremely excellent magnetic properties - Google Patents

Method for producing grain-oriented electrical steel sheet with extremely excellent magnetic properties Download PDF

Info

Publication number
JP5332707B2
JP5332707B2 JP2009038190A JP2009038190A JP5332707B2 JP 5332707 B2 JP5332707 B2 JP 5332707B2 JP 2009038190 A JP2009038190 A JP 2009038190A JP 2009038190 A JP2009038190 A JP 2009038190A JP 5332707 B2 JP5332707 B2 JP 5332707B2
Authority
JP
Japan
Prior art keywords
steel sheet
oriented electrical
annealing
electrical steel
inhibitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009038190A
Other languages
Japanese (ja)
Other versions
JP2010189752A (en
Inventor
知二 熊野
義行 牛神
修一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009038190A priority Critical patent/JP5332707B2/en
Publication of JP2010189752A publication Critical patent/JP2010189752A/en
Application granted granted Critical
Publication of JP5332707B2 publication Critical patent/JP5332707B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、主にトランス等の鉄芯として使用される方向性電磁鋼板を製造する方法に関するものであり、特に、AlNを二次再結晶の主なインヒビターとする高温スラブ加熱を用いた方向性電磁鋼板の製造方法において、従来、磁気特性が劣化するため不可であった窒化を有効に活用し、極めて磁気特性が優れた方向性電磁鋼板を得る製造方法に関する。   The present invention relates to a method for producing a grain-oriented electrical steel sheet mainly used as an iron core such as a transformer, and in particular, directivity using high-temperature slab heating using AlN as a main inhibitor for secondary recrystallization. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a magnetic steel sheet, which effectively utilizes nitriding, which has heretofore been impossible because magnetic characteristics deteriorate, and obtains a grain-oriented magnetic steel sheet with extremely excellent magnetic characteristics.

方向性電磁鋼板おいて主要な磁気特性は、鉄損、磁束密度及び磁歪である。鉄損は磁束密度が高い(Goss方位集積度が先鋭だ)と磁区制御技術(特許文献1、特許文献2、特許文献3等)により改善される。磁歪もまた、磁束密度が高いと小さく(良好に)なる。更に、磁束密度が高いと変圧器の励磁電流を小さくできるのでサイズが小さく出来る。   The main magnetic properties in grain-oriented electrical steel sheets are iron loss, magnetic flux density and magnetostriction. The iron loss is improved by a magnetic domain control technique (Patent Document 1, Patent Document 2, Patent Document 3, etc.) when the magnetic flux density is high (the Goss orientation integration degree is sharp). Magnetostriction also decreases (good) when the magnetic flux density is high. Furthermore, if the magnetic flux density is high, the transformer excitation current can be reduced, and the size can be reduced.

すなわち、方向性電磁鋼板を製造する上で最も基本な注目すべき磁気特性は磁束密度であり、磁束密度が従来より高位である方向性電磁鋼板を安定的に製造する方法の開発が求められている。   In other words, the most fundamental magnetic property to be noted in producing grain-oriented electrical steel sheets is magnetic flux density, and there is a need for the development of a method for stably producing grain-oriented electrical steel sheets whose magnetic flux density is higher than before. Yes.

ところで、方向性電磁鋼板分野ではインヒビターは粒成長抑制剤と言われ、粒界移動を抑制する機能があり、方向性電磁鋼板の製造においては特定方位粒を選択成長せしめるためにインヒビターの存在は不可欠である。現行の工業生産では、AlNを主なインヒビターとする製造方法がGoss方位集積度を最も高いくできることは論を待たない。   By the way, in the grain-oriented electrical steel sheet field, an inhibitor is said to be a grain growth inhibitor and has a function of suppressing grain boundary migration. In the production of grain-oriented electrical steel sheets, the presence of an inhibitor is indispensable in order to selectively grow specific orientation grains. It is. In current industrial production, it is not surprising that a manufacturing method using AlN as the main inhibitor can achieve the highest Goss orientation integration.

AlNを二次再結晶の主なインヒビターとする方向性電磁鋼板の製造方法は、冶金学的には熱間圧延でのスラブ加熱の考え方とインヒビターの補強のための後工程窒化の有無により、表1に示されるように分類される。   The method of manufacturing grain-oriented electrical steel sheets using AlN as the main inhibitor for secondary recrystallization is based on the metallurgical concept of slab heating in hot rolling and the presence or absence of nitridation in the post-process for reinforcing the inhibitor. 1 is classified.

即ち、(a)完全固溶非窒化型、(b)充分析出窒化型、(c)完全固溶窒化型、(d)不完全固溶窒化型である。
これらの方法のうち、(a)及び(b)は既に工業生産されているが、(c)は本発明が対象とする方法で試験中であり、(d)はスラブ又は熱間圧延鋼帯でのインヒビター形態の均一性を確保するのが非常に困難で工業生産化できていない。
That is, (a) complete solid solution non-nitriding type, (b) sufficient precipitation nitride type, (c) complete solid solution nitride type, and (d) incomplete solid solution nitride type.
Among these methods, (a) and (b) are already industrially produced, (c) is being tested by the method targeted by the present invention, and (d) is a slab or hot rolled steel strip. It is very difficult to ensure the uniformity of the inhibitor form at this point, and it has not been industrially produced.

発明者らはインヒビターには二種類あると考える。先天的インヒビターと後天的インヒビターである。   The inventors consider that there are two types of inhibitors. Congenital and acquired inhibitors.

先天的インヒビターは溶製段階で含有せしめられたインヒビター元素で構成され、熱間圧延、その後の熱処理でその機能が形成され、板厚方向・幅方向で均一に分布している。機能としては、一次再結晶(脱炭焼鈍)組織および二次再結晶に寄与する。
一方、後天的インヒビターは、後工程で導入されるインヒビターで、窒化による場合はAlNである。これは、一次再結晶後に導入されるので二次再結晶のみに寄与する。ストリップ走行状態での窒化の場合は表面から窒化されるので、板厚表面に濃化しており、導入直後では板厚方向に均一ではない。これを、二次再結晶焼鈍時に拡散せしめて均一にする。
The innate inhibitor is composed of an inhibitor element incorporated in the melting stage, and its function is formed by hot rolling and subsequent heat treatment, and is uniformly distributed in the thickness direction and width direction. As a function, it contributes to primary recrystallization (decarburization annealing) structure and secondary recrystallization.
On the other hand, the acquired inhibitor is an inhibitor introduced in a later step, and is AlN in the case of nitriding. Since this is introduced after the primary recrystallization, it contributes only to the secondary recrystallization. In the case of nitriding in the strip running state, since nitriding is performed from the surface, it is concentrated on the surface of the plate thickness and is not uniform in the plate thickness direction immediately after introduction. This is diffused during the secondary recrystallization annealing to make it uniform.

また、機能で分類すると、一次再結晶に寄与するインヒビターを一次インヒビターといい、二次再結晶に寄与するインヒビターを二次インヒビターという。
先天的インヒビターは一次・二次インヒビターの役割を有し、後天的インヒビターは二次インヒビターの役割を有する。なお、熱間圧延後一次再結晶焼鈍前に後天的インヒビターを導入することがもし可能ならば、後天的インヒビターが一次インヒビターの役割を持つことも原理的にはありうる。
In addition, when classified by function, an inhibitor that contributes to primary recrystallization is called a primary inhibitor, and an inhibitor that contributes to secondary recrystallization is called a secondary inhibitor.
Innate inhibitors have the role of primary and secondary inhibitors, and acquired inhibitors have the role of secondary inhibitors. In addition, if it is possible to introduce an acquired inhibitor after the hot rolling and before the primary recrystallization annealing, it is also possible in principle that the acquired inhibitor has the role of a primary inhibitor.

Al含有方向性電磁鋼板におけるインヒビターは、上記分類に従うと次のように考えられる。
(a)完全固溶非窒化型では、先天的インヒビターが、一次・二次インヒビターの機能を有する。(b)充分析出窒化型では、先天的インヒビターにおける二次インヒビター効果は少なく、後天的インヒビターである窒化窒素により形成されるAlNが二次インヒビター効果を大きく有する。本願発明が対象とする(c)完全固溶窒化型では、後天的インヒビターである窒化窒素により形成されるAlNが二次インヒビターとして大きく寄与する。しかも、先天的インヒビターである一次インヒビターが、二次インヒビターとしても大きく寄与する。
Inhibitors in Al-containing grain-oriented electrical steel sheets are considered as follows according to the above classification.
(A) In the completely solid solution non-nitriding type, the innate inhibitor has a function of a primary / secondary inhibitor. (B) In the sufficiently precipitated nitriding type, the secondary inhibitor effect in the innate inhibitor is small, and AlN formed by nitrogen nitride as the acquired inhibitor has a large secondary inhibitor effect. In (c) complete solid solution nitriding type which is the subject of the present invention, AlN formed by nitrogen nitride which is an acquired inhibitor greatly contributes as a secondary inhibitor. Moreover, the primary inhibitor, which is an innate inhibitor, greatly contributes as a secondary inhibitor.

表1の(a)完全固溶非窒化型では、溶製時の含有窒素が0.008%程度の場合は、脱炭焼鈍から二次再結晶開始までに窒化するとGoss集積度(非特許文献1、非特許文献2、非特許文献3)が低下することは広く知られている。また、溶製時窒素が少ないと二次再結晶不良が生じることもよく知られている。   In the case of (a) the completely solid solution non-nitriding type in Table 1, when the nitrogen content at the time of melting is about 0.008%, if it is nitrided from decarburization annealing to the start of secondary recrystallization, the Goss accumulation degree (non-patent literature) It is widely known that 1, non-patent document 2, and non-patent document 3) decrease. It is also well known that secondary recrystallization failure occurs when there is little nitrogen during melting.

これに対し、(c)完全固溶窒化型は、中程度温度のスラブ加熱でインヒビター物質を完全固溶させる場合について、溶製時のインヒビター元素の含有量を限定し,先天的インヒビターの二次インヒビターとして不足する分を窒化で補償させるものである。   On the other hand, (c) the complete solid solution nitriding type limits the content of the inhibitor element at the time of melting in the case where the inhibitor substance is completely dissolved by medium temperature slab heating. The amount that is insufficient as an inhibitor is compensated by nitriding.

即ち、溶製時の窒素が少ない場合は、後工程で窒化することでインヒビターが脱炭焼鈍前の熱処理で微細に析出した先天的インヒビターと窒化により形成された後天的インヒビターとからなり、インヒビターの種類も考慮すると多段インヒビター状態となり、二次再結晶焼鈍(仕上げ焼鈍)時に板厚方向の表層で先鋭なGoss核が発生し、これが極めて優先的に二次再結晶する。   That is, when there is little nitrogen at the time of melting, the inhibitor is composed of an innate inhibitor finely precipitated by heat treatment before decarburization annealing and an acquired inhibitor formed by nitriding by nitriding in the subsequent process. Considering the type, it becomes a multistage inhibitor state, and sharp Goss nuclei are generated on the surface layer in the thickness direction during secondary recrystallization annealing (finish annealing), and this preferentially recrystallizes.

言い換えると、インヒビターとしては、AlN以外のインヒビターMnS、MnSe、Cu−S、Cu−Se等については、従来の方法(完全固溶非窒化型)より少なめに含有せしめ、後工程窒化の(b)充分析出窒化型より少量窒化し、インヒビター機能を多段とすることである。   In other words, the inhibitors MnS, MnSe, Cu-S, Cu-Se and the like other than AlN are contained in a smaller amount than the conventional method (completely solid solution non-nitriding type), and the post-step nitriding (b) A sufficient amount of nitriding is performed from the precipitation nitriding type to make the inhibitor function multistage.

しかし、この場合、先鋭なるGoss方位二次再結晶粒({110}<001>)を得る為には、非常に狭い窒化窒素範囲が要求される。即ち、窒化後窒素が0.0150%以下であると二次再結晶は良好であるもののGoss方位からのズレが著しく大きい。また、その値が、0.022%を超えると、またGoss方位からずれる。   However, in this case, in order to obtain sharp Goss orientation secondary recrystallized grains ({110} <001>), a very narrow nitrogen nitride range is required. That is, when the nitrogen after nitriding is 0.0150% or less, the secondary recrystallization is good, but the deviation from the Goss orientation is remarkably large. If the value exceeds 0.022%, the Goss orientation is deviated.

(c)完全固溶窒化型の場合、このように、窒化窒素に対して磁気特性が良好な範囲が狭い。これは、実生産においてハンディキャツプになり、更に、このため、温度、雰囲気がコイル位置で不均一である二次再結晶焼鈍(箱型焼鈍)での変動をまともに受けるので、長手・幅方向での磁性とフォルステライトを主成分とするグラス皮膜形成が安定しない。
即ち、磁気特性は良好であるものの、非常に狭い範囲に各工程の条件(例えば、温度、時間、窒化窒素範囲等)を制御することが求められるので実生産では品質が安定しない。このため、生産性を上げるために二次再結晶焼鈍時のコイル単重を上げる大単重化に困難がある。
(C) In the case of the complete solid solution nitriding type, the range in which the magnetic characteristics are good with respect to nitrogen nitride is narrow. This becomes a handy cap in actual production, and because of this, it undergoes fluctuations in secondary recrystallization annealing (box annealing) in which the temperature and atmosphere are non-uniform at the coil position. Glass film formation mainly composed of magnetism and forsterite is not stable.
That is, although the magnetic characteristics are good, it is required to control the conditions of each process (for example, temperature, time, nitrogen nitride range, etc.) within a very narrow range, so the quality is not stable in actual production. For this reason, there is a difficulty in increasing the unit weight to increase the coil unit weight during secondary recrystallization annealing in order to increase productivity.

(c)完全固溶窒化型の場合、狭い範囲の工程条件を解決し、二次再結晶を高位安定的に生じせしめるためには、先天的インヒビターが、二次インヒビターとしての適切な機能を発揮させるための条件を見出すことが必要と考えられる。   (C) In the case of the complete solid solution nitriding type, the congenital inhibitor exhibits an appropriate function as a secondary inhibitor in order to solve a narrow range of process conditions and to cause secondary recrystallization stably at a high level. It is considered necessary to find the conditions to make it happen.

従来、電磁鋼板の析出物については、以下に示すように色々と報告されている。   Conventionally, various precipitates of electromagnetic steel sheets have been reported as shown below.

無方向性電磁鋼板の分野では析出物のサイズを規定した発明がある。例えば、特許文献11ある。この場合は二次再結晶のインヒビターとして機能するものではなく、粒界の移動を容易くさせるためのものであり、方向性電磁鋼板のインヒビターの機能とは逆方向である。   In the field of non-oriented electrical steel sheets, there is an invention that defines the size of precipitates. For example, there is Patent Document 11. In this case, it does not function as an inhibitor of secondary recrystallization, but is intended to facilitate the movement of grain boundaries, and is in a direction opposite to the function of the inhibitor of grain-oriented electrical steel sheets.

方向性電磁鋼板におけるインヒビターの微細析出の必要性については、従来から指摘されているが、その定量的な検討は十分とはいえないものである。
例えば、特許文献12では、{110}面強度と析出物状態を示すパラメータで規定しているが、窒化工程は付与されておらず、本発明が対象とする製造方法とは異なる。
特許文献13では、硫化銅粒子についてその平均直径を100nm未満、望ましくは50nmと規定しているが、本発明が対象とするAlNを含む方向性電磁鋼板ではなく、また、窒化工程も付与されていない。
The necessity of fine precipitation of inhibitors in grain-oriented electrical steel sheets has been pointed out heretofore, but its quantitative examination is not sufficient.
For example, in Patent Document 12, although defined by parameters indicating the {110} plane strength and the precipitate state, a nitriding step is not applied, which is different from the manufacturing method targeted by the present invention.
In Patent Document 13, the average diameter of copper sulfide particles is defined to be less than 100 nm, preferably 50 nm, but it is not a grain-oriented electrical steel sheet containing AlN targeted by the present invention, and a nitriding step is also given. Absent.

特許文献14では、フォルステライトを主体とする下地被膜を有しない曲げ加工性が優れた方向性電磁鋼板について、最終製品に残存する窒化析出物の95%以上が直径1μm以下と規定しているが、本発明が対象とするフォルステライト被膜を有する方向性電磁鋼板に関するものではなく、かつ、二次再結晶直前の製造途中段階での析出物の状態については規定していない。   Patent Document 14 stipulates that 95% or more of the nitrided precipitate remaining in the final product is 1 μm or less in diameter for the grain-oriented electrical steel sheet having no bending coating mainly composed of forsterite and having excellent bending workability. The invention does not relate to a grain-oriented electrical steel sheet having a forsterite film, which is the subject of the present invention, and does not define the state of precipitates in the middle of production immediately before secondary recrystallization.

特許文献15では、析出物サイズの提示はあるものの、微細化が望ましいと書かれておるだけで具的な望ましいサイズは規定されておらず、また窒化工程も付与されていない。   In Patent Document 15, although a precipitate size is presented, a specific desirable size is not defined only because it is written that miniaturization is desirable, and a nitriding step is not provided.

その他、方向性電磁鋼板の析出物の微細化についての発明は、例えば、特許文献16、特許文献17等に示されるように、多々出願されているものの、具体的なサイズが規定されたものはない。   In addition, as for invention about refinement | miniaturization of the precipitate of a grain-oriented electrical steel sheet, for example, as shown by patent document 16, patent document 17, etc., although many applications have been filed, those with specific sizes prescribed Absent.

特開昭55−018566号公報JP-A-55-018566 特開昭59−197520号公報JP 59-197520 A 特開昭61−117218号公報JP 61-117218 A 特公昭40−015644号公報Japanese Patent Publication No. 40-015644 特開昭58−023414号公報Japanese Patent Laid-Open No. 58-023414 米国2599340US 2,599,340 米国5244511US 5244511 特開平05−112817号公報Japanese Patent Laid-Open No. 05-112817 特開2001−152250号公報JP 2001-152250 A 特開2000−199015号公報JP 2000-199015 A 特開2002−256752号公報Japanese Patent Laid-Open No. 2002-256752 特開平05−171370号公報JP 05-171370 A 特開平06−322443号公報Japanese Patent Laid-Open No. 06-322443 特開2003−049250号公報JP 2003-049250 A 特開平11−133714号公報Japanese Patent Laid-Open No. 11-133714 特願昭38−018337号公報Japanese Patent Application No. 38-018337 特開平09−227941号公報JP 09-227941 A 特開平07−252532号公報JP 07-252532 A 特開平07−005976号公報JP 07-005976 A 特公平06−051887号公報Japanese Patent Publication No. 06-051887

ISIJ,Vol.43 (2003),No.3,pp.400-409ISIJ, Vol. 43 (2003), No. 3, pp. 400-409 Acta Metall.,42(1994),2593Acta Metall., 42 (1994), 2593 川崎製鉄技法Vol.29(1997)3,129-135)Kawasaki Steel Technology Vol.29 (1997) 3,129-135) Materials Science Forum Vol.204-206,Part2:pp:631Materials Science Forum Vol.204-206, Part2: pp: 631 Y.Inokuchi and F. Saito:Jpn.Inst.Met.,55(1991), No.11,1167Y. Inokuchi and F. Saito: Jpn. Inst. Met., 55 (1991), No. 11, 1167

表1の(c)の方法では、極めて磁気特性が優れた方向性電磁鋼板の製造が可能になったものの、窒化範囲が狭く、工業生産では製造工程条件の極めて狭い範囲が要求されていた。また、二次再結晶後のコイル全長での磁性・グラス被膜形成の変動が大きいことも問題であった。   In the method of (c) in Table 1, although it became possible to produce a grain-oriented electrical steel sheet having extremely excellent magnetic properties, the nitriding range was narrow, and industrial production required a very narrow range of manufacturing process conditions. Another problem is that the variation in the magnetic and glass film formation over the entire length of the coil after secondary recrystallization is large.

図1は、後工程の窒化による窒化後窒素と磁気特性(磁束密度:B8(T))の関係を示すものであり、窒化後窒素の量によって領域I、II、IIIに別けられる。
この領域I、II、IIIの範囲全てで、二次再結晶は良好であり、各領域での二次再結晶集合組織は、領域Iでは、{110}<4 4 11>、領域IIでは、良好なGoss方位({110}<001>)、領域IIIでは、{110}<229>である。
FIG. 1 shows the relationship between nitrogen after nitridation by nitridation in a later step and magnetic characteristics (magnetic flux density: B8 (T)), and is divided into regions I, II, and III depending on the amount of nitrogen after nitridation.
In all the regions I, II and III, secondary recrystallization is good, and the secondary recrystallization texture in each region is {110} <4 4 11> in region I and in region II, Good Goss orientation ({110} <001>), {110} <229> in region III.

しかし、良好な磁束密度が得られる領域は領域IIであり、前述のようにその範囲が狭いことが問題である。本発明の課題は、この領域IIの範囲を広げて、コイル部位での磁性・グラス被膜の変動を減じることである。   However, the region where a good magnetic flux density can be obtained is the region II, and the problem is that the range is narrow as described above. An object of the present invention is to widen the range of this region II and reduce the fluctuation of the magnetic glass coating at the coil site.

発明者らは、検討を重ねた結果、インヒビターの様相について以下の推論を得た。
(c)完全固溶窒化型の製造方法では、多段ニ次インヒビターモードを実現するために、窒化が必須である。また、完全固溶型なので一次再結晶粒径は、充分析出窒化型より小さいために、粒界移動の駆動力は大きくなり、二次再結晶開始温度は低くなる。
このように弱い粒成長抑制の結果、窒化窒素が板厚全体に拡散してしまうまでに二次再結晶が板厚中心層付近で開始する。
As a result of repeated studies, the inventors obtained the following inferences regarding the aspect of the inhibitor.
(C) In a completely solid solution nitriding type manufacturing method, nitriding is essential to realize a multistage secondary inhibitor mode. In addition, since the primary recrystallization grain size is sufficiently smaller than the precipitation nitriding type because it is a complete solid solution type, the driving force for grain boundary movement increases and the secondary recrystallization start temperature decreases.
As a result of this weak grain growth suppression, secondary recrystallization starts near the center of the plate thickness before the nitrogen nitride diffuses throughout the plate thickness.

一般にGoss方位の優れた方向性電磁鋼板が得られるときは、二次再結晶発生位置は板厚の1/5位置での核発生が必要と言われている(例えば、非特許文献5参照)。ところが、板厚中心層は、Goss方位から大きく外れた{110}<4 4 11>方位が二次再結晶し易い集合組織環境にある。   In general, when a grain-oriented electrical steel sheet having an excellent Goss orientation is obtained, it is said that the secondary recrystallization generation position needs to generate nuclei at 1/5 position of the plate thickness (see, for example, Non-Patent Document 5). . However, the thickness center layer is in a texture environment in which the {110} <4 4 11> orientation, which is greatly deviated from the Goss orientation, is likely to undergo secondary recrystallization.

このように板厚中心層から核発生するのは、板厚中心層のインヒビターの耐熱性が弱いためと推定される。即ち、二次再結晶焼鈍の昇温時においてインヒビター(粒成長抑制剤である析出物)の耐熱性が小さく、窒化窒素が拡散するまでに消滅してその効果が無くなり、粒界移動を抑制できないためと考えられる。
このため、窒化窒素が板厚中心層に拡散するまでに二次再結晶が開始しないようにする必要がある。
It is estimated that the nucleation from the thickness center layer in this way is because the heat resistance of the inhibitor in the thickness center layer is weak. That is, the heat resistance of the inhibitor (precipitate, which is a grain growth inhibitor) is small at the time of temperature increase in secondary recrystallization annealing, and the effect disappears until nitrogen nitride diffuses, and grain boundary migration cannot be suppressed. This is probably because of this.
For this reason, it is necessary to prevent secondary recrystallization from starting before nitrogen nitride diffuses into the plate thickness center layer.

すなわち、インヒビターは大きく別けて、先天的インヒビターである(1)のMnS,Cu−S、MnSe系微細析出物及び(2)のAlN系微細析出物と、後天的インヒビターである(3)の後工程窒化による粗大なAlN、の3種類からなる。
これらの耐熱性が異なるので、二次再結晶焼鈍中でインヒビターとして機能する時期が夫々異なり、選択成長が逐次生じると考えられる。
That is, the inhibitors are largely divided into the innate inhibitors (1) MnS, Cu-S, MnSe fine precipitates and (2) AlN fine precipitates, and the acquired inhibitors after (3). It consists of three types of coarse AlN by process nitriding.
Since these heat resistances are different, it is considered that the time of functioning as an inhibitor in the secondary recrystallization annealing is different, and selective growth occurs sequentially.

本発明者らは検討の結果、主に(2)のAlN系微細析出の形態を制御すると耐熱性が向上し、インヒビター効果が安定するので、(1)と(2)のインヒビターのバランスが良くなり製造条件が広範囲であっても最終製品の特性が安定することを見出した。   As a result of the study, the inventors mainly studied that the control of the form of AlN fine precipitation in (2) improves the heat resistance and stabilizes the inhibitor effect. Therefore, the balance of the inhibitors in (1) and (2) is good. As a result, it was found that the characteristics of the final product are stable even in a wide range of manufacturing conditions.

図2にその概念図を示す。上記(1)〜(3)のインヒビターは、その熱力学的性質およびサイズにより熱的安定性は(1)→(3)の順に小さくなる。このため、従来は(2)が(2)‘に位置していた。これが、AlNの適切な形態制御により本来の(2)の位置となり温度に対してほぼフラットの状態になると推定される。   The conceptual diagram is shown in FIG. The above-mentioned inhibitors (1) to (3) have a thermal stability that decreases in the order of (1) → (3) due to their thermodynamic properties and size. For this reason, conventionally, (2) was positioned at (2) ′. It is estimated that this is the original position (2) by the appropriate form control of AlN and is almost flat with respect to the temperature.

本発明は、AlNを二次再結晶の主なインヒビターとする完全固溶窒化型(c)で、特に高くないスラブ加熱温度を適用する方向性電磁鋼板の製造方法において、一次再結晶焼鈍後板厚中心層の先天的インヒビター形態を規定して、耐熱性を向上させることにより磁気特性の安定化を目指すものである。
そのような本発明は、以下の事項からなるものである。
The present invention relates to a fully solid solution nitrided type (c) having AlN as a main inhibitor for secondary recrystallization, and a plate after primary recrystallization annealing in a method for producing a grain oriented electrical steel sheet to which a particularly high slab heating temperature is applied. The aim is to stabilize the magnetic properties by defining the innate inhibitor form of the thick center layer and improving the heat resistance.
The present invention includes the following items.

(1)質量%で、C:0.025〜0.09%、Si:2.5〜4.0%、酸可溶性Al:0.022〜0.033%、N:0.003〜0.006%、SとSeをS当量Seq=S+0.405Seとして0.010〜0.020%、Mn:0.03〜0.09%、Ti≦0.005%を含有し、残部がFe及び不可避的不純物からなるスラブを、1280℃を超えるインヒビター物質の固溶温度以上で再加熱し、熱間圧延を施して熱間圧延鋼帯とし、この熱間圧延鋼帯に含有されるNのうちAlNとしての析出率を20%以下とし、この熱間圧延鋼帯を焼鈍しもしくは焼鈍せず、引き続き1回もしくは中間焼鈍を挟む2回以上の冷間圧延を行って最終板厚の冷間圧延鋼帯とする際、最終冷間圧延前に1回以上の熱処理を施し、最終冷間圧延の圧延率を83%〜92%とし、脱炭焼鈍後の一次再結晶粒の円相当の平均粒径(直径)を7μm以上〜18μm未満とし、ストリップ走行状態下で水素、窒素及びアンモニアの混合ガス中の窒化処理で全窒素含有量を0.011〜0.023%として、その後MgOを主成分とする焼鈍分離剤を塗布して最終仕上げ焼鈍を施す方向性電磁鋼板の製造において、最終冷間圧延前の熱処理後の冷却速度を15℃/秒以上、脱炭焼鈍後の板厚中心層の析出物の円相当平均直径を50nm以上200nm以下とすることを特徴とする方向性電磁鋼板の製造方法。
(2)前記最終冷間圧延前の熱処理後の900〜550℃間の平均冷却速度を25〜40℃/秒とすることを特徴とする(1)に記載の方向性電磁鋼板の製造方法。
)前記スラブが、更に、質量%で、Cuを0.05〜0.30%含む(1)または(2)に記載の方向性電磁鋼板の製造方法。
)前記スラブが、更に、質量%で、Sn、Sb、Pの少なくとも1種を0.02〜0.30%含有することを特徴とする(1)〜(3)のいずれかの項に記載の方向性電磁鋼板およびその製造方法。
)前記スラブが、更に、質量%で、Crを0.02〜0.30%含有することを特徴とする(1)〜()のいずれかの項に記載の方向性電磁鋼板の製造方法。
)最終冷間圧延の少なくとも1パスにおいて、鋼帯を100〜300℃の温度範囲に1分以上保つことを特徴とする(1)〜()のいずれかの項に記載の方向性電磁鋼板の製造方法。
)脱炭焼鈍における昇温開始から650℃までの加熱速度を100℃/秒以上とすることを特徴とする(1)〜()のいずれかの項に記載の方向性電磁鋼板の製造方法。
)(1)〜()のいずれかの項に記載の製造方法で得られ、圧延方向の磁束密度B8(800A/mでの磁束密度)が1.92T以上であることを特徴とする方向性電磁鋼板。
(1) By mass%, C: 0.025-0.09%, Si: 2.5-4.0%, acid-soluble Al: 0.022-0.033%, N: 0.003-0. 006%, S and Se as S equivalent Seq = S + 0.405Se, 0.010 to 0.020%, Mn: 0.03 to 0.09%, Ti ≦ 0.005%, the balance being Fe and inevitable The slab made of a general impurity is reheated at a temperature higher than the solid solution temperature of the inhibitor substance exceeding 1280 ° C. and hot-rolled to form a hot-rolled steel strip. Of N contained in the hot-rolled steel strip, AlN The hot rolled steel strip is not annealed or annealed, and is subsequently subjected to cold rolling at least twice with one or more intermediate sandwiches in between, and the final thickness of the cold rolled steel. When forming a belt, heat treatment is performed at least once before the final cold rolling, and the final cold rolling is performed. The rolling ratio is 83% to 92%, the average particle size (diameter) corresponding to the circle of primary recrystallized grains after decarburization annealing is 7 μm to less than 18 μm, and a mixed gas of hydrogen, nitrogen and ammonia under strip running conditions as .011 to .023% of the total nitrogen content in the nitriding treatment in the in the subsequent production of a grain oriented electrical steel sheet an annealing separator composed mainly of MgO was applied subjected to final finish annealing, final cold the cooling rate after the heat treatment before rolling a 15 ° C. / sec or more, oriented electrical steel sheet towards you, characterized in that the circle-equivalent mean diameter of the precipitates of the thickness center layer after decarburization annealing and 50nm or 200nm or less Manufacturing method.
(2) The method for producing a grain-oriented electrical steel sheet according to (1), wherein an average cooling rate between 900 and 550 ° C. after the heat treatment before the final cold rolling is set to 25 to 40 ° C./second.
(3) the slab further contains, by mass%, the production method of the oriented electrical steel sheet towards according to the Cu containing from 0.05 to 0.30% (1) or (2).
( 4 ) The item according to any one of (1) to (3), wherein the slab further contains 0.02 to 0.30% of at least one of Sn, Sb, and P in mass%. oriented electrical steel sheet and a manufacturing method thereof toward described.
(5) the slab further contains, by mass%, oriented electrical steel sheet towards any one of Items of Cr and characterized in that it contains from 0.02 to 0.30% (1) to (4) Manufacturing method.
(6) in at least one pass in the final cold rolling, characterized in that to keep a minute or more steel strip to a temperature range of 100 to 300 ° C. (1) ~ the direction of any one of Items (5) Method for producing an electrical steel sheet.
(7) oriented electrical steel sheet towards any one of Items of a heating rate of up to 650 ° C. from start heating in decarburization annealing, characterized in that a 100 ° C. / sec or more (1) to (6) Manufacturing method.
( 8 ) Obtained by the production method according to any one of (1) to ( 7 ), wherein the magnetic flux density B8 in the rolling direction (magnetic flux density at 800 A / m) is 1.92 T or more. Oriented electrical steel sheet.

本発明においては、従来の方向性電磁鋼板製造の課題である、(a)完全固溶非窒化型の方向性電磁鋼板の熱間圧延時の超高温スラブ加熱を脱却し、(b)充分析出窒化型での一次再結晶焼鈍温度を変更することなく、広範囲の窒化窒素範囲で磁気特性をグラス皮膜の極めて優れた方向性電磁鋼板が製造可能になる。   In the present invention, (a) the high temperature slab heating at the time of hot rolling of a completely solid solution non-nitrided directional electrical steel sheet, which is a problem of conventional grain-oriented electrical steel sheet production, (b) sufficient precipitation Without changing the primary recrystallization annealing temperature in the nitriding type, it becomes possible to produce a grain-oriented electrical steel sheet having an extremely excellent glass film with a magnetic property in a wide range of nitrogen nitride.

従来の窒化後窒素量と磁束密度の関係の一例を示す図である。It is a figure which shows an example of the relationship between the conventional nitrogen amount after nitriding, and magnetic flux density. インヒビター(1)〜(3)による多段二次インヒビターモードを説明するための概念図である。It is a conceptual diagram for demonstrating the multistage secondary inhibitor mode by inhibitor (1)-(3). 熱延板焼鈍条件に対する窒化後窒素量と磁束密度の関係を示す図である。It is a figure which shows the relationship between the amount of nitrogen after nitriding, and magnetic flux density with respect to hot-rolled sheet annealing conditions. SEMによる析出物の形態の観察例を示す図である。It is a figure which shows the example of observation of the form of the precipitate by SEM.

まず、本発明におけるスラブの成分範囲の限定理由について述べる。   First, the reason for limiting the component range of the slab in the present invention will be described.

Cは、0.025%より少ないと一次再結晶集合組織が適切でなくなり、0.09%を超えると脱炭が困難になり工業生産に適していない。   When C is less than 0.025%, the primary recrystallization texture becomes unsuitable, and when it exceeds 0.09%, decarburization becomes difficult and is not suitable for industrial production.

Siは、2.5%より少ないと良好な鉄損が得られず、4.0%を超えると冷延が極めて困難となり工業生産に適していない。   If Si is less than 2.5%, good iron loss cannot be obtained, and if it exceeds 4.0%, cold rolling becomes extremely difficult and is not suitable for industrial production.

Mnは、0.03%より少ない熱延鋼帯では割れが発生しやすく、歩留まりが低下し二次再結晶が安定しない。一方、0.09%を超えるとMnS、MnSeが多くなり、固溶の程度が場所により不均一となり実工業生産では安定生産に問題が生じる。   Mn tends to crack in a hot-rolled steel strip of less than 0.03%, yield decreases, and secondary recrystallization is not stable. On the other hand, if it exceeds 0.09%, MnS and MnSe increase, and the degree of solid solution becomes uneven depending on the location, causing problems in stable production in actual industrial production.

SおよびSeは、Mn、Cuと結合して微細に析出し先天的インヒビターを形成し、AlNの析出核としても有用である。S当量(Seq=S+0.405Se)は0.010%以上0.020%以下である。S当量が0.010%より少ないと、先天的インヒビターの絶対量が不足して二次再結晶が不安定なる。また0.020%を超えると多段的二次インヒビターのバランスが崩れ先鋭なGoss方位二次再結晶集合組織は得られない。   S and Se combine with Mn and Cu to precipitate finely to form an innate inhibitor and are also useful as AlN precipitation nuclei. The S equivalent (Seq = S + 0.405Se) is 0.010% or more and 0.020% or less. If the S equivalent is less than 0.010%, the absolute amount of the congenital inhibitor is insufficient and secondary recrystallization becomes unstable. On the other hand, if it exceeds 0.020%, the balance of the multistage secondary inhibitor is lost and a sharp Goss orientation secondary recrystallization texture cannot be obtained.

酸可溶性AlはNと結合してAlNを形成し、主に一次・二次インヒビターとして機能する。このAlNは、窒化前に形成されるものと窒化後高温焼鈍時に形成されるものがあり、この両方のAlNの量確保のために0.022〜0.033%必要である。この上限を外れると二次再結晶不良が生じる。また、下限を外れるとGoss方位集積度が著しく劣化する。   Acid-soluble Al combines with N to form AlN, and functions mainly as a primary and secondary inhibitor. This AlN includes those formed before nitriding and those formed at the time of high-temperature annealing after nitriding, and 0.022 to 0.033% is necessary for securing the amount of both AlN. Outside this upper limit, secondary recrystallization failure occurs. Further, if the lower limit is exceeded, the Goss orientation integration degree is significantly degraded.

上述の如く本発明では微細に析出した硫化物、セレン化物とAlNが一次・二次インヒビターの役割を果たしているので、スラブに含まれるAlNも一次再結晶粒を制御するために非常に重要なものであり、Nが0.003%未満では多段インヒビターの(2)段階の絶対量が不足し二次再結晶不良が生じる。0.006%を超えた場合は、多段二次インヒビターモードが形成されず前述の様にGoss方位集積度は低下する。   As described above, in the present invention, finely precipitated sulfide, selenide and AlN play the role of primary and secondary inhibitors, so AlN contained in the slab is also very important for controlling the primary recrystallized grains. If N is less than 0.003%, the absolute amount of stage (2) of the multistage inhibitor is insufficient and secondary recrystallization failure occurs. When it exceeds 0.006%, the multistage secondary inhibitor mode is not formed, and the Goss orientation accumulation degree is lowered as described above.

Tiについて、0.005%を超えて含有すると、NはTiNとなって実質低N含有鋼となり、インヒビター強度が確保されず二次再結晶不良が生じる。   When Ti is contained in excess of 0.005%, N becomes TiN and becomes a substantially low N-containing steel, and the inhibitor strength is not ensured and secondary recrystallization failure occurs.

Cuは、スラブを1280℃以上で加熱し急速に熱間圧延を完了してもその冷却中に早期にSやSeとともに微細な析出物を形成し、一次・二次インヒビター効果を発揮する。また、この析出物はAlNの分散をより均一にする析出核ともなり二次インヒビターの役割も演じ、この効果が二次再結晶を良好ならしめる。0.05%より少ないと上記効果が減じ工業生産の安定性が劣ることがあり、0.30%を超えると上記効果が飽和するとともに、熱延時に「カッパーヘゲ」なる表面疵の原因になる。   Cu heats the slab at 1280 ° C. or higher and completes hot rolling rapidly, and forms fine precipitates with S and Se early during the cooling, thereby exerting primary and secondary inhibitor effects. The precipitates also serve as precipitation nuclei that make the dispersion of AlN more uniform and also play a role of secondary inhibitors, and this effect makes secondary recrystallization good. If it is less than 0.05%, the above effects may be reduced and the stability of industrial production may be inferior. If it exceeds 0.30%, the above effects will be saturated, and it will cause surface flaws such as “copper hege” during hot rolling.

また、Sn、Sb、Pは一次再結晶集合組織の改善に有効である。これらの元素の含有量が0.02%より少ないと改善効果が少なく、また、前記範囲を超えると安定したフォルステライト皮膜(一次皮膜、グラス皮膜)形成が困難となる。さらに、Sn,Sb、Pは粒界偏析元素であり二次再結晶を安定化ならしめる効果があることは周知である。   Sn, Sb, and P are effective in improving the primary recrystallization texture. If the content of these elements is less than 0.02%, the effect of improvement is small, and if it exceeds the above range, it becomes difficult to form a stable forsterite film (primary film, glass film). Furthermore, it is well known that Sn, Sb, and P are grain boundary segregation elements and have the effect of stabilizing secondary recrystallization.

Crはフォルステライト皮膜(一次皮膜、グラス皮膜)形成に有効であるので0.02〜0.30%含むことが望まれる。0.03%未満では酸素が確保されにくく、0.30%を超えると皮膜が形成されない。   Since Cr is effective for forming a forsterite film (primary film, glass film), it is desirable to contain 0.02 to 0.30%. If it is less than 0.03%, it is difficult to ensure oxygen, and if it exceeds 0.30%, no film is formed.

その他、Ni、Mo,Cdについては、添加することを妨げない。また電気炉溶製の場合は必然的に混入するものでもある。Niは一次、二次インヒビターとしての析出物の均一分散に著しい効果があるので、Niを添加すると磁気特性は更に良好且つ安定する。0.02%より少ないと効果が無く、0.3%を超えると、脱炭焼鈍後の酸素の富化し難くくになりフォルステライト皮膜形成が困難になる。Mo、Cdは硫化物もしくはセレン化物を形成しインヒビターの強化に資する。0.008%未満では効果が無く、0.3%を超えると析出物が粗大化してインヒビターの機能を得られず、磁気特性が安定しない。   In addition, Ni, Mo, and Cd are not prevented from being added. Moreover, in the case of electric furnace melting, it is inevitably mixed. Since Ni has a remarkable effect on the uniform dispersion of precipitates as primary and secondary inhibitors, the magnetic properties are further improved and stabilized when Ni is added. If it is less than 0.02%, there is no effect, and if it exceeds 0.3%, it becomes difficult to enrich oxygen after decarburization annealing and it becomes difficult to form a forsterite film. Mo and Cd form sulfides or selenides and contribute to strengthening of the inhibitor. If it is less than 0.008%, there is no effect, and if it exceeds 0.3%, precipitates are coarsened and the function of the inhibitor cannot be obtained, and the magnetic properties are not stable.

次に、本発明におけるその他条件の限定理由について述べる。   Next, the reasons for limiting other conditions in the present invention will be described.

脱炭焼鈍完了後の一次再結晶粒の平均粒径は、例えば、特許文献18では、一次再結晶粒の平均粒径を18〜35μmとしているが、本発明では、一次再結晶粒の平均粒径を7μm以上18μm未満とする必要がある。このことは磁気特性(特に鉄損)を良好ならしめる本発明の非常に重要な点である。   The average grain size of primary recrystallized grains after completion of decarburization annealing is, for example, in Patent Document 18, the average grain size of primary recrystallized grains is 18 to 35 μm. In the present invention, the average grain size of primary recrystallized grains is The diameter needs to be 7 μm or more and less than 18 μm. This is a very important point of the present invention that makes magnetic characteristics (particularly iron loss) good.

即ち、一次再結晶粒径が小さいと、粒成長の観点からも、一次再結晶の段階で二次再結晶の核となるGoss方位粒の体積分率が多くなる(非特許文献4)。また、更に粒径が小さいため、Goss核の数も相対的に多くなる。結果としてGoss核の絶対数は、一次再結晶粒の平均半径が18〜35μmの場合より本発明の場合の方が約5倍程度多くなるので、二次再結晶粒径もまた相対的に小さくなり、この結果著しい鉄損の向上となる。   That is, when the primary recrystallized grain size is small, the volume fraction of Goss orientation grains that become the nucleus of secondary recrystallization at the stage of primary recrystallization also increases from the viewpoint of grain growth (Non-patent Document 4). In addition, since the particle size is smaller, the number of Goss nuclei is also relatively large. As a result, the absolute number of Goss nuclei is about 5 times larger in the case of the present invention than in the case where the average radius of the primary recrystallized grains is 18 to 35 μm, so that the secondary recrystallized grain size is also relatively small. As a result, the iron loss is remarkably improved.

また、(b)充分析出窒化型と比べて一次再結晶粒の平均粒径が小さく窒化量が少なくないことは、二次再結晶の駆動力が大きくなり、二次再結晶が低温度で開始するので、最終仕上げ燒鈍の昇温段階の早い時期に(より低温で)二次再結晶が開始する。これに、多段ニ次インヒビターモードの形成とマッチングさせる。このことは、最終仕上げ燒鈍がコイル状で行われている現状では最高温度までのコイル各点での温度履歴がより均一となるので(コイル各点での昇温速度が一定になる)、コイル部位の不均一性が著しく減少して磁気特性が極めて安定する。   In addition, (b) the fact that the average grain size of the primary recrystallized grains is small and the amount of nitriding is not small compared to the sufficiently precipitated nitriding type, the driving force of secondary recrystallization is increased, and the secondary recrystallization starts at a low temperature. Therefore, secondary recrystallization starts at an early stage (at a lower temperature) of the temperature raising stage of final finish annealing. This is matched with the formation of a multistage secondary inhibitor mode. This is because the temperature history at each point of the coil up to the maximum temperature becomes more uniform in the present situation where the final finish annealing is performed in a coil shape (the temperature rising rate at each point of the coil becomes constant) The non-uniformity of the coil part is remarkably reduced and the magnetic characteristics are extremely stable.

既述であるが本発明は、(c)完全固溶窒化型であり、脱炭焼鈍後二次再結晶開始前に鋼板に窒化処理を施すことは本発明では必須である。その方法は、高温焼鈍時の焼鈍分離剤に窒化物(CrN,MnN等)を混合させる方法と、一次再結晶・脱炭焼鈍後にストリップを走行させた状態下でアンモニアを含んだ雰囲気で窒化させる方法がある。どちらの方法を採用しても良いが、後者の方が工業生産で現実的であり本発明では後者に限定する。   As described above, the present invention is of (c) complete solid solution nitriding type, and it is essential in the present invention to subject the steel sheet to nitriding treatment after decarburization annealing and before starting secondary recrystallization. The method includes mixing a nitride (CrN, MnN, etc.) with an annealing separator during high-temperature annealing, and nitriding in an atmosphere containing ammonia under the condition that the strip is run after primary recrystallization / decarburization annealing. There is a way. Either method may be adopted, but the latter is more practical in industrial production and is limited to the latter in the present invention.

窒化量は酸可溶性Alと結合するNを確保することであり、少ないと二次再結晶が不安定となり、多いと地鉄が露出した一次皮膜(グラス皮膜)欠陥が多発し、Goss方位集積度が極めて劣化する。本発明により、高磁束密度を得るためには、窒化後の総窒素含有量は0.011%〜0.023%に広がった。また、二次再結晶開始温度が低いため、等量両面窒化が望まれる。   The amount of nitriding is to secure N that binds to acid-soluble Al. When the amount is small, secondary recrystallization becomes unstable. When the amount is large, defects in the primary film (glass film) exposing the ground iron occur frequently. Is extremely deteriorated. In order to obtain a high magnetic flux density according to the present invention, the total nitrogen content after nitriding has spread to 0.011% to 0.023%. In addition, since the secondary recrystallization start temperature is low, equivalent double-sided nitriding is desired.

一次再結晶焼鈍後板厚中心層の析出物の円相当平均直径を50nm以上200nm以下とする。下限値未満は従来の場合であり、窒化工程での窒化窒素量範囲を狭くする必要があり、上限を超えると二次インヒビターの耐熱性が大きくなりすぎGoss方位集積度が低下する。小さい矩形の析出物はAlNを主成分としており、大きいのは、丸形で非AlNのMn系である。この範囲のある程度大きな析出物を得るためには、最終冷間圧延前の焼鈍において、比較的高い温度で長い時間保持することが必要である。例えば、1130℃以上で120秒以上の焼鈍が必要である。その後、500℃まで20℃/秒以上の冷速で冷却することが望ましい。この様に高く長い焼鈍で矩形のAlN系析出物は大きく成長する。   The circle equivalent average diameter of the precipitate in the thickness center layer after primary recrystallization annealing is set to 50 nm or more and 200 nm or less. The lower limit value is a conventional case, and it is necessary to narrow the nitrogen nitride amount range in the nitriding step. If the upper limit is exceeded, the heat resistance of the secondary inhibitor becomes too high and the Goss orientation accumulation degree decreases. The small rectangular precipitates are mainly composed of AlN, and the large precipitates are round and non-AlN Mn. In order to obtain a precipitate having a somewhat large size within this range, it is necessary to hold at a relatively high temperature for a long time in the annealing before the final cold rolling. For example, annealing at 1130 ° C. or higher for 120 seconds or longer is required. Thereafter, it is desirable to cool to 500 ° C. at a cooling rate of 20 ° C./second or more. In this way, rectangular AlN-based precipitates grow greatly with high and long annealing.

スラブを得るための鋳造は、従来の連続鋳造でよい。さらにスラブ加熱をたやすくするために分塊法を適用することは構わない。この場合、炭素含有量を減じることができることは周知である。具体的には、公知の連続鋳造法により初期の厚みが150mmから300mmの範囲、好ましくは200mmから250mmの範囲のスラブを製造する。   The casting for obtaining the slab may be a conventional continuous casting. Furthermore, in order to make the slab heating easy, it is possible to apply the lump method. In this case, it is well known that the carbon content can be reduced. Specifically, a slab having an initial thickness in the range of 150 mm to 300 mm, preferably in the range of 200 mm to 250 mm, is manufactured by a known continuous casting method.

この代わりに、近年、通常の連続熱間圧延を補完するものとして、厚み30mm〜100mmの薄スラブ鋳造、直接鋼帯を得る鋼帯鋳造(ストリップキャスター)が実用化されているが、本発明に関して、適用は妨げない。しかし、実際問題として、これらでは凝固時に所謂“中心偏析”が見られ完全な均一固溶状態を得ることは極めて困難である。完全な均一固溶状態を得るためには熱延鋼帯を得る前に一度固溶化熱処理が強く望まれる。   Instead, as a supplement to normal continuous hot rolling in recent years, thin slab casting with a thickness of 30 mm to 100 mm and steel strip casting (strip caster) to obtain a direct steel strip have been put into practical use. The application is not hindered. However, as a matter of fact, in these, so-called “center segregation” is observed at the time of solidification, and it is extremely difficult to obtain a complete homogeneous solution state. In order to obtain a completely uniform solution state, a solution heat treatment is strongly desired once before the hot-rolled steel strip is obtained.

熱延に先立つスラブ加熱温度の条件は本発明の重要な点である。スラブ加熱温度は1280℃以上でインヒビター物質を固溶させることが必須である。1280℃未満では、スラブ(又は熱延鋼帯)でのインヒビター物質の析出状態が不均一となり最終製品で所謂スキッドマークが発生する。上限は、特に限定されないが実際的には1420℃程度である。この完全固溶処理は、温度を1420℃と言う超高温まで上げずに行うことが近年の誘導加熱等設備技術の発達で可能になった(特許文献19)。もちろん、工業生産上で熱延の加熱方法には通常のガス加熱方法に加え、誘導加熱、直接通電加熱を用いてもよいし、これらの特別な加熱方法のための形状を確保するために、ブレイクダウンを鋳込みスラブに施しても何ら問題ない。また、加熱温度が高い1300℃以上になる場合は、このブレイクダウンにより集合組織の改善を施しC量を減じてもよい。これらは従来の公知技術の範囲である。   The condition of the slab heating temperature prior to hot rolling is an important point of the present invention. It is essential that the slab heating temperature be 1280 ° C. or higher to dissolve the inhibitor substance. If it is less than 1280 ° C., the precipitation state of the inhibitor substance in the slab (or hot-rolled steel strip) becomes non-uniform, and so-called skid marks are generated in the final product. Although an upper limit is not specifically limited, Actually, it is about 1420 degreeC. This complete solid solution treatment can be performed without raising the temperature to an ultrahigh temperature of 1420 ° C. due to the recent development of equipment technology such as induction heating (Patent Document 19). Of course, in addition to the usual gas heating method for industrial production, in addition to the usual gas heating method, induction heating, direct current heating may be used, and in order to ensure the shape for these special heating methods, There is no problem even if breakdown is applied to the cast slab. When the heating temperature is higher than 1300 ° C., the texture may be improved by this breakdown to reduce the amount of C. These are within the scope of conventional known techniques.

熱延鋼帯でのAlNの析出率が20%を超えると、鋼帯内の二次再結晶性が変動し、工業生産に適しない。即ち、先天的インヒビターの固溶状態が不均一となり、スキッドマークが発生する。20%を超える場合は、スラブ加熱を含んで熱間圧延が適切に行われなかったことを意味する。   If the precipitation rate of AlN in the hot-rolled steel strip exceeds 20%, the secondary recrystallization property in the steel strip varies and is not suitable for industrial production. That is, the solid solution state of the innate inhibitor becomes non-uniform, and a skid mark is generated. When it exceeds 20%, it means that hot rolling was not properly performed including slab heating.

最終冷間圧延前の焼鈍は、主に熱延時に生じた鋼帯内の組織の均一化及びインヒビターの微細分散析出のために行われる。熱延鋼帯での焼鈍でも良いし、最終冷間圧延前の焼鈍でも良い。すなわち、最終冷間圧延前に熱延での履歴の均一化を行うために1回以上の連続焼鈍を行うことが必須である。この場合の最高温度は、インヒビターに大きな影響を与え、この効果は重要である。比較的に低い場合は、前記析出物の平均直径が50nm以下となる。また高すぎると200nmを超える。焼鈍後の冷却は、微細なインヒビターを確保し焼き入れハード相(主にベーナイト相)を確保するために15℃/秒以上であることが望ましい。   The annealing before the final cold rolling is performed mainly for the homogenization of the structure in the steel strip generated during hot rolling and the fine dispersion precipitation of the inhibitor. Annealing in a hot-rolled steel strip may be used, and annealing before final cold rolling may be used. That is, it is essential to perform one or more continuous annealings in order to make the history of hot rolling uniform before the final cold rolling. The maximum temperature in this case has a great influence on the inhibitor, and this effect is important. When it is relatively low, the average diameter of the precipitate is 50 nm or less. If it is too high, it exceeds 200 nm. The cooling after annealing is desirably 15 ° C./second or more in order to secure a fine inhibitor and secure a hardened hard phase (mainly a bainite phase).

冷間圧延における最終冷延率は83%未満であると{110}<001>集合組織がブロードになり高磁束密度が得られず、92%を超えると{110}<001>集合組織が極端に少なくなり二次再結晶が不安定になる。   If the final cold rolling ratio in cold rolling is less than 83%, the {110} <001> texture becomes broad and a high magnetic flux density cannot be obtained, and if it exceeds 92%, the {110} <001> texture is extreme. The secondary recrystallization becomes unstable.

最終冷間圧延は常温で実施してもよいが、少なくとも1パスを100〜300℃の温度範囲に1分以上保つと一次再結晶集合組織が改善され磁気特性が極めて良好になる。これは、公知である。保定時間は1分以上であれば良いのだが、実際の冷間圧延は、リバースミルで行われるので、ある温度の保定時間は、一般的には10分以上となる。長くなることは本発明では妨げないし、むしろ良好な磁気特性を得る方策でもある。   The final cold rolling may be carried out at room temperature, but if at least one pass is kept in the temperature range of 100 to 300 ° C. for 1 minute or longer, the primary recrystallization texture is improved and the magnetic properties become extremely good. This is known. The holding time may be 1 minute or more, but since actual cold rolling is performed by a reverse mill, the holding time at a certain temperature is generally 10 minutes or more. Increasing the length does not hinder the present invention, but rather is a measure for obtaining good magnetic properties.

脱炭燒鈍における室温から650〜850℃までの加熱速度を100℃/sec以上とすると、一次再結晶集合組織が改善され磁気特性が良好になるので適用を妨げない。加熱速度を確保するためには種々な方法が考えられる。即ち、抵抗加熱、誘導加熱、直接エネルギー付与加熱等がある。加熱速度を早くすると一次再結晶集合組織においてGoss方位が多くなり二次再結晶粒径が小さくなることは特許文献20で公知である。特許文献20では、加熱速度を140℃/sec以上としているが、本発明では、前記加熱速度が100℃/secでも効果があり、望ましくは150℃/sec以上である。   When the heating rate from room temperature to 650 to 850 ° C. in the decarburization annealing is set to 100 ° C./sec or more, the primary recrystallization texture is improved and the magnetic properties are improved, so that application is not hindered. Various methods are conceivable for securing the heating rate. That is, there are resistance heating, induction heating, direct energy application heating, and the like. It is known in Patent Document 20 that when the heating rate is increased, the Goss orientation increases in the primary recrystallization texture and the secondary recrystallization grain size decreases. In Patent Document 20, the heating rate is set to 140 ° C./sec or more. However, in the present invention, the heating rate is also effective at 100 ° C./sec, desirably 150 ° C./sec or more.

<実施例1>
C=0.068%、Si=3.35%、酸可溶性Al=0.0260%、N=0.0046%、Mn=0.045%、S=0.014%、Sn=0.08%,Cu=0.09%、Ti=0.0020であり、残部がFeと不可避的不純物である溶鋼を通常の方法で鋳込み、スラブ加熱温度1310℃で完全にインヒビター物質を固溶させ、熱間圧延後急冷して2.3mm厚の熱間圧延鋼帯を得た。AlNの析出割合は10%以下であった。その後、この熱間圧延鋼帯を
(1)1080℃で180秒間焼鈍後100℃熱湯に冷却した。
(2)1140℃で180秒間焼鈍後100℃熱湯に冷却した。
(3)1120℃で10秒間焼鈍後900℃に120秒間保定して100℃熱湯に冷却した。
<Example 1>
C = 0.068%, Si = 3.35%, acid-soluble Al = 0.0260%, N = 0.0006%, Mn = 0.045%, S = 0.014%, Sn = 0.08% , Cu = 0.09%, Ti = 0.020, the balance is Fe and inevitable impurities are cast by a normal method, and the inhibitor substance is completely dissolved at a slab heating temperature of 1310 ° C. After rolling, the steel sheet was rapidly cooled to obtain a hot-rolled steel strip having a thickness of 2.3 mm. The precipitation ratio of AlN was 10% or less. Then, this hot-rolled steel strip was (1) annealed at 1080 ° C. for 180 seconds and then cooled to 100 ° C. hot water.
(2) After annealing at 1140 ° C. for 180 seconds, it was cooled to 100 ° C. hot water.
(3) After annealing at 1120 ° C. for 10 seconds, it was held at 900 ° C. for 120 seconds and cooled to 100 ° C. hot water.

酸洗後、250℃の5回の時効処理を含むリバース冷間圧延機で0.285mmに圧延して冷間圧延鋼帯を得た。その後、脱脂して850℃で150秒間の一次再結晶・脱炭焼鈍をN2=25%、H2=75%、Dp=72℃で、の湿雰囲気で施し、引き続いて、一次再結晶・脱炭焼鈍の後半焼鈍を温度875℃で15秒の間、N2=25%、H2=75%、Dp=30℃の雰囲気で施した。その後、窒化後窒素が大凡0.0100〜0.0260%となるようにストリップ走行中でアンモニア雰囲気中で窒化し、鋼板表面にMgOを主成分とする焼鈍分離剤を塗布した。 After pickling, the steel sheet was rolled to 0.285 mm by a reverse cold rolling mill including five aging treatments at 250 ° C. to obtain a cold rolled steel strip. Thereafter, degreasing and primary recrystallization / decarburization annealing at 850 ° C. for 150 seconds are performed in a humid atmosphere of N 2 = 25%, H 2 = 75%, Dp = 72 ° C., followed by primary recrystallization / The second half of the decarburization annealing was performed at a temperature of 875 ° C. for 15 seconds in an atmosphere of N 2 = 25%, H 2 = 75%, and Dp = 30 ° C. Then, nitriding was performed in an ammonia atmosphere so that the nitrogen was about 0.0100 to 0.0260% after nitriding, and an annealing separator mainly composed of MgO was applied to the steel sheet surface.

引き続いて、二次再結晶焼鈍において、800℃まで15℃/時間でする昇温を、(4)H2%=75%,N2%=25%,Dp=10℃と、(5)H2%=50%,N2%=50%,Dp=40℃の各条件(BAF条件)で行い、その後、1200℃までH2%=75%,N2%=25%,Dryで15℃/時間で昇温し、最後に1200℃で20時間のH2=100%で純化処理を行い冷却した。その後、通常用いられる絶縁張力コーティング塗布と平坦化処理を行った。 Subsequently, in the secondary recrystallization annealing, the temperature rise at 15 ° C./hour up to 800 ° C. is as follows: (4) H 2 % = 75%, N 2 % = 25%, Dp = 10 ° C. 2 % = 50%, N 2 % = 50%, Dp = 40 ° C. (BAF condition), then up to 1200 ° C. H 2 % = 75%, N 2 % = 25%, Dry 15 ° C. The temperature was raised at / hour and finally purified at 1200 ° C. for 20 hours with H 2 = 100% and cooled. After that, normally used insulating tension coating application and planarization treatment were performed.

上記(4)、(5)の二次再結晶焼鈍条件(BAF条件)ごとに、上記(1)から(3)の熱延鋼帯焼鈍条件を用いた鋼板から得られた窒化後窒素と磁束密度(B8)の関係を、図3a及びbに示す。   For each of the secondary recrystallization annealing conditions (BAF conditions) in (4) and (5) above, the post-nitriding nitrogen and magnetic flux obtained from the steel sheet using the hot rolled steel strip annealing conditions in (1) to (3) above The relationship of density (B8) is shown in FIGS. 3a and b.

(2)が、本発明例であり広範囲の窒化後窒素に対して良好なB8(T)が得られている。また、二次再結晶焼鈍条件(BAF条件)が異なっても磁気特性に大きな差異は無くまた被膜形成も良好であった。   (2) is an example of the present invention, and good B8 (T) is obtained for a wide range of nitrogen after nitriding. Further, even if the secondary recrystallization annealing conditions (BAF conditions) were different, there was no significant difference in magnetic properties and the film formation was good.

更に、図4に、一次再結晶焼鈍後の板厚中心層の析出物のSEMによる析出物の形態の観察例を示すが、上記(1)から(3)の熱延鋼帯焼鈍条件を用いた鋼板から観察された析出物の円相当平均直径は、それぞれ(1)29.7nm、(2)62.8nm、(3)32.8nmであった。   Further, FIG. 4 shows an observation example of the form of the precipitate by SEM of the precipitate in the thickness center layer after the primary recrystallization annealing, and the hot-rolled steel strip annealing conditions (1) to (3) above are used. The average equivalent circle diameters of the precipitates observed from the steel plates were (1) 29.7 nm, (2) 62.8 nm, and (3) 32.8 nm, respectively.

<実施例2>
通常の方法で溶製した、表2に示す溶鋼成分からなるスラブを、1230〜1350℃の範囲で再加熱した後、特にAlNの析出を極力抑えるため、出来るだけ高温度で熱延を完了させ、急速に冷却せしめた。こうして厚み2.3mmの熱延鋼帯を得た。続いて熱延鋼帯の連続焼鈍を表2に示す条件で行い、20℃/秒で冷却した。その後、3回の200℃〜250℃の温間で圧延し、厚みを0.285mmとした。
その後、850℃で150秒間、H2とN2の混合雰囲気で、露点70℃で脱炭と一次再結晶を兼ねる焼鈍を施し、引き続き、鋼帯を走行せしめながら0.010〜0.025%になるように含アンモニア雰囲気内で窒化させた。その後、MgOを主成分とする焼鈍分離剤の塗布後、二次再結晶焼鈍を施した。その二次再結晶焼鈍は、N2 =25%、H2 =75%、Dp=10℃の雰囲気で10〜20℃/時間で1200℃まで昇温することにより行った。その後、1200℃の温度で20時間以上、H2 =100%で純化処理を行った。その後、通常用いられる絶縁張力コーティングの塗布と平坦化処理を行った。磁気特性は、窒化後窒素量範囲の広くなることにより評価するために0.0135〜0.0150%での磁気特性で評価した。結果を表2に示すが、本発明例では、B8≧1.92Tの良好な結果が得られた。
<Example 2>
In order to suppress precipitation of AlN as much as possible, in order to suppress the precipitation of AlN as much as possible, slabs made of molten steel shown in Table 2 were reheated in the range of 1230 to 1350 ° C., and the hot rolling was completed as much as possible. Cooled quickly. Thus, a hot-rolled steel strip having a thickness of 2.3 mm was obtained. Subsequently, continuous annealing of the hot-rolled steel strip was performed under the conditions shown in Table 2 and cooled at 20 ° C./second. Thereafter, rolling was performed three times at a temperature of 200 ° C. to 250 ° C. to a thickness of 0.285 mm.
Thereafter, annealing was performed at 850 ° C. for 150 seconds in a mixed atmosphere of H 2 and N 2 at a dew point of 70 ° C., which also served as decarburization and primary recrystallization. Nitriding was performed in an ammonia-containing atmosphere. Then, secondary recrystallization annealing was performed after application | coating of the annealing separation agent which has MgO as a main component. The secondary recrystallization annealing was performed by raising the temperature to 1200 ° C. at 10-20 ° C./hour in an atmosphere of N 2 = 25%, H 2 = 75%, Dp = 10 ° C. Thereafter, a purification treatment was performed at a temperature of 1200 ° C. for 20 hours or more and H 2 = 100%. Thereafter, a generally used insulating tension coating was applied and planarized. The magnetic characteristics were evaluated by the magnetic characteristics at 0.0135 to 0.0150% in order to evaluate by increasing the nitrogen amount range after nitriding. The results are shown in Table 2. In the example of the present invention, good results of B 8 ≧ 1.92T were obtained.

<実施例3>
通常の方法で溶製した、表3に示す溶鋼成分からなるスラブを、1230〜1350℃の範囲で再加熱した後、特にAlNの析出を極力抑えるため、出来るだけ高温度で熱延を完了させ、急速に冷却せしめた。こうして厚み2.2mmの熱延鋼帯を得た。続いて熱延鋼帯の連続焼鈍を表2に示す条件で行い、20℃/秒で冷却した。その後、3回の200℃〜250℃の温間で圧延し、厚みを0.220mmとした。
その後、850℃で110秒間、H2とN2の混合雰囲気で、露点68℃で脱炭と一次再結晶を兼ねる焼鈍を施し、引き続き、鋼帯を走行せしめながら0.010〜0.025%になるように含アンモニア雰囲気内で窒化させた。その後、MgOを主成分とする焼鈍分離剤の塗布後、二次再結晶焼鈍を施した。その二次再結晶焼鈍は、N2 =25%、H2 =75%、Dp=10℃の雰囲気で10〜20℃/時間で1200℃まで昇温することにより行った。その後、1200℃の温度で20時間以上、H2 =100%で純化処理を行った。その後、通常用いられる絶縁張力コーティングの塗布と平坦化処理を行った。磁気特性は、窒化後窒素の広くなることにより評価するために0.0135〜0.0150質量%での磁気特性で評価した。結果を表3に示すが、本発明例では、B8≧1.92Tの良好な結果が得られた。
<Example 3>
In order to suppress precipitation of AlN as much as possible, in order to suppress the precipitation of AlN as much as possible, slabs made of molten steel shown in Table 3 were reheated in the range of 1230 to 1350 ° C., and the hot rolling was completed as much as possible. Cooled quickly. Thus, a hot-rolled steel strip having a thickness of 2.2 mm was obtained. Subsequently, continuous annealing of the hot-rolled steel strip was performed under the conditions shown in Table 2 and cooled at 20 ° C./second. Thereafter, rolling was performed three times at a temperature of 200 ° C. to 250 ° C. to a thickness of 0.220 mm.
After that, annealing was performed at 850 ° C. for 110 seconds in a mixed atmosphere of H 2 and N 2 at a dew point of 68 ° C., which also served as decarburization and primary recrystallization. Nitriding was performed in an ammonia-containing atmosphere. Then, secondary recrystallization annealing was performed after application | coating of the annealing separation agent which has MgO as a main component. The secondary recrystallization annealing was performed by raising the temperature to 1200 ° C. at 10-20 ° C./hour in an atmosphere of N 2 = 25%, H 2 = 75%, Dp = 10 ° C. Thereafter, a purification treatment was performed at a temperature of 1200 ° C. for 20 hours or more and H 2 = 100%. Thereafter, a generally used insulating tension coating was applied and planarized. The magnetic characteristics were evaluated by the magnetic characteristics at 0.0135 to 0.0150 mass% in order to evaluate by widening of nitrogen after nitriding. The results are shown in Table 3. In the example of the present invention, good results of B 8 ≧ 1.92T were obtained.

<実施例4>
表4に示した成分の溶鋼通常の連続鋳造で250mmのスラブを製造し、1300℃〜1350℃の温度でスラブ再加熱した。そして通常の連続熱間圧延機で高温度で熱間圧延して仕上げ熱間圧延後急冷し、2.3mmの熱間圧延鋼帯を得た。その後、最終冷間圧延前の熱処理おいて温度を1130℃〜1150℃とし、時間を120秒〜135秒焼鈍し、その後900℃〜550℃間の平均冷却速度を25℃〜40℃で冷却した。
<Example 4>
Molten steel having the components shown in Table 4 A 250 mm slab was produced by normal continuous casting, and the slab was reheated at a temperature of 1300 ° C to 1350 ° C. And it hot-rolled at high temperature with the normal continuous hot-rolling machine, the hot-rolling after finishing hot rolling, and quenching was performed, and the 2.3 mm hot-rolling steel strip was obtained. Then, in the heat treatment before the final cold rolling, the temperature was set to 1130 ° C to 1150 ° C, the time was annealed for 120 seconds to 135 seconds, and then the average cooling rate between 900 ° C to 550 ° C was cooled to 25 ° C to 40 ° C. .

その後、3回の200℃〜250℃の温間で圧延し、厚みを9mil(0.220mm)、12mil(0.285mm)、14mil(0.335mm)の3種類の鋼板とした。   Then, it rolled at the temperature of 200 degreeC-250 degreeC of 3 times, and was set as three types of steel plates with thickness 9mil (0.220mm), 12mil (0.285mm), and 14mil (0.335mm).

その後、9mil材は、850℃×110秒、12mil、14mil材は850℃×150秒の、H2とN2の混合雰囲気で、露点68℃で脱炭と一次再結晶を兼ねる焼鈍を施し、引き続き、鋼帯を走行せしめながら0.014〜0.019%になるように含アンモニア雰囲気内で窒化させた。その後、MgOを主成分とする焼鈍分離剤の塗布後、二次再結晶焼鈍を施した。その二次再結晶焼鈍は、N2 =25%、H2 =75%、Dp=10℃の雰囲気で10〜20℃/時間で1200℃まで昇温した。その後、1200℃の温度で20時間以上、H2 =100%で純化処理を行い、その処理後、通常用いられる絶縁張力コーティングの塗布と平坦化処理を行った。
この結果を表4の右欄に記す。
After that, 9 mil material is 850 ° C. × 110 seconds, 12 mil, 14 mil material is 850 ° C. × 150 seconds, H 2 and N 2 mixed atmosphere, dew point is 68 ° C., and both annealing and primary recrystallization are performed. Subsequently, nitriding was performed in an ammonia-containing atmosphere so as to be 0.014 to 0.019% while running the steel strip. Then, secondary recrystallization annealing was performed after application | coating of the annealing separation agent which has MgO as a main component. In the secondary recrystallization annealing, the temperature was raised to 1200 ° C. at 10 to 20 ° C./hour in an atmosphere of N 2 = 25%, H 2 = 75%, and Dp = 10 ° C. Thereafter, a purification treatment was performed at a temperature of 1200 ° C. for 20 hours or more and H 2 = 100%, and after that treatment, a generally used insulating tension coating was applied and a planarization treatment was performed.
The results are shown in the right column of Table 4.

<実施例5>
表4の鋼No.26と27の成分を有する通常の方法で製造されたスラブを用い、熱間圧延でのスラブ再加熱温度、熱延鋼帯厚み、最終冷間圧延率、並びに窒化量を変化させて工程処理した。熱間圧延鋼帯の厚みは1.8mm、2.3mm,2.5mmとした。
<Example 5>
Using a slab manufactured by a normal method having the components of steel Nos. 26 and 27 in Table 4, the slab reheating temperature in hot rolling, hot-rolled steel strip thickness, final cold rolling rate, and nitriding amount The process was changed. The thickness of the hot rolled steel strip was 1.8 mm, 2.3 mm, and 2.5 mm.

このとき最終冷間圧延前の焼鈍は、1060℃〜1150℃で110秒〜150秒間行い、その後900℃〜550℃間の平均冷却速度を25℃〜40℃で冷却した。ところで、また、例B10、B11は、2.3mmの熱間圧延鋼帯を酸洗後、予備圧延して1.55mm、1.45mmとして最終冷間圧延前焼鈍を行った。   At this time, annealing before the final cold rolling was performed at 1060 ° C. to 1150 ° C. for 110 seconds to 150 seconds, and then the average cooling rate between 900 ° C. and 550 ° C. was cooled at 25 ° C. to 40 ° C. By the way, in Examples B10 and B11, after a 2.3 mm hot-rolled steel strip was pickled, it was pre-rolled to 1.55 mm and 1.45 mm and annealed before final cold rolling.

その後、3回の200℃〜250℃の温間で圧延し、厚みを7mil(0.175mm)、8mil(0.195mm)、9mil(0.220mm)、12mil(0.285mm)、14mil(0.335mm)の5種類とした。   Then, it is rolled at a temperature of 200 ° C. to 250 ° C. three times, and the thickness is 7 mil (0.175 mm), 8 mil (0.195 mm), 9 mil (0.220 mm), 12 mil (0.285 mm), 14 mil (0 .335 mm).

その後、7,8、9mil材は、850℃×110秒、12mil、14mil材は850℃×150秒の、H2とN2の混合雰囲気で、露点68℃で脱炭と一次再結晶を兼ねる焼鈍を施し、引き続き、鋼帯を走行せしめながら0.0115〜0.0245%になるように含アンモニア雰囲気内で窒化させた。その後、MgOを主成分とする焼鈍分離剤の塗布後、二次再結晶焼鈍を施した。その二次再結晶焼鈍は、N2 =25%、H2 =75%、Dp=10℃の雰囲気で10〜20℃/時間で1200℃まで昇温することにより行った。その後、1200℃の温度で20時間以上、H2 =100%で純化処理を行った。その後、通常用いられる絶縁張力コーティングの塗布と平坦化処理を行った。
この結果を表5の右欄に記す。
Thereafter, decarburization and primary recrystallization are performed at a dew point of 68 ° C in a mixed atmosphere of H 2 and N 2 for 850 ° C x 110 seconds for 7,8 and 9 mil materials and 850 ° C for 150 seconds for 12 mil and 14 mil materials. Annealing was performed, followed by nitriding in an ammonia-containing atmosphere so as to be 0.0115 to 0.0245% while running the steel strip. Then, secondary recrystallization annealing was performed after application | coating of the annealing separation agent which has MgO as a main component. The secondary recrystallization annealing was performed by raising the temperature to 1200 ° C. at 10 to 20 ° C./hour in an atmosphere of N 2 = 25%, H 2 = 75%, Dp = 10 ° C. Thereafter, a purification treatment was performed at a temperature of 1200 ° C. for 20 hours or more and H 2 = 100%. Thereafter, a generally used insulating tension coating was applied and planarized.
The results are shown in the right column of Table 5.

<実施例6>
表4の鋼No.26と27の成分を有する通常の方法で製造されたスラブを用い、熱間圧延でのスラブ再加熱温度1335℃、熱延鋼帯厚み2.3mmを1140℃で120秒間焼鈍し、その後900℃〜550℃間の平均冷却速度を35℃とした後、最終冷間圧延率90.4%、87.6%で150℃から280℃で8分以上圧延中に保定し、1回のパスで9mil,12milに冷間圧延した。
<Example 6>
Using the slab manufactured by the normal method which has the components of steel No. 26 and 27 of Table 4, slab reheating temperature in hot rolling 1335 degreeC, hot-rolled steel strip thickness 2.3mm at 1140 degreeC for 120 seconds After annealing, the average cooling rate between 900 ° C. and 550 ° C. was set to 35 ° C., and the final cold rolling rate was 90.4%, 87.6%, and held during rolling at 150 ° C. to 280 ° C. for 8 minutes or more. Cold-rolled to 9 mil and 12 mil in one pass.

その後、9mil材は、850℃×110秒、12milは850℃×150秒の、H2とN2の混合雰囲気で、露点68℃で脱炭と一次再結晶を兼ねる焼鈍を施し、引き続き、鋼帯を走行せしめながら0.0150〜0.0205%になるように含アンモニア雰囲気内で窒化させた。この脱炭焼鈍時には、650℃までの加熱速度を通常の速度、誘導加熱による110℃/秒、230℃/秒、240℃/秒とした。 After that, 9mil material was 850 ° C x 110 seconds, 12mil was 850 ° C x 150 seconds, mixed atmosphere of H 2 and N 2 , and decarburized at 68 ° C, annealing for both decarburization and primary recrystallization. While running the belt, nitriding was performed in an ammonia-containing atmosphere so as to be 0.0150 to 0.0205%. During the decarburization annealing, the heating rate up to 650 ° C. was set to a normal rate, 110 ° C./second, 230 ° C./second, 240 ° C./second by induction heating.

その後、MgOを主成分とする焼鈍分離剤の塗布後、二次再結晶焼鈍を施した。その二次再結晶焼鈍は、N2 =25%、H2 =75%、Dp=10℃の雰囲気で10〜20℃/時間で1200℃まで昇温することにより行った。その後、1200℃の温度で20時間以上、H2 =100%で純化処理を行い、その処理後、通常用いられる絶縁張力コーティングの塗布と平坦化処理を行った。
この結果を表6の右欄に記す。
Then, secondary recrystallization annealing was performed after application | coating of the annealing separation agent which has MgO as a main component. The secondary recrystallization annealing was performed by raising the temperature to 1200 ° C. at 10 to 20 ° C./hour in an atmosphere of N 2 = 25%, H 2 = 75%, Dp = 10 ° C. Thereafter, a purification treatment was performed at a temperature of 1200 ° C. for 20 hours or more and H 2 = 100%, and after that treatment, a generally used insulating tension coating was applied and a planarization treatment was performed.
The results are shown in the right column of Table 6.

Claims (8)

質量%で、C:0.025〜0.09%、Si:2.5〜4.0%、酸可溶性Al:0.022〜0.033%、N:0.003〜0.006%、SとSeを、S当量Seq=S+0.405Seとして0.010〜0.020%、Mn:0.03〜0.09%、Ti≦0.005%を含有し、残部がFe及び不可避的不純物からなるスラブを、1280℃を超えるインヒビター物質の固溶温度以上で再加熱し、熱間圧延を施して熱間圧延鋼帯とし、この熱間圧延鋼帯に含有されるNのうちAlNとしての析出率を20%以下とし、この熱間圧延鋼帯を焼鈍しもしくは焼鈍せず、引き続き1回もしくは中間焼鈍を挟む2回以上の冷間圧延を行って最終板厚の冷間圧延鋼帯とする際、最終冷間圧延前に1回以上の熱処理を施し、最終冷間圧延の圧延率を83%〜92%とし、この冷間圧延鋼帯の脱炭焼鈍後の一次再結晶粒の円相当の平均粒径(直径)を7μm以上〜18μm未満とし、ストリップ走行状態下で水素、窒素及びアンモニアの混合ガス中の窒化処理で全窒素含有量を0.011〜0.023%として、その後MgOを主成分とする焼鈍分離剤を塗布して最終仕上げ焼鈍を施す方向性電磁鋼板の製造において、最終冷間圧延前の熱処理後の冷却速度を15℃/秒以上、脱炭焼鈍後の板厚中心層の析出物の円相当平均直径を50nm以上200nm以下とすることを特徴とする方向性電磁鋼板の製造方法。 In mass%, C: 0.025 to 0.09%, Si: 2.5 to 4.0%, acid-soluble Al: 0.022 to 0.033%, N: 0.003 to 0.006%, S and Se, S equivalent Seq = S + 0.405Se, 0.010 to 0.020%, Mn: 0.03 to 0.09%, Ti ≦ 0.005%, the balance being Fe and inevitable impurities The slab composed of the above is reheated at a temperature higher than the solid solution temperature of the inhibitor substance exceeding 1280 ° C., hot-rolled to form a hot-rolled steel strip, and Al as NN contained in the hot-rolled steel strip. With a precipitation rate of 20% or less, this hot-rolled steel strip is annealed or not annealed, and then cold-rolled steel strip of the final thickness is obtained by performing cold rolling twice or more with one or more intermediate sandwiches in between. When the final cold rolling is performed, at least one heat treatment is performed before the final cold rolling. The rate is 83% to 92%, and the average grain size (diameter) corresponding to the circle of primary recrystallized grains after decarburization annealing of the cold-rolled steel strip is 7 μm to less than 18 μm. A grain oriented electrical steel sheet in which a total nitrogen content is set to 0.011 to 0.023% by nitriding in a mixed gas of nitrogen and ammonia, and then an annealing separator containing MgO as a main component is applied to perform final finish annealing. In the production, the cooling rate after the heat treatment before the final cold rolling is 15 ° C./second or more, and the circle-equivalent average diameter of the precipitate in the thickness center layer after the decarburization annealing is 50 nm or more and 200 nm or less. method of manufacturing oriented electrical steel sheet towards that. 前記最終冷間圧延前の熱処理後の900〜550℃間の平均冷却速度を25〜40℃/秒とすることを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。The method for producing a grain-oriented electrical steel sheet according to claim 1, wherein an average cooling rate between 900 and 550 ° C after the heat treatment before the final cold rolling is set to 25 to 40 ° C / second. 前記スラブが、更に、質量%で、Cuを0.05〜0.30%含有することを特徴とする請求項1または2に記載の方向性電磁鋼板の製造方法。 It said slab is further method for producing oriented electrical steel sheet towards the claim 1 or 2, characterized by mass%, containing Cu 0.05 to 0.30%. 前記スラブが、更に、質量%で、Sn、Sb、Pの少なくとも1種を0.02〜0.30%含有することを特徴とする請求項1〜3のいずれかの項に記載の方向性電磁鋼板およびその製造方法。 It said slab further contains, by mass%, Sn, Sb, the direction of according to any one of claims 1-3, characterized in that it contains from 0.02 to 0.30% of at least one P Steel sheet and method for producing the same. 前記スラブが、更に、質量%で、Crを0.02〜0.30%含有することを特徴とする請求項1〜のいずれかの項に記載の方向性電磁鋼板の製造方法。 It said slab further contains, by mass%, the production method of the oriented electrical steel sheet towards according to any one of claims 1-4, characterized in that it contains Cr 0.02 to 0.30%. 最終冷間圧延の少なくとも1パスにおいて、鋼帯を100〜300℃の温度範囲に1分以上保つことを特徴とする請求項1〜のいずれかの項に記載の方向性電磁鋼板の製造方法。 In at least one pass of the final cold rolling, the production of oriented electrical steel sheet towards according to any one of claims 1-5, characterized in that to keep the steel strip 1 minute or more in a temperature range of 100 to 300 ° C. Method. 脱炭焼鈍における昇温開始から650℃までの加熱速度を100℃/秒以上とすることを特徴とする請求項1〜のいずれかの項に記載方向性電磁鋼板の製造方法。 Method for producing a grain-oriented electrical steel sheet according to any one of claims 1-6, characterized in that the heating rate up to 650 ° C. from start heating in decarburization annealing and 100 ° C. / sec or more. 請求項1〜のいずれかの項に記載の製造方法で得られ、圧延方向の磁束密度B8(800A/mでの磁束密度)が1.92T以上であることを特徴とする方向性電磁鋼板。 Obtained by the production method according to any of claims 1 to 7, grain-oriented electrical steel sheet rolling direction of the magnetic flux density B8 (magnetic flux density at 800A / m) is equal to or not less than 1.92T .
JP2009038190A 2009-02-20 2009-02-20 Method for producing grain-oriented electrical steel sheet with extremely excellent magnetic properties Active JP5332707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009038190A JP5332707B2 (en) 2009-02-20 2009-02-20 Method for producing grain-oriented electrical steel sheet with extremely excellent magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009038190A JP5332707B2 (en) 2009-02-20 2009-02-20 Method for producing grain-oriented electrical steel sheet with extremely excellent magnetic properties

Publications (2)

Publication Number Publication Date
JP2010189752A JP2010189752A (en) 2010-09-02
JP5332707B2 true JP5332707B2 (en) 2013-11-06

Family

ID=42816092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009038190A Active JP5332707B2 (en) 2009-02-20 2009-02-20 Method for producing grain-oriented electrical steel sheet with extremely excellent magnetic properties

Country Status (1)

Country Link
JP (1) JP5332707B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7010306B2 (en) 2018-01-25 2022-02-10 日本製鉄株式会社 Directional electrical steel sheet
CN111655886B (en) * 2018-01-25 2022-08-30 日本制铁株式会社 Grain-oriented electromagnetic steel sheet
JP7338511B2 (en) * 2020-03-03 2023-09-05 Jfeスチール株式会社 Manufacturing method of grain-oriented electrical steel sheet

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4272557B2 (en) * 2004-02-12 2009-06-03 新日本製鐵株式会社 Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP4823719B2 (en) * 2006-03-07 2011-11-24 新日本製鐵株式会社 Method for producing grain-oriented electrical steel sheet with extremely excellent magnetic properties

Also Published As

Publication number Publication date
JP2010189752A (en) 2010-09-02

Similar Documents

Publication Publication Date Title
JP4823719B2 (en) Method for producing grain-oriented electrical steel sheet with extremely excellent magnetic properties
JP4954876B2 (en) Oriented electrical steel sheet with extremely excellent magnetic properties and method for producing the same
JP4598702B2 (en) Manufacturing method of high Si content grain-oriented electrical steel sheet with excellent magnetic properties
JP2013047382A (en) Method of producing grain-oriented electromagnetic steel sheet
JP5782527B2 (en) Low iron loss high magnetic flux density grained electrical steel sheet and manufacturing method thereof
JP2011190485A (en) Method for producing oriented electrical steel sheet
JP6838601B2 (en) Low iron loss directional electromagnetic steel sheet and its manufacturing method
JP4673937B2 (en) Method for processing steel for grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet
WO2016067636A1 (en) Production method for oriented electromagnetic steel sheet
JP6944523B2 (en) Electrical steel sheet and its manufacturing method
JP2005226111A (en) Method for producing grain-oriented silicon steel sheet excellent in magnetic characteristic
JP2009256713A (en) Method for manufacturing grain-oriented electrical steel sheet
JP2022501517A (en) Directional electrical steel sheet and its manufacturing method
JP5684481B2 (en) Method for producing grain-oriented electrical steel sheet
JP5854234B2 (en) Method for producing grain-oriented electrical steel sheet
JP5332707B2 (en) Method for producing grain-oriented electrical steel sheet with extremely excellent magnetic properties
JP2003253341A (en) Process for manufacturing grain-oriented magnetic steel sheet showing excellent magnetic property
JP6947147B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP4608562B2 (en) Method for producing grain-oriented electrical steel sheet with extremely high magnetic flux density
CN113166892A (en) Oriented electrical steel sheet and method for manufacturing the same
JP2019116680A (en) Slab for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet and manufacturing method thereof
JP2021509445A (en) Directional electrical steel sheet and its manufacturing method
JP7037657B2 (en) Directional electrical steel sheet and its manufacturing method
JP4279993B2 (en) Method for producing unidirectional silicon steel sheet
JPWO2019131853A1 (en) Low iron loss grain-oriented electrical steel sheet and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130715

R151 Written notification of patent or utility model registration

Ref document number: 5332707

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350