JP2001158919A - Method for producing grain oriented silicon steel sheet excellent in magnetic property and film characteristic - Google Patents

Method for producing grain oriented silicon steel sheet excellent in magnetic property and film characteristic

Info

Publication number
JP2001158919A
JP2001158919A JP34187599A JP34187599A JP2001158919A JP 2001158919 A JP2001158919 A JP 2001158919A JP 34187599 A JP34187599 A JP 34187599A JP 34187599 A JP34187599 A JP 34187599A JP 2001158919 A JP2001158919 A JP 2001158919A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
grain
producing
oriented electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34187599A
Other languages
Japanese (ja)
Other versions
JP3885432B2 (en
Inventor
Tetsuo Toge
哲雄 峠
Hiroaki Toda
広朗 戸田
Atsuto Honda
厚人 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP34187599A priority Critical patent/JP3885432B2/en
Publication of JP2001158919A publication Critical patent/JP2001158919A/en
Application granted granted Critical
Publication of JP3885432B2 publication Critical patent/JP3885432B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for advantageously producing a grain oriented silicon steel sheet good in both magnetic properties and film characteristics even in the case slab heating temperature is made the low one equal to that of common steel in the production of a general purpose grain oriented silicon steel sheet requiring the reduction of the cost. SOLUTION: In the method for producing a grain oriented silicon steel sheet in which a silicon steel slab having a componential composition containing, by weight, 0.005 to 0.100% C, 2.0 to 4.5% Si and 0.03 to 2.50% Mn, in which the contents of N and S are suppressed in accordance with the expression of [ppm N]2+[ppm S]2<=6400 and moreover containing one or two or more kinds selected from Sb, Sn, Cr, Cu and P is heated to <=1260 deg.C, is thereafter hot-rolled, is next subjected to hot rolled sheet annealing at need, is subjected to cold rolling for one time or for two or more times including process annealing to control its sheet thickness into the final one, is furthermore subjected to decarburizing annealing, is subsequently applied with a separation agent for annealing and is then subjected to finish annealing, the temperature rising rate from 600 to 750 deg.C in the decarburizing annealing is controlled to >=15 deg.C/s, and also, the ratio of the partial pressure of water vapor to the partial pressure of hydrogen in a soaking stage of the decarburizing annealing, i.e., atmospheric oxidizable P(H2O)/P(H2) is controlled to the range of <=0.6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、一方向性電磁鋼
板、特に磁気特性および被膜特性がともに優れた汎用の
一方向性電磁鋼板を安定して製造する方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for stably producing a grain-oriented electrical steel sheet, particularly a general-purpose grain-oriented electrical steel sheet having excellent magnetic properties and coating properties.

【0002】[0002]

【従来の技術】方向性珪素鋼板は、主として変圧器その
他の電気機器の鉄心材料として使用され、磁束密度及び
鉄損値などの磁気特性に優れることが重要である。その
ため、厚さ100 〜300 mmのスラブを高温に加熱後熱間圧
延し、次いでこの熱延板を1回または中間焼鈍を挟む2
回以上の冷間圧延によって最終板厚とし、脱炭焼鈍後に
焼鈍分離剤を塗布してから、二次再結晶および純化を目
的とした最終仕上げ焼鈍を行う、という複雑な工程がと
られている。磁気特性を高めるためには、仕上げ焼鈍工
程での二次再結晶にて、磁化容易軸である<001>軸
が圧延方向にそろった{110}<001>方位の結晶
粒を成長させることが重要である。
2. Description of the Related Art Grain-oriented silicon steel sheets are mainly used as iron core materials for transformers and other electric equipment, and it is important that they have excellent magnetic properties such as magnetic flux density and iron loss value. Therefore, a slab having a thickness of 100 to 300 mm is heated to a high temperature and then hot-rolled, and then the hot-rolled sheet is subjected to one or intermediate annealing.
A complicated process of taking a final thickness by cold rolling more than once, applying an annealing separator after decarburizing annealing, and then performing a final finish annealing for the purpose of secondary recrystallization and purification. . In order to improve the magnetic properties, it is necessary to grow crystal grains of the {110} <001> orientation in which the <001> axis, which is the easy axis, is aligned with the rolling direction in the secondary recrystallization in the finish annealing step. is important.

【0003】{110}<001>方位に集積した二次
再結晶を効果的に促進させるためには、一次再結晶粒の
成長を抑制するインヒビターと呼ばれる分散相を、均一
かつ適正なサイズに分散させることが有効である。この
インヒビターの作用により、最終仕上げ焼鈍時に一次再
結晶粒の成長が抑制されるのであるが、最も粒成長の優
位性の高い{110}<001>方位の粒だけが、他の
方位に優先して成長するのである。従って、インヒビタ
ーの抑制力は、{110}<001>方位の粒のみが成
長でき、他の粒の成長を止められるような強さに制御さ
れねばならない。
In order to effectively promote the secondary recrystallization accumulated in the {110} <001> orientation, a dispersed phase called an inhibitor which suppresses the growth of primary recrystallized grains is dispersed in a uniform and appropriate size. It is effective to do so. The action of this inhibitor suppresses the growth of primary recrystallized grains during final finish annealing, but only the grains with the {110} <001> orientation, which has the highest dominance of grain growth, have priority over other orientations. It grows. Therefore, the inhibitory force of the inhibitor must be controlled so that only grains having the {110} <001> orientation can grow and the growth of other grains can be stopped.

【0004】かかるインヒビターとしては、MnS、MnS
e、AlN及びVNに代表される、硫化物、Se化合物または
窒化物等、鋼中への溶解度が極めて小さいものが用いら
れており、熱間圧延前のスラブ加熱時にインヒビターを
一旦完全に固溶させた後、その後の工程で微細に析出さ
せる方法が採用されてきた。インヒビターを十分固溶さ
せるためのスラブ加熱温度は1400℃程度であり、普通鋼
のスラブ加熱温度に比べて約200 ℃も高く、こうした高
温スラブ加熱には以下のような欠点がある。 (ア)高温加熱を行うためにエネルギー原単位が高い。 (イ)溶融スケールが発生しやすく、またスラブ垂れが
生じやすい。 (ウ)スラブ表層の過脱炭が生じる。
[0004] Such inhibitors include MnS, MnS
e, such as sulfides, Se compounds or nitrides, such as AlN and VN, which have extremely low solubility in steel are used. After that, a method of precipitating finely in a subsequent step has been adopted. The slab heating temperature for sufficiently dissolving the inhibitor is about 1400 ° C., which is about 200 ° C. higher than the slab heating temperature of ordinary steel. Such high-temperature slab heating has the following disadvantages. (A) The unit energy consumption is high due to high-temperature heating. (A) Melt scale is easily generated and slab dripping is easily generated. (C) Excessive decarburization of the slab surface layer occurs.

【0005】上記の(イ)および(ウ)の問題点を解決
するために、方向性珪素鋼専用の誘導加熱炉が提案され
たが、エネルギーコストの増大が新たに問題となる。
In order to solve the above problems (a) and (c), an induction heating furnace dedicated to directional silicon steel has been proposed. However, an increase in energy cost is a new problem.

【0006】また、上記の(ア)の問題に対して、方向
性珪素鋼スラブの低温加熱化を図る研究が、これまで多
くなされてきた。すなわち、スラブ加熱温度の低下はイ
ンヒビター成分の固溶量不足を招いて、抑制力の低下を
必然的に引き起こすため、低温スラブ加熱に起因する抑
制力の低下を後工程で補う、途中窒化技術が開発され
た。例えば、特開昭57−207114号公報には脱炭焼鈍時に
窒化する技術が、また特開昭62−70521 号公報には仕上
げ焼鈍条件を特定して仕上げ焼鈍時に途中窒化する技術
が、それぞれ開示されている。さらに、特開昭62−4031
5 号公報には、Al、Nをスラブ加熱時に固溶していなく
ても、後工程の途中窒化によってインヒビターを適正状
態に制御する方法が開示されている。
In order to solve the above-mentioned problem (A), many studies have been made to reduce the temperature of a directional silicon steel slab to a low temperature. In other words, a decrease in the slab heating temperature leads to a shortage of the solid solution amount of the inhibitor component, and inevitably causes a decrease in the suppressing power. It has been developed. For example, Japanese Patent Application Laid-Open No. 57-207114 discloses a technique of nitriding during decarburizing annealing, and Japanese Patent Application Laid-Open No. 62-70521 discloses a technique of specifying final annealing conditions and performing intermediate nitriding during final annealing. Have been. Further, JP-A-62-4031
No. 5 discloses a method of controlling an inhibitor to an appropriate state by nitriding in a later step even if Al and N are not dissolved in slab during heating.

【0007】しかし、仕上げ焼鈍に入る前に途中窒化を
施す方法は、新たな設備を必要とし、コストが増大する
という問題点があり、また仕上げ焼鈍中の窒化は制御が
難しいところに問題点が残る。
[0007] However, the method of performing nitriding in the middle before the start of the final annealing requires new equipment and increases the cost, and the nitriding during the final annealing is difficult to control. Remains.

【0008】ところで、方向性電磁鋼板の需要家におい
ては、磁気特性とともに被膜特性も重要視される。なぜ
なら、方向性電磁鋼板の被膜には、トランスの鉄心にお
いて絶縁性を保つ役割はもとより、ビルディングファク
ターを改善する役割、騒音に影響する磁歪や歪み感受性
を変化させる役割があるからである。
By the way, consumers of grain-oriented electrical steel sheets place great importance on film properties as well as magnetic properties. This is because the coating of the grain-oriented electrical steel sheet has a role of improving the building factor and a role of changing the magnetostriction and distortion sensitivity that affect noise, as well as the role of maintaining insulation in the core of the transformer.

【0009】この被膜特性を制御することに関して、低
温スラブ加熱を前提とする技術が、特開平7−76736 号
公報に開示されている。すなわち、脱炭・窒化処理後の
鋼板に焼鈍分離剤としてClおよび/またはSO3 を0.15〜
2.0 %含有するマグネシアを塗布して仕上げ焼鈍を施す
ことにより、グラス被膜と磁気特性に優れた方向性電磁
鋼板が得られ、その際に仕上げ焼鈍条件として、昇温率
20℃/h 以下、900 ℃以上の昇温雰囲気ガスのN2 を25
%とすることにより、さらなるグラス被膜品質と磁気特
性の向上が得られることが、開示されている。また、同
公報には、マグネシアヘの添加物として、Ti、Sbおよび
B化合物の1種類以上を0.1 〜7.5 重量部配合すること
により、被膜特性に極めて優れた方向性電磁鋼板が得ら
れることも記載されている。
Japanese Patent Application Laid-Open No. 7-76736 discloses a technique on the premise that low-temperature slab heating is performed for controlling the film characteristics. That is, Cl and / or SO 3 are added to the steel sheet after the decarburization / nitriding treatment as 0.15 to 0.15
By applying magnesia containing 2.0% and performing finish annealing, a grain-coated electrical steel sheet with excellent glass coating and magnetic properties can be obtained.
20 ° C. / h or less, 900 ° C. or more N 2 for heating the atmosphere gas 25
It is disclosed that by setting the percentage, a further improvement in glass coating quality and magnetic properties can be obtained. The publication also discloses that by adding 0.1 to 7.5 parts by weight of at least one of Ti, Sb and B compounds as an additive to magnesia, a grain-oriented electrical steel sheet having extremely excellent coating properties can be obtained. Have been.

【0010】しかしながら、素材の成分組成および処理
工程の違いに起因した表面酸化膜の形成状態や、マグネ
シアの物性値によって、被膜特性が大きく変化するた
め、被膜形成時に十分な反応性が得られているとは未だ
言えないものであった。
[0010] However, since the film properties greatly change depending on the state of formation of the surface oxide film due to the difference in the component composition of the material and the processing steps, and the physical properties of magnesia, sufficient reactivity is obtained at the time of film formation. It was something I couldn't say yet.

【0011】[0011]

【発明が解決しようとする課題】そこで、この発明は、
コスト削減が要求される汎用の方向性珪素鋼板の製造に
おいて、スラブ加熱温度を普通鋼なみに低くした場合で
あっても、磁気特性および被膜特性がともに良好な方向
性電磁鋼板を有利に製造する方法について提案すること
を目的とする。
SUMMARY OF THE INVENTION Therefore, the present invention
In the production of general-purpose grain oriented silicon steel sheets that require cost reduction, even if the slab heating temperature is as low as that of ordinary steel, it is advantageous to produce grain-oriented electrical steel sheets with good magnetic properties and coating properties. The aim is to propose a method.

【0012】[0012]

【課題を解決するための手段】すなわち、この発明の要
旨構成は、次のとおりである。 (1) C:0.005 〜0.100wt %、Si:2.0 〜4.5 wt%およ
びMn:0.03〜2.50wt%を含み、NおよびSの含有量を [ppm N]2 +[ppm S]2 ≦6400 に従って抑制し、さらにSb、Sn、Cr、CuおよびPの中か
ら選ばれる1種または2種以上を含有する成分組成の珪
素鋼スラブを、1260℃以下の温度に加熱後、熱間圧延
し、次いで必要に応じて熱延板焼鈍を施し、一回又は中
間焼鈍を挟む二回以上の冷間圧延により最終板厚とし、
さらに脱炭焼鈍後に焼鈍分離剤を塗布してから仕上焼鈍
を施す一方向性電磁鋼板の製造方法において、脱炭焼鈍
の600 ℃から750 ℃にかけての昇温速度を15℃/s 以上
に制御し、かつ脱炭焼鈍の均熱過程の水素分圧に対する
水蒸気分圧の比である雰囲気酸化性P(H2O)/P(H2) を0.
6 以下の範囲に制御することを特徴とする磁気特性およ
び被膜特性に優れた一方向性電磁鋼板の製造方法。
That is, the gist of the present invention is as follows. (1) C: 0.005 to 0.100 wt%, Si: 2.0 to 4.5 wt% and Mn: 0.03 to 2.50 wt%, and the content of N and S is determined according to [ppm N] 2 + [ppm S] 2 ≦ 6400. Sb, Sn, Cr, Cu and P, a silicon steel slab having a component composition containing at least one selected from the group consisting of one or more, heated to a temperature of 1260 ° C. or lower, then hot-rolled, Hot rolled sheet annealing is performed as necessary, and the final thickness is obtained by cold rolling twice or more once or intermediate annealing,
Furthermore, in a method for producing a grain-oriented electrical steel sheet in which an annealing separator is applied after decarburizing annealing and then finish annealing is performed, the rate of temperature rise from 600 ° C to 750 ° C in decarburizing annealing is controlled to 15 ° C / s or more. And the oxidizing atmosphere P (H 2 O) / P (H 2 ), which is the ratio of the partial pressure of water vapor to the partial pressure of hydrogen during the soaking process of decarburization annealing, is set to 0.
6 A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties and coating properties, characterized by being controlled in the following range.

【0013】(2) 上記(1) において、MgO を主成分とし
Sr化合物を含有する焼鈍分離剤を塗布することを特徴と
する磁気特性および被膜特性に優れた一方向性電磁鋼板
の製造方法。
(2) In the above (1), MgO is the main component.
A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties and coating properties, characterized by applying an annealing separator containing an Sr compound.

【0014】(3) 上記(1) または(2) において、最終冷
間圧延後かつ二次再結晶開始前に窒化処理を施すことを
特徴とする磁気特性および被膜特性に優れた一方向性電
磁鋼板の製造方法。
(3) The unidirectional electromagnetic device according to (1) or (2), wherein nitriding is performed after final cold rolling and before the start of secondary recrystallization. Steel plate manufacturing method.

【0015】(4) 上記(1) 、(2) または(3) において、
脱炭焼鈍後の鋼板表層での集合組織における極密度のラ
ンダム強度比が、(222):1.5 〜6.0 および(31
0):0.7 〜1.5 を満足することを特徴とする磁気特性
および被膜特性に優れた一方向性電磁鋼板の製造方法。
(4) In the above (1), (2) or (3),
The random strength ratio of the pole density in the texture at the surface layer of the steel sheet after decarburization annealing is (222): 1.5 to 6.0 and (31).
0): A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties and coating properties, satisfying 0.7 to 1.5.

【0016】ここで、集合組織における極密度のランダ
ム強度比は、X線回折により測定した面強度で評価す
る。なお、ランダム強度比とは、特定の方位の存在比率
を表すものであり、 (測定部位において、特定方位を有する部分の存在比
率)/(配向性が全くない仮想的な場合の、その方位を
有する部分の存在比率) にて定義する。
Here, the random intensity ratio of the pole density in the texture is evaluated by the surface intensity measured by X-ray diffraction. Note that the random intensity ratio indicates the existence ratio of a specific direction. (Existence ratio of a portion having a specific direction in a measurement site) / (the direction in a virtual case where there is no orientation at all) Ratio of existing parts).

【0017】[0017]

【発明の実施の形態】以下に、この発明を導くに至った
実験について詳しく述べる。さて、{110}<001
>方位粒を二次再結晶させるには、前述のように、一次
粒の成長を抑制するインヒビターが不可欠とされてき
た。インヒビターを使用せずに方向性電磁鋼板を製造す
る試みとしては、特開昭64−55339 号公報、特開平2−
57635 号公報、特開平7−76732 号公報および特開平7
−197126号公報に、三次再結晶を利用する方法が開示さ
れているが、これらは、表面エネルギー差を利用する方
法であるため、板厚が極薄に限られ、工業的には不向き
であった。
BEST MODE FOR CARRYING OUT THE INVENTION An experiment which led to the present invention will be described below in detail. By the way, {110} <001
As described above, inhibitors for suppressing the growth of primary grains have been indispensable for secondary recrystallization of oriented grains. Attempts to produce grain-oriented electrical steel sheets without using inhibitors are disclosed in Japanese Patent Application Laid-Open Nos.
57635, JP-A-7-76732 and JP-A-7-76732.
No. 197126 discloses methods using tertiary recrystallization.However, since these methods use a difference in surface energy, the sheet thickness is limited to an extremely small thickness, which is not industrially suitable. Was.

【0018】一方、近年になって、二次再結晶発現の重
要なポイントとして、インヒビターの存在のほかに一次
再結晶組織における方位差角、すなわち二方位を重ねる
ための最小回転角度が注目されるようになってきた。こ
の方位差角が20〜45°である粒界(高エネルギ粒界)が
重要な役割を果たしていることが、Acta Material 45巻
で報告され、これに基づいて、インヒビターを使用しな
い方向性電磁鋼板の研究が再び盛んに行われるようにな
ってきた。かような技術背景の下、発明者らは、スラブ
加熱温度の低温化を目指して、インヒビターとして含有
させていた窒化物や硫化物の大幅な低減を試みる、次の
ような実験を行った。
On the other hand, in recent years, as an important point of secondary recrystallization development, attention has been paid to an azimuth difference angle in the primary recrystallized structure, that is, a minimum rotation angle for overlapping two directions, in addition to an inhibitor. It has become. It is reported in Acta Material 45 that grain boundaries (high-energy grain boundaries) with an azimuth difference angle of 20 to 45 ° play an important role. Based on this, grain-oriented electrical steel sheets without inhibitors Research has begun to flourish again. Under such a technical background, the inventors conducted the following experiment in which the aim was to lower the slab heating temperature and to significantly reduce the amount of nitride or sulfide contained as an inhibitor.

【0019】[実験1]まず、NおよびSを積極的には
含有させない以外は、方向性電磁鋼の通常に従う成分組
成を有する方向性電磁鋼スラブに、普通鋼なみの1200℃
のスラブ加熱を施す実験を行ったところ、二次再結晶を
生じさせることができなかった。
[Experiment 1] First, a grain-oriented electrical steel slab having a normal component composition of grain-oriented electrical steel except that N and S were not positively contained was subjected to a temperature of 1200 ° C., similar to ordinary steel.
When an experiment was conducted in which slab heating was performed, secondary recrystallization could not be generated.

【0020】[実験2]そこで、同様の成分組成におい
て、スラブ加熱温度の影響を受けない補強インヒビター
として、粒界偏析型インヒビターであるSbを添加したと
ころ、安定して二次再結晶が生じた。さらに、Sb以外で
も、Sn、Cr、CuおよびPに同様の効果が認められた。
[Experiment 2] Then, when Sb, which is a grain boundary segregation type inhibitor, was added as a reinforcing inhibitor unaffected by the slab heating temperature with the same component composition, secondary recrystallization occurred stably. . Furthermore, other than Sb, similar effects were observed for Sn, Cr, Cu and P.

【0021】さらに、製造の途中工程の条件を種々に変
化させて磁気特性を調査した結果、脱炭焼鈍の均熱過程
の雰囲気を低露点(低酸化性)にして脱炭焼鈍後の鋼板
の酸素目付量を少なく抑えた場合には、良好な磁気特性
が得られたが、高露点(高酸化性)雰囲気で脱炭焼鈍し
て脱炭焼鈍後の酸素目付量が多くなると、二次再結晶は
するものの{110}<001>からずれた方位が二次
再結晶しやすくなり磁気特性が劣化することがわたっ
た。
Furthermore, as a result of examining the magnetic properties by changing the conditions in the middle of the manufacturing process in various ways, the atmosphere in the soaking process of decarburizing annealing was set to a low dew point (low oxidation), and the steel sheet after decarburizing annealing was Good magnetic properties were obtained when the oxygen weight was reduced, but when the oxygen weight after the decarburization annealing in a high dew point (highly oxidizing) atmosphere increased, the secondary It was found that although the crystal was formed, the orientation deviated from {110} <001> was likely to undergo secondary recrystallization, and the magnetic characteristics deteriorated.

【0022】一方、被膜に関しては、脱炭焼鈍雰囲気が
高酸化性の場合には緻密な下地被膜が形成され、被膜密
着性が良好になった。しかし、脱炭焼鈍雰囲気が低酸化
性の場合には、被膜形成量が不足し、被膜密着性も劣化
した。このときの被膜断面を観察すると、下地被膜と地
鉄との界面が平坦化していてはがれやすくなっていた
り、下地被膜のアンカー効果が弱い部分が頻繁にみられ
た。従って、脱炭焼鈍雰囲気を制御することでは、磁気
特性と被膜特性とを両立させることができなかったので
ある。
On the other hand, as for the coating, when the decarburizing annealing atmosphere was highly oxidizing, a dense undercoating was formed, and the coating adhesion was improved. However, when the decarburizing annealing atmosphere was low oxidizing, the amount of the formed film was insufficient, and the adhesion of the film was deteriorated. Observation of the cross section of the coating at this time revealed that the interface between the base coating and the ground iron was flattened and easily peeled off, and portions where the anchor effect of the base coating was weak were frequently observed. Therefore, by controlling the decarburizing annealing atmosphere, it was not possible to achieve both the magnetic characteristics and the film characteristics.

【0023】[実験3]上記した実験2では、脱炭焼鈍
の均熱過程での雰囲気酸化性を変化させたが、磁気特性
が良好な範囲は低酸化性側、被膜特性が良好な範囲は高
酸化性側で両者をともに満足する範囲が存在しなかっ
た。そこで、磁気特性と被膜特性の両方に影響する工程
条件として、脱炭焼鈍の加熱過程での昇温速度に着目
し、この昇温速度について、平均昇温速度が600 〜750
℃の区間にて検討を行った。なお、上記実験2では、昇
温速度は8℃/s であった。
[Experiment 3] In Experiment 2 described above, the atmosphere oxidizing property was changed during the soaking process of decarburizing annealing. The range where the magnetic properties were good was on the low oxidizing side and the range where the coating properties were good. There was no range satisfying both on the high oxidation side. Therefore, as a process condition affecting both the magnetic properties and the film properties, attention is paid to the heating rate in the heating process of decarburizing annealing, and the average heating rate is 600 to 750 for this heating rate.
The study was performed in the section of ° C. In Experiment 2, the heating rate was 8 ° C./s.

【0024】すなわち、脱炭焼鈍の加熱過程における昇
温速度を上げるほど、{110}<001>方位からず
れた二次粒が出現しにくくなり、磁気特性が改善され
た。ここで、種々の昇温速度による脱炭焼鈍を経た鋼板
の表層の集合組織について、X線回折による極密度測定
(インバース測定)にて調査した結果を、図1〜3に示
す。図1〜3に示すように、昇温速度の上昇に伴って主
方位である(222)が減少し、二次再結晶の核となる
(220)が若干増加し、(310)が増加していた。
一次再結晶集合組織において、(222)強度が強すぎ
る場合には{110}<001>方位からずれた二次粒
が成長しやすいことが知られているが、この発明の素材
では、脱炭焼鈍の昇温速度を上げることにより、(22
2)にとってかわって(310)方位が増加するため、
方位のずれた二次粒の発生が抑制され磁気特性が改善さ
れたものと思われる。
That is, as the heating rate in the heating process of the decarburization annealing was increased, secondary grains deviated from the {110} <001> orientation became more difficult to appear, and the magnetic properties were improved. Here, the results of investigating the texture of the surface layer of the steel sheet subjected to decarburizing annealing at various heating rates by polar density measurement (inverse measurement) by X-ray diffraction are shown in FIGS. As shown in FIGS. 1 to 3, as the heating rate increases, the main orientation (222) decreases, the secondary recrystallization nucleus (220) slightly increases, and (310) increases. I was
In the primary recrystallization texture, it is known that, when the (222) strength is too strong, secondary grains deviated from the {110} <001> orientation are likely to grow, but in the material of the present invention, decarburization is performed. By increasing the heating rate of annealing, (22
In place of (2), the (310) orientation increases,
It is considered that the generation of secondary grains having a misaligned orientation was suppressed and the magnetic properties were improved.

【0025】また、昇温速度を上昇すると、同一の雰囲
気酸化性であっても、脱炭焼鈍後の酸素目付量は増大す
るため、良好な被膜特性を得るに十分な酸素目付量を確
保できる、雰囲気酸化性の範囲は、低酸化性側にシフト
する。一方、酸素目付量が多くなると、前述したように
方位のずれた二次粒が発生しやすくなるが、昇温速度を
上昇すれば一次再結晶組織が改善されて方位のずれた二
次粒の発生が抑制されるから、磁気特性と被膜特性の両
立が可能になるのである。
Further, when the heating rate is increased, the oxygen weight per unit area after the decarburizing annealing increases even with the same oxidizing property in the atmosphere. Therefore, it is possible to secure a sufficient oxygen weight per unit area to obtain good film properties. The range of the oxidizing atmosphere shifts to the lower oxidizing side. On the other hand, when the oxygen basis weight increases, secondary grains with misalignment tend to be generated as described above, but if the heating rate is increased, the primary recrystallized structure is improved and secondary grains with misalignment are improved. Since the occurrence is suppressed, it is possible to achieve both the magnetic characteristics and the film characteristics.

【0026】さらに、被膜特性の更なる改善について、
MgOを主成分とする焼鈍分離剤に種々の副剤を添加する
手法を検討した結果、Sr(OH)2・8H2O 等のSr化合物の
添加が非常に有効であった。
Further, regarding the further improvement of the film properties,
MgO result of studying a method of adding various auxiliary agents in the annealing separator composed mainly of the addition of Sr (OH) 2 · 8H 2 O Sr compound such as was very effective.

【0027】次に、この発明の対象素材の成分組成なら
びに製造工程について詳しく述べる。まず、成分組成の
各成分の限定理由を以下に示す。 C:0.005 〜0.100 wt% Cは、組織を改善し、二次再結晶を安定化させるために
必要な元素であり、そのためには0.005 wt%以上が必要
である。しかし、0.100 wt%を超えると冷間圧延時の破
断が増加すること、また脱炭焼鈍の負荷が増大して生産
性が低下することから、0.100 wt%以下とする。
Next, the component composition and the production process of the target material of the present invention will be described in detail. First, the reasons for limiting each component of the component composition are shown below. C: 0.005 to 0.100 wt% C is an element necessary for improving the structure and stabilizing the secondary recrystallization. For that purpose, 0.005 wt% or more is required. However, if the content exceeds 0.100 wt%, the fracture during cold rolling increases, and the load of decarburizing annealing increases to lower the productivity. Therefore, the content is set to 0.100 wt% or less.

【0028】Si:2.0 〜4.5 wt% Siは、電気抵抗を増加させて鉄損を低減するために必須
の元素であり、そのためには2.0 wt%以上を含有するこ
とが必要であるが、4.5 wt%を超えると加工性が劣化
し、製造や製品の加工が極めて困難になるため、2.0 〜
4.5 wt%の範囲とする。
Si: 2.0 to 4.5 wt% Si is an essential element for increasing electric resistance and reducing iron loss. For this purpose, it is necessary to contain 2.0 wt% or more. If the content exceeds wt%, the processability deteriorates, and it becomes extremely difficult to manufacture and process the product.
4.5 wt% range.

【0029】Mn:0.03〜2.50wt% MnもSiと同じく電気抵抗を高め、また製造時の熱間加工
性を向上させるのに必要な元素である。この目的のため
には、0.03wt%以上の含有が必要であるが、2.50wt%を
超えて含有すると、γ変態を誘起して磁気特性が劣化す
るため、0.03〜2.50wt%以下の範囲とする。
Mn: 0.03 to 2.50 wt% Mn is an element necessary for increasing the electric resistance and improving the hot workability at the time of production, like Si. For this purpose, a content of 0.03 wt% or more is necessary. However, if it exceeds 2.50 wt%, γ transformation is induced to deteriorate magnetic properties. I do.

【0030】 NおよびS:[ppm N]2 +[ppm S]2 ≦6400 通常の方向性電磁鋼板では、NはAlN等の窒化物を、そ
してSはMnS等の硫化物を、それぞれ形成し、インヒビ
ターとして機能する。しかし、この発明では、スラブ加
熱温度を普通鋼なみに低くするため、過剰なNやSの含
有は、窒化物や硫化物の溶体化を困難にし、二次再結晶
が生じなかったり、不均一な二次再結晶をもたらす原因
になる。
N and S: [ppm N] 2 + [ppm S] 2 ≦ 6400 In a normal grain-oriented electrical steel sheet, N forms a nitride such as AlN, and S forms a sulfide such as MnS. , Acts as an inhibitor. However, in the present invention, since the slab heating temperature is as low as that of ordinary steel, the excessive N and S contents make it difficult to form a solution of nitrides and sulfides, and secondary recrystallization does not occur or unevenness occurs. Cause secondary recrystallization.

【0031】そこで、スラブ加熱温度が1260℃以下の条
件下でのNおよびSの許容範囲を実験にて調査した。す
なわち、C:0.04wt%、Si:3.0 wt%、Mn:0.07wt%、
Al:0.007 wt%およびSb:0.02wt%の基本成分において
NおよびSの含有量を種々に変化して、最終板厚が0.34
mmの方向性電磁鋼板をスラブ加熱温度が1260℃以下の条
件で製造し、得られた鋼板の鉄損を調査した。その調査
結果を、NおよびSの含有量と製品鉄損との関係に整理
して図4に示す。すなわち、NおよびSは独立ではな
く、 [ppm N]2 +[ppm S]2 ≦6400 なる関係式の下に規制するのが、製品鉄損の改善に極め
て有効であることが見出された。
Therefore, the allowable range of N and S under the condition that the slab heating temperature was 1260 ° C. or less was examined by experiments. That is, C: 0.04 wt%, Si: 3.0 wt%, Mn: 0.07 wt%,
The final plate thickness was 0.34 by varying the contents of N and S in the basic components of Al: 0.007 wt% and Sb: 0.02 wt%.
A grain-oriented electrical steel sheet with a slab heating temperature of 1260 ° C or less was manufactured, and the iron loss of the obtained steel sheet was investigated. FIG. 4 summarizes the results of the investigation into the relationship between the N and S contents and the iron loss of the product. That is, N and S are not independent, and it is found that regulation under the relational expression of [ppm N] 2 + [ppm S] 2 ≦ 6400 is extremely effective in improving product iron loss. .

【0032】上記の関係式による規制は、NおよびSを
独立にN≦80ppm およびS≦80ppmとする範囲よりも、
NおよびSの含有量の許容範囲が狭く、単純な和N+S
≦80とする範囲よりも広い。この理由は明らかではない
が、窒化物と硫化物とが混在する場合に、両者の複合析
出物も生じるため、溶体化の挙動が複雑になるためであ
ると考えられる。
The regulation by the above relational expression is more effective than the range where N and S are independently N ≦ 80 ppm and S ≦ 80 ppm.
The allowable range of N and S contents is narrow, and the simple sum N + S
Wider than the range of ≦ 80. Although the reason for this is not clear, it is considered that when nitrides and sulfides coexist, composite precipitates of both are also formed, which complicates the solution-forming behavior.

【0033】なお、窒化物や硫化物と同様にインヒビタ
ーとして使用されるSe化合物も、その溶体化に高温度を
必要とするため、スラブ加熱温度の低温化には不向きで
ある。従って、Seも添加しないか、添加したとしても50
ppm 未満に制限することが好ましい。
It should be noted that the Se compound used as an inhibitor as well as the nitride and the sulfide requires a high temperature for solution, and is not suitable for lowering the slab heating temperature. Therefore, no Se was added, or even 50
It is preferred to limit to less than ppm.

【0034】また、インヒビター成分には、Sb、Sn、C
r、CuおよびPの中から選ばれる1種または2種以上を
用いることができる。これらの元素は、スラブ加熱温度
を普通鋼なみに低くする製造条件下においても、インヒ
ビターとして有効に作用する。かかる作用を得るために
は、これらの元素を0.001 wt%以上で添加することが望
ましく、一方0.30wt%を超えると製品のベンド特性など
機械特性が劣化するから、上限は0.30wt%とすることが
好ましい。
The inhibitor components include Sb, Sn, C
One or more selected from r, Cu and P can be used. These elements effectively act as inhibitors even under manufacturing conditions in which the slab heating temperature is as low as that of ordinary steel. In order to obtain this effect, it is desirable to add these elements at 0.001 wt% or more. On the other hand, if it exceeds 0.30 wt%, the mechanical properties such as bend characteristics of the product will deteriorate, so the upper limit should be 0.30 wt%. Is preferred.

【0035】以上の成分に調整されたスラブは、通常の
方法に従い、スラブ加熱に供された後、熱間圧延により
熱延コイルとされる。このスラブ加熱温度は、エネルギ
ーコスト低減や地球環境保全のために、1260℃以下とす
る。なお、近年、スラブ加熱を行わず連続鋳造後に直接
熱間圧延を行う方法が提案されているが、この発明はス
ラブ加熱温度の低下を所期しているから、その適用を有
利にはかることができる。
The slab adjusted to the above components is subjected to slab heating and then hot-rolled into a hot-rolled coil according to a usual method. The slab heating temperature is set to 1260 ° C. or lower in order to reduce energy costs and protect the global environment. In recent years, a method of directly performing hot rolling after continuous casting without performing slab heating has been proposed. However, since the present invention is intended to reduce the slab heating temperature, its application can be advantageously performed. .

【0036】上記熱間圧延後、必要に応じて熱延板焼鈍
を施してから、冷間圧延に供する。冷間圧延は、タンデ
ム圧延機またはゼンジミア圧延機で行う。一回の冷間圧
延で最終板厚まで圧延してもいいし、途中に中間焼鈍を
挟んで2回以上に分けて圧延しても良い。ここに、圧延
温度を常温よりも高くして、圧延中の動的歪時効やパス
間の静的歪時効を利用し、集合組織を制御する方法は、
この発明においても適用できる。
After the above-mentioned hot rolling, if necessary, a hot-rolled sheet is annealed and then subjected to cold rolling. Cold rolling is performed by a tandem rolling mill or a Sendzimir rolling mill. Rolling may be performed to the final thickness by one cold rolling, or rolling may be performed twice or more with intermediate annealing interposed therebetween. Here, the method of controlling the texture by raising the rolling temperature higher than the normal temperature and using dynamic strain aging during rolling and static strain aging between passes,
The present invention is also applicable.

【0037】次に、冷間圧延後、脱炭焼鈍を常法に従い
施した後、焼鈍分離剤を塗布し、最終仕上げ焼鈍を施
す。製品の磁気特性および被膜特性をともに良好にする
ためには、脱炭焼鈍の加熱過程600 〜750 ℃における昇
温速度を15℃/s 以上とし、均熱過程での雰囲気を低酸
化性、具体的には水素分圧に対する水蒸気分圧の比であ
る雰囲気酸化性P(H2O)/P(H2) を0.6 以下とすることが
必要である。また、安定した被膜形成のために、MgO を
主成分としSr化合物を含有する焼鈍分離剤を塗布するこ
とが好ましい。Sr化合物としては例えば、SrSO4 、Sr(H
O)2 ・8H2O 、SrCO3 およびSr(NO3)2のうちから選ばれ
る1種または2種以上を使用することができる。なお、
Sr化合物以外の化合物も、この発明の目的を阻害しない
範囲内で副成分として含有させることができる。
Next, after cold rolling, decarburizing annealing is performed according to a conventional method, an annealing separator is applied, and final finishing annealing is performed. In order to improve both the magnetic properties and the film properties of the product, the heating rate of the decarburization annealing at 600-750 ° C should be 15 ° C / s or more, and the atmosphere in the soaking process should have low oxidizing properties. Specifically, it is necessary to make the atmosphere oxidizing P (H 2 O) / P (H 2 ), which is the ratio of the water vapor partial pressure to the hydrogen partial pressure, 0.6 or less. In order to form a stable film, it is preferable to apply an annealing separator containing MgO 2 as a main component and an Sr compound. Examples of the Sr compound include SrSO 4 , Sr (H
O) 2 · 8H 2 O, may be used one or more selected from among SrCO 3 and Sr (NO 3) 2. In addition,
Compounds other than the Sr compound can be contained as accessory components within a range not to impair the object of the present invention.

【0038】最終仕上げ焼鈍後は、必要に応じて絶縁コ
ーティングを塗布焼き付け、更に平坦化焼鈍を施し、製
品とする。また、最終冷間圧延後、二次再結晶開始まで
の間に、必要に応じて窒化処理を施すことも粒成長抑制
力を適正に制御する、1つの手段として有効である。窒
化処理を施すことは、製造コストを高めるという欠点が
あるが、スラブ加熱の低温化をはかるための1つの方策
であり、窒化処理を施すプロセスにおいても、本願発明
は良好な磁気特性および被膜特性を得るために好適であ
る。
After the final finish annealing, an insulation coating is applied and baked as required, and further flattening annealing is performed to obtain a product. Also, after the final cold rolling and before the start of the secondary recrystallization, performing nitriding as required is effective as one means for appropriately controlling the grain growth suppressing force. Although the nitriding treatment has a disadvantage of increasing the manufacturing cost, it is one measure for lowering the slab heating temperature. Even in the nitriding treatment, the present invention provides good magnetic properties and coating properties. It is suitable for obtaining.

【0039】[0039]

【実施例】実施例1 表1に示す鋼No. 1〜12の成分組成の鋼スラブを、1200
℃に加熱後、熱間圧延して 2.2mm厚の熱延コイルとし
た。この熱延コイルに1000℃で30秒間保持する熱延板焼
鈍を施し、酸洗後、0.29mmの厚みまでタンデム圧延機に
より一回で冷間圧延した。その後、脱脂処理を行い、84
0 ℃で120 秒間の脱炭焼鈍を施した。この脱炭焼鈍の加
熱過程600 ℃から750 ℃の区間の昇温速度を20℃/s に
制御するとともに、均熱過程の雰囲気酸化性P(H2O)/P
(H2) を0.40となるように制御した。
EXAMPLES Example 1 A steel slab having a component composition of steel Nos.
After heating to ° C., it was hot-rolled to obtain a 2.2 mm thick hot-rolled coil. This hot-rolled coil was subjected to hot-rolled sheet annealing maintained at 1000 ° C. for 30 seconds, pickled, and then cold-rolled once by a tandem rolling mill to a thickness of 0.29 mm. After that, degreasing is performed, and 84
Decarburization annealing was performed at 0 ° C for 120 seconds. During the decarburizing annealing heating process, the heating rate in the section from 600 ° C to 750 ° C was controlled to 20 ° C / s, and the atmosphere oxidizing P (H 2 O) /
(H 2 ) was controlled to be 0.40.

【0040】脱炭焼鈍後、焼鈍分離剤を塗布して最終仕
上焼鈍を施した。焼鈍分離剤には、MgOを主成分とし、
副剤としてSr(HO)2 ・8H2O を5wt%添加したものを用
いた。そして、最終仕上げ焼鈍後に未反応分離剤を除去
し、コロイダルシリカを含有するリン酸マグネシウムを
主成分とする絶縁コーティングを塗布し、800 ℃で焼き
付けて製品とした。各製品から、圧延方向に沿ってエプ
スタイン試験片を切り出し、鉄損W17/50 を測定した。
After decarburizing annealing, an annealing separator was applied to perform final finish annealing. The annealing separator contains MgO as the main component,
Sr and (HO) 2 · 8H 2 O was used as the added 5 wt% as an auxiliary agent. After the final annealing, the unreacted separating agent was removed, an insulating coating containing magnesium phosphate containing colloidal silica as a main component was applied, and baked at 800 ° C. to obtain a product. An Epstein test piece was cut out from each product along the rolling direction, and the iron loss W 17/50 was measured.

【0041】表2に製品の鉄損値および被膜密着性を示
すように、この発明の成分組成のスラブを用いることに
より、磁気特性と被膜特性がともに良好な方向性電磁鋼
板が得られる。
As shown in Table 2, the slab having the component composition according to the present invention can provide a grain-oriented electrical steel sheet having good magnetic properties and coating properties, as shown in Table 2 showing the iron loss value and the coating adhesion.

【0042】[0042]

【表1】 [Table 1]

【0043】[0043]

【表2】 [Table 2]

【0044】実施例2 表1に示した鋼No. 1の成分組成の鋼スラブを1150℃に
加熱後、熱間圧延して2.4mm 厚の熱延コイルとした。次
に、熱延コイルに1000℃で30秒間保持する熱延板焼鈍を
施し、酸洗後、0.34mmの厚みまでゼンジミア圧延機によ
り一回で冷間圧延した。その後、脱脂処理を行い、840
℃で120 秒間の脱炭焼鈍を施した。脱炭焼鈍の加熱過程
600 ℃から750 ℃の区間の昇温速度は8℃/s 、16℃/
s および24℃/s の3通りに制御した。さらに、脱炭焼
鈍の均熱過程の雰囲気酸化性P(H2O)/P(H2) は、0.45、
0.55および0.65の3通りに制御した。
Example 2 A steel slab having the composition of steel No. 1 shown in Table 1 was heated to 1150 ° C., and then hot-rolled into a hot-rolled coil having a thickness of 2.4 mm. Next, the hot-rolled coil was subjected to hot-rolled sheet annealing maintained at 1000 ° C. for 30 seconds, pickled, and then cold-rolled once by a Sendzimir rolling mill to a thickness of 0.34 mm. After that, degreasing is performed and 840
Decarburization annealing was performed at 120 ° C. for 120 seconds. Heating process of decarburization annealing
The heating rate in the section from 600 ° C to 750 ° C is 8 ° C / s, 16 ° C /
s and 24 ° C./s. Furthermore, the atmosphere oxidizing P (H 2 O) / P (H 2 ) during the soaking process of decarburizing annealing is 0.45,
Control was performed in three ways, 0.55 and 0.65.

【0045】脱炭焼鈍後、焼鈍分離剤を塗布して最終仕
上焼鈍を施した。焼鈍分離剤には、MgOを主成分とし、
副剤としてSr(HO)2 ・8H2O を5wt%添加したものおよ
び添加しないものを用いた。そして、最終仕上げ焼鈍
後、未反応分離剤を除去し、コロイダルシリカを含有す
るリン酸マグネシウムを主成分とする絶縁コーティング
を施し、800 ℃で焼き付けて製品とした。各製品から、
圧延方向に沿ってエプスタイン試験片を切り出し、鉄損
17/50 を測定した。
After decarburizing annealing, an annealing separator was applied to perform final finish annealing. The annealing separator contains MgO as the main component,
Sr (HO) 2 .8H 2 O was added as an auxiliary agent in an amount of 5 wt% and was not added. Then, after the final annealing, the unreacted separating agent was removed, an insulating coating containing magnesium phosphate containing colloidal silica as a main component was applied, and the product was baked at 800 ° C. to obtain a product. From each product,
An Epstein test piece was cut out along the rolling direction, and the iron loss W 17/50 was measured.

【0046】また、脱炭焼鈍後、試料の一部を採取し、
表層付近の一次再結晶集合組織の測定を行った。集合組
織はX線回折による鋼板表面の極密度測定で評価した。
After the decarburizing annealing, a part of the sample was collected,
The primary recrystallization texture near the surface layer was measured. The texture was evaluated by measuring the pole density of the steel sheet surface by X-ray diffraction.

【0047】表3に製品の鉄損値、被膜密着性、そして
一次再結晶集合組織の(222)強度および(310)
強度を示すように、この発明の方法に従って一次再結晶
集合組織を発明範囲内に制御することにより、磁気特性
および被膜特性がともに良好な方向性電磁鋼板が得られ
た。
Table 3 shows the iron loss values of the products, coating adhesion, (222) strength and (310) of the primary recrystallization texture.
By controlling the primary recrystallization texture within the scope of the invention according to the method of the present invention so as to show strength, a grain-oriented electrical steel sheet having both good magnetic properties and good coating properties was obtained.

【0048】[0048]

【表3】 [Table 3]

【0049】実施例3 表1に示す鋼No. 5の成分組成の鋼スラブを、1230℃に
加熱後、熱間圧延して2.6mm 厚の熱延コイルとした。そ
の後、酸洗し、タンデム圧延機により第1回目の冷間圧
延を施し、板厚を1.5mm とした。次に、1000℃に60秒間
保持する中間焼鈍を施した後、再び酸洗し、0.22mmの厚
みまでの第2回目の冷間圧延をゼンジミア圧延機で施し
た。その後、脱脂処理を行い、840 ℃で120 秒間の脱炭
焼鈍を施した。脱炭焼鈍の加熱過程600 ℃から750 ℃の
区間の昇温速度は8℃/s 、16℃/s および24℃/s の
3通りに制御した。脱炭焼鈍の均熱過程の雰囲気酸化性
P(H2O)/P(H2) は、0.30、0.50および0.70の3通りに制
御した。
Example 3 A steel slab having the composition of steel No. 5 shown in Table 1 was heated to 1230 ° C. and then hot-rolled into a hot-rolled coil having a thickness of 2.6 mm. Thereafter, the plate was pickled and subjected to a first cold rolling by a tandem rolling mill to a thickness of 1.5 mm. Next, after intermediate annealing at 1000 ° C. for 60 seconds was performed, acid washing was performed again, and second cold rolling to a thickness of 0.22 mm was performed using a Sendzimir rolling mill. Thereafter, a degreasing treatment was performed, followed by a decarburizing annealing at 840 ° C. for 120 seconds. Heating process of decarburizing annealing The heating rate in the section from 600 ° C to 750 ° C was controlled in three ways: 8 ° C / s, 16 ° C / s and 24 ° C / s. Atmospheric oxidizability during soaking process in decarburization annealing
P (H 2 O) / P (H 2 ) was controlled in three ways: 0.30, 0.50 and 0.70.

【0050】脱炭焼鈍後、窒化焼鈍を750 ℃×30秒で水
素、窒素およびアンモニアの混合ガス中で行った。その
後、焼鈍分離剤を塗布して最終仕上焼鈍を施した。焼鈍
分離剤には、MgOを主成分とし、副剤としてSrSO4 を3
wt%添加したものを用いた。
After the decarburizing annealing, nitriding annealing was performed at 750 ° C. for 30 seconds in a mixed gas of hydrogen, nitrogen and ammonia. Thereafter, an annealing separator was applied to perform a final finish annealing. The annealing separator contains MgO as the main component and SrSO 4 as an auxiliary agent.
What added wt% was used.

【0051】最終仕上焼鈍後、未反応分離剤を除去し、
コロイダルシリカを含有するリン酸マグネシウムを主成
分とする絶縁コーティングを施し、800 ℃で焼き付けて
製品とした。各製品から、圧延方向に沿ってエプスタイ
ン試験片を切り出し、鉄損W 17/50 を測定した。
After the final finish annealing, the unreacted separating agent is removed,
Mainly composed of magnesium phosphate containing colloidal silica
Baked at 800 ℃
The product. From each product, eps
Specimens are cut out and iron loss W 17/50 Was measured.

【0052】また、脱炭焼鈍後、試料の一部を採取し、
表層付近の集合組織の測定を行った。集合組織はX線回
折による鋼板表面の極密度測定で評価した。
After the decarburizing annealing, a part of the sample was collected,
The texture near the surface layer was measured. The texture was evaluated by measuring the pole density of the steel sheet surface by X-ray diffraction.

【0053】表4に製品の鉄損値、被膜密着性、そして
一次再結晶集合組織(222)強度および(310)強
度を示すように、この発明の方法に従って一次再結晶集
合組織を発明範囲内に制御することにより、磁気特性お
よび被膜特性がともに良好な方向性電磁鋼板が得られ
た。
According to the method of the present invention, the primary recrystallized texture was set within the range of the invention as shown in Table 4 showing the iron loss value, coating adhesion, and primary recrystallized texture (222) strength and (310) strength of the product. Thus, a grain-oriented electrical steel sheet having good magnetic properties and coating properties was obtained.

【0054】[0054]

【表4】 [Table 4]

【0055】[0055]

【発明の効果】この発明により、磁気特性および被膜特
性がともに優れた方向性電磁鋼板を安定して製造するこ
とが可能となった。
According to the present invention, it has become possible to stably produce a grain-oriented electrical steel sheet having excellent magnetic properties and coating properties.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 脱炭焼鈍の昇温速度変化に伴う(222)面
強度変化を表す図である。
FIG. 1 is a diagram illustrating a (222) plane strength change accompanying a change in a heating rate during decarburization annealing.

【図2】 脱炭焼鈍の昇温速度変化に伴う(220)面
強度変化を表す図である。
FIG. 2 is a diagram illustrating a change in (220) plane strength with a change in a heating rate during decarburization annealing.

【図3】 脱炭焼鈍の昇温速度変化に伴う(310)面
強度変化を表す図である。
FIG. 3 is a diagram showing a change in (310) plane strength accompanying a change in a heating rate during decarburization annealing.

【図4】 NおよびSの含有量の異なる素材を用いた場
合の製品の鉄損を表す図である。
FIG. 4 is a diagram showing iron loss of a product when materials having different contents of N and S are used.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 38/60 H01F 1/16 B (72)発明者 本田 厚人 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 Fターム(参考) 4K033 AA02 CA01 CA02 CA03 CA07 FA01 FA12 HA01 HA03 JA04 JA05 LA01 5E041 AA02 AA19 BC01 CA02 HB05 HB07 HB09 HB11 NN06 NN17 NN18 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22C 38/60 H01F 1/16 B (72) Inventor Atsuto Honda 1-chome Mizushima Kawasaki-dori, Kurashiki City, Okayama Prefecture ( No address) F-term (reference) at Kawasaki Steel Corporation Mizushima Works 4K033 AA02 CA01 CA02 CA03 CA07 FA01 FA12 HA01 HA03 JA04 JA05 LA01 5E041 AA02 AA19 BC01 CA02 HB05 HB07 HB09 HB11 NN06 NN17 NN18

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】C:0.005 〜0.100wt %、 Si:2.0 〜4.5 wt%および Mn:0.03〜2.50wt% を含み、NおよびSの含有量を [ppm N]2 +[ppm S]2 ≦6400 に従って抑制し、さらにSb、Sn、Cr、CuおよびPの中か
ら選ばれる1種または2種以上を含有する成分組成の珪
素鋼スラブを、1260℃以下の温度に加熱後熱間圧延し、
次いで必要に応じて熱延板焼鈍を施し、1回又は中間焼
鈍を挟む2回以上の冷間圧延により最終板厚とし、さら
に脱炭焼鈍後に焼鈍分離剤を塗布してから仕上焼鈍を施
す一方向性電磁鋼板の製造方法において、脱炭焼鈍の60
0 ℃から750 ℃にかけての昇温速度を15℃/s 以上に制
御し、かつ脱炭焼鈍の均熱過程の水素分圧に対する水蒸
気分圧の比である雰囲気酸化性P(H2O)/P(H2) を0.6 以
下の範囲に制御することを特徴とする磁気特性および被
膜特性に優れた一方向性電磁鋼板の製造方法。
(1) C: 0.005 to 0.100 wt%, Si: 2.0 to 4.5 wt%, and Mn: 0.03 to 2.50 wt%, and the content of N and S is [ppm N] 2 + [ppm S] 2 ≦ 6400, and further hot-rolling a silicon steel slab having a component composition containing one or more selected from Sb, Sn, Cr, Cu and P to a temperature of 1260 ° C. or less,
Next, if necessary, hot-rolled sheet annealing is performed, the final sheet thickness is obtained by cold rolling once or twice or more with intermediate annealing interposed therebetween, and after decarburizing annealing, an annealing separator is applied, followed by finish annealing. In the method for producing grain-oriented electrical steel sheets, 60
The rate of temperature rise from 0 ° C to 750 ° C is controlled to 15 ° C / s or more, and the atmosphere oxidizing P (H 2 O) / is the ratio of the partial pressure of water vapor to the partial pressure of hydrogen during the soaking process of decarburizing annealing. A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties and coating properties, wherein P (H 2 ) is controlled to a range of 0.6 or less.
【請求項2】 請求項1において、MgO を主成分としSr
化合物を含有する焼鈍分離剤を塗布することを特徴とす
る磁気特性および被膜特性に優れた一方向性電磁鋼板の
製造方法。
2. The method according to claim 1, wherein MgO 2 is a main component and Sr is a main component.
A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties and coating properties, characterized by applying an annealing separator containing a compound.
【請求項3】 請求項1または2において、最終冷間圧
延後かつ二次再結晶開始前に窒化処理を施すことを特徴
とする磁気特性および被膜特性に優れた一方向性電磁鋼
板の製造方法。
3. The method for producing a grain-oriented electrical steel sheet according to claim 1, wherein nitriding is performed after the final cold rolling and before the start of secondary recrystallization. .
【請求項4】 請求項1、2または3において、脱炭焼
鈍後の鋼板表層での集合組織における極密度のランダム
強度比が、(222):1.5 〜6.0 および(310):
0.7 〜1.5 を満足することを特徴とする磁気特性および
被膜特性に優れた一方向性電磁鋼板の製造方法。
4. The steel sheet according to claim 1, 2 or 3, wherein the random strength ratio of the pole density in the texture in the surface layer of the steel sheet after decarburizing annealing is (222): 1.5 to 6.0 and (310):
A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties and film properties, satisfying 0.7 to 1.5.
JP34187599A 1999-12-01 1999-12-01 Manufacturing method of unidirectional electrical steel sheet Expired - Lifetime JP3885432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34187599A JP3885432B2 (en) 1999-12-01 1999-12-01 Manufacturing method of unidirectional electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34187599A JP3885432B2 (en) 1999-12-01 1999-12-01 Manufacturing method of unidirectional electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2001158919A true JP2001158919A (en) 2001-06-12
JP3885432B2 JP3885432B2 (en) 2007-02-21

Family

ID=18349433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34187599A Expired - Lifetime JP3885432B2 (en) 1999-12-01 1999-12-01 Manufacturing method of unidirectional electrical steel sheet

Country Status (1)

Country Link
JP (1) JP3885432B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003213339A (en) * 2002-01-28 2003-07-30 Jfe Steel Kk Method for producing grain oriented silicon steel sheet having excellent magnetic property
JP2006152364A (en) * 2004-11-29 2006-06-15 Jfe Steel Kk Method for manufacturing grain-oriented electromagnetic steel sheet
JP2006274394A (en) * 2005-03-30 2006-10-12 Jfe Steel Kk Method for manufacturing grain-oriented silicon steel sheet having superior magnetic characteristic and film characteristic
JP2009274314A (en) * 2008-05-14 2009-11-26 Nippon Steel Corp Vibration damping steel sheet and manufacturing method therefor
JP2014091839A (en) * 2012-10-31 2014-05-19 Jfe Steel Corp Oriented electromagnetic steel sheet and its manufacturing method
JP2014129585A (en) * 2012-12-28 2014-07-10 Jfe Steel Corp Manufacturing method of grain oriented silicon steel sheet and primary recrystallization steel sheet for manufacturing grain oriented silicon steel sheet
JP2014152393A (en) * 2013-02-14 2014-08-25 Jfe Steel Corp Method for producing grain-oriented magnetic steel sheet
CN107245564A (en) * 2017-06-19 2017-10-13 武汉钢铁有限公司 A kind of control method of non-orientation silicon steel internal oxidation layer
CN112941286A (en) * 2021-01-29 2021-06-11 武汉钢铁有限公司 High-magnetic-induction oriented silicon steel manufacturing method for improving effective nitrogen and bottom layer quality
EP3889297A4 (en) * 2018-11-30 2022-03-30 Posco Grain-oriented electric steel sheet and manufacturing method therefor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003213339A (en) * 2002-01-28 2003-07-30 Jfe Steel Kk Method for producing grain oriented silicon steel sheet having excellent magnetic property
JP2006152364A (en) * 2004-11-29 2006-06-15 Jfe Steel Kk Method for manufacturing grain-oriented electromagnetic steel sheet
JP4501655B2 (en) * 2004-11-29 2010-07-14 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
JP2006274394A (en) * 2005-03-30 2006-10-12 Jfe Steel Kk Method for manufacturing grain-oriented silicon steel sheet having superior magnetic characteristic and film characteristic
JP4569353B2 (en) * 2005-03-30 2010-10-27 Jfeスチール株式会社 Manufacturing method of unidirectional electrical steel sheet
JP2009274314A (en) * 2008-05-14 2009-11-26 Nippon Steel Corp Vibration damping steel sheet and manufacturing method therefor
JP2014091839A (en) * 2012-10-31 2014-05-19 Jfe Steel Corp Oriented electromagnetic steel sheet and its manufacturing method
JP2014129585A (en) * 2012-12-28 2014-07-10 Jfe Steel Corp Manufacturing method of grain oriented silicon steel sheet and primary recrystallization steel sheet for manufacturing grain oriented silicon steel sheet
JP2014152393A (en) * 2013-02-14 2014-08-25 Jfe Steel Corp Method for producing grain-oriented magnetic steel sheet
CN107245564A (en) * 2017-06-19 2017-10-13 武汉钢铁有限公司 A kind of control method of non-orientation silicon steel internal oxidation layer
CN107245564B (en) * 2017-06-19 2019-01-25 武汉钢铁有限公司 A kind of control method of non-orientation silicon steel internal oxidation layer
EP3889297A4 (en) * 2018-11-30 2022-03-30 Posco Grain-oriented electric steel sheet and manufacturing method therefor
CN112941286A (en) * 2021-01-29 2021-06-11 武汉钢铁有限公司 High-magnetic-induction oriented silicon steel manufacturing method for improving effective nitrogen and bottom layer quality
CN112941286B (en) * 2021-01-29 2022-07-08 武汉钢铁有限公司 High-magnetic-induction oriented silicon steel manufacturing method for improving effective nitrogen and bottom layer quality

Also Published As

Publication number Publication date
JP3885432B2 (en) 2007-02-21

Similar Documents

Publication Publication Date Title
TWI472626B (en) Method of manufacturing directional magnetic steel sheet and recrystallization annealing equipment of directional magnetic steel sheet
KR101963990B1 (en) Grain-oriented electrical steel sheet and method of manufacturing same
JP2017222898A (en) Production method of grain oriented magnetic steel sheet
JP5040131B2 (en) Manufacturing method of unidirectional electrical steel sheet
WO2011102456A1 (en) Manufacturing method for grain-oriented electromagnetic steel sheet
JP2001303214A (en) Grain oriented silicon steel sheet excellent in high frequency magnetic property and its producing method
JP3885432B2 (en) Manufacturing method of unidirectional electrical steel sheet
KR100779579B1 (en) Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic flux density
JP3846064B2 (en) Oriented electrical steel sheet
JP3956621B2 (en) Oriented electrical steel sheet
JP5920387B2 (en) Method for producing grain-oriented electrical steel sheet
JP5907202B2 (en) Method for producing grain-oriented electrical steel sheet
JP5862582B2 (en) Method for producing grain-oriented electrical steel sheet, grain-oriented electrical steel sheet and surface glass coating for grain-oriented electrical steel sheet
JP4206665B2 (en) Method for producing grain-oriented electrical steel sheet having excellent magnetic properties and coating properties
JP4258185B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP2003193142A (en) Method of producing grain oriented silicon steel sheet having excellent magnetic property
JP4206664B2 (en) Method for producing grain-oriented electrical steel sheet
JP7365414B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JP4569353B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP3716608B2 (en) Method for producing grain-oriented electrical steel sheet
JP4258149B2 (en) Method for producing grain-oriented electrical steel sheet
JP2003193141A (en) Method of producing grain oriented silicon steel sheet having excellent coating property
JP2006316314A (en) Method for manufacturing grain-oriented electromagnetic steel sheet superior in magnetic property and film property
WO2019132357A1 (en) Grain-oriented electrical steel sheet and manufacturing method therefor
CN113272457B (en) Method for producing unidirectional electromagnetic steel sheet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061113

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3885432

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20020108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131201

Year of fee payment: 7

EXPY Cancellation because of completion of term