JP3438282B2 - Method of manufacturing oriented silicon steel sheet with high magnetic flux density - Google Patents

Method of manufacturing oriented silicon steel sheet with high magnetic flux density

Info

Publication number
JP3438282B2
JP3438282B2 JP33565093A JP33565093A JP3438282B2 JP 3438282 B2 JP3438282 B2 JP 3438282B2 JP 33565093 A JP33565093 A JP 33565093A JP 33565093 A JP33565093 A JP 33565093A JP 3438282 B2 JP3438282 B2 JP 3438282B2
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
silicon steel
nitriding
flux density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33565093A
Other languages
Japanese (ja)
Other versions
JPH07188758A (en
Inventor
道郎 小松原
正樹 河野
和章 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP33565093A priority Critical patent/JP3438282B2/en
Publication of JPH07188758A publication Critical patent/JPH07188758A/en
Application granted granted Critical
Publication of JP3438282B2 publication Critical patent/JP3438282B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、方向性けい素鋼板の
製造方法に関するもので、特に磁束密度の高い鋼板を製
造することができる方法を提案しようとするものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented silicon steel sheet, and particularly to a method capable of producing a steel sheet having a high magnetic flux density.

【0002】[0002]

【従来の技術】方向性けい素鋼板は、変圧器及び発電機
用鉄心に使用されるもので、磁気特性として磁束密度
(800 A/m の磁場の強さでの値B8 で示される)が高
く、鉄損(1.7 Tの最大磁束密度における50Hzの交番鉄
損値W17/50で示される)が低いことが必要とされる。
2. Description of the Related Art Grain-oriented silicon steel sheets are used for transformers and iron cores for generators, and have magnetic characteristics as a magnetic flux density (indicated by a value B 8 at a magnetic field strength of 800 A / m). High and low iron loss (indicated by the alternating iron loss value W 17/50 at 50 Hz at a maximum magnetic flux density of 1.7 T) is required.

【0003】この材料の低鉄損化への努力はこれまで種
々になされ、(1) 鋼板の板厚を薄くする、(2) Si含有量
を高める、(3) 最終製品の結晶粒径を小さくするといっ
た改善の結果、板厚0.23mmの鉄損値としてW17/50が0.90
W/kgといった低鉄損の材料も得られるようになった。し
かしながら、現状以上に鉄損を低減することは容易でな
い。すなわち、鋼板の板厚を現状以上に薄くすると、後
述する2次再結晶不良を惹起し鉄損が逆に劣化する。ま
た、Si含有量を高めると、冷間圧延が困難となる。さら
に、結晶粒径を冶金学的に小さくする方法も現状の平均
粒径4〜8mmよりも小さくした場合、やはり2次再結晶
不良となって鉄損が劣化する。
Various efforts have been made so far to reduce the iron loss of this material. (1) thin the plate thickness of the steel sheet, (2) increase the Si content, (3) increase the grain size of the final product. As a result of improvements such as making it smaller, W 17/50 is 0.90 as the iron loss value of 0.23 mm thickness.
Materials with low iron loss such as W / kg are now available. However, it is not easy to reduce iron loss more than the current situation. That is, when the plate thickness of the steel sheet is made thinner than the current one, the secondary recrystallization defect described later is caused and the iron loss is deteriorated. Further, if the Si content is increased, cold rolling becomes difficult. Further, if the method of reducing the crystal grain size metallurgically is also made smaller than the current average grain size of 4 to 8 mm, secondary recrystallization becomes defective and iron loss deteriorates.

【0004】しかし、近年、鋼板表面に局部的に歪を導
入したり溝を形成する、いわゆる磁区細分化技術によっ
て大幅な鉄損の改善が可能となった。すなわち、前述の
W17/ 50が0.90W/kgの鉄損値を示す材料の場合、鋼板表面
にプラズマジェット等で適正な局部歪を導入することに
より、0.80W/kgまで鉄損を低減することが可能となっ
た。かかる手法によって優れた鉄損の材料を得るために
は、従来と異なり、最終製品の結晶粒径を小さくする必
要はなく、専ら板厚を薄くすること、Si含有量を高める
こと及び磁束密度を高めることに依存する。ここに、Si
含有量をこれ以上増加することは困難であることより、
鉄損特性の向上は、如何に板厚の薄い材料の磁束密度を
向上させるかという技術課題の解決にかかっている。
However, in recent years, a so-called magnetic domain refining technique of locally introducing strain or forming grooves on the surface of a steel sheet has made it possible to significantly improve iron loss. That is, the above
In the case of a material that has an iron loss value of W17 / 50 of 0.90 W / kg, it is possible to reduce the iron loss to 0.80 W / kg by introducing an appropriate local strain on the surface of the steel sheet with a plasma jet etc. became. In order to obtain a material with excellent iron loss by such a method, unlike the conventional method, it is not necessary to reduce the crystal grain size of the final product, and to exclusively reduce the plate thickness, increase the Si content, and increase the magnetic flux density. Depends on raising. Where Si
Since it is difficult to increase the content further,
The improvement of iron loss characteristics depends on the solution of the technical problem of how to improve the magnetic flux density of a material having a thin plate thickness.

【0005】さて、方向性けい素鋼板の磁束密度を向上
させるためには、製品の結晶粒方位を(110)[00
1]方位、いわゆるゴス方位に高度に集積させる必要が
ある。このゴス方位の結晶粒は、最終仕上げ焼鈍により
生起させる2次再結晶現象によって得られる。そして、
この2次再結晶を起こさせるには、(110)[00
1]方位に近い結晶粒のみを成長させて、他の方位の結
晶粒の成長を抑制する、いわゆる選択成長をさせるべ
く、他の方位の結晶粒の成長を抑制するための抑制剤
(インヒビター)が必要である。すなわち、インヒビタ
ーは鋼中に析出分散相を形成し、粒成長の抑制作用とし
ての機能を発揮する。
In order to improve the magnetic flux density of grain-oriented silicon steel sheet, the crystal grain orientation of the product should be (110) [00
1] It is necessary to highly integrate the azimuth, so-called Goth azimuth. The Goss-oriented crystal grains are obtained by a secondary recrystallization phenomenon caused by final finish annealing. And
In order to cause this secondary recrystallization, (110) [00
1] Suppressor (inhibitor) for suppressing the growth of crystal grains in other orientations in order to suppress the growth of crystal grains in other orientations, that is, so-called selective growth, by growing only crystal grains close to the orientation is necessary. That is, the inhibitor forms a precipitate-dispersed phase in the steel and exerts a function of suppressing grain growth.

【0006】かようなインヒビターとして、最も抑制作
用が強いものが、より選択成長効果が強く、磁束密度の
高い材料が得られるので、これまで多くの研究がなされ
てきたが、最も効果の得られたものはAlN であった。す
なわち、特公昭46−23820号公報に開示されてい
る如く、Alを含有する鋼板において、最終冷延前の焼鈍
で急冷処理をし、最終冷延の圧下率を80〜95%の高圧下
率とすることにより、実施例5では、0.35mmの板厚でB
10が1.981 T(B8 で約1.95T)という高磁束密度の材
料が得られている。
As such an inhibitor, the one having the strongest inhibitory action has a strong selective growth effect and a material having a high magnetic flux density can be obtained. Therefore, many studies have been conducted so far, but the most effective one is obtained. The material was AlN. That is, as disclosed in Japanese Patent Publication No. 46-23820, a steel sheet containing Al is subjected to a quenching treatment by annealing before final cold rolling, and the final cold rolling reduction is 80 to 95%. Therefore, in Example 5, B having a thickness of 0.35 mm
A material with a high magnetic flux density of 10 is 1.981 T (about 1.95 T for B 8 ) is obtained.

【0007】しかしながら、上記の方法を薄鋼板に適用
した場合は、高磁束密度が得られないという問題点が発
生した。すなわち、2次再結晶粒の核となる(110)
[001]方位の粒は、板厚方向に均一に存在している
のではなく、板厚の表層付近に存在しているのである
が、板厚が薄くなった場合、最終仕上げ焼鈍時の雰囲気
の影響を受け易くなり、2次再結晶が不安定になるとい
う問題が起こる。というのは、鋼板表層部に存在するAl
N は、鋼板表面の酸化によって分解消失して、抑制力が
弱くなっているからである。このように鋼板表層部には
元来、抑制力の弱い領域が存在しているのであるが、板
厚が薄くなった場合には、最終仕上げ焼鈍に際して2次
再結晶粒の核となる(110)[001]方位の粒の存
在する場所が、抑制力の弱い領域に近づくか包含されて
しまい、結果として2次再結晶不良となる。
However, when the above method is applied to a thin steel sheet, there arises a problem that a high magnetic flux density cannot be obtained. That is, it becomes a nucleus of secondary recrystallized grains (110).
Grains in the [001] orientation do not exist uniformly in the plate thickness direction but exist near the surface layer of the plate thickness. However, when the plate thickness becomes thin, the atmosphere during final finishing annealing And the secondary recrystallization becomes unstable. This is because Al existing in the surface layer of the steel sheet
This is because N is decomposed and disappeared due to the oxidation of the steel sheet surface, and the suppressing force is weakened. In this way, the surface layer of the steel sheet originally has a region where the suppressing force is weak. However, when the plate thickness becomes thin, it becomes a nucleus of secondary recrystallized grains during the final annealing (110). ) The location where the grains of the [001] orientation are present is close to or included in the region where the suppressing force is weak, resulting in secondary recrystallization failure.

【0008】AlN をインヒビターとする従来のけい素鋼
板において、板厚の薄い場合をみると、前述の特公昭4
6−23820号公報の実施例6では、0.228 mmの板厚
で冷延2回法によりB10:1.930 T(B8 として約1.91
0 T)の値を得ているが、これは満足のいく高磁束密度
とは云えない。
In the case of a conventional silicon steel sheet using AlN as an inhibitor, which has a small thickness, the above-mentioned Japanese Patent Publication No.
In Example 6 of Japanese Patent Laid-Open No. 6-23820, B 10 : 1.930 T (B 8 of about 1.91 by a cold rolling twice method with a plate thickness of 0.228 mm.
However, this is not a satisfactory high magnetic flux density.

【0009】また、特公昭63−11406号公報に
は、鋼中にSn及びCuを添加し、冷延1回法で0.15〜0.25
mmの方向性けい素鋼板を製造する技術が開示されてい
る。ここにSnは、2次再結晶を安定化する作用があり、
CuはSnを添加したことによる被膜への有害な作用を打消
すために必要とされている。しかしながら、この技術で
もってしても、磁束密度はB10で1.92T(B8 にして約
1.90T)であり、未だ十分効果があるとは云えない。
Further, in Japanese Patent Publication No. 63-11406, Sn and Cu are added to the steel, and the cold rolling once method is used for 0.15 to 0.25.
Techniques for producing mm-oriented grain-oriented silicon steel sheets are disclosed. Here, Sn has the effect of stabilizing secondary recrystallization,
Cu is needed to counteract the deleterious effects on the coating due to the addition of Sn. However, even with this technology, the magnetic flux density is 1.92T at B 10 (about 8 at B 8
It is 1.90T), and it cannot be said that it is still sufficiently effective.

【0010】その理由は、鋼板板厚を薄くした場合に、
最終仕上げ焼鈍の雰囲気により鋼板表層部のインヒビタ
ーが影響を受けて抑制力が低下する現象があり、この抑
制力低下の影響を受ける鋼板表層部の領域に、2次再結
晶の核生成領域が近づくか包含されるといった問題に対
して、鋼板全体の抑制力を高めることや、第1回目の冷
間圧延後の組織を改善することは何ら有効な手段とはな
り得ないからである。
The reason is that when the thickness of the steel plate is reduced,
There is a phenomenon that the inhibitor of the surface layer of the steel sheet is affected by the atmosphere of the final finish annealing, and the suppression force decreases, and the nucleation region of secondary recrystallization approaches the region of the steel plate surface layer affected by the reduction of the suppression force. This is because, with respect to such a problem that is included, it is not effective means to increase the restraining force of the entire steel sheet or to improve the structure after the first cold rolling.

【0011】一方、Al含有方向性けい素鋼の鋼板表層部
の抑制力を強化する手法として発明者らは、鋼中にSbを
添加する技術を提案した。すなわち、Sbの表面偏析効果
によって、最終仕上げ焼鈍途中での鋼板表面の酸化を抑
制してインヒビターの分割消失を抑制し、高磁束密度材
料を製造する技術技術であり、これを特開平2−115
319号公報において提案した。しかしながら、この技
術でもってしても、抑制力の低下を十分に抑えることに
は至らず、薄方向性けい素鋼板の磁束密度の向上は十分
でなかった。
On the other hand, the inventors have proposed a technique of adding Sb to the steel as a method of strengthening the suppressing force of the surface layer of the steel sheet of the Al-containing grain-oriented silicon steel. That is, it is a technology for producing a high magnetic flux density material by suppressing the oxidation of the steel sheet surface during the final finish annealing by the surface segregation effect of Sb to suppress the division and disappearance of the inhibitor.
Proposed in Japanese Patent No. 319. However, even with this technique, it has not been possible to sufficiently suppress the decrease in the suppressing force, and the improvement of the magnetic flux density of the thin grain-oriented silicon steel sheet has not been sufficient.

【0012】その理由を調査した結果、ALとSbを含有す
る方向性けい素鋼板においては、中間焼鈍で表層部の脱
窒現象が起きており、これが表層抑制力の低下を招いて
いた原因であることが判明し、その対策として中間焼鈍
前に、窒化促進剤を塗布して、脱窒量を補償する技術を
特開平4−173923号公報において提案した。しか
しながらこの技術によっても、鋼板表層部の抑制力の低
下を抑えることは必ずしも十分でなく、薄方向性けい素
鋼板において高磁束密度材を安定して得ることは難しか
った。
[0012] As a result of investigating the reason, in the grain-oriented silicon steel sheet containing AL and Sb, the denitrification phenomenon of the surface layer portion was caused by the intermediate annealing, which is the cause of the decrease in the surface layer suppression force. It was found that there was such a problem, and as a countermeasure against this, a technique of applying a nitriding accelerator before intermediate annealing to compensate the denitrification amount was proposed in JP-A-4-173923. However, even with this technique, it is not always sufficient to suppress the reduction of the suppression force of the steel sheet surface layer portion, and it is difficult to stably obtain a high magnetic flux density material in the thin grain-oriented silicon steel sheet.

【0013】これらの技術とは別に、鋼板表層部の抑制
力を強化する方法として、鋼板表層部を窒化する方法が
古くから知られている。例えば特開昭49−6455号
公報には、Alを含有する方向性けい素鋼板の製造におい
て、脱炭焼鈍工程後に窒化する技術が開示されている。
Apart from these techniques, a method of nitriding the steel sheet surface layer portion has long been known as a method for strengthening the restraining force of the steel sheet surface portion. For example, Japanese Patent Application Laid-Open No. 49-6455 discloses a technique of nitriding after a decarburization annealing step in the production of a grain-oriented silicon steel sheet containing Al.

【0014】また、特公昭50−19489号公報に
は、Alを含有する方向性けい素鋼板の製造に関し、最終
冷延前の工程において、窒化雰囲気中600 〜1200℃で、
最終板厚割合に換算して鋼板中央部の0.10mm以上の領域
を残した鋼板表層部に窒化増量0.005 〜0.075 %の窒化
処理を行う技術が開示されている。しかし、この技術に
よっても得られた磁束密度は高々B10:1.93T(B8
して約1.91T)であり、高磁束密度の材料は得られてい
ない。
Further, Japanese Examined Patent Publication No. 50-19489 discloses a process for producing a grain-oriented silicon steel sheet containing Al in a nitriding atmosphere at 600 to 1200 ° C. in a step before final cold rolling.
A technique is disclosed in which a nitriding treatment with a nitriding increase amount of 0.005 to 0.075% is performed on a surface layer portion of a steel sheet which is converted into a final thickness ratio and leaves a region of 0.10 mm or more in a central portion of the steel sheet. However, the magnetic flux density obtained by this technique is at most B 10: a 1.93 T (approximately in the B 8 1.91 T), no material having a high magnetic flux density is obtained.

【0015】[0015]

【発明が解決しようとする課題】以上述べたとおり、鋼
板板厚が薄くなった場合に、最終仕上焼鈍雰囲気によっ
て鋼板表層部のインヒビターが影響を受け抑制力が低下
する領域に、2次再結晶の核が包含されるといった問題
に対して、鋼板全体の抑制力を高めることや、第1回目
の冷間圧延後の組織を改善することは何ら有効な手段と
はなり得なかった。また、Sbを鋼中に含有させ、表面偏
析効果を利用する技術は一定の成果をもたらしたが、ま
だ十分とは云えない。さらに、途中工程における窒化に
よって鋼板表層部の抑制力を高める技術は、しばしば方
位の劣る粒の2次再結晶を誘起する問題があった。
As described above, when the thickness of the steel sheet becomes thin, the secondary recrystallization occurs in a region where the inhibitor in the surface layer of the steel sheet is affected by the final finishing annealing atmosphere and the inhibitory power is reduced. With respect to the problem that the nuclei of No. 1 are included, it has been impossible to increase the restraining force of the entire steel sheet or to improve the structure after the first cold rolling. Moreover, although the technique of incorporating Sb into steel and utilizing the surface segregation effect has achieved some results, it is still not sufficient. Further, the technique of increasing the suppression force of the surface layer of the steel sheet by nitriding in the intermediate step often has a problem of inducing secondary recrystallization of grains having poor orientation.

【0016】この発明は、上記した最終仕上げ焼鈍にお
ける鋼板表層部の抑制力の低下という課題を有利に解決
するもので、Sbを鋼中に含有させた鋼に工夫を加えるこ
とにより、抑制力の低下を抑制して、磁束密度の高い方
向性けい素鋼板を得ることができる製造方法を提案する
ことを目的とする。
The present invention advantageously solves the problem of the reduction of the suppression force of the steel sheet surface layer portion in the final finish annealing described above. By adding a device to the steel containing Sb, the suppression of the suppression force can be improved. It is an object of the present invention to propose a manufacturing method capable of suppressing a decrease and obtaining a grain-oriented silicon steel sheet having a high magnetic flux density.

【0017】[0017]

【課題を解決するための手段】この発明の要旨は、次の
通りである。 (1)C:0.02〜0.09wt%、Si:2.5 〜5.0 wt%、Mn:
0.02〜0.3 wt%、Al:0.01〜0.04wt%、Sb:0.005 〜0.
060 wt%及びN:0.0055〜0.0095wt%を含有し、残部Fe
および不可避的不純物からなるけい素鋼スラブを熱間圧
延し、最終板厚とする1回の冷間圧延の圧下率を80〜95
%として行うこと及びその1回の圧延前には焼鈍を行う
ことの条件を満たす1回又は2回の冷間圧延を行って最
終板厚とし、次いで脱炭焼鈍、さらに焼鈍分離剤を塗布
してから最終仕上焼鈍を施す一連の製造工程からなる方
向性けい素鋼板の製造方法において、最終板厚とする1
回の冷間圧延の前に行う焼鈍を第1段階と第2段階とに
分け、第1段階では、750 〜850 ℃の範囲の温度で30〜
90sec の均熱又は700 〜900℃の温度域に30〜90sec 滞
留させる徐熱であって、焼鈍雰囲気を0.1 〜10%のNH3
を含み、かつH2を20〜80%含有し、露点20〜60℃で残部
がN2バランスとした窒化熱処理を行い、第2段階では、
引き続いてNH3 濃度を0.1 %未満に規制した雰囲気中、
1050〜1200℃で30〜90sec の均熱を施す再結晶熱処理を
行うこと及び脱炭焼鈍工程以降でのN含有量の増加を、
10wt ppm以下に抑制することの結合を特徴とする磁束密
度の高い方向性けい素鋼板の製造方法。 (2)上記(1)において、けい素鋼スラブが、さらに
SおよびSeの1種または2種を合計で0.005〜0.040wt%
含有することを特徴とする磁束密度の高い方向性けい素
鋼板の製造方法。 (3)上記(1)または(2)において、けい素鋼スラ
ブが、さらにCu、Sn、P、Bi、As、B、Ge、V、Nbおよ
びCrのいずれか1種または2種以上を、Cu、SnおよびCr
はそれぞれ0.03〜0.30 wt%、Biは0.005〜0.020 wt%、
P、Ge、V、NbおよびAsはそれぞれ0.005 〜0.030 wt
%、Bは0.0005〜0.0020 wt%の範囲で含有することを
特徴とする磁束密度の高い方向性けい素鋼板の製造方
法。
The gist of the present invention is as follows. (1) C: 0.02 to 0.09 wt%, Si: 2.5 to 5.0 wt%, Mn:
0.02 to 0.3 wt%, Al: 0.01 to 0.04 wt%, Sb: 0.005 to 0.
060 wt% and N: 0.0055 to 0.0095 wt% , balance Fe
And silicon steel slab consisting of unavoidable impurities and hot rolling, once the reduction ratio of cold rolling to a final thickness of 80 to 95
% , And cold rolling is performed once or twice before the first rolling to achieve the final plate thickness, followed by decarburizing annealing and further applying an annealing separator. in the final finishing method for producing oriented silicon steel sheet consisting of a series of manufacturing step of performing annealing after, 1, final thickness
Annealing performed before the first cold rolling is divided into a first stage and a second stage. In the first stage, at a temperature in the range of 750 to 850 ℃, 30 ~
It is a soaking for 90 seconds or a gradual heat for staying in the temperature range of 700-900 ° C for 30-90 seconds, and the annealing atmosphere is 0.1-10% NH 3
And containing 20 to 80% of H 2 and performing a nitriding heat treatment with a dew point of 20 to 60 ° C. and the balance of N 2 balance.
Then, in an atmosphere where the NH 3 concentration was regulated to less than 0.1%,
Performing a recrystallization heat treatment for soaking for 30 to 90 seconds at 1050 to 1200 ° C and increasing the N content after the decarburization annealing step,
A method for manufacturing a grain-oriented silicon steel sheet having a high magnetic flux density, which is characterized by a combination of suppressing to 10 wt ppm or less. (2) In the above (1), the silicon steel slab further contains one or two of S and Se in a total amount of 0.005 to 0.040 wt%.
A method for producing a grain-oriented silicon steel sheet having a high magnetic flux density, which is characterized by containing. (3) In the above (1) or (2), the silicon steel slab further contains one or more of Cu, Sn, P, Bi, As, B, Ge, V, Nb and Cr. Cu, Sn and Cr
Respectively 0.03 to 0.30 wt%, Bi 0.005 to 0.020 wt%,
P, Ge, V, Nb and As are each 0.005 to 0.030 wt.
% And B are contained in the range of 0.0005 to 0.0020 wt%, a method for producing a grain-oriented silicon steel sheet having a high magnetic flux density.

【0018】以下、この発明を完成するに到る動機とな
った実験について詳細に説明する。C:0.078 %,Si:
3.31%,Mn:0.068 %,P:0.006 %,S:0.005 %,
Al:0.024 %,Se:0.019 %,Sb:0.026 %及びN:0.
0074%を含有する鋼スラブを1420℃で均熱15分間の加熱
をした後、熱間圧延によって1.9 mmの熱延板とした。こ
の熱延板に1000℃で60sec の焼鈍を行った後、酸洗し、
第1回目の冷間圧延によって1.20mmの中間圧延板とし
た。中間圧延板は脱脂後、9分割してa〜iのコイルと
した。
The experiments that motivated the completion of the present invention will be described in detail below. C: 0.078%, Si:
3.31%, Mn: 0.068%, P: 0.006%, S: 0.005%,
Al: 0.024%, Se: 0.019%, Sb: 0.026% and N: 0.
The steel slab containing 14% was heated at 1420 ° C. for 15 minutes soaking, and then hot-rolled to form a 1.9 mm hot-rolled sheet. The hot rolled sheet was annealed at 1000 ° C for 60 seconds, then pickled,
The 1.20 mm intermediate rolled plate was obtained by the first cold rolling. The intermediate rolled plate was degreased and then divided into 9 to form coils a to i.

【0019】次にコイルaは、NH3 :2% H2:75%,
露点35℃で残余はN2バランスの雰囲気下、800 ℃で40se
c の窒化処理を施した後、1100℃に昇温して60sec の
間、H2中雰囲気で焼鈍をした後、ミストで40℃/secの急
冷処理を行った。
Next, the coil a is composed of NH 3 : 2% H 2 : 75%,
40se at 800 ℃ under dew point of 35 ℃ and balance of N 2 balance.
After performing the nitriding treatment of c, the temperature was raised to 1100 ° C., annealed in an atmosphere of H 2 for 60 seconds, and then rapidly cooled at 40 ° C./sec with a mist.

【0020】残る8コイル(b〜i)のうち、コイルb
は、NH3 :25%、H2:75%, 露点35℃で残余はN2バラン
スといったコイルaの場合よりも高窒化雰囲気下、800
℃で40sec の窒化処理を施した後、1100℃に昇温して60
sec の間、H2雰囲気中で焼鈍した後、ミストで40℃/sec
の急冷処理を行った。これらa及びbの2コイルは、そ
の後第2回目の冷間圧延で最終板厚0.18mmとした後、露
点60℃、H2:55%、N2バランスの湿水素雰囲気中850 ℃
で2時間の脱炭焼鈍を施した。
Of the remaining 8 coils (b to i), coil b
Is, NH 3: 25%, H 2: 75%, a high nitriding atmosphere than in the coil a such residual N 2 balance at dew point 35 ° C., 800
After nitriding at 40 ° C for 40 seconds, raise the temperature to 1100 ° C and
After annealing in H 2 atmosphere for sec, mist 40 ℃ / sec
Was quenched. These 2 coils of a and b were then cold-rolled for the second time to a final plate thickness of 0.18 mm, and then dew point 60 ° C, H 2 : 55%, N 2 balance in a wet hydrogen atmosphere at 850 ° C.
Decarburization annealing was performed for 2 hours.

【0021】残る7コイル(c〜i)は、H2:75%、露
点35℃で残余はN2バランスの雰囲気中で800 ℃、40 sec
の熱処理を施し、次いで1100℃で60sec の間、H2中で焼
鈍した後、ミストで40℃/secの急冷処理を行った。
The remaining 7 coils (c to i) are H 2 : 75%, dew point 35 ° C., and the balance is 800 ° C. for 40 sec in an N 2 balanced atmosphere.
Then, the sample was annealed in H 2 at 1100 ° C. for 60 seconds, and then rapidly cooled with mist at 40 ° C./sec.

【0022】その後、コイルcには、NH3 :2%,H2
75%、露点35℃で残余はN2バランスの雰囲気中、800 ℃
で40sec の窒化処理を施した。また、コイルdにはN
H3 :25%, H2:75%、露点35℃で残余はN2バランスの
雰囲気中、800 ℃で40sec の窒化処理を施した。これら
のコイルc及びdは、その後第2回目の冷間圧延で最終
板厚0.18mmとした後、露点60℃、H2 55 %、N2バランス
の湿水素雰囲気で850 ℃で2分間の脱炭焼鈍を施した。
After that, in the coil c, NH 3 : 2%, H 2 :
75%, dew point 35 ° C, balance 800 ° C in N 2 balanced atmosphere
Then, nitriding treatment was performed for 40 seconds. Also, the coil d has N
Nitrogen treatment was performed for 40 seconds at 800 ° C in an atmosphere of H 3 : 25%, H 2 : 75%, dew point of 35 ° C and the balance of N 2 balance. These coils c and d were then subjected to a second cold rolling to obtain a final plate thickness of 0.18 mm, and then deheated at 850 ° C. for 2 minutes in a wet hydrogen atmosphere with a dew point of 60 ° C., H 2 55% and N 2 balance. It was subjected to charcoal annealing.

【0023】残る5コイル(e〜i)は、引き続いて第
2回目の冷間圧延により最終板厚0.18mmとした。冷間圧
延後、コイルeには、NH3 :0.3 %, H2:75%、露点35
℃で残余はN2バランスの雰囲気中、800 ℃で40sec の窒
化処理を施した。また、コイルfには、NH3 :4.0 %,
H2:75%、露点が35℃で残余はN2バランスの雰囲気中、
800 ℃で40sec の窒化処理を施した。これらe及びfの
コイルには、さらに露点60℃、H2:55%、N2バランスの
湿水素雰囲気中、850 ℃で2分間の脱炭焼鈍を施した。
The remaining 5 coils (e to i) were successively cold-rolled a second time to a final plate thickness of 0.18 mm. After cold rolling, the coil e, NH 3: 0.3%, H 2: 75%, dew point 35
Nitriding treatment was performed at 800 ° C for 40 seconds in an atmosphere of balance N 2 at ℃. Further, in the coil f, NH 3 : 4.0%,
H 2 : 75%, dew point 35 ° C, balance N 2 balanced atmosphere,
Nitriding was performed at 800 ° C for 40 seconds. The coils of e and f were further subjected to decarburization annealing at 850 ° C. for 2 minutes in a wet hydrogen atmosphere having a dew point of 60 ° C., H 2 : 55%, and N 2 balance.

【0024】残る3コイル(コイルg,h,i)には、
露点60℃、H2:55%、N2バランスの湿水素雰囲気中、85
0 ℃で2分間の脱炭焼鈍を施した。このうち、コイルg
にはさらにNH3 :0.3 %,H2:75%、露点が35℃で残余
はN2バランスの雰囲気中、800 ℃で40sec の窒化処理を
施し、コイルhにはNH3 :4.0 %,H2:75%、露点35℃
で残余はN2バランスの雰囲気中、800 ℃で40sec の窒化
処理を施した。
For the remaining three coils (coils g, h, i),
Dew point 60 ℃, H 2 : 55%, N 2 balance in wet hydrogen atmosphere, 85
Decarburization annealing was performed at 0 ° C for 2 minutes. Of these, coil g
Furthermore the NH 3: 0.3%, H 2 : 75%, in an atmosphere of residual at 35 ° C. dew point is N 2 balance, subjected to nitriding treatment 40sec at 800 ° C., the coil h NH 3: 4.0%, H 2 : 75%, dew point 35 ° C
The rest was subjected to nitriding treatment at 800 ℃ for 40 seconds in N 2 balanced atmosphere.

【0025】これらのコイルについて、中間焼鈍後及び
脱炭焼鈍後でのN含有量を示すと、コイルa:(中間焼
鈍後のN含有量86ppm, 脱炭焼鈍後のN含有量87ppm )
であり、以下、同様にコイルb:(125, 127)、コイル
C:(87, 88)、コイルd:(130, 133)、コイルe:
(74, 87)、コイルf:(75, 119 )、コイルg:(7
5, 88)、コイルh:(75, 127 )、コイルi:(74, 7
5)であった。
With respect to these coils, the N contents after the intermediate annealing and after the decarburizing annealing are shown as follows: Coil a: (N content after the intermediate annealing 86 ppm, N content after the decarburizing annealing 87 ppm)
Similarly, coil b: (125, 127), coil C: (87, 88), coil d: (130, 133), coil e:
(74, 87), coil f: (75, 119), coil g: (7
5, 88), coil h: (75, 127), coil i: (74, 7)
It was 5).

【0026】これら脱炭焼鈍が施された各コイルa〜i
に、TiO2を5%、 Sr(OH)2・8H2Oを3%含有するMgO を
主成分とする焼鈍分離剤を塗布した後、コイル状に巻き
取り、H2雰囲気中、840 ℃で40時間保持し、その後15℃
/hr の速度で1200℃まで昇温するH2:25%、N2:75%の
雰囲気中での2次再結晶焼鈍、引き続く1200℃,5時間
のH2雰囲気中での純化焼鈍からなる最終仕上げ焼鈍を施
した。その結果の得られた磁気特性を各コイル毎に表1
に示す。
Each of the decarburized and annealed coils a to i
Then, an annealing separator containing MgO as a main component containing 5% of TiO 2 and 3% of Sr (OH) 2 · 8H 2 O is applied, and then wound into a coil and heated in an H 2 atmosphere at 840 ° C. Hold for 40 hours, then 15 ℃
/ To speed raised to 1200 ° C. in the hr H 2: 25%, N 2: 2 primary recrystallization annealing in a 75% atmosphere, consisting of purification annealing at successive 1200 ° C., in an H 2 atmosphere for 5 hours Final finish annealing was performed. The obtained magnetic characteristics are shown in Table 1 for each coil.
Shown in.

【0027】[0027]

【表1】 [Table 1]

【0028】表1に示されるように、中間焼鈍におい
て、窒化処理したコイルa〜dのうち、窒化量の少ない
コイルaは、極めて高い磁束密度が得られた。これに対
し、窒化量の多いコイルbは、磁束密度は1.8 Tレベル
であり低く,中間焼鈍に引き続いて窒化処理したc,d
のコイルも磁束密度は1.8 Tレベルであり低い。また、
窒化量が少ないコイルにおいても、最終冷延板や脱炭焼
鈍板にに窒化処理を行ったe,f,g,hのコイルにお
いては、おしなべて磁束密度は1.8 Tレベルであり、窒
化処理をしないコイルiの1.913 Tより低い。
As shown in Table 1, in the intermediate annealing, among the coils a to d which were subjected to the nitriding treatment, the coil a having a smaller nitriding amount had an extremely high magnetic flux density. On the other hand, the magnetic flux density of the coil b, which has a large amount of nitriding, is low at the level of 1.8 T.
The coil also has a low magnetic flux density of 1.8 T level. Also,
Even in coils with a small amount of nitriding, the final cold-rolled sheet and decarburized and annealed sheet were subjected to nitriding treatment at e, f, g, and h coils, where the magnetic flux density was 1.8 T level in general, and no nitriding Lower than 1.913 T for coil i.

【0029】このように、本実験によって、窒化処理を
行うにあたり、中間焼鈍より後に窒化処理を行う場合
は、磁束密度が劣化するし、さらに中間焼鈍前において
も窒化量が多い時に磁束密度は低下することがわかっ
た。この原因を調査した結果、窒化量が多い場合や、中
間焼鈍後に窒化した場合は、窒化処理によって鋼板表層
部にSi3N4 やFeN が形成されており、この結果、逆に抑
制力が弱くなっていることがわかった。すなわち、発明
者等の研究によると、鋼板表層部にSi3N4 やFeN が残存
していると、鋼板表層部の抑制力が逆に弱くなり、2次
再結晶の温度が急激に低下し、2次再結晶の安定性は増
加するが、方位の劣る粒が2次再結晶し、それゆえ磁束
密度が低下することを新規に見出したのである。
As described above, according to the present experiment, when the nitriding treatment is performed after the intermediate annealing, the magnetic flux density is deteriorated, and even before the intermediate annealing, the magnetic flux density is decreased when the nitriding amount is large. I found out that As a result of investigating the cause of this, when the amount of nitriding is large or when nitriding is performed after the intermediate annealing, Si 3 N 4 or FeN is formed in the surface layer of the steel sheet by the nitriding treatment, and as a result, the suppressing force is weak. I found out that. In other words, according to the research conducted by the inventors, when Si 3 N 4 or FeN remains in the surface layer of the steel sheet, the suppression force of the surface layer of the steel sheet is weakened conversely and the temperature of secondary recrystallization sharply decreases. It was newly found that although the stability of the secondary recrystallization is increased, the grains having inferior orientation are secondary recrystallized and hence the magnetic flux density is lowered.

【0030】この知見からこの発明では、前掲特公昭5
0−19489号公報に記載された245 ppm (実施例
1)や213 ppm (実施例2)といった多量の窒化技術と
異なり、磁束密度低下の悪影響を避けるために、第1段
階で窒化量を約3〜20ppm の範囲に抑えた窒化処理を行
い、第2段階の中間焼鈍として高温の再結晶熱処理によ
って、この窒化処理中に生成したFeN やSi3N4 を分解
し、AlN に変化させることによって高磁束密度を得るこ
とに想到した。そこから、中間焼鈍後には、窒化現象を
可能な限り抑制し、N含有量の増加量として10ppm 以下
に抑えることが必要であることも判明した。
Based on this finding, the present invention provides the above-mentioned Japanese Patent Publication No.
Unlike the large amount of nitriding technology such as 245 ppm (Example 1) and 213 ppm (Example 2) described in Japanese Patent Publication No. 0-19489, the nitriding amount is set to about 1 in the first step in order to avoid the adverse effect of the decrease in magnetic flux density. By performing nitriding treatment within the range of 3 to 20 ppm, and by performing high-temperature recrystallization heat treatment as the second stage intermediate annealing, FeN and Si 3 N 4 generated during this nitriding treatment are decomposed and converted to AlN. The idea was to obtain a high magnetic flux density. From this, it was also found that after the intermediate annealing, it was necessary to suppress the nitriding phenomenon as much as possible, and to suppress the increase of the N content to 10 ppm or less.

【0031】この発明における窒化処理の適正条件の範
囲としては、種々の実験によって以下のように求められ
た。すなわち、温度範囲としては750 〜850 ℃である。
750 ℃よりも低い温度の場合は、所定の窒化量を得るの
に長時間を要し、実用的はなかった。また850 ℃を超え
る場合、窒化量が過多になり易く、また適正量であって
も、鋼板の板厚中央部まで窒素が侵入し、鋼板表層部の
抑制力強化というこの発明の目的を逸失して、かえって
磁束密度の低下を招く。均熱時間は30〜90sec が妥当で
あった。また、一定温度に保持する場合だけでなく、昇
温過程で窒化しても全く同等の効果があった。この場
合、温度範囲は700 〜900 ℃と若干広くとってよく、ま
た昇温速度は2.0 〜5.0 ℃/secの範囲が有効であった。
The range of appropriate conditions for the nitriding treatment in the present invention was determined as follows by various experiments. That is, the temperature range is 750 to 850 ° C.
At a temperature lower than 750 ° C, it took a long time to obtain a predetermined amount of nitriding, which was not practical. If it exceeds 850 ° C, the amount of nitriding tends to be excessive, and even if it is an appropriate amount, nitrogen penetrates to the central portion of the plate thickness of the steel sheet, and the purpose of this invention of strengthening the restraining force of the steel sheet surface layer part is lost. On the contrary, the magnetic flux density is lowered. A soaking time of 30 to 90 seconds was appropriate. Further, not only the case where the temperature is maintained at a constant temperature but also the case where the nitriding is performed in the temperature rising process has the same effect. In this case, the temperature range may be 700 to 900 ° C, which is rather wide, and the rate of temperature rise is effectively 2.0 to 5.0 ° C / sec.

【0032】窒化処理時の雰囲気としては、0.1 〜10%
のNH3 濃度が適切であった。0.1 %未満のNH3 濃度では
窒化量として十分でなく、10%を超えると窒化量が過多
になって磁束密度が劣化した。また、処理時、H2を20〜
80%含有させておくことが、窒化処理を安定化させるの
に必要であった。H2が20%未満である場合は窒化量が大
きく変動し、逆にH2が80%を超える場合は、窒化が困難
になる傾向があった。さらに、処理時の雰囲気の露点を
高めることが、窒化処理を増進するのに有効であること
を発明者は新規に見出した。この確かな理由は不明であ
るが、表面酸化、脱炭によって、表面に純Feの相が形成
され、FeN が生成し易くなるためではないかと考えられ
る。この目的のためには露点は20〜60℃に調整すること
が必要であった。
The atmosphere during the nitriding treatment is 0.1-10%.
The NH 3 concentration of was appropriate. If the NH 3 concentration is less than 0.1%, the nitriding amount is not sufficient, and if it exceeds 10%, the nitriding amount becomes excessive and the magnetic flux density deteriorates. Also, during processing, H 2 is 20 ~
The inclusion of 80% was necessary for stabilizing the nitriding treatment. When H 2 was less than 20%, the amount of nitriding varied greatly, and when H 2 was more than 80%, nitriding tended to be difficult. Furthermore, the inventor has newly found that increasing the dew point of the atmosphere during the treatment is effective for enhancing the nitriding treatment. The exact reason for this is unknown, but it is considered that the surface oxidation and decarburization form a pure Fe phase on the surface, which facilitates the generation of FeN. For this purpose it was necessary to adjust the dew point to 20-60 ° C.

【0033】次に中間焼鈍の第2段階においては窒化に
よって生成したFeN やSi3N4 を分解、拡散して全量を有
用なAlN へ変換することが主目的のひとつであると云え
る。このためには、第2段階において、雰囲気中にNH3
が0.1 %以上存在してはならないことがわかった。すな
わち、NH3 が、0.1 %を超えて存在すると、高温での窒
化反応が進行し、有害なFeN やSi3N4 が存在することに
なるからである。この点、先に述べた特公昭50−19
489号公報における窒化処理は高温であり、この意味
においてこの発明の技術の観点からは適切とはいえな
い。また、これらFeN やSi3N4 を分解、拡散して、AlN
への変換のための焼鈍としては温度として1050〜1200
℃、時間として20〜90sec の均熱が必要であった。
Next, in the second stage of the intermediate annealing, it can be said that one of the main purposes is to decompose and diffuse FeN and Si 3 N 4 produced by nitriding to convert the whole amount into useful AlN. To this end, in the second stage, NH 3 in the atmosphere
Was found to be present at no more than 0.1%. That is, if NH 3 is present in excess of 0.1%, the nitriding reaction proceeds at high temperature and harmful FeN and Si 3 N 4 are present. In this regard, the Japanese Examined Japanese Patent Publication Sho-50-19
The nitriding treatment in Japanese Patent No. 489 is high temperature, and in this sense, it cannot be said that it is appropriate from the viewpoint of the technique of the present invention. Also, these FeN and Si 3 N 4 are decomposed and diffused to form AlN.
1050 to 1200 as temperature for annealing for conversion to
Soaking for 20 to 90 seconds was required at ℃.

【0034】かかる最終高圧下冷延前の焼鈍による窒化
処理工程以降には、FeN やSi3N4 からAlN への変換を十
分になし得る高温熱処理工程は存在しないので、該焼鈍
工程以降に窒化処理を行うと、前述の実験からも明らか
なように逆効果となって磁束密度は劣化する。したがっ
て、脱炭焼鈍工程以降での窒化は極力抑制する必要があ
り、窒化量として10ppm 以下に抑制することが必要であ
るとの知見を得たのである。
Since there is no high-temperature heat treatment step capable of sufficiently converting FeN or Si 3 N 4 to AlN after the nitriding step by annealing before the final high pressure cold rolling, nitriding is performed after the annealing step. When the treatment is carried out, the magnetic flux density is deteriorated due to an adverse effect as is clear from the above experiment. Therefore, it was found that it is necessary to suppress nitriding after the decarburization annealing step as much as possible, and it is necessary to suppress the nitriding amount to 10 ppm or less.

【0035】[0035]

【作用】まず、この発明の素材となる方向性けい素鋼ス
ラブの成分についてに述べる。 C:0.02〜0.09% Cは、γ変態を利用して熱延組織を改善するために0.02
%以上必要である。一方0.09%を超えると脱炭不良とな
るので、0.02〜0.09%の範囲とする。 Si:2.5 〜5.0 % Siは、電気抵抗を高めて鉄損を向上させるため2.5 %以
上必要である。一方5.0 %を超えるとぜい化が激しく冷
間圧延が困難となるので、2.5 〜5.0 %の範囲とする。
First, the components of the grain-oriented silicon steel slab which is the material of the present invention will be described. C: 0.02 to 0.09% C is 0.02 in order to improve the hot rolled structure by utilizing the γ transformation.
% Or more is required. On the other hand, if it exceeds 0.09%, decarburization becomes poor, so the range is 0.02 to 0.09%. Si: 2.5 to 5.0% Si is required to be 2.5% or more in order to increase electric resistance and improve iron loss. On the other hand, if it exceeds 5.0%, embrittlement is severe and cold rolling becomes difficult, so the range is 2.5 to 5.0%.

【0036】Al:0.01〜0.04% Alはこの発明の高磁束密度を得るために必須の主インヒ
ビターである、AlN 析出のための基本成分であり、0.01
%未満ではAlN の析出量が足りず、逆に0.04%を超える
と析出するAlN が粗大化して抑制力が劣化するので0.01
〜0.04%の範囲とする。 N:0.0055〜0.0095% Nもこの発明の高磁束密度を得るために必須の主インヒ
ビターである、AlN の析出のための基本成分であり、0.
0055%未満ではAlN の析出量が足りず、逆に0.0095%を
超えると鋼スラブの加熱の際にガス化して、フクレ等の
トラブルの原因になるので0.0055〜0.0095%の範囲とす
る。
Al: 0.01 to 0.04% Al is a main inhibitor essential for obtaining the high magnetic flux density of the present invention, and is a basic component for AlN precipitation.
%, The amount of precipitation of AlN is insufficient. Conversely, if it exceeds 0.04%, the precipitation of AlN becomes coarse and the suppressing power deteriorates.
The range is up to 0.04%. N: 0.0055 to 0.0095% N is also a basic component for precipitation of AlN, which is an essential main inhibitor for obtaining the high magnetic flux density of the present invention, and
If it is less than 0055%, the precipitation amount of AlN is insufficient, and if it exceeds 0.0095%, it is gasified during heating of the steel slab and causes troubles such as blistering. Therefore, the range is set to 0.0055 to 0.0095%.

【0037】Sb:0.005 〜0.060 % Sbは鋼板表層部の酸化及び窒化を抑え、最終仕上げ焼鈍
時における鋼板表層部の抑制力の強化に必要な成分であ
り、かつインヒビター効果の補強としても有効である。
この効果のためには0.005 %以上が必要であるが、0.06
0 %を超えると鋼板のぜい化が甚だしくなるので、0.00
5 〜0.060 %の範囲とする。
Sb: 0.005 to 0.060% Sb is a component necessary for suppressing the oxidation and nitriding of the surface layer of the steel sheet and strengthening the suppressing power of the surface layer of the steel sheet during final annealing, and is also effective for reinforcing the inhibitor effect. is there.
0.005% or more is required for this effect, but 0.06%
If it exceeds 0%, the embrittlement of the steel sheet will be severe, so 0.00
The range is 5 to 0.060%.

【0038】Mn:0.02〜0.3 % Mnは、熱間圧延時の割れを防止するのに有用であり、ま
たMnS やMnSe等の副インヒビター利用の際にはインヒビ
ター形成成分としても有用となる。そのためには、0.02
%以上必要である。但し0.3 %を超えると、これらMnS
やMnSeをスラブ加熱により溶解させることが困難となる
ので、その範囲は0.02〜0.3 %とする。以上述べたC、
Si、Al、N、Sb及びMnは、この発明に必須の成分である
が、その他に、SおよびSe等も含有させてもよい。
Mn: 0.02 to 0.3% Mn is useful for preventing cracks during hot rolling, and is also useful as an inhibitor-forming component when using a secondary inhibitor such as MnS or MnSe. For that, 0.02
% Or more is required. However, if it exceeds 0.3%, these MnS
Since it becomes difficult to dissolve MnSe and MnSe by heating the slab, the range is 0.02 to 0.3% . C mentioned above,
Si, Al, N, Sb and Mn are essential components in the present invention, but S, Se and the like may be contained in addition to them.

【0039】S,SeはMnと結合して副インヒビターのMn
S やMnSeを析出させるので有用な成分である。この効果
をもたらすためには、0.005 %以上が必要であるが、一
方、0.040 %を超えると、析出物の粗大化が生じ磁気特
性の劣化を招くので0.005 〜0.040 %の範囲が好まし
い。
S and Se are bound to Mn to bind to Mn which is a secondary inhibitor.
It is a useful component because it precipitates S and MnSe. In order to bring about this effect, 0.005% or more is necessary. On the other hand, if it exceeds 0.040%, coarsening of the precipitates causes deterioration of magnetic properties, so 0.005 to 0.040% is preferable.

【0040】さらに、他にインヒビター補強成分として
公知であるCu, Sn, P, Bi, As, B, Ge, V, Nb, Cr等
を含有しても良いことは勿論である。この目的のために
は、Cu, Sn, Crは、0.03〜0.30%、Biは0.005 〜0.020
%、P, Ge, V, Nb, Asは0.005 〜0.030 %、Bは0.00
05〜0.0020%の範囲の含有が好ましい。加えて、けい素
鋼特有の熱間圧延での割れを防止するために、Moを0.00
5 〜0.020 %含有させることも可能である。
Furthermore, it goes without saying that Cu, Sn, P, Bi, As, B, Ge, V, Nb, Cr and the like, which are known as inhibitor reinforcing components, may be contained. For this purpose, Cu, Sn, and Cr are 0.03 to 0.30% and Bi is 0.005 to 0.020.
%, P, Ge, V, Nb, As 0.005 to 0.030%, B 0.00
The content of 05 to 0.0020% is preferable. In addition, Mo is added to prevent cracking in hot rolling peculiar to silicon steel.
It is also possible to contain 5 to 0.020%.

【0041】次に、この発明に従う製造方法について説
明する。上記成分を含有するけい素鋼スラブは、常法に
よりスラブ加熱された後、熱間圧延が施される。熱間圧
延のコイルは、冷間圧延工程により、最終鋼板板厚とさ
れるが、この冷間圧延工程には、1回の冷間圧延で最終
板厚とする冷延1回法と、中間焼鈍を挟む2回の冷間圧
延で最終板厚とする冷延2回法との2種が存在する。冷
延2回法は、冷延1回法に比較して、有害な熱延組織の
破壊が進行するので、磁気特性上は有利となるが、コス
ト的には不利になる。この冷延1回法、冷延2回法のい
ずれもこの発明で対象となる工程である。
Next, the manufacturing method according to the present invention will be described. The silicon steel slab containing the above components is slab-heated by a conventional method and then hot-rolled. The coil of hot rolling is made into the final steel plate thickness by the cold rolling process. In this cold rolling process, the cold rolling one time method in which the final plate thickness is obtained by one cold rolling There are two types: a cold rolling twice method in which the final plate thickness is obtained by performing two cold rolling processes with annealing. Compared to the cold-rolling once-rolling method, the cold-rolling twice-rolling method causes harmful destruction of the hot-rolled structure, which is advantageous in terms of magnetic properties, but disadvantageous in cost. Both the cold rolling once method and the cold rolling twice method are the steps to be covered by the present invention.

【0042】冷延1回法の場合、熱延板焼鈍を必ず行
う。これがこの発明でいう最終高圧下の冷間圧延の前に
行う焼鈍に該当することになる。
In the case of the one-time cold rolling method, hot-rolled sheet annealing is always performed. This corresponds to the annealing performed before the cold rolling under the final high pressure according to the present invention.

【0043】これに対して冷延2回法の場合は、熱延板
焼鈍が必須ではなく、必要に応じて行う。すなわち、熱
延板焼鈍は、熱延組織の改善のために再結晶と炭化物の
サイズ調整のために行うもので、冷延2回法において熱
間圧延の条件が十分管理されている場合は、かかる焼鈍
は必ずしも必要とされないのである。また、熱延板焼鈍
を行わず、炭化物の調整のみを行う焼鈍を施すことも行
われる。一般に熱延板焼鈍の条件は900 〜1200℃で30〜
120 sec である。炭化物の調整のための焼鈍はより低
温、短時間となる。冷延2回法において、第1回目の冷
間圧延は、第2回目の高圧下冷間圧延の圧下率を適正に
するための中間板厚を調整する目的及び加工歪を加える
ことによって加工歪の開放による中間焼鈍での再結晶を
促進させる目的がある。これらの目的の達成のために
は、圧下率は10%以上あれば十分である。また、圧延中
途での鋼板の割れを防止するため50〜300 ℃の温度範囲
での温間圧延を施しても良い。
On the other hand, in the case of the cold-rolling twice method, hot-rolled sheet annealing is not essential and may be performed as needed. That is, hot-rolled sheet annealing is performed for recrystallization and size adjustment of carbides in order to improve the hot-rolled structure, and when the conditions of hot rolling in the cold rolling two-time method are sufficiently controlled, Such an anneal is not always necessary. Further, it is also possible to perform annealing for adjusting only carbides without performing hot-rolled sheet annealing. Generally, the hot-rolled sheet annealing conditions are 900-1200 ° C and 30-
120 sec. Annealing for adjusting the carbide is performed at a lower temperature for a shorter time. In the cold-rolling double rolling method, the first cold rolling is performed by adding the working strain and the purpose of adjusting the intermediate plate thickness to make the reduction ratio of the second high-pressure cold rolling appropriate. The purpose is to accelerate the recrystallization in the intermediate annealing by opening the. To achieve these objectives, a reduction of 10% or more is sufficient. Further, in order to prevent cracking of the steel sheet during rolling, warm rolling may be performed in the temperature range of 50 to 300 ° C.

【0044】第1回目の冷間圧延を終了したコイルは脱
脂された後、中間焼鈍を施す。これが、この発明でいう
最終高圧下の冷間圧延の前に行う焼鈍に該当する。すな
わち、冷延1回法における熱延板焼鈍及び冷延2回法に
おける中間焼鈍であるところの最終高圧下の冷間圧延の
前に行う焼鈍をこの発明では、2つの段階に区分し、第
1段階では、所定の条件により窒化熱処理を行い、第2
段階では、所定条件により再結晶熱処理を行うことが特
徴である。なお、この第1段階、第2段階の熱処理は、
それぞれを独立とした熱処理とすることも可能である
が、ただひとつのヒートサイクルで処理する方が効率的
である。
The coil that has been subjected to the first cold rolling is degreased and then subjected to intermediate annealing. This corresponds to the annealing performed before the cold rolling under the final high pressure according to the present invention. That is, the hot rolling sheet annealing in the cold rolling once method and the annealing performed before the cold rolling under the final high pressure, which is the intermediate annealing in the cold rolling twice method, are divided into two stages in the present invention. In the first stage, nitriding heat treatment is performed under predetermined conditions, and the second
At the stage, the recrystallization heat treatment is performed under predetermined conditions. The first and second heat treatments are
Although it is possible to perform each heat treatment independently, it is more efficient to perform the heat treatment in only one heat cycle.

【0045】以下、この最終高圧下の冷間圧延の前に行
う焼鈍について詳述する。焼鈍の第1段階は、窒化処理
を施すためのもので、750 〜850 ℃で30〜90secの均熱
処理かもしくは700 〜900 ℃の温度域に30〜90sec 滞留
させる徐熱処理で行われる。かかる一定温度に保持して
処理する均熱の場合、750 ℃よりも低温では所定の窒化
量を得るのに時間を要するため実用的でなく、また850
℃を超える温度では、窒化量が過多になり易く、また適
正量に抑制したとしても、鋼板の板厚中央部にまで窒素
が侵入するので、いずれの場合も、磁束密度の向上とい
うこの発明の目的は達成されない。均熱時間も、30sec
よりも短い場合は所定の窒化量が得られず、一方90sec
よりも長い場合は過多に窒化して磁束密度の低下を招
く。
The annealing performed before the cold rolling under the final high pressure will be described in detail below. The first stage of annealing is for performing a nitriding treatment, and is carried out by soaking for 30 to 90 seconds at 750 to 850 ° C or gradual heat treatment for staying in the temperature range of 700 to 900 ° C for 30 to 90 seconds. In the case of soaking that is maintained at such a constant temperature, it is not practical at a temperature lower than 750 ° C because it takes time to obtain a predetermined nitriding amount.
At a temperature higher than 0 ° C, the nitriding amount is likely to be excessive, and even if the nitriding amount is suppressed to an appropriate amount, nitrogen penetrates to the central portion of the plate thickness of the steel sheet. The purpose is not achieved. Soaking time is also 30 seconds
If it is shorter than the above, the specified amount of nitriding cannot be obtained, while 90 seconds
If the length is longer than that, nitriding is excessively performed, which causes a decrease in magnetic flux density.

【0046】徐熱過程における窒化処理も基本的には一
定温度保持の場合と同一であるが、温度範囲が700 〜90
0 ℃と若干広範囲となる。また滞留時間は30〜90sec の
範囲が有効である。すなわち、90sec を超える場合は窒
化処理に時間がかかり過ぎて実用的でなく、逆に30sec
未満の場合は、十分な窒化量が得られない。
The nitriding treatment in the slow heating process is basically the same as the case of maintaining a constant temperature, but the temperature range is 700 to 90.
It becomes a slightly wide range of 0 ° C. The effective residence time is 30 to 90 seconds. In other words, if it exceeds 90 seconds, the nitriding process takes too long and is not practical.
If it is less than this, a sufficient amount of nitriding cannot be obtained.

【0047】かかる窒化処理を行うための雰囲気として
は、NH3 を用いる。NH3 の濃度が0.1 %未満の場合は窒
化量として十分でなく、10%を超えると窒化量が過多と
なって後述する第2段階での熱処理においても窒化物の
AlN への変換が十分でなく磁束密度が劣化する。したが
ってNH3 濃度の適正値は0.1 〜10%の範囲とする。
NH 3 is used as an atmosphere for performing the nitriding treatment. When the concentration of NH 3 is less than 0.1%, the nitriding amount is not sufficient, and when it exceeds 10%, the nitriding amount becomes excessive and the nitriding amount is also increased in the second stage heat treatment described later.
The conversion to AlN is not sufficient and the magnetic flux density deteriorates. Therefore, the proper value for the NH 3 concentration should be in the range of 0.1 to 10%.

【0048】さらに雰囲気中にH2を混合させることが必
要である。H2は、下記の反応により鋼板が窒化される量
を制御する機能を有することから必要なのである。
Further, it is necessary to mix H 2 in the atmosphere. H 2 is necessary because it has a function of controlling the amount of nitriding of the steel sheet due to the following reaction.

【化1】 この目的のためには、H2濃度は20%以上必要であるが、
80%を超えると窒化反応そのものが抑制される傾向とな
るので、H2濃度は20〜80%とする。
[Chemical 1] For this purpose, H 2 concentration of 20% or more is necessary,
If it exceeds 80%, the nitriding reaction itself tends to be suppressed, so the H 2 concentration is set to 20-80%.

【0049】さらに、かかる窒化処理の雰囲気として、
水蒸気を混入させる点がこの発明の特徴のひとつであ
る。雰囲気の露点を高めることにより、窒化速度が飛躍
的に増加し、処理時間の短縮が図れると同時に、生成し
た窒化物が第2段階の熱処理においてAlN に変換し易く
なり、磁束密度の向上に有益な効果を果たす。この目的
のためには、雰囲気の露点として20℃以上が必要である
が、一方60℃を超えると表面酸化が激しくなり、表層の
インヒビターの消失を進行させるので、雰囲気の露点の
範囲としては20〜60℃の範囲とすることが必要である。
また、残余のバランスガスとしてはAr等、中性ガスで良
いが、N2ガスが安価で最も適する。
Further, as the atmosphere of the nitriding treatment,
One of the features of the present invention is that water vapor is mixed therein. By increasing the dew point of the atmosphere, the nitriding speed increases dramatically and the processing time can be shortened. At the same time, the generated nitride is easily converted into AlN in the second stage heat treatment, which is useful for improving the magnetic flux density. Achieves the desired effect. For this purpose, the dew point of the atmosphere is required to be 20 ° C or higher. On the other hand, when the dew point exceeds 60 ° C, surface oxidation becomes severe and the disappearance of the inhibitor in the surface layer progresses. It is necessary to set the temperature within the range of to 60 ° C.
The balance gas may be a neutral gas such as Ar, but N 2 gas is cheap and most suitable.

【0050】次に窒化熱処理後に行う第2段階の熱処理
について、この目的は第1段階で生成した表層のFeN や
Si3N4 の窒化物を解離・固溶し、拡散によって全量有用
なAlN へ変換すること及び鋼板結晶組成の再結晶化であ
る。
Next, regarding the second stage heat treatment performed after the nitriding heat treatment, the purpose is to obtain FeN of the surface layer formed in the first stage and
Dissociation and solid solution of Si 3 N 4 nitride are converted to useful AlN by diffusion, and recrystallization of steel sheet crystal composition.

【0051】これらの目的のためには、温度として1050
〜1200℃の範囲とする。1050℃より低いとFeN やSi3N4
等といった窒化物のAlN への変換が十分行われない。ま
た、1200℃以上の温度の場合は、再結晶粒が粗大化して
2次再結晶が困難となる。したがって、第2段階の熱処
理温度は1050〜1200℃の範囲に限定した。均熱時間につ
いて、30sec 未満の場合は上記した各種窒化物のAlN へ
の変換が十分に行われないし、一方90sec を超える場合
は再結晶粒が粗大化して2次再結晶が困難となる。した
がって均熱時間は30〜90sec の範囲とする。
For these purposes, a temperature of 1050
The range is to 1200 ℃. FeN and Si 3 N 4 below 1050 ℃
The conversion of nitrides such as etc. to AlN is not sufficiently performed. Further, when the temperature is 1200 ° C. or higher, the recrystallized grains become coarse and the secondary recrystallization becomes difficult. Therefore, the heat treatment temperature of the second stage is limited to the range of 1050 to 1200 ° C. If the soaking time is less than 30 sec, the above-mentioned various nitrides are not sufficiently converted into AlN. On the other hand, if the soaking time is more than 90 sec, the recrystallized grains become coarse and secondary recrystallization becomes difficult. Therefore, the soaking time should be in the range of 30 to 90 seconds.

【0052】次に、この第2段階における焼鈍雰囲気に
ついては、酸化性、還元性、中性を問わないが、NH3
度を0.1 %未満に抑えた非窒化性雰囲気とする必要があ
る。すなわち、NH3 濃度が0.1 %以上の場合は、第2段
階の中間焼鈍においても窒化が進行して生成したFeN や
Si3N4 が鋼板表層に残存し、結果的に製品の磁束密度が
低下する。したがって、雰囲気中のNH3 濃度を0.1 %未
満に抑えることが必要である。この要件を満たすために
は、第1段階の窒化処理と第2段階の再結晶熱処理を別
工程とするか、又は、同一工程で処理する場合には、焼
鈍炉中に雰囲気ガス混合防止の隔壁を設けるなどの処理
を施すことが好ましい。
Next, the annealing atmosphere in this second stage may be any of oxidizing, reducing and neutral, but it is necessary to use a non-nitriding atmosphere in which the NH 3 concentration is suppressed to less than 0.1%. That is, when the NH 3 concentration is 0.1% or more, FeN or NiN produced by nitriding even in the second stage intermediate annealing is generated.
Si 3 N 4 remains on the surface of the steel sheet, and as a result the magnetic flux density of the product decreases. Therefore, it is necessary to keep the NH 3 concentration in the atmosphere below 0.1%. In order to satisfy this requirement, the nitriding treatment in the first stage and the recrystallization heat treatment in the second stage are performed in separate steps, or when the treatments are performed in the same step, a partition wall for preventing atmospheric gas mixture is provided in the annealing furnace. It is preferable to perform processing such as providing.

【0053】第2段階の熱処理後の冷却に関しては、公
知のように500 ℃までの急冷が必要である。これは、鋼
中炭化物の析出状態の制御のために必要であり、より好
ましくは500 ℃以下での徐冷又は低温での温度保持によ
って、炭化物のサイズと分散の制御を一層厳密に行うこ
とが可能になる。
As for the cooling after the heat treatment in the second step, it is necessary to rapidly cool it to 500 ° C., as is well known. This is necessary for controlling the precipitation state of carbides in the steel, and more preferably, the size and dispersion of the carbides can be controlled more strictly by slow cooling at 500 ° C or lower or maintaining the temperature at low temperature. It will be possible.

【0054】かかる最終高圧下の冷間圧延の前に行う熱
処理を施されたコイルは、必要に応じて酸洗や洗浄又は
研削後、最終冷間圧延に供される。最終の冷間圧延は、
公知のように圧下率80〜95%の高圧下とすることが必要
で、この範囲をはずれると、いずれの側でも磁束密度が
低下する。
The coil which has been heat-treated before the cold rolling under the final high pressure is subjected to pickling, washing or grinding, if necessary, and then subjected to the final cold rolling. The final cold rolling is
As is well known, it is necessary to apply a high pressure with a reduction rate of 80 to 95%, and if it deviates from this range, the magnetic flux density will decrease on either side.

【0055】また、冷間圧延に際しては公知のように圧
延途中、短時間での1回のみの時効処理や、パス間にお
ける多数回の時効処理(パス毎時効処理)や100 〜300
℃での高温での圧延(温間圧延)を行って磁気特性を向
上させることも可能である。
In the cold rolling, as is well known, during the rolling, the aging treatment is performed only once in a short time, the aging treatment is performed many times between passes (pass aging treatment), or 100 to 300.
It is also possible to carry out rolling at a high temperature of ° C (warm rolling) to improve the magnetic properties.

【0056】最終冷延後のコイルは、脱脂後、脱炭焼鈍
に供される。脱炭焼鈍は、公知の湿水素雰囲気中、750
〜900 ℃、60〜180 sec で行われる。この発明において
は、窒化熱工程以降における各工程において、鋼中のN
含有量を増加させることは極力抑制することが必要であ
り、脱炭焼鈍工程以降でのN含有量の増加量を10ppm以
下に規定する。10ppm を超える場合は、鋼板表層部にFe
N やSi3N4 が生成し、抑制力を逆に弱めるために製品の
磁束密度を低下させる。したがって、脱炭焼鈍工程以降
でのN含有量の増加を10ppm 以下に抑制することが必要
である。
The coil after the final cold rolling is subjected to decarburization annealing after degreasing. Decarburization annealing is performed in a known wet hydrogen atmosphere at 750
It is carried out at ~ 900 ℃ and 60 ~ 180 sec. In the present invention, in each process after the nitriding heat process, N in steel is
It is necessary to suppress the increase of the content as much as possible, and the increase amount of the N content after the decarburization annealing step is specified to be 10 ppm or less. If it exceeds 10ppm, Fe is
N and Si 3 N 4 are generated, and the magnetic flux density of the product is lowered because the suppression force is weakened. Therefore, it is necessary to suppress the increase in N content after the decarburization annealing step to 10 ppm or less.

【0057】脱炭焼鈍後のコイルは焼鈍分離剤を塗布し
た後、コイル状に巻き取られ最終仕上げ焼鈍に供され
る。最終仕上げ焼鈍は公知の方法で行って良く、特に、
この発明ではSbを含有するので、昇温途中での800 〜87
0 ℃で10〜80時間の一定温度保持の処理が磁気特性を向
上させるのに有効である。
The coil after decarburization annealing is coated with an annealing separating agent, and then wound into a coil and subjected to final annealing. The final finish annealing may be performed by a known method, in particular,
Since Sb is contained in this invention, 800 to 87
Treatment at a constant temperature of 0 ° C for 10 to 80 hours is effective for improving the magnetic properties.

【0058】最終焼鈍後のコイルは、残存する焼鈍分離
剤を除去した後、絶縁抵抗を高める必要のある場合は絶
縁コーティングを塗布して平坦化焼鈍を施し製品とされ
る。また製品は、プラズマジェット、レーザーもしくは
電子ビームの照射や、溝形成等の磁区細分化技術を適用
することは可能で、この発明の目的とも合致する。
After the final annealing, the coil is made into a product by removing the remaining annealing separator and then applying an insulating coating if it is necessary to increase the insulation resistance and performing flattening annealing. Further, the product can be applied with a plasma domain, laser or electron beam irradiation, or magnetic domain subdivision technology such as groove formation, which is consistent with the object of the present invention.

【0059】[0059]

【実施例】次に、実施例に基づきこの発明の好適範囲に
ついて説明する。まず、表2に示す成分組成になる鋼塊
記号A〜Sを準備した。
EXAMPLES Next, the preferred range of the present invention will be described based on examples. First, steel ingot symbols A to S having the composition shown in Table 2 were prepared.

【0060】[0060]

【表2】 [Table 2]

【0061】実施例1 表2に示される鋼塊記号Aのスラブを加熱し1420℃で15
分間の均熱をした後、常法に従って1.8 mmの熱延コイル
とした。この熱延コイルは、1000℃で60sec の熱延板焼
鈍を施した後、120 ℃の温間圧延で1.20mmの中間厚のコ
イルとした後、28分割した。各分割コイルを表3に示す
条件で窒化熱処理及び再結晶熱処理を行う中間焼鈍に供
した。中間焼鈍の冷却はいずれの条件もミストで行なっ
て冷却速度40℃/sec で500 ℃まで冷却し、その後はミ
ストを切って徐冷とした。
Example 1 A slab having a steel ingot symbol A shown in Table 2 was heated at 1420 ° C. for 15 minutes.
After soaking for 1 minute, a 1.8 mm hot rolled coil was prepared according to a conventional method. The hot-rolled coil was annealed at 1000 ° C. for 60 seconds and then hot-rolled at 120 ° C. to obtain a coil having an intermediate thickness of 1.20 mm, and then split into 28. Each split coil was subjected to intermediate annealing in which nitriding heat treatment and recrystallization heat treatment were performed under the conditions shown in Table 3. The cooling of the intermediate annealing was performed with a mist under all conditions, and was cooled to 500 ° C. at a cooling rate of 40 ° C./sec, after which the mist was cut and gradually cooled.

【0062】中間焼鈍後の各コイルはクリーニング後、
第2回目の冷間圧延を150 ℃の温度で行い0.18mmの最終
板厚とした。その後、脱脂して湿水素中で850 ℃で2分
間の脱炭焼鈍を行い、5%のTiO2と1%のSrSO4 を添加
したMgO を焼鈍分離剤として塗布し、コイル状に巻き取
った後、840 ℃で40時間、Ar中での保持とそれに続いく
15℃/hr の昇温過程をN225%、H275%の雰囲気下での2
次再結晶焼鈍及び1200℃で10時間のH2中での純化焼鈍か
らなる最終仕上げ焼鈍を行った。最終仕上げ焼鈍後のコ
イルは、未反応分離剤を除去した後、張力コーティング
を塗布して800 ℃で1分間の平坦化焼鈍を施した。平坦
化焼鈍後の鋼板の磁気特性を測定し、表3に併せて記
す。次いで、各コイルは、プラズマジェット(PJ)を
表面に圧延方向に直角な方向に7.5 mmピッチで照射し
て、磁区細分化処理を施した。PJ照射後の鉄損値も第
3表に併せて示す。
After cleaning the coils after the intermediate annealing,
The second cold rolling was carried out at a temperature of 150 ° C. to give a final strip thickness of 0.18 mm. After that, degreasing and decarburization annealing at 850 ° C for 2 minutes in wet hydrogen were performed, and MgO containing 5% TiO 2 and 1% SrSO 4 was applied as an annealing separator, and wound into a coil. After that, hold at 840 ° C for 40 hours in Ar followed by
The temperature rising process of 15 ° C / hr was performed under 2 atmosphere of N 2 25% and H 2 75%.
A final finish anneal consisting of a secondary recrystallization anneal and a refining anneal in H 2 at 1200 ° C. for 10 hours was performed. The coil after the final finish annealing was subjected to flattening annealing at 800 ° C. for 1 minute after applying a tension coating after removing the unreacted separating agent. The magnetic properties of the steel sheet after the flattening annealing were measured and are also shown in Table 3. Next, each coil was irradiated with a plasma jet (PJ) on the surface in a direction perpendicular to the rolling direction at a pitch of 7.5 mm to perform magnetic domain subdivision processing. The iron loss value after PJ irradiation is also shown in Table 3.

【0063】[0063]

【表3】 [Table 3]

【0064】表3に示されるようにこの発明を満たす中
間焼鈍条件を行った発明例については、磁束密度の極め
て高い薄方向性けい素鋼板が得られている。
As shown in Table 3, for the invention examples subjected to the intermediate annealing conditions satisfying the present invention, thin grain oriented silicon steel sheets having extremely high magnetic flux density were obtained.

【0065】実施例2 表2に示される鋼塊記号Bのスラブを加熱し1430℃で15
分間の均熱をした後、常法の熱間圧延により2.0mm の熱
延コイルとした。この熱延コイルは、950 ℃で70sec の
熱延板焼鈍を施した後、150 ℃での温間圧延で1.30mmの
中間厚のコイルとした後、10分割した。各分割コイルに
は、窒化熱処理として700 ℃から900 ℃にかけて滞留60
sec 、の徐熱焼鈍でNH3 による窒化処理を施した後、11
00℃まで昇温し、N2 25 %、H275 %の雰囲気(残留NH
3 の量はいずれも0.05%未満であった)による再結晶焼
鈍を60sec 施し、ミストによって80℃まで40℃/secの冷
却速度で急冷した。なお、上記窒化処理時の雰囲気は、
H2:55%、露点40℃とし、NH3 濃度を各分割コイルに応
じて0%,0.01%, 0.05%, 0.1 %, 0.5 %, 2.0 %,
5.0 %, 10%, 15%及び25%に変化させ、残分はH2ガス
でバランスをとった。
Example 2 A slab having a steel ingot symbol B shown in Table 2 was heated at 1430 ° C. for 15 minutes.
After soaking for a minute, a hot rolled coil of 2.0 mm was obtained by hot rolling according to a conventional method. This hot-rolled coil was annealed at 950 ° C. for 70 seconds and then hot-rolled at 150 ° C. to obtain a coil having an intermediate thickness of 1.30 mm and then divided into 10. Nitriding heat treatment was performed on each split coil from the temperature of 700 to 900 ℃.
After nitriding with NH 3 by slow annealing for sec,
The temperature is raised to 00 ° C and the atmosphere of N 2 25% and H 2 75% (residual NH
The amount of 3 was less than 0.05% in each case) and the recrystallization annealing was performed for 60 seconds, and it was rapidly cooled by mist to 80 ° C at a cooling rate of 40 ° C / sec. The atmosphere during the nitriding treatment is
H 2 : 55%, dew point 40 ℃, NH 3 concentration 0%, 0.01%, 0.05%, 0.1%, 0.5%, 2.0%, depending on each split coil
The contents were changed to 5.0%, 10%, 15% and 25%, and the balance was balanced with H 2 gas.

【0066】窒化熱処理後の各コイルは酸洗後、第2回
目の冷間圧延を200 ℃で行い、各パス毎にコイルを巻取
って時効処理を施し0.20mmの最終板厚とした。その後、
脱脂して湿水素中で850 ℃で2分間の脱炭焼鈍を行い、
7%のTiO2を添加したMgO を焼鈍分離剤として塗布し、
コイル状に巻き取った後、850 ℃で25時間のH2中での保
持とそれに続く15℃/hr の昇温工程をN225%、H275%の
雰囲気下での2次再結晶焼鈍と1200℃で10時間のH2中で
の純化焼鈍からなる最終仕上げ焼鈍を行った。最終仕上
げ焼鈍後のコイルは未反応分離剤を除去した後、張力コ
ーティングを塗布して820 ℃で1分間の平坦化焼鈍を施
した。平坦化焼鈍後の磁気特性を表4及び図1に示す。
また、各コイルはプラズマジェット(PJ)を7.5 mmピ
ッチで照射して、磁区細分化処理を施した。この磁区細
分化後の鉄損を測定した結果も表4に併せて示す。
After the nitriding heat treatment, each coil was pickled, and then the second cold rolling was performed at 200 ° C. The coil was wound in each pass and subjected to an aging treatment to obtain a final plate thickness of 0.20 mm. afterwards,
Degreasing and decarburization annealing in wet hydrogen at 850 ℃ for 2 minutes,
Applying MgO with 7% TiO 2 as an annealing separator,
After winding into a coil, holding in H 2 at 850 ℃ for 25 hours and the subsequent heating process at 15 ℃ / hr were performed secondary recrystallization in an atmosphere of N 2 25% and H 2 75%. A final finish anneal consisting of an anneal and a refining anneal in H 2 at 1200 ° C. for 10 hours was performed. After the final finish annealing, the unreacted separating agent was removed from the coil, a tension coating was applied, and a flattening annealing was performed at 820 ° C. for 1 minute. The magnetic characteristics after the flattening annealing are shown in Table 4 and FIG.
Further, each coil was irradiated with a plasma jet (PJ) at a pitch of 7.5 mm to perform magnetic domain subdivision processing. The results of measuring the iron loss after the magnetic domain subdivision are also shown in Table 4.

【0067】[0067]

【表4】 [Table 4]

【0068】表4及び表1から明らかなように、この発
明を満たすNH3 濃度による窒化処理及び再結晶処理を施
した発明例は、磁束密度の極めて高い薄方向性けい素鋼
板が得られている。
As is clear from Tables 4 and 1, the invention examples which were subjected to the nitriding treatment and the recrystallization treatment with the NH 3 concentration satisfying the present invention produced thin grain oriented silicon steel sheets having extremely high magnetic flux density. There is.

【0069】実施例3 表2に示される鋼塊記号Cのスラブを加熱し1410℃で20
分間の均熱をした後、常法の熱間圧延により2.0 mmの熱
延コイルとした。熱延コイルは酸洗後1.30mmの中間厚の
コイルとした後、窒化熱処理として700 ℃から900 ℃に
かけて、滞留時間40sec の徐熱焼鈍でNH3 3%、H2 75
%、露点40℃、残余N2バランスの雰囲気で窒化処理をし
た後、冷却し、再び1050℃で60sec の再結晶焼鈍をN2 3
0 %、H270 %の雰囲気下で行い、ミストによって350
℃まで45℃/secで急冷後、330 ℃で25sec 保持した後、
水冷した。窒化処理後の各コイルは酸洗後、第2回目の
冷間圧延を180 ℃の温度で行い、0.20mmの最終板厚とし
た後、5コイルに分割した。その後、各コイルは脱脂し
て湿水素中で840 ℃で2分間の脱炭焼鈍を行い、7%の
TiO2を添加したMgO を焼鈍分離剤として塗布し、コイル
状に巻取った後、850 ℃で25時間の焼鈍をN2中で行った
が、この時、分割コイルに対しN2中にNH3 をそれぞれ0
%,0.05%, 0.1 %, 0.3 %及び1.0 %混入させて脱炭
焼鈍した。脱炭焼鈍後の鋼中のN含有量は、それぞれ0
ppm ,3ppm ,5ppm ,12ppm 及び25ppm 増加してい
た。最終焼鈍仕上後、各コイルは未反応分離剤を除去し
た後、張力コーティングを塗布して820 ℃で1分間の平
坦化焼鈍を施した。平坦化焼鈍後の磁気特性を表5に示
す。また各コイルはパルスレーザーを5mmピッチで照射
して磁区細分化処理を施し鉄損を測定した。パルスレー
ザー照射後の鉄損値も表5に併せて示す。
Example 3 A slab of steel ingot symbol C shown in Table 2 was heated at 1410 ° C. for 20
After soaking for a minute, a hot rolled coil of 2.0 mm was formed by a conventional hot rolling. The hot rolled coil was pickled to an intermediate thickness of 1.30 mm, and then subjected to nitriding heat treatment from 700 ℃ to 900 ℃, and annealed by annealing for 40 seconds with NH 3 3%, H 2 75
%, Dew point 40 ° C., nitriding in an atmosphere of balance N 2 balance, cooling, and recrystallization annealing at 1050 ° C. for 60 seconds again N 2 3
Performed in an atmosphere of 0% and 70% H 2 and 350
After quenching at 45 ℃ / sec to ℃, hold at 330 ℃ for 25 seconds,
Water cooled. After the nitriding, each coil was pickled, and then the second cold rolling was performed at a temperature of 180 ° C. to obtain a final plate thickness of 0.20 mm, and then the coil was divided into five coils. After that, each coil was degreased and decarburized and annealed in wet hydrogen at 840 ° C for 2 minutes to obtain 7%
Coating a MgO addition of TiO 2 as an annealing separator, then wound into a coil, but the annealing for 25 hours at 850 ° C. were carried out in N 2, NH this time, in N 2 to split coil 3 for each 0
%, 0.05%, 0.1%, 0.3% and 1.0% were mixed and decarburized and annealed. The N content in the steel after decarburization annealing is 0 for each.
The increase was ppm, 3 ppm, 5 ppm, 12 ppm and 25 ppm. After the final annealing, each coil was subjected to a tension coating after removing the unreacted separating agent and subjected to a flattening annealing at 820 ° C. for 1 minute. Table 5 shows the magnetic characteristics after the flattening annealing. Each coil was irradiated with a pulsed laser at a pitch of 5 mm to subdivide the magnetic domain and measure the iron loss. The iron loss value after the pulse laser irradiation is also shown in Table 5.

【0070】[0070]

【表5】 [Table 5]

【0071】表5に示されるように、脱炭焼鈍において
10ppm を超えて窒化した鋼板は、磁束密度が大幅に低下
しているのに対し、この発明で規定した窒化量10ppm 以
下の鋼板においては磁束密度の極めて高い薄方向性けい
素鋼板が得られている。
As shown in Table 5, in decarburization annealing
The magnetic flux density of the steel sheet nitrided above 10 ppm is drastically reduced, whereas in the steel sheet with a nitriding amount of 10 ppm or less specified in this invention, a thin grain oriented silicon steel sheet with an extremely high magnetic flux density is obtained. There is.

【0072】実施例4 表2に示される記号D〜Sのスラブを1420℃に加熱し20
分間の均熱をした後、熱間圧延によって1.8 mmの熱延コ
イルとした。但し鋼塊記号Hのスラブは1230℃で60分間
の均熱をした後、1.8 mmの熱延コイルとした。各熱延コ
イルは熱延板焼鈍を施した後、120 ℃の温間圧延で1.20
mmの中間厚のコイルとした後、中間焼鈍に供した。中間
焼鈍は、まず窒化熱処理として800 ℃で40sec 、NH3
%、H2 55 %、露点45℃で残余はN2バランスの雰囲気下
で窒化処理を施した後、H2 80 %、露点15℃、NH3 0.03
%、残余N2バランスの雰囲気下で1100℃まで昇温し、11
00℃で60sec の再結晶焼鈍を施した後、ミストで350 ℃
まで35℃/secで急冷し、330 ℃で20sec 保持して水冷し
た。
Example 4 The slabs of symbols D to S shown in Table 2 were heated to 1420 ° C.
After soaking for 1 minute, a hot rolled coil of 1.8 mm was obtained by hot rolling. However, the slab with the steel ingot symbol H was soaked at 1230 ° C. for 60 minutes and then used as a 1.8 mm hot rolled coil. Each hot-rolled coil was annealed by hot-rolled sheet and then hot-rolled at 120 ° C for 1.20
After forming a coil having an intermediate thickness of mm, it was subjected to intermediate annealing. The intermediate annealing is performed by nitriding heat treatment at 800 ° C for 40 seconds, NH 3 4
%, H 2 55%, dew point 45 ° C, and the balance after nitriding in an atmosphere of N 2 balance, H 2 80%, dew point 15 ° C, NH 3 0.03
%, Heating up to 1100 ° C under an atmosphere of balance N 2 and
After recrystallization annealing at 00 ℃ for 60sec, 350 ℃ with mist
It was rapidly cooled at 35 ° C / sec until it was kept at 330 ° C for 20 sec and cooled with water.

【0073】中間焼鈍後の各コイルは酸洗後、第2回目
の冷間圧延を180 ℃の温度で行い、その際に各圧延パス
毎コイルを巻き取って時効処理をして、0.18mmの最終板
厚とした。その後、脱脂して湿水素中で850 ℃で2分間
脱炭焼鈍を行い、5%のTiO2と1%のSr(OH)2 ・8H2Oを
添加したMgO を焼鈍分離剤として塗布し、コイル状に巻
き取った後、850 ℃まではN2雰囲気、850 〜1150℃まで
はN2 20 %、H2 80 %、1150〜1200℃まではH2雰囲気
下、昇温速度15〜20℃/hr で昇温して1200℃で10時間、
H2雰囲気中で純化焼鈍した。その後、各コイルは未反応
分離剤を除去した後、張力コーティングを塗布して800
℃で1分間の平坦化焼鈍を施した。この平坦化焼鈍後の
磁気特性を表6に記す。次いで各コイルはプラズマジェ
ット(PJ)を7.5 mmピッチで照射して、磁区細分化処
理を施し鉄損を測定した。プラズマジェット照射後のの
鉄損値も表6に併せて示す。
After the intermediate annealing, each coil was pickled, and then the second cold rolling was performed at a temperature of 180 ° C. At that time, each coil was wound up in each rolling pass and subjected to an aging treatment to obtain 0.18 mm. The final plate thickness was used. After that, degreasing and decarburization annealing at 850 ° C for 2 minutes in wet hydrogen, and applying MgO with 5% TiO 2 and 1% Sr (OH) 2 · 8H 2 O as an annealing separator, After winding into a coil, N 2 atmosphere up to 850 ℃, N 2 20%, H 2 80% up to 850 to 1150 ℃, H 2 atmosphere up to 1150 to 1200 ℃, heating rate 15 to 20 ℃ heating at 1200 / hr for 10 hours at 1200 ℃
Purification annealing was performed in an H 2 atmosphere. Then, after removing the unreacted separating agent, each coil is coated with tension coating to 800
Flattening annealing was performed at 1 ° C. for 1 minute. Table 6 shows the magnetic characteristics after the flattening annealing. Next, each coil was irradiated with a plasma jet (PJ) at a pitch of 7.5 mm, subjected to magnetic domain subdivision processing, and iron loss was measured. The iron loss value after the plasma jet irradiation is also shown in Table 6.

【0074】[0074]

【表6】 [Table 6]

【0075】実施例5 表2に示される記号A,B,Cの各スラブを加熱し1410
℃で20分間均熱した後熱間圧延よって1.8 mmの熱延コイ
ルとした。各熱延コイルに熱延板焼鈍を施すに際し、ま
ず窒化熱処理として700 ℃から900 ℃にかけて、60秒間
で昇温する間をNH3 を5%含有し、かつH2を60%、露点
を45℃で残部N2バランスとする雰囲気とし、それに引き
続いて、1150℃で60sec をNH3 を0.1 %未満とした雰囲
気による再結晶焼鈍を施し、その後の冷却はミストを用
いて40℃/sec の急冷とした。
Example 5 Each of the slabs indicated by the symbols A, B and C shown in Table 2 was heated 1410
After soaking at ℃ for 20 minutes, hot rolling was performed to obtain 1.8 mm hot rolled coil. When performing hot-rolled sheet annealing on each hot-rolled coil, first, as nitriding heat treatment, the temperature is raised from 700 ° C to 900 ° C for 60 seconds while containing 5% of NH 3 , 60% of H 2 and 45% of dew point. The balance of N 2 balance is maintained at ℃, followed by recrystallization annealing at 1150 ℃ for 60 seconds in an atmosphere of NH 3 less than 0.1%, followed by rapid cooling at 40 ℃ / sec using mist. And

【0076】次いで、各コイルは酸洗しスケールを除去
した後、180 ℃の温度で1回の冷間圧延によって0.22mm
の最終厚さとした。その後、脱脂して、湿水素中で850
℃で2分間脱炭焼鈍を行い、5%のTiO2と1%のSrSO4
を添加したMgO を焼鈍分離剤として塗布し、コイル状に
巻き取った後、850 ℃で40時間N2中で保持した後、N2 2
5 %、H2 75 %の雰囲気で1200℃まで12℃/hr の昇温速
度で昇温する2次再結晶焼鈍、さらに1200℃で10時間H2
中で保持する最終仕上焼鈍を行った後、炉冷した。
Then, each coil was pickled to remove the scale and then cold-rolled once at a temperature of 180 ° C. to 0.22 mm.
The final thickness of After that, degreasing and 850 in wet hydrogen
Decarburization annealing at ℃ for 2 minutes, 5% TiO 2 and 1% SrSO 4
MgO with added is applied as an annealing separator, wound into a coil, and kept in N 2 at 850 ℃ for 40 hours, then N 2 2
5%, H 2 75% of the atmosphere until 1200 ℃ 12 ℃ / hr of heating rate heating to secondary recrystallization annealing, further 1200 ° C. for 10 hours H 2
After performing the final finishing annealing which was held in the inside, the furnace was cooled.

【0077】その後、各コイルは未反応分離剤を除去し
た後、張力コーティングを塗布して800 ℃で1分間の平
坦化焼鈍を施した。平坦化焼鈍後の磁気特性を表7に記
す。また、各コイルはプラズマジェット(PJ)を7.5
mmピッチで照射する磁区細分化処理を施した。磁区細分
化処理後の鉄損値も併せて表7に記す。
After removing the unreacted separating agent from each coil, a tension coating was applied and flattening annealing was performed at 800 ° C. for 1 minute. Table 7 shows the magnetic characteristics after the flattening annealing. Each coil has a plasma jet (PJ) of 7.5.
The magnetic domain was subdivided by irradiation with mm pitch. The iron loss value after the magnetic domain subdivision treatment is also shown in Table 7.

【0078】[0078]

【表7】 [Table 7]

【0079】[0079]

【発明の効果】以上説明したように、この発明によれ
ば、鋼板板厚の低下にもかかわらず鋼板表層の正常粒成
長抑制力を維持でき、磁気特性に優れた方向性けい素鋼
板の製造を可能にする。
As described above, according to the present invention, it is possible to produce a grain-oriented silicon steel sheet having excellent magnetic properties, which can maintain the normal grain growth suppressing force of the steel sheet surface despite the reduction of the steel sheet thickness. To enable.

【図面の簡単な説明】[Brief description of drawings]

【図1】窒化熱処理におけるNH3 濃度と2次再結晶焼鈍
後の磁束密度との関係を示す図である。
FIG. 1 is a diagram showing a relationship between an NH 3 concentration in a nitriding heat treatment and a magnetic flux density after secondary recrystallization annealing.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−125446(JP,A) 特開 平4−168222(JP,A) 特開 平2−259019(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21D 8/12 C21D 9/46 501 C22C 38/00 - 38/60 H01F 1/16 - 1/18 ─────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-5-125446 (JP, A) JP-A-4-168222 (JP, A) JP-A-2-259019 (JP, A) (58) Field (Int.Cl. 7 , DB name) C21D 8/12 C21D 9/46 501 C22C 38/00-38/60 H01F 1/16-1/18

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 C:0.02〜0.09wt%、Si:2.5 〜5.0 wt
%、Mn:0.02〜0.3 wt%、Al:0.01〜0.04wt%、Sb:0.
005 〜0.060 wt%及びN:0.0055〜0.0095wt%を含有
し、残部Feおよび不可避的不純物からなるけい素鋼スラ
ブを熱間圧延し、 最終板厚とする1回の冷間圧延の圧下率を80〜95%とし
行うこと及びその1回の圧延前には焼鈍を行うことの
条件を満たす1回又は2回の冷間圧延を行って最終板厚
とし、次いで脱炭焼鈍、さらに焼鈍分離剤を塗布してか
ら最終仕上焼鈍を施す一連の製造工程からなる方向性け
い素鋼板の製造方法において、 最終板厚とする1回の冷間圧延の前に行う焼鈍を第1段
階と第2段階とに分け、 第1段階では、750 〜850 ℃の範囲の温度で30〜90sec
の均熱又は700 〜900℃の温度域に30〜90sec 滞留させ
る徐熱であって、焼鈍雰囲気を0.1 〜10%のNH3 を含
み、かつH2を20〜80%含有し、露点20〜60℃で残部がN2
バランスとした窒化熱処理を行い、 第2段階では、引き続いてNH3 濃度を0.1 %未満に規制
した雰囲気中、1050〜1200℃で30〜90sec の均熱を施す
再結晶熱処理を行うこと及び 脱炭焼鈍工程以降でのN含有量の増加を、10wt ppm以下
に抑制することの結合を特徴とする磁束密度の高い方向
性けい素鋼板の製造方法。
1. C: 0.02 to 0.09 wt%, Si: 2.5 to 5.0 wt%
%, Mn: 0.02 to 0.3 wt%, Al: 0.01 to 0.04 wt %, Sb: 0.
Contains 005 to 0.060 wt% and N: 0.0055 to 0.0095 wt%
Then, a silicon steel slab consisting of the balance Fe and unavoidable impurities is hot-rolled to a final thickness of one cold-rolling reduction ratio of 80 to 95%.
And one cold rolling before and after the first rolling to achieve the final plate thickness, followed by decarburization annealing, and then applying an annealing separator. In the method for producing a grain-oriented silicon steel sheet comprising a series of production steps for subjecting the sheet to final finishing annealing, the annealing performed before one cold rolling to obtain the final sheet thickness is divided into a first stage and a second stage, In the first stage, 30 to 90 seconds at a temperature in the range of 750 to 850 ℃
Or soaking in the temperature range of 700 to 900 ° C for 30 to 90 seconds, the annealing atmosphere contains 0.1 to 10% of NH 3, and contains 20 to 80% of H 2 , and the dew point of 20 to The balance is N 2 at 60 ° C
A balanced nitriding heat treatment is performed, and in the second step, subsequently, a recrystallization heat treatment is performed in which the NH 3 concentration is regulated to less than 0.1% at a temperature of 1050 to 1200 ° C for 30 to 90 seconds, and decarburization is performed. A method for manufacturing a grain-oriented silicon steel sheet having a high magnetic flux density, characterized by the combination of suppressing the increase of N content after the annealing step to 10 wtppm or less.
【請求項2】 請求項1において、けい素鋼スラブが、
さらに SおよびSeの1種または2種を合計で0.005〜0.040wt%
含有することを特徴とする磁束密度の高い方向性けい素
鋼板の製造方法。
2. The silicon steel slab according to claim 1,
Furthermore, one or two of S and Se in total 0.005 to 0.040 wt%
A method for producing a grain-oriented silicon steel sheet having a high magnetic flux density, which is characterized by containing.
【請求項3】 請求項1または2において、けい素鋼ス
ラブが、さらにCu、Sn、P、Bi、As、B、Ge、V、Nbお
よびCrのいずれか1種または2種以上を、 Cu、SnおよびCrはそれぞれ0.03〜0.30 wt%、 Biは0.005〜0.020 wt%、 P、Ge、V、NbおよびAsはそれぞれ0.005 〜0.030 wt
%、 Bは0.0005〜0.0020 wt% の範囲で含有することを特徴とする磁束密度の高い方向
性けい素鋼板の製造方法。
3. The silicon steel slab according to claim 1 or 2, wherein the silicon steel slab further comprises Cu, Sn, P, Bi, As, B, Ge, V, Nb and Cr. , Sn and Cr are each 0.03-0.30 wt%, Bi is 0.005-0.020 wt%, P, Ge, V, Nb and As are each 0.005-0.030 wt%.
%, B is contained in the range of 0.0005 to 0.0020 wt%, a method for producing a grain-oriented silicon steel sheet having a high magnetic flux density.
JP33565093A 1993-12-28 1993-12-28 Method of manufacturing oriented silicon steel sheet with high magnetic flux density Expired - Fee Related JP3438282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33565093A JP3438282B2 (en) 1993-12-28 1993-12-28 Method of manufacturing oriented silicon steel sheet with high magnetic flux density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33565093A JP3438282B2 (en) 1993-12-28 1993-12-28 Method of manufacturing oriented silicon steel sheet with high magnetic flux density

Publications (2)

Publication Number Publication Date
JPH07188758A JPH07188758A (en) 1995-07-25
JP3438282B2 true JP3438282B2 (en) 2003-08-18

Family

ID=18290979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33565093A Expired - Fee Related JP3438282B2 (en) 1993-12-28 1993-12-28 Method of manufacturing oriented silicon steel sheet with high magnetic flux density

Country Status (1)

Country Link
JP (1) JP3438282B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3395959A4 (en) * 2015-12-21 2019-01-02 Posco Oriented electrical steel sheet and manufacturing method therefor
US10407763B2 (en) 2015-04-14 2019-09-10 Hyundai Motor Company Carbon steel composition for reduced thermal strain steering rack bar and method for manufacturing same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100237158B1 (en) * 1995-12-14 2000-01-15 이구택 The manufacturing method for oriented electric steel sheet with excellent magnetic property
KR100435478B1 (en) * 1999-12-27 2004-06-10 주식회사 포스코 A method for manufacturing grain oriented electrical steel sheet with high magnetic induction using low temperature slab reheating process
KR101008152B1 (en) * 2003-06-13 2011-01-13 주식회사 포스코 Method for surface treating brushing steel sheet having enhanced brushing effect
KR101110246B1 (en) * 2003-12-26 2012-02-15 주식회사 포스코 Method for manufacturing glassless electrical steel sheet with the appropriate control of the due point
JP5923881B2 (en) * 2010-06-30 2016-05-25 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof
JP5988026B2 (en) * 2011-07-28 2016-09-07 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
JP5896112B2 (en) * 2011-10-14 2016-03-30 Jfeスチール株式会社 Oriented electrical steel sheet, method of manufacturing the same, and transformer
WO2014132354A1 (en) * 2013-02-27 2014-09-04 Jfeスチール株式会社 Production method for grain-oriented electrical steel sheets
JP6112050B2 (en) * 2014-03-17 2017-04-12 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
JP6191529B2 (en) * 2014-03-31 2017-09-06 Jfeスチール株式会社 Primary recrystallization annealing plate for grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10407763B2 (en) 2015-04-14 2019-09-10 Hyundai Motor Company Carbon steel composition for reduced thermal strain steering rack bar and method for manufacturing same
EP3395959A4 (en) * 2015-12-21 2019-01-02 Posco Oriented electrical steel sheet and manufacturing method therefor

Also Published As

Publication number Publication date
JPH07188758A (en) 1995-07-25

Similar Documents

Publication Publication Date Title
JP3438282B2 (en) Method of manufacturing oriented silicon steel sheet with high magnetic flux density
JP3240035B2 (en) Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic properties over the entire coil length
EP3561104A1 (en) Grain-oriented electrical steel sheet and manufacturing method therefor
JP3674183B2 (en) Method for producing grain-oriented electrical steel sheet
JP3415377B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet with extremely low iron loss
KR100797997B1 (en) Method for manufacturing grain-oriented electrical steel sheets with excellent magnetic property and high productivity
JP2004332071A (en) Method for producing high magnetic flux density grain-oriented magnetic steel sheet
JP4123679B2 (en) Method for producing grain-oriented electrical steel sheet
JP3329641B2 (en) Method for producing Al-containing grain-oriented electrical steel sheet with excellent magnetic properties and steel sheet edge shape
CN113195770B (en) Oriented electrical steel sheet and method for manufacturing the same
JP3357615B2 (en) Method for manufacturing oriented silicon steel sheet with extremely low iron loss
KR20150074931A (en) Oriented electrical steel sheet and method for manufacturing the same
KR100544723B1 (en) Method for Manufacturing Grain-Oriented Electrical Having Low Core Loss and High Magnetic Induction
JP2670108B2 (en) Method for manufacturing high magnetic flux density grain-oriented silicon steel sheet
JPH11269544A (en) Manufacture of high flux density low core loss grain oriented silicon steel sheet
JPH09104923A (en) Production of grain-oriented silicon steel sheet
KR100530056B1 (en) Method for manufacturing grain oriented electrical steel sheet with excellent productivity
EP4317471A1 (en) Production method for grain-oriented electrical steel sheet
EP4317472A1 (en) Method for manufacturing grain-oriented electromagnetic steel sheet
JP3336142B2 (en) Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic properties
KR100359243B1 (en) Method for producing a directional electric steel plate having high magnetic property and thin profile
KR100482207B1 (en) A method for manufacturing grain oriented electric steel sheet
USRE39482E1 (en) Method of making grain-oriented magnetic steel sheet having low iron loss
JP2671717B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPH0617201A (en) Grain-oriented magnetic steel sheet and its manufacture

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090613

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100613

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees