JP2670108B2 - Method for manufacturing high magnetic flux density grain-oriented silicon steel sheet - Google Patents

Method for manufacturing high magnetic flux density grain-oriented silicon steel sheet

Info

Publication number
JP2670108B2
JP2670108B2 JP63264217A JP26421788A JP2670108B2 JP 2670108 B2 JP2670108 B2 JP 2670108B2 JP 63264217 A JP63264217 A JP 63264217A JP 26421788 A JP26421788 A JP 26421788A JP 2670108 B2 JP2670108 B2 JP 2670108B2
Authority
JP
Japan
Prior art keywords
annealing
silicon steel
secondary recrystallization
steel sheet
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63264217A
Other languages
Japanese (ja)
Other versions
JPH02115319A (en
Inventor
康之 早川
道郎 小松原
日出雄 山上
Original Assignee
川崎製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎製鉄株式会社 filed Critical 川崎製鉄株式会社
Priority to JP63264217A priority Critical patent/JP2670108B2/en
Publication of JPH02115319A publication Critical patent/JPH02115319A/en
Application granted granted Critical
Publication of JP2670108B2 publication Critical patent/JP2670108B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、(110)〔001〕方位を主方位とする方向
性けい素鋼板の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a grain-oriented silicon steel sheet having a (110) [001] orientation as a main orientation.

(従来の技術) AlNを主要インヒビターとし、最終冷間延在を80%以
上の圧下率で行う方向性けい素鋼板の製造法について
は、特公昭40−15644号公報に代表される、多くの技術
が開示されている。このAlNを主要インヒビターとする
方向性けい素鋼板の特徴は高磁束密度が得られるところ
にあるが、一方で二次再結晶粒径が大きいため過電流損
が高くなって低鉄損が得られず、また二次再結晶が安定
せず磁束密度のばらつきが大きいという欠点があった。
これらの欠点のうち過電流損の低減方法については特公
昭57−2252号公報に開示された、レーザービームを鋼板
に照射する方法、あるいは特公昭61−39395号公報に開
示された、熱膨張係数の異なる領域を形成する方法等の
人工的に磁区を細分化する技術により解決されつつあ
る。
(Prior art) A method of manufacturing a grain-oriented silicon steel sheet in which AlN is used as a main inhibitor and the final cold elongation is performed at a rolling reduction of 80% or more is disclosed in Japanese Patent Publication No. 40-15644. The technology is disclosed. The characteristic of this grain-oriented silicon steel sheet with AlN as the main inhibitor is that a high magnetic flux density can be obtained.On the other hand, since the secondary recrystallized grain size is large, overcurrent loss is high and low iron loss is obtained. And the secondary recrystallization is not stable, and the magnetic flux density has a large variation.
Among these drawbacks, a method of reducing overcurrent loss is disclosed in Japanese Patent Publication No. 57-2252, a method of irradiating a steel plate with a laser beam, or a thermal expansion coefficient disclosed in Japanese Patent Publication No. 61-39395. The problem is being solved by a technique for artificially subdividing magnetic domains, such as a method of forming different regions.

これらの方法は磁区を細分化し過電流損を低減するも
ので、ヒステリシス損の小さい高磁束密度の製品板ほど
レーザー、プラズマジェット等を照射した場合の鉄損低
減効果は大きくなる。
These methods reduce the overcurrent loss by subdividing the magnetic domains, and the iron loss reduction effect when irradiated with a laser, a plasma jet, or the like becomes greater as the product sheet having a higher magnetic flux density and a smaller hysteresis loss.

そこで、ヒステリシス損の小さい高磁束密度の製品を
安定して製造する技術が重要になってきている。
Therefore, a technique for stably manufacturing a product having a high magnetic flux density with a small hysteresis loss has become important.

ところで、二次再結晶は同一条件で製造を行っても変
動する、いわば確率現象であるためその制御は困難であ
り、特に、0.23mm厚以下の薄板の場合では、AlNなどの
インヒビターは仕上焼鈍中に分解しその抑制力が不安定
になりやすく、したがって二次再結晶は更に不安定にな
る。
By the way, secondary recrystallization fluctuates even if it is manufactured under the same conditions.It is difficult to control the secondary recrystallization because it is a stochastic phenomenon.In particular, in the case of a thin plate having a thickness of 0.23 mm or less, an inhibitor such as AlN is subjected to finish annealing. It decomposes in and its suppressing power tends to be unstable, and thus secondary recrystallization is further unstable.

ここに、、二次再結晶を安定化させる技術として、特
公昭57−9419号および特開昭58−217630号公報にはSnお
よび/またはCuを添加する方法が、また特開昭61−1576
32号公報にはSbとCuを添加する方法がそれぞれ開示され
ている。
Here, as a technique for stabilizing the secondary recrystallization, a method of adding Sn and / or Cu is disclosed in JP-B-57-9419 and JP-A-58-217630, and JP-A-61-1576.
Japanese Unexamined Patent Publication No. 32 discloses the method of adding Sb and Cu, respectively.

しかしこれらの方法はSn,CuおよびSbなどの補助イン
ヒビターを添加して二次再結晶粒を細粒化し二次再結晶
を安定化させるもので、低鉄損は得られるものの二次再
結晶粒径が小さくなるので磁束密度は低下する傾向にあ
った。
However, these methods add secondary inhibitors such as Sn, Cu and Sb to make the secondary recrystallized grains finer and stabilize the secondary recrystallization. Since the diameter was smaller, the magnetic flux density tended to be lower.

(発明が解決しようとする課題) この発明は、高磁束密度の方向性けい素鋼板を二次再
結晶の安定化によって高収率で製造する方法について提
案することを目的とする。
(Problems to be Solved by the Invention) An object of the present invention is to propose a method for producing a grain-oriented silicon steel sheet having a high magnetic flux density in a high yield by stabilizing secondary recrystallization.

(課題を解決するための手段) 発明者らは、AlNとMnSeおよび/又はMnSおよびSbをイ
ンヒビターとする方向性けい素鋼板の製造に関し、二次
再結晶粒の方位を理想的な(110)〔001〕方位に近づけ
るべく製造条件について種々の検討を行ったところ、仕
上焼鈍において一定温度に一定時間保持した後、所定の
昇温速度で加熱した後に二次再結晶焼鈍を施してから純
化焼鈍を施すことにより、高磁束密度の方向性けい素鋼
板を安定して得られることを見い出した。
Means for Solving the Problems The inventors of the present invention have proposed an ideal method for producing a grain-oriented silicon steel sheet using AlN and MnSe and / or MnS and Sb as inhibitors. After examining various manufacturing conditions to bring the orientation closer to the [001] orientation, after holding at a constant temperature for a fixed time in finish annealing, heating at a predetermined heating rate and then performing secondary recrystallization annealing, then purifying annealing It has been found that a high-flux-density grain-oriented silicon steel sheet can be stably obtained by applying the above method.

この発明は上記の知見に由来するものである。 The present invention is derived from the above findings.

すなわちこの発明は、C:0.02〜0.12wt%,Si:2.5〜4.0
wt%,Mn:0.03〜0.15wt%,sol.Al:0.01〜0.05wt%,Sb:0.
01〜0.20wt%およびN:0.004〜0.01wt%を含み、Sおよ
び/又はSeを合計で0.01〜0.05wt%含有し、残部が鉄お
よび不可避的不純物からなるけい素鋼スラブを熱間圧延
し、熱延板焼鈍および急冷処理を施してから、1回ある
いは中間焼鈍をはさむ2回の冷間圧延を最終圧延率80%
以上で施し、その後脱炭焼鈍ついで二次再結晶焼鈍およ
び純化焼鈍からなる仕上焼鈍を施す一連の工程からなる
方向性けい素鋼板の製造方法において、仕上焼鈍に先立
ち、700〜840℃の二次再結晶が生じない温度範囲で20時
間以上200時間以下にて保持した後、5〜50℃/hの昇温
速度で純化焼鈍の温度域まで加熱する間に二次再結晶焼
鈍を施し、しかる後純化焼鈍を施すことを特徴とする高
磁束密度方向性けい素鋼板の製造方法(第1発明)およ
び C:0.02〜0.12wt%、Si:2.5〜4.0wt%、Mn:0.03〜0.15
wt%、sol.Al:0.01〜0.05wt%、Sb:0.01〜0.20wt%およ
びN:0.004〜0.01wt%を含み、さらにSおよび/又はSe
を合計で0.01〜0.05wt%かつ、Cu:0.02〜0.20wt%、Sn:
0.02〜0.20wt%およびMo:0.005〜0.05wt%の少なくとも
一種を含有し、残部が鉄および不可避的不純物からなる
けい素鋼スラブを用いる、第1発明と同様の工程からな
る高磁束密度方向性けい素鋼板の製造方法(第2発
明)、 である。
That is, this invention is C: 0.02-0.12 wt%, Si: 2.5-4.0
wt%, Mn: 0.03 to 0.15 wt%, sol.Al: 0.01 to 0.05 wt%, Sb: 0.
A hot rolled silicon steel slab containing 0.01 to 0.20 wt% and N: 0.004 to 0.01 wt%, containing a total of 0.01 to 0.05 wt% of S and / or Se, with the balance being iron and unavoidable impurities After hot-rolled sheet annealing and quenching, cold rolling is performed once or twice with intermediate annealing at a final rolling reduction of 80%.
Performed above, after the decarburizing annealing, in the method for manufacturing a grain oriented silicon steel sheet comprising a series of steps of performing a final annealing consisting of secondary recrystallization annealing and purification annealing, prior to the finish annealing, 700 ~ 840 ° C secondary After holding for 20 hours or more and 200 hours or less in a temperature range where recrystallization does not occur, secondary recrystallization annealing is performed while heating to the temperature range of purification annealing at a heating rate of 5 to 50 ° C / h. Method for producing high magnetic flux density grain-oriented silicon steel sheet characterized by subjecting to post-purification annealing (first invention) and C: 0.02 to 0.12 wt%, Si: 2.5 to 4.0 wt%, Mn: 0.03 to 0.15
wt%, sol.Al:0.01-0.05wt%, Sb: 0.01-0.20wt% and N: 0.004-0.01wt%, and further S and / or Se
0.01 to 0.05 wt% in total and Cu: 0.02 to 0.20 wt%, Sn:
High magnetic flux density directivity comprising the same process as in the first invention, using a silicon steel slab containing at least one of 0.02 to 0.20 wt% and Mo: 0.005 to 0.05 wt%, the balance being iron and unavoidable impurities. A method for manufacturing a silicon steel sheet (second invention).

さて最終冷間圧延を80%以上の圧下率で行った方向性
けい素鋼板の1次再結晶組織においては、二次再結晶粒
の核となり得る(110)〔001〕方位粒は集合体を形成せ
ずに単独で存在することが多く、またその数も少ないの
で二次再結晶は不安定である。
By the way, in the primary recrystallization structure of grain-oriented silicon steel sheet subjected to final cold rolling at a reduction ratio of 80% or more, nuclei of secondary recrystallized grains can form nuclei of (110) [001] oriented grains. Secondary recrystallization is unstable because it often exists alone without being formed, and its number is small.

ここに二次再結晶を安定させる手法として、特公昭50
−26493号公報には冷間圧延を材料温度50〜300℃の範囲
で行うこと、また同54−29182号公報には冷間圧延のバ
ス間に300〜600℃の温度範囲に保持すること、等の圧延
時に処理を必要とする技術が開示されている。これら冷
間圧延時に材料温度を高めることは、一時再結晶組織に
おける(110)〔001〕方位粒を増加させ、二次再結晶の
核を増やし二次再結晶粒を細粒化させることにより二次
再結晶を安定させ磁気特性の向上を狙ったものである。
Here, as a method for stabilizing the secondary recrystallization,
-26493 discloses that cold rolling is performed at a material temperature in the range of 50 to 300 ° C, and 54-29182 discloses that the temperature is maintained between 300 and 600 ° C between cold rolling baths. A technique that requires treatment during rolling is disclosed. Increasing the material temperature during cold rolling increases the (110) [001] oriented grains in the temporary recrystallization structure, increases the nuclei of secondary recrystallization, and makes secondary recrystallized grains finer. This is intended to stabilize the secondary recrystallization and improve the magnetic properties.

しかるにこの発明は一次再結晶組織中に孤立している
(110)〔001〕方位粒を優先的に二次再結晶核として生
成させた後に二次結晶させるため、一次再結晶組織中の
(110)〔001〕方位粒の数が極めて少ないにも拘らず安
定して二次再結晶を起こし,かつ磁束密度を高め得る新
規な方法であり、前述のような高い材料温度で冷間圧延
することは、(110)〔001〕方位からずれた粒も増加さ
せることになり必ずしも磁束密度は向上しない。
However, according to the present invention, since (110) [001] oriented grains isolated in the primary recrystallized structure are preferentially generated as secondary recrystallized nuclei and then secondary crystallized, (110) ) It is a novel method that can stably cause secondary recrystallization and increase the magnetic flux density despite the extremely small number of [001] oriented grains. Cold rolling at the high material temperature as described above Also increases the number of grains deviated from the (110) [001] orientation, and does not necessarily improve the magnetic flux density.

この発明においてまず二次再結晶粒の核の生成のため
には700〜840℃の温度域で20時間以上の保持を要する。
保持温度が、840℃を越える高温になるとMnSまたはMnSe
およびSbの(110)〔001〕方位粒以外の粒成長の抑制力
は低下し、その温度で保持した場合には(110)〔001〕
方位粒の優先的核生成は起こらずに仕上焼鈍後の製品の
磁気特性の向上はわずかとなる。
In the present invention, first, in order to generate nuclei of secondary recrystallized grains, it is necessary to maintain the temperature in the temperature range of 700 to 840 ° C. for 20 hours or more.
When the holding temperature exceeds 840 ℃, MnS or MnSe
And Sb have a reduced ability to suppress the growth of grains other than (110) [001] oriented grains, and when held at that temperature, (110) [001]
The preferential nucleation of oriented grains does not occur, and the improvement in magnetic properties of the product after finish annealing is slight.

次に本発明のかかる熱処理が有効である素材成分とし
ては、Sbを0.01〜0.20wt%を含有させることが必須であ
る。Sbを含有しない鋼では鋼板表面を介して雰囲気の影
響により、鋼中のインヒビターであるAlNが分解された
り、粗大化したりする結果、抑制力を失い、所望の結果
が得られない。Sbは表面に濃縮することが知られてお
り、この表面に濃縮したSbによって雰囲気のAlNに及ぼ
す影響が消失したものと推定される。
Next, as a material component for which the heat treatment according to the present invention is effective, it is essential to contain Sb in an amount of 0.01 to 0.20 wt%. In the steel containing no Sb, the inhibitor AlN in the steel is decomposed or coarsened due to the influence of the atmosphere through the surface of the steel sheet, and as a result, the inhibitory force is lost and the desired result cannot be obtained. It is known that Sb is concentrated on the surface, and it is presumed that Sb concentrated on the surface has eliminated the effect of the atmosphere on AlN.

ここで従来の仕上焼鈍の技術として特開昭50−123517
号公報にはMnSeおよび/又はMnSを主要インヒビターと
するけい素鋼素材の最終仕上焼鈍工程において、800〜9
00℃の温度で二次再結晶を十分発達させ、さらに1000℃
以上の温度において純化焼鈍を施すことが開示されてい
る。
Here, as a conventional technique of finish annealing, Japanese Patent Laid-Open No.
In the final publication annealing process of silicon steel material containing MnSe and / or MnS as a main inhibitor,
Fully developed secondary recrystallization at a temperature of 00 ℃, and 1000 ℃
It is disclosed that the purification annealing is performed at the above temperature.

一方この発明はAlNを主要インヒビターとする方向性
けい素鋼板の素材に施す仕上焼鈍の条件に関するもので
あり、AlNをインヒビターとする素材においては、この
発明の保持温度域の700〜840℃の範囲では二次再結晶は
生じない。この点については次でさらに詳しく説明す
る。
On the other hand, the present invention relates to the condition of finish annealing applied to a material of a grain oriented silicon steel sheet using AlN as a main inhibitor, and in a material using AlN as an inhibitor, the holding temperature range of the present invention is in a range of 700 to 840 ° C. Does not cause secondary recrystallization. This point will be described in more detail below.

第1図はAlNを含む方向性けい素鋼の脱炭焼鈍板と、M
nSeおよびSbをインヒビターとする方向性けい素鋼の脱
炭焼鈍板をそれぞれ840℃50時間焼鈍した時のマクロ組
織を比較を示す。同図(イ)はAlNをインヒビターとす
る場合、同図(ロ)はMnSeおよびSbをインヒビターとす
る場合であるが、同図(ロ)の場合は完全に二次再結晶
が完了しているが、同図(イ)の場合は二次再結晶粒が
全く認められない。同図に示したように、AlNを主要イ
ンヒビターとする場合にはAlNの分解温度が高く、高温
まで粒成長抑制効果が働くためで、840℃での焼鈍によ
っては二次再結晶は開始せず、AlNを主要インヒビター
とする場合な950℃以上の焼鈍温度が必要となる。
Fig. 1 shows a decarburized annealed sheet of grain-oriented silicon steel containing AlN and M
A comparison of the macrostructures of decarburized annealed sheets of grain-oriented silicon steel with nSe and Sb as inhibitors is shown at 840 ° C for 50 hours. The figure (a) shows the case where AlN is the inhibitor, and the figure (b) shows the case where MnSe and Sb are the inhibitors, but in the case of the figure (b), the secondary recrystallization is completely completed. However, in the case of the same figure (a), secondary recrystallized grains are not recognized at all. As shown in the figure, when AlN is used as the main inhibitor, the decomposition temperature of AlN is high and the grain growth suppressing effect works even at high temperature.Therefore, secondary recrystallization does not start by annealing at 840 ° C. , AlN as the main inhibitor, an annealing temperature of 950 ℃ or higher is required.

すなわちこの発明では700〜840℃の二次再結晶の起こ
ならい温度域に保持することが肝要であって、二次再結
晶粒の発達を制御する特開昭50−123517号公報に記載の
技術とは異なるものである。
That is, in the present invention, it is essential to maintain the temperature range of 700 to 840 ° C. where secondary recrystallization does not occur, and the technique described in JP-A-50-123517 for controlling the development of secondary recrystallized grains. Is different from.

さらに発明者らは、AlNを主要インヒビターとする方
向性けい素鋼板のとくに仕上板厚が薄い製品に対する二
次再結晶の安定化の問題について、Sbを添加する実験を
行った。
Further, the inventors conducted an experiment to add Sb to the problem of stabilization of secondary recrystallization for grain-oriented silicon steel sheets using AlN as a main inhibitor, especially for products with a thin finished sheet thickness.

すなわち第1表で示した成分と残部が鉄からなる鋼A,
B,CおよびDを第2表に示す条件で製造し、磁性測定試
料として各20枚の製品板とした。それらの磁気測定の結
果を第3表に、代表的なマクロ組織写真を第2図に、そ
して脱炭焼鈍板でのサンプルよりX線インバース法によ
り(110)(222)(200)の各面の比強度を測定した結
果を第4表に、それぞれ示す。
That is, the steel A consisting of the components shown in Table 1 and the balance iron,
B, C, and D were manufactured under the conditions shown in Table 2, and 20 product plates were used as magnetic measurement samples. The results of those magnetic measurements are shown in Table 3, a typical macrostructure photograph is shown in Fig. 2, and the (110) (222) (200) planes of the decarburized annealed sheet were sampled by the X-ray inverse method. Table 4 shows the results of the measurement of the specific intensity of each.

第3表からAlNを主要インヒビターとしてMnSeにSbを
含有させた鋼Cの成分では安定して良好な磁気特性を得
られたことがわかる。
It can be seen from Table 3 that the composition of Steel C in which Sb is contained in MnSe with AlN as the main inhibitor stably obtained good magnetic properties.

またMnSにSbを含有させた鋼Dの成分では二次再結晶
粒は細粒となり磁束密度は若干低下したが特性変動は減
少した。Sbを含有しないA,Bの成分では安定して良好な
磁気特性は得られていない。
In the composition of Steel D containing Sb in MnS, the secondary recrystallized grains became fine grains and the magnetic flux density slightly decreased, but the characteristic fluctuations decreased. Stable and good magnetic properties have not been obtained with the components A and B containing no Sb.

第4表から、脱炭焼鈍板のX線インバース強度はSeに
Sbを添加した鋼Cの成分ではSbを添加しない鋼Aに比べ
(110)高度(222)強度が増加し(200)強度は減少し
ていることがわかる。脱炭焼鈍の一次再結晶集合組織と
して(110)強度は二次再結晶粒の核となる(110)〔00
1〕方位粒の強度を表わし、(222)強度は(110)〔00
1〕方位粒の成長を促進する(111)〔112〕方位粒を表
わし、(200)強度は(110)〔001〕粒の成長を阻害す
る(100)〔011〕方位粒を表わすと考えることができ
る。したがってMnSeにSbを添加すると(222)強度が増
え(200)強度が減少したこの実験結果では、(110)
〔001〕粒の成長性が極めて良好になり 特性の向上と
特性の安定化が実現されたと解釈できる。
From Table 4, the X-ray inverse strength of the decarburized annealed sheet is Se.
It can be seen that in the composition of Steel C containing Sb, the (110) altitude (222) strength increases and the (200) strength decreases as compared to Steel A containing no Sb. As the primary recrystallization texture of decarburization annealing, (110) strength becomes the nucleus of secondary recrystallization grains (110) [00
1] represents the strength of oriented grains, (222) strength is (110) [00
1) Think to represent (111) [112] oriented grains that promote the growth of oriented grains, and (200) intensity represents (100) [011] oriented grains that inhibit the growth of (110) [001] grains. You can Therefore, adding Sb to MnSe increased (222) the intensity (200) and decreased the intensity.
[001] It can be interpreted that the growth property of the grains was extremely good, and the properties were improved and the properties were stabilized.

さらにSにSbを添加した鋼Dでは、Sbを添加しない鋼
Bに比べ(222)がSe添加程顕著ではないが増加してい
る。Sbが脱炭焼鈍板の集合組織を改善し(110)〔001〕
方位粒の成長性に良好し、特性を安定して向上させる効
果は、SeにSbを添加した場合に特に顕著であることがわ
かった。
Further, in steel D in which Sb is added to S, (222) is increased as compared with steel B in which Sb is not added, although it is not as remarkable as in the case of adding Se. Sb improves the texture of decarburized annealed sheet (110) [001]
It was found that the effect of improving the growth property of the oriented grains and improving the characteristics stably was particularly remarkable when Sb was added to Se.

(作 用) 次にこの発明の構成要件の限定理由を述べる。(Operation) Next, the reasons for limiting the constituent features of the present invention will be described.

C:0.02〜0.12wt% Cは0.02wt%未満では二次再結晶が不良となり、一方
0.12wt%を越えると、脱炭性および磁気特性を低下させ
るため、0.02〜0.12wt%の範囲とした。
C: 0.02 to 0.12 wt% When C is less than 0.02 wt%, secondary recrystallization becomes poor, while
If the content exceeds 0.12 wt%, the decarburizing property and the magnetic properties are reduced, so the content is set in the range of 0.02 to 0.12 wt%.

Si:0.25〜4.0wt% Siが2.5wt%未満では良好な焼損が得られず、一方4.0
wt%を越えると冷間圧延性が著しく劣化するため2.5〜
4.0wt%の範囲とした。
Si: 0.25 to 4.0 wt% If Si is less than 2.5 wt%, good burnout cannot be obtained.
If it exceeds wt%, the cold rolling property deteriorates significantly, so 2.5-
The range was 4.0 wt%.

MnとSおよび/又はSeはMnsおよび/又はMnSeを形成
させるための成分である。
Mn and S and / or Se are components for forming Mns and / or MnSe.

まずMnはインヒビターとしての作用を発揮させるため
に少なくとも0.03wt%は必要で、一方0.15wt%を越える
とMnS,MnSeの固溶温度が高くなり、通常のスラブ加熱温
度では固溶せず磁性は劣化するので0.03〜0.15wt%の範
囲とした。
First, Mn needs to be at least 0.03 wt% in order to exert its action as an inhibitor. On the other hand, if it exceeds 0.15 wt%, the solid solution temperature of MnS and MnSe becomes high, and it does not form a solid solution at normal slab heating temperature, and the magnetism is Since it deteriorates, the range was set to 0.03 to 0.15 wt%.

Sおよび/又はSeは0.05wt%を越えると純化焼鈍での
純化が困難となり、一方0.01wt%未満ではインヒビター
の量が不足するため、合計で0.01〜0.05wt%とする。但
し、Sを0.01wt%未満に規制することにより磁束密度は
さらに向上する。
If S and / or Se exceeds 0.05 wt%, purification by purification annealing becomes difficult, while if less than 0.01 wt%, the amount of the inhibitor is insufficient, so the total amount is 0.01 to 0.05 wt%. However, the magnetic flux density is further improved by limiting S to less than 0.01 wt%.

AlおよびNはAlNを形成するため必要であり、Alの含
有量は0.01〜0.05wt%の範囲とする。すなわちAlが少な
すぎると磁束密度は低くなり、多過ぎると二次再結晶が
不安定になる。さらにNは0.004wt%未満ではAlNの量が
不足し、0.012wt%を越えると製品にブリスターが発生
するので、0.004〜0.012wt%の範囲とする。
Al and N are necessary for forming AlN, and the Al content is set to the range of 0.01 to 0.05 wt%. That is, if the amount of Al is too small, the magnetic flux density becomes low, and if it is too large, the secondary recrystallization becomes unstable. Further, if N is less than 0.004 wt%, the amount of AlN is insufficient, and if it exceeds 0.012 wt%, blisters are generated in the product, so the range is 0.004 to 0.012 wt%.

Sbは0.01wt%未満では表面濃化の効果が無く、また0.
20wt%を越すと脱炭性および表面被覆の形成に問題を生
じるので、0.01〜0.20wt%とする。
If Sb is less than 0.01 wt%, there is no surface thickening effect, and Sb is 0.
If it exceeds 20 wt%, problems occur in decarburization and formation of surface coating, so 0.01 to 0.20 wt% is set.

また磁束密度のさらなる向上をはかるために、Cuを添
加することがでる。Cuの含有は、0.02wt%未満では効果
が無くまた0.20wt%を越すと酸洗性およびぜい性が悪化
するので、0.02〜0.20wt%とする。さらに焼損の向上の
ためにSnを添加することが有利で、Snの含有は0.20wt%
未満では効果が無く、また0.20wt%を越えるとぜい性が
劣化するので0.020〜0.20wt%に制限する。
Further, Cu can be added in order to further improve the magnetic flux density. If the content of Cu is less than 0.02 wt%, there is no effect, and if it exceeds 0.20 wt%, the pickling property and brittleness deteriorate, so the content is set to 0.02 to 0.20 wt%. Furthermore, it is advantageous to add Sn to improve burnout, and the content of Sn is 0.20wt%.
If the amount is less than 0.20% by weight, brittleness is deteriorated. Therefore, the amount is limited to 0.020 to 0.20% by weight.

また表面性状を改善するためにMoを含有することがで
きる。0.005wt%未満では効果が無く、0.05wt%を超え
ると脱炭性が悪化するので0.005〜0.05wt%とする。
Further, Mo may be contained in order to improve the surface properties. If it is less than 0.005 wt%, there is no effect, and if it exceeds 0.05 wt%, the decarburization property deteriorates, so the content is made 0.005 to 0.05 wt%.

ついで前述の鋼成分からなるけい素鋼スラブを加熱し
た後、熱間圧延する。熱延板は例えば900〜1200℃で焼
鈍後急冷し、引き続き1回あるいは中間焼鈍をはさむ2
回の冷間圧延を最終圧下率を80%以上で施す。
Next, the silicon steel slab composed of the above-described steel components is heated and then hot-rolled. The hot-rolled sheet is annealed at 900 to 1200 ° C, then rapidly cooled, and then once an intermediate annealing or 2
Cold rolling is performed twice with a final reduction of 80% or more.

ここで最終冷延率を80%以上に制限する理由はAlNの
強い抑制力を発揮するための一次再結晶組織が圧下率80
%未満では得られないためである。
Here, the reason for limiting the final cold rolling reduction to 80% or more is that the primary recrystallization structure for exhibiting the strong suppressing power of AlN is 80% reduction.
This is because if it is less than%, it cannot be obtained.

冷間圧延の後は脱炭焼鈍し、焼鈍分離剤を塗布し仕上
焼鈍を行う。仕上焼鈍は700〜840℃の温度範囲で20時間
以上200時間以下にて一定の温度に保持した後、550℃/h
の昇温速度で純化焼鈍の温度域例えば1200℃まで加熱す
る。
After cold rolling, decarburization annealing is performed, an annealing separator is applied, and finish annealing is performed. Finish annealing is performed at a temperature of 700 to 840 ℃ for 20 hours to 200 hours at a constant temperature, then 550 ℃ / h.
The temperature is raised to the temperature range of the purification annealing, for example, 1200 ° C.

ここで適性な保持温度はインヒビターおよび脱炭焼鈍
板の集合組織により上下するが、700℃以下では(110)
〔001〕方位粒の二次再結晶核の生成がほとんど起こら
ないため磁気特性は向上しない。840℃を越えるとMnSお
よび/又はMnSeの抑制力は失われ(110)〔001〕方位粒
以外の粒も正常粒成長を起こし二次再結晶は不良とな
る。そのため保持温度は700〜840℃に制限する。
Here, the suitable holding temperature fluctuates depending on the texture of the inhibitor and decarburized annealed sheet, but below 700 ℃ (110)
Magnetic properties are not improved because the generation of secondary recrystallization nuclei of [001] oriented grains hardly occurs. When the temperature exceeds 840 ° C, the inhibitory power of MnS and / or MnSe is lost, and grains other than (110) [001] oriented grains also grow normally and secondary recrystallization becomes poor. Therefore, the holding temperature is limited to 700-840 ℃.

また保持時間は20時間未満では(110)〔001〕方位粒
の二次再結晶核の生成時間が短く磁気特性は向上しな
い。200時間以上ではMnS,MnSe,AlNの抑制力が低下する
ため二次再結晶が不良となる。したがって保持時間は20
時間〜200時間に制限される。
If the holding time is less than 20 hours, the generation time of the secondary recrystallization nuclei of the (110) [001] -oriented grains is short, and the magnetic properties are not improved. Over 200 hours, the suppression of MnS, MnSe, and AlN decreases and secondary recrystallization becomes poor. Therefore, the retention time is 20
Time limited to ~ 200 hours.

一定温度保持後の昇温速度は5℃/h未満およびび50℃
/hを越えると磁束密度が低下するので5〜50℃/hに制限
される。純化焼鈍は水素中で例えば1200℃5時間で行わ
れ、SおよびSe等が純化される。
After maintaining a constant temperature, the heating rate is less than 5 ℃ / h and 50 ℃
If it exceeds / h, the magnetic flux density decreases, so it is limited to 5 to 50 ° C / h. Purification annealing is performed in hydrogen at, for example, 1200 ° C. for 5 hours to purify S, Se, and the like.

なおAlNにSbを含有した成分において仕上焼鈍を700〜
840℃の範囲の一定温度に20時間〜200時間保持した後5
〜50℃/hで昇温することにより磁気特性が向上する理由
は以下のように推定される。
It should be noted that the finish annealing of the component containing Sb in AlN 700 ~
After maintaining at a constant temperature in the range of 840 ℃ for 20 to 200 hours, 5
The reason why the magnetic characteristics are improved by increasing the temperature at ~ 50 ° C / h is estimated as follows.

AlNを主要インヒビターとし最終冷間圧延を80%以上
の圧下率で行う方向性けい素鋼板の製造における、MnS
あるいはMnSeあるいはSbのような補助インヒビターの役
割は未だ明確ではない。そこで、種々の検討を行ったと
ころ、AlN、MnS又はMnSeの仕上焼鈍中で抑制効果を失う
温度は、AnNが950〜1000℃、MnS又はMnSeが800〜950℃
であり、したがってMnS又はMnSeは仕上焼鈍の前半で抑
制力を失うことが確認された。すなわち、AlNを主要イ
ンヒビターとし、最終冷間圧延を80%以上の圧下率で行
う方向性けい素鋼板の製造における二次再結晶温度は95
0〜1000℃であり、この温度域ではMnS又はMnSeは抑制力
が失われているため、MnSe又はMnSは二次再結晶時にAlN
の抑制力補強には寄与しないのである。700〜840℃の温
度域で20〜200時間保持すると、通常AlNは鋼板表面を介
して雰囲気の窒素ポテンシャルに応じて分解もしくは、
粗大化して抑制力を失うことになる。しかしながら、鋼
中にSbを含有させた場合、表面に濃縮したSbによって雰
囲気の影響を排除した形で抑制力を保持しつつ(110)
〔001〕方位の粒を優先的に核生成させ、AlNが抑制力を
発揮する温度域に至るまでに二次再結晶核となり得るサ
イズに成長させることで、方位の優れた(110)〔001〕
方位の二次再結晶が促進されるものである。すなわちこ
のような仕上焼鈍で高磁束密度が得られることは、AlN
を主要インヒビターとして、補助インヒビターにMnSeま
たはMnSを使用した成分系に、さらにSbを含有させた鋼
における特有な現象である。
MnS in the production of grain-oriented silicon steel sheets with AlN as the main inhibitor and the final cold rolling at a rolling reduction of 80% or more
Alternatively, the role of co-inhibitors such as MnSe or Sb is still unclear. Therefore, when various studies were carried out, the temperature at which the inhibitory effect was lost during finish annealing of AlN, MnS or MnSe was 950 to 1000 ° C for AnN and 800 to 950 ° C for MnS or MnSe.
Therefore, it was confirmed that MnS or MnSe loses the restraining force in the first half of the finish annealing. That is, the secondary recrystallization temperature in the production of grain-oriented silicon steel sheet in which AlN is the main inhibitor and the final cold rolling is performed at a reduction rate of 80% or more is 95%.
The temperature is 0 to 1000 ° C, and the suppressing force of MnS or MnSe is lost in this temperature range, so MnSe or MnS is AlN at the time of secondary recrystallization.
It does not contribute to the reinforcement of the suppression power of. When held in a temperature range of 700 to 840 ° C for 20 to 200 hours, usually AlN decomposes through the steel sheet surface according to the nitrogen potential of the atmosphere, or
It becomes coarse and loses its restraining power. However, when Sb is contained in the steel, while suppressing the influence of the atmosphere by the Sb concentrated on the surface (110)
By preferentially nucleating grains in the [001] orientation and growing to a size at which AlN can become secondary recrystallized nuclei until reaching the temperature range where the inhibitory force is exerted, excellent orientation (110) [001 ]
The secondary recrystallization of the orientation is promoted. In other words, the fact that high magnetic flux density can be obtained by such finish annealing is
This is a peculiar phenomenon in the steel in which Sb is further contained in the component system using MnSe or MnS as the main inhibitor with MnSe or MnS as the main inhibitor.

(実施例) 実施例1 C:0.062wt%,Si:3.10wt%,Mn:0.075wt%,Se:0.024%,
sol.Al:0.025wt%,N:0.0086wt%,Sb:0.029wt%残部Feよ
りなるけい素鋼スラブを1420℃20分間加熱後熱間圧延に
より2.3mm厚の熱延板とした。この熱延板を1050℃で2
分間加熱した後ミスト噴射により急冷し、ついで冷間圧
延し0.30mm厚に仕上げた。冷間圧延後840℃で4分間の
再結晶を兼ねた脱炭焼鈍を行い、その後MgOを塗布し仕
上焼鈍を行った。かくして得らてた製品板の磁気特性
を、第5表に示す。なお冷間圧延および仕上焼鈍の条件
は、下記の通りである。
(Example) Example 1 C: 0.062 wt%, Si: 3.10 wt%, Mn: 0.075 wt%, Se: 0.024%,
A silicon steel slab comprising sol. Al: 0.025 wt%, N: 0.0086 wt%, Sb: 0.029 wt%, the balance being Fe, was heated at 1420 ° C for 20 minutes and hot rolled to form a 2.3 mm thick hot rolled sheet. This hot-rolled sheet at 1050 ℃ 2
After heating for 1 minute, it was rapidly cooled by mist spraying, and then cold-rolled to a thickness of 0.30 mm. After cold rolling, decarburization annealing combined with recrystallization at 840 ° C. for 4 minutes was performed, and then MgO was applied and finish annealing was performed. The magnetic properties of the product plate thus obtained are shown in Table 5. The conditions of cold rolling and finish annealing are as follows.

記 (i)冷間圧延条件 A:常温で圧延 B:200℃で圧延 C:バス間に、260℃、30秒間保持後圧延 (ii)仕上焼鈍条件 a:800℃で50時間保持後10℃/hで1200℃まで昇温 b:750℃で100時間保持後10℃/hで1200℃で昇温 c:650℃で100時間保持後10℃/hで1200℃まで昇温 d:900℃で50時間保持後10℃/hで1200℃まで昇温 e:800℃で5時間保持後10℃/hで1200℃まで昇温 f:800℃で240時間保持後10℃/hで1200℃まで昇温 g:800℃50時間保持後100℃/hで1200℃まで昇温 h:800℃で250時間保持後2.5℃/hで1200℃まで昇温 i:800℃から10℃/hで1200℃まで昇温 同表から明らかなように、仕上焼鈍時に850℃で50時
間保持後10℃/hで昇温した、この発明に適合する例にお
いては、高磁束密度の製品を安定して得られた。
Note (i) Cold rolling condition A: Rolled at room temperature B: Rolled at 200 ° C C: Rolled after holding at 260 ° C for 30 seconds between baths (ii) Finish annealing condition a: After holding at 800 ° C for 50 hours, 10 ° C Temperature rises to 1200 ° C at / h b: Holds at 750 ° C for 100 hours and rises at 10 ° C / h at 1200 ° C c: Holds at 650 ° C for 100 hours and rises to 1200 ° C at 10 ° C / h d: 900 ° C After heating for 50 hours at 10 ℃ / h up to 1200 ℃ e: After holding at 800 ℃ for 5 hours at 1200 ℃ at 10 ℃ / h f: After holding at 800 ℃ for 240 hours at 1200 ℃ at 10 ℃ / h Temperature rise to: g: 800 ℃ 50 hours hold, 100 ℃ / h to 1200 ℃ h: 800 ℃ hold 250 hours, 2.5 ℃ / h to 1200 ℃ i: 800 ℃ to 10 ℃ / h Temperature rise to 1200 ° C As is clear from the table, in the example compatible with the present invention, which was held at 850 ° C. for 50 hours during finish annealing and then heated at 10 ° C./h, a product having a high magnetic flux density was stably obtained.

実施例2 第6表に示す成分組成になるけい素鋼スラブを実施例
1と同様の条件に従って、0.30mm厚の製品に仕上げた。
ただし冷間圧延は常温で、また仕上焼鈍は800℃で50時
間保持後10℃/hで1200℃まで昇温して行った。
Example 2 A silicon steel slab having the composition shown in Table 6 was finished into a product having a thickness of 0.30 mm under the same conditions as in Example 1.
However, the cold rolling was performed at normal temperature, and the finish annealing was performed by maintaining the temperature at 800 ° C. for 50 hours and then increasing the temperature to 1200 ° C. at 10 ° C./h.

実施例3 第7表に示した成分組成になるけい素鋼スラブを1420
℃で20分間加熱後、熱間圧延により2.0mm厚の熱延板と
した。この熱延板を1050℃で2分間加熱した後、ミスト
噴射により急冷し、ついで0.23mm厚に冷間圧延した。冷
間圧延後840℃で4分間の再結晶を兼ねた脱炭焼鈍を行
い、その後MgOを塗布し750℃で100時間保持した後、10
℃/hの昇温速度で1200℃まで加熱して仕上焼鈍を行っ
た。こうして得られた製品板の磁気特性は同表に併記す
る通りであり、板厚の薄い0.23mm厚の製品でも良好な磁
気特性が得られている。
Example 3 A silicon steel slab having the composition shown in Table 7 was prepared as 1420.
After heating at 0 ° C for 20 minutes, hot rolling was performed to obtain a hot rolled sheet having a thickness of 2.0 mm. The hot rolled sheet was heated at 1050 ° C. for 2 minutes, rapidly cooled by mist injection, and then cold rolled to a thickness of 0.23 mm. After cold rolling, decarburization annealing was performed at 840 ° C for 4 minutes, which also served as recrystallization. After that, MgO was applied and kept at 750 ° C for 100 hours.
Finish annealing was performed by heating to 1200 ° C at a temperature rising rate of ° C / h. The magnetic properties of the product plate thus obtained are as shown in the table, and good magnetic properties are obtained even with a thin plate having a thickness of 0.23 mm.

(発明の効果) この発明によれば、高磁束密度の方向性けい素鋼板を
二次再結晶の安定化する手法によって製造でき、磁気特
性の優れたけい素鋼板を高収率で製造し得る。
(Effects of the Invention) According to the present invention, it is possible to manufacture a grain-oriented silicon steel sheet having a high magnetic flux density by a method of stabilizing secondary recrystallization, and to manufacture a silicon steel sheet having excellent magnetic properties in a high yield. .

【図面の簡単な説明】[Brief description of the drawings]

第1図(イ),(ロ)および第2図(A)〜(D)は金
属組織を示す写真である。
FIGS. 1 (a) and 1 (b) and FIGS. 2 (A) to 2 (D) are photographs showing a metal structure.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山上 日出雄 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (56)参考文献 特開 昭52−77817(JP,A) 特開 昭59−35625(JP,A) 特開 昭62−180015(JP,A) 特開 昭62−202024(JP,A) 特開 昭55−47324(JP,A) 特開 昭63−72825(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hideo Yamagami Inventor Hideo Yamagami 1-chome, Mizushima Kawasaki-dori, Kurashiki City, Okayama Prefecture (No address) Inside the Mizushima Works, Kawasaki Steel Co., Ltd. (56) Reference JP-A-52-77817 (JP, A) ) JP-A-59-35625 (JP, A) JP-A-62-180015 (JP, A) JP-A-62-202024 (JP, A) JP-A-55-47324 (JP, A) JP-A-63- 72825 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】C:0.02〜0.12wt%、Si:2.5〜4.0wt%、 Mn:0.03〜0.15wt%、sol.Al:0.01〜0.05wt% Sb:0.01〜0.20wt%およびN:0.004〜0.01wt% を含み、さらにSおよび/又はSeを合計で0.01〜0.05wt
%含有し、残部が鉄および不可避的不純物からなるけい
素鋼スラブを熱間圧延し、熱延板焼鈍および急冷処理を
施してから、1回あるいは中間焼鈍をはさむ2回の冷間
圧延を最終圧延率80%以上で施し、その後脱炭焼鈍つい
で二次再結晶焼鈍および純化焼鈍からなる仕上焼鈍を施
す一連の工程からなる方向性けい素鋼板の製造方法にお
いて、 仕上焼鈍に先立ち、700〜840℃の二次再結晶が生じない
温度範囲で20時間以上200時間以下にて保持した後、 5〜50℃/hの昇温速度で純化焼鈍の温度域まで加熱する
間に二次再結晶焼鈍を施し、しかる後純化焼鈍を施すこ
とを特徴とする高磁束密度方向性けい素鋼板の製造方
法。
C: 0.02 to 0.12 wt%, Si: 2.5 to 4.0 wt%, Mn: 0.03 to 0.15 wt%, sol. Al: 0.01 to 0.05 wt% Sb: 0.01 to 0.20 wt% and N: 0.004 to 0.01 to 0.05 wt% and 0.01 to 0.05 wt% of S and / or Se in total
%, With the balance consisting of iron and unavoidable impurities, hot-rolled, subjected to hot-rolled sheet annealing and quenching, and then subjected to one or two cold-rollings including intermediate annealing In a method for producing a grain-oriented silicon steel sheet comprising a series of steps of performing a rolling reduction of 80% or more and thereafter performing a decarburizing annealing, and then a finish annealing including a secondary recrystallization annealing and a purification annealing, prior to the finish annealing, 700 to 840 After holding for 20 hours or more and 200 hours or less in a temperature range where secondary recrystallization at ℃ does not occur, secondary recrystallization annealing is performed while heating to the temperature range of purification annealing at a heating rate of 5 to 50 ° C / h. And then subjecting it to purification annealing, which is a method for producing a high magnetic flux density grain-oriented silicon steel sheet.
【請求項2】C:0.02〜0.12wt%、Si:2.5〜4.0wt%、 Mn:0.03〜0.15wt%、sol.Al:0.01〜0.05wt% Sb:0.01〜0.20wt%およびN:0.004〜0.01wt% を含み、さらにSおよび/又はSeを合計で0.01〜0.05wt
%かつ、Cu:0.02〜0.20wt%、Sn:0.02〜0.20wt%および
Mo:0.005〜0.05wt%の少なくとも一種を含有し、残部が
鉄および不可避的不純物からなるけい素鋼スラブを熱間
圧延し、熱延板焼鈍および急冷処理を施してから、1回
あるいは中間焼鈍をはさむ2回の冷間圧延を最終圧延率
80%以上で施し、その後脱炭焼鈍ついで二次再結晶焼鈍
および純化焼鈍からなる仕上焼鈍を施す一連の工程から
なる方向性けい素鋼板の製造方法において、 仕上焼鈍に先立ち、700〜840℃の二次再結晶が生じない
温度範囲で20時間以上200時間以下にて保持した後、 5〜50℃/hの昇温速度で純化焼鈍の温度域まで加熱する
間に二次再結晶焼鈍を施し、しかる後純化焼鈍を施すこ
とを特徴とする高磁束密度方向性けい素鋼板の製造方
法。
2. C: 0.02 to 0.12 wt%, Si: 2.5 to 4.0 wt%, Mn: 0.03 to 0.15 wt%, sol. Al: 0.01 to 0.05 wt% Sb: 0.01 to 0.20 wt% and N: 0.004 to 0.01 to 0.05 wt% and 0.01 to 0.05 wt% of S and / or Se in total
% And Cu: 0.02-0.20 wt%, Sn: 0.02-0.20 wt% and
Mo: A silicon steel slab containing at least one of 0.005 to 0.05 wt%, the balance being iron and unavoidable impurities is hot-rolled, subjected to hot-rolled sheet annealing and quenching treatment, and then once or intermediately annealed. Final cold rolling rate between two cold rolling
In a method for producing a grain-oriented silicon steel sheet comprising a series of steps of performing decarburizing annealing and then finishing annealing consisting of secondary recrystallization annealing and purifying annealing, at a temperature of 700 to 840 ° C. prior to finish annealing. After holding for 20 hours or more and 200 hours or less in a temperature range where secondary recrystallization does not occur, secondary recrystallization annealing is performed while heating to the temperature range of purification annealing at a heating rate of 5 to 50 ° C / h. A method for producing a high magnetic flux density grain-oriented silicon steel sheet, which is characterized by subjecting it to subsequent purification annealing.
【請求項3】Sの含有量を0.01wt%以下とした請求項1
または2に記載の製造方法。
3. The S content is set to 0.01 wt% or less.
Or the production method according to 2.
JP63264217A 1988-10-21 1988-10-21 Method for manufacturing high magnetic flux density grain-oriented silicon steel sheet Expired - Fee Related JP2670108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63264217A JP2670108B2 (en) 1988-10-21 1988-10-21 Method for manufacturing high magnetic flux density grain-oriented silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63264217A JP2670108B2 (en) 1988-10-21 1988-10-21 Method for manufacturing high magnetic flux density grain-oriented silicon steel sheet

Publications (2)

Publication Number Publication Date
JPH02115319A JPH02115319A (en) 1990-04-27
JP2670108B2 true JP2670108B2 (en) 1997-10-29

Family

ID=17400122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63264217A Expired - Fee Related JP2670108B2 (en) 1988-10-21 1988-10-21 Method for manufacturing high magnetic flux density grain-oriented silicon steel sheet

Country Status (1)

Country Link
JP (1) JP2670108B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4306259B2 (en) * 2003-01-27 2009-07-29 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
JP5988026B2 (en) * 2011-07-28 2016-09-07 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
KR101683693B1 (en) * 2013-02-27 2016-12-07 제이에프이 스틸 가부시키가이샤 Method for producing grain-oriented electrical steel sheet

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5277817A (en) * 1975-12-24 1977-06-30 Kawasaki Steel Co Production of mono anisotropic magnetic steel sheets
JPS5933170B2 (en) * 1978-10-02 1984-08-14 新日本製鐵株式会社 Method for manufacturing aluminum-containing unidirectional silicon steel sheet with extremely high magnetic flux density
JPS5935625A (en) * 1982-08-18 1984-02-27 Kawasaki Steel Corp Manufacture of anisotropic silicon steel plate with high magnetic flux density and small iron loss
JPH0798976B2 (en) * 1986-02-01 1995-10-25 新日本製鐵株式会社 Manufacturing method of thin high magnetic flux density grain-oriented electrical steel sheet with low iron loss
JPS62202024A (en) * 1986-02-14 1987-09-05 Nippon Steel Corp Manufacture of grain-oriented silicon steel sheet excellent in magnetic properties
JPS6372825A (en) * 1987-07-28 1988-04-02 Kawasaki Steel Corp Manufacture of grain-oriented silicon steel sheet having superior surface property and small iron loss

Also Published As

Publication number Publication date
JPH02115319A (en) 1990-04-27

Similar Documents

Publication Publication Date Title
JP5988027B2 (en) Method for producing ultrathin grain-oriented electrical steel sheet
CN111417737B (en) Grain-oriented electromagnetic steel sheet with low iron loss and method for producing same
JP3438282B2 (en) Method of manufacturing oriented silicon steel sheet with high magnetic flux density
JP3846064B2 (en) Oriented electrical steel sheet
JP2670108B2 (en) Method for manufacturing high magnetic flux density grain-oriented silicon steel sheet
JPH059666A (en) Grain oriented electrical steel sheet and its manufacture
JP3386742B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
KR930011405B1 (en) Method of manufacturing an oriented silicon steel sheet having improved magnetic flux density
JPH0121851B2 (en)
JP3928275B2 (en) Electrical steel sheet
JP2002241906A (en) Grain-oriented silicon steel sheet having excellent coating film characteristic and magnetic property
JP3271654B2 (en) Manufacturing method of ultra-thin silicon steel sheet and ultra-thin silicon steel sheet
JP2746631B2 (en) High magnetic flux density oriented silicon steel sheet with excellent iron loss characteristics and method for producing the same
JPH10226819A (en) Production of grain oriented silicon steel sheet excellent in core loss characteristic
JP3474741B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP2819994B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
JP3357615B2 (en) Method for manufacturing oriented silicon steel sheet with extremely low iron loss
JP3271655B2 (en) Method for producing silicon steel sheet and silicon steel sheet
CN117203355A (en) Method for producing oriented electrical steel sheet
CN117062921A (en) Method for producing oriented electrical steel sheet
JPH0995739A (en) Production of extremely thin silicon steel sheet excellent in magnetic characteristic and its production
JPH0617201A (en) Grain-oriented magnetic steel sheet and its manufacture
JPH0742507B2 (en) Method for manufacturing thin unidirectional electrical steel sheet with excellent magnetic properties
JP2020007637A (en) Production process of grain-oriented electromagnetic steel sheet
JPH07188773A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080704

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees