JPS60131917A - Manufacture of silicon steel sheet - Google Patents

Manufacture of silicon steel sheet

Info

Publication number
JPS60131917A
JPS60131917A JP24060683A JP24060683A JPS60131917A JP S60131917 A JPS60131917 A JP S60131917A JP 24060683 A JP24060683 A JP 24060683A JP 24060683 A JP24060683 A JP 24060683A JP S60131917 A JPS60131917 A JP S60131917A
Authority
JP
Japan
Prior art keywords
silicon steel
cold rolling
rolling
strips
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24060683A
Other languages
Japanese (ja)
Inventor
Hiroshi Shimizu
洋 清水
Isao Ito
伊藤 庸
Masayuki Sakaguchi
雅之 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP24060683A priority Critical patent/JPS60131917A/en
Publication of JPS60131917A publication Critical patent/JPS60131917A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To manufacture efficiently silicon steel sheets having favorable magnetic characteristics by hot rolling silicon steel blanks and cold rolling the resulting two steel strips in an overlapped state after reducing the surface roughness of the contacting surfaces of the strips. CONSTITUTION:Silicon steel blanks contg. <=40wt% Si are hot rolled, and the resulting steel strips are cold rolled once to provide the final thickness. The steel strips may be cold rolled twice or more while carrying out process annealing between the cold rolling stages. In at least one of the cold rolling stages, the two steel strips are cold rolled in an overlapped state, and the average surface roughness Ra of at least the contacting surfaces of the strips is reduced to <=0.8mum by smoothening before the cold rolling. By the smoothening, silicon steel sheets having favorable characteristics can be obtd.

Description

【発明の詳細な説明】 この発明は変圧器や電動機などの鉄心材料として用いら
れる珪素鋼板の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing silicon steel sheets used as core materials for transformers, electric motors, and the like.

周゛知のように珪素鋼板には大きく分けて方向性珪素鋼
板と無方向性珪素鋼板とがあシ、用途に応じて使い分け
られている。方向性珪素鋼板を製造する場合、その製造
過程で素材鋼帯の結晶方位を一方向もしくは二方向に揃
えてゆく必要がl)、また無方向性珪素鋼板を製造する
場合でも結晶粒を粗大化して磁気特性を良好なものとす
る必要があることから、一般に珪素鋼板は珪素鋼スラブ
を熱間圧延し、その後焼鈍・冷間圧延を繰シ返して、最
後に表面処理を行なうという複雑な工程を経て製造され
る。加えて、珪素鋼板の鉄損を減少させ、磁束密度をよ
シ大きくするという性能向上の要請は年々厳しさを増し
ておシ、最近では製品板厚をより薄くすることによって
特に鉄損を少なくするという手段が採られるようになっ
たことから、珪素鋼板の製造工程は一層複雑化し、その
ような工程の複雑化に起因する製造コストの増大が問題
となっていた。
As is well known, silicon steel sheets can be broadly divided into grain-oriented silicon steel sheets and non-oriented silicon steel sheets, and they are used depending on the purpose. When manufacturing grain-oriented silicon steel sheets, it is necessary to align the crystal orientation of the material steel strip in one or two directions during the manufacturing process, and even when manufacturing non-oriented silicon steel sheets, it is necessary to coarsen the crystal grains. Generally speaking, silicon steel sheets require a complicated process of hot rolling a silicon steel slab, followed by repeated annealing and cold rolling, and finally surface treatment. Manufactured through. In addition, the demands for improving the performance of silicon steel sheets by reducing their core loss and increasing their magnetic flux density are becoming more and more severe year by year. As a result, the manufacturing process of silicon steel sheets has become even more complicated, and an increase in manufacturing costs due to the complication of such a process has become a problem.

この発明は以上の従来の事情に鑑みてなされたものであ
って、珪素鋼板の性能向上とりう要請に応えることがで
き、かつ珪素鋼板を効率的に製造してその製造コストを
低減することができる珪素鋼板の製造方法を提供するこ
とを目的とするものである。
The present invention has been made in view of the above-mentioned conventional circumstances, and is capable of meeting the demands for improving the performance of silicon steel sheets, and of efficiently manufacturing silicon steel sheets and reducing manufacturing costs. The purpose of the present invention is to provide a method for manufacturing silicon steel sheets that can be manufactured using the following methods.

ところで、従来から複合金属板の製造にあたって金属板
を2枚重ねて熱間圧延する方法が利用されており、例え
ば特公昭51−19819号公報には異種金属の合板を
加熱圧延する方法が記載されておシ、さらには特開昭5
7−121804号公報には類似の手段を鋼板の冷間圧
延に応用して極薄鋼板を製造し、その製造効率を向上す
る方法が記載されている。しかし、このような方法を珪
素鋼板の製造に適用した場合、要求に応え得る磁気特性
が得られないことから、従来上述の方法を珪素鋼板の冷
間圧延に適用した例は皆無であった。
By the way, in the production of composite metal plates, a method has been used in the past in which two metal plates are piled up and hot rolled. For example, Japanese Patent Publication No. 51-19819 describes a method of hot rolling plywood of dissimilar metals. Teishi, and even Tokukai Sho 5
Publication No. 7-121804 describes a method for manufacturing ultra-thin steel sheets by applying similar means to cold rolling of steel sheets and improving the manufacturing efficiency. However, when such a method is applied to the production of silicon steel sheets, magnetic properties that meet the requirements cannot be obtained, so there have been no examples of applying the above-mentioned method to the cold rolling of silicon steel sheets.

そこで、本発明者等は上述の方法を珪素鋼板の製造に適
用して、満足できる磁気特性が得られれば、前述の珪素
鋼板の製造効率を向上し、かつ磁気特性を良好にすると
いうこの発明の目的が達成できるという前提に立ち、上
述の方法によっては十分な磁気特性が得られない原因を
検討したところ、次のような知見を得た。
Therefore, the present inventors applied the above-mentioned method to the production of a silicon steel plate, and if satisfactory magnetic properties were obtained, the present invention would improve the production efficiency of the silicon steel plate and improve the magnetic properties. Based on the premise that the above objective can be achieved, we investigated the reason why sufficient magnetic properties could not be obtained by the above-mentioned method, and the following findings were obtained.

すなわち、通常冷間圧延を施される前の鋼板の表面粗度
(Ra)は少くとも1μm程度であるが、その鋼板を重
ね圧延した場合、圧延ロールに接触しない鋼板面すなわ
ち2枚の銅帯相互の合せ面の表面粗度は1.5〜2μm
程度になることから、そのように表面粗度の大きい圧延
鋼板をその後焼鈍すると、表面酸化層が厚くなり、その
結果良好な磁性が得られない。
In other words, the surface roughness (Ra) of a steel plate before cold rolling is usually at least about 1 μm, but when the steel plate is lap-rolled, the surface of the steel plate that does not come into contact with the rolling rolls, that is, the two copper strips, The surface roughness of the mating surfaces is 1.5 to 2 μm
Therefore, when a rolled steel sheet with such a large surface roughness is subsequently annealed, the surface oxidation layer becomes thick, and as a result, good magnetism cannot be obtained.

そこで本発明者等は以上の知見から重ね圧延前の鋼板表
面の平滑性を高めることによって重ね圧延後の鋼板合せ
面の表面粗度を小さくすれば良好な磁気特性を得ること
ができることを見い出しこの発明をなすに至った。
Based on the above findings, the present inventors found that good magnetic properties can be obtained by increasing the smoothness of the steel plate surface before lap rolling and reducing the surface roughness of the mating surface of the steel plates after lap rolling. He came up with an invention.

すなわちこの発明の珪素鋼板の製造方法は、4.0%(
重量%、以下同じ)以下のSiを含有する珪素鋼素材を
熱間圧延し、1回の冷間圧延または中間焼鈍を挾む2回
以上の冷間圧延によって最終板厚とする珪素鋼板の製造
方法において、冷間圧延工程のうち少なくとも1回の冷
間圧延を2枚の素材鋼帯を重ね合わせて行ない、かつそ
の重ね合わせ冷間圧延前における素材鋼帯の少なくとも
合わせ面側表面の平均(Ra)を予め0.8μm以下に
千7滑化しておくことを特徴とするものである。
That is, the method for manufacturing a silicon steel sheet of the present invention has a manufacturing method of 4.0% (
Manufacture of a silicon steel plate by hot rolling a silicon steel material containing Si (weight%, same hereinafter) or less, and obtaining the final thickness by one cold rolling or two or more cold rollings with intermediate annealing in between. In the method, cold rolling is performed at least once in the cold rolling process by overlapping two raw material steel strips, and the average ( It is characterized by smoothing Ra) to 0.8 μm or less in advance.

次にこの発明をさらに詳細に説明する。Next, this invention will be explained in more detail.

この発明では40チ以下の8iを含有する珪素鋼素材を
用いる。Siを4.0チを越えて含有する場合、冷間圧
延時に板割れが発生して冷間圧延ができなくなるので、
Srの含有量は4.0%以下に限定する。
In this invention, a silicon steel material containing 8i of 40 or less is used. If Si is contained in excess of 4.0 inches, plate cracking will occur during cold rolling, making cold rolling impossible.
The Sr content is limited to 4.0% or less.

1だ、方向性珪素鋼素材ではゴス方位の2次再結晶を選
択的に発達させるためのインヒビターとしてMnS 、
 MnSe、AJl’N 、 Sb 、 BN等から選
ばれるlaiないし2種以上の成分を所要量含有させる
1. In grain-oriented silicon steel materials, MnS is used as an inhibitor to selectively develop secondary recrystallization in the Goss orientation.
A required amount of lai or two or more components selected from MnSe, AJl'N, Sb, BN, etc. is contained.

一方、無方向性珪素鋼板についてはSiの他にAA”P
 Mnを2.(l以F含ませることができる。
On the other hand, regarding non-oriented silicon steel sheets, in addition to Si, AA”P
Mn is 2. (It is possible to include more than 1 F.

先ず、上述の組成の珪素鋼スラブを例えば1100〜1
400℃の所要温度に加熱した後、熱間圧延を行ない所
要の厚さ、例えば1.0〜3.5關厚の熱延鋼帯とする
First, a silicon steel slab having the above-mentioned composition is heated, for example, from 1100 to 1
After heating to a required temperature of 400° C., hot rolling is performed to obtain a hot rolled steel strip having a required thickness, for example, 1.0 to 3.5 inches thick.

次いでその熱延鋼帯を焼鈍しさらに所要回数、例えば2
回の冷間圧延と焼鈍を繰シ返して目標板厚の最終製品を
得る。
The hot-rolled steel strip is then annealed and annealed an additional number of times, e.g. 2
The final product with the target thickness is obtained by repeating cold rolling and annealing.

この発明では上述の熱延鋼帯に対する所要回数、例えば
2回の冷間圧延工程のうち少なくとも1回の冷間圧延工
程を素材鋼帯を2枚重ね合わせて行なう。その素材鋼帯
を2枚重ね合わせて行なう冷間圧延すなわち重ね圧延は
周知の機構のリバースミルやタンデムミルを用いて行な
うことができ、圧延にあたっての圧下率や圧下配分は目
標とする製品板厚とそれ等の圧延機の特性に応じて決め
られる。また、圧延にあたっては、予じめ2枚の素材鋼
帯を重ね合わせた状態にしておくことが望ましい。第1
図は、2枚の素材鋼帯を圧延前に予じめ重ね合わせるラ
インの一例を示す。1対の熱延コイル1から繰シ出され
た1対の素材鋼帯2は2段連続焼鈍炉3を通過して連続
焼鈍され、その2段連続焼鈍炉3の出側に配置されたロ
ール4、ロール5を通過して相互に重ね合わされ、その
状態で巻き取られてコイル6が形成される。そのように
予じめ素材鋼帯を重ね合わせてコイル6を形成しておく
こと−によって、2枚の銅帯を予じめ巾方向エツジ部分
を揃えた状態で重ね合わせて圧延工程に供することがで
き、圧延の効率化と耳側防止を図ることができる。さら
にこの発明では上述の重ね圧延を行なうにあたって、重
ね圧延前の素材銅帯の少なくとも合せ面側表面の平均粗
度(Ra)を0,8μm以下とし、予じめ平滑化する。
In the present invention, at least one cold rolling process out of the required number of times, for example, two cold rolling processes, is performed on the above-mentioned hot rolled steel strips by overlapping two raw steel strips. Cold rolling, that is, lap rolling, in which two raw steel strips are overlapped, can be performed using a well-known reverse mill or tandem mill, and the reduction rate and reduction distribution during rolling are determined according to the target product thickness. and the characteristics of the rolling mill. Further, during rolling, it is desirable to place two raw material steel strips in a superposed state in advance. 1st
The figure shows an example of a line in which two raw steel strips are overlapped in advance before rolling. A pair of raw steel strips 2 drawn out from a pair of hot-rolled coils 1 are continuously annealed by passing through a two-stage continuous annealing furnace 3, and a roll disposed on the exit side of the two-stage continuous annealing furnace 3. 4. They are passed through a roll 5, overlapped with each other, and wound up in that state to form a coil 6. By overlapping the raw steel strips in advance to form the coil 6, the two copper strips are overlapped with their widthwise edges aligned in advance and subjected to the rolling process. This makes it possible to improve the efficiency of rolling and prevent rolling. Furthermore, in the present invention, when performing the above-mentioned lap rolling, the average roughness (Ra) of at least the mating surface side surface of the raw copper strip before the lap rolling is set to 0.8 μm or less and smoothed in advance.

これは素材鋼帯の合せ面側の表面平均粗度(Ra)が0
.8μmを越えると、重ね圧延した後の合せ面側表面粗
度が過大となシ、製品の磁気特性を悪化させる原因とな
るからである。これを裏づけるために、種種の表面粗度
の素材鋼帯を重ね圧延して得られた製品について鉄損を
測定した結果を第1図に示す。
This means that the surface average roughness (Ra) of the mating surface side of the raw steel strip is 0.
.. This is because if it exceeds 8 μm, the surface roughness of the mating side after over-rolling becomes excessive, which causes deterioration of the magnetic properties of the product. In order to support this, FIG. 1 shows the results of measuring iron loss for products obtained by overlapping rolling of raw steel strips with various surface roughnesses.

第2図は8i3.2%を含有する方向性珪素鋼素材の熱
延板を2回の冷間圧延によって板厚0.23■に仕上げ
るにあたって、2回目の冷間圧延を2枚の鋼帯を重ね合
わせて行ない、その後脱炭焼鈍と箱焼鈍を施して得た最
終製品について示したものである。図に示されるように
、素材鋼帯の表面粗度が08μmを超えると鉄損もl、
 Q w/Alを上廻り、粗度の増加に伴ない鉄損が急
激に増大する。このように重ね圧延を施す素材鋼帯の表
面粗度を予じめ0.8μm以丁とする平滑化は次のよう
な方法で行なう。通常、珪素鋼素材を冷間圧延する場合
、圧感に先立って素材鋼帯の表面の酸化物を除くため、
流酸や塩酸による酸洗が施される。しかし、この素材鋼
帯に対する酸洗処理は素材鋼帯の表面粗度を著しく大き
くする。そこで、この酸洗後の素材銅帯の表面を平滑に
するだめの処置として、あるいは酸洗にかわる処置とし
て化学研摩もしくは機械研摩を行なうか、あるいは素材
鋼帯をスキンパスロール間を通過させて、素材鋼帯の表
面を平滑化する。なおまた、重ね圧延を行なう前に単独
の冷間圧延を行なう場合、その冷間圧延を行なうロール
の表面粗度を小さくする、あるいは中間焼鈍を不活性ガ
ス雰囲気で行ない表面酸化を可及的に少なくする、さら
にはハースロールから入る疵を極力少なくする等の配慮
が望ましい。
Figure 2 shows that when finishing a hot-rolled plate of grain-oriented silicon steel material containing 3.2% 8i to a plate thickness of 0.23mm by two cold rollings, the second cold rolling was performed on two steel strips. This figure shows the final product obtained by superimposing the above, followed by decarburization annealing and box annealing. As shown in the figure, when the surface roughness of the raw steel strip exceeds 08 μm, the iron loss also increases.
When exceeding Q w/Al, the iron loss increases rapidly as the roughness increases. The surface roughness of the raw steel strip to be lap-rolled is previously smoothed to 0.8 μm or less by the following method. Normally, when cold rolling silicon steel material, in order to remove oxides from the surface of the material steel strip before pressing,
Pickling is performed using flowing acid or hydrochloric acid. However, this pickling treatment of the raw steel strip significantly increases the surface roughness of the raw steel strip. Therefore, as a final measure to smooth the surface of the raw copper strip after pickling, or as a treatment in place of pickling, chemical polishing or mechanical polishing is performed, or the raw steel strip is passed between skin pass rolls. Smooth the surface of the raw steel strip. Furthermore, when cold rolling is performed separately before lap rolling, the surface roughness of the rolls used for cold rolling is reduced, or intermediate annealing is performed in an inert gas atmosphere to minimize surface oxidation. It is desirable to minimize the number of scratches from the hearth roll.

最後に、冷間圧延後に目標板厚とされた鋼板に対し、方
向性珪素鋼板の場合は脱炭焼鈍と箱焼鈍を行ない、さら
にコーティング処理を行なって最終製品とする。また、
無方向性珪素鋼では再結晶焼鈍とコーティング処理を施
して最終製品と、する。
Finally, the steel plate that has been cold-rolled to the target thickness is subjected to decarburization annealing and box annealing in the case of grain-oriented silicon steel plates, and is further coated to produce the final product. Also,
Non-oriented silicon steel undergoes recrystallization annealing and coating treatment to produce the final product.

次にこの発明の実施例を記す。Next, examples of this invention will be described.

実施例1゜ CO,040%、 Si 3.25 % 、 Mn 0
.060’% 。
Example 1゜CO, 040%, Si 3.25%, Mn 0
.. 060'%.

Se 0.020 % 、 Sb O,025%を含有
する2、 3 m厚の熱延鋼帯を1次冷延で060fi
厚に仕上げ、次いで連続焼鈍炉で1000℃、3分の中
間焼鈍を行なった。その後、第2次冷間圧延についてリ
バースミルを用いた重ね圧延を実施し、0.23wm厚
の珪素鋼板を得た。その珪素鋼板について800℃で5
分間の脱炭焼鈍を湿水素雰囲気で行ない、鋼板表面にM
gOを塗布した後、1200℃で5時間水素気流中で箱
焼鈍を行なった。特にこの実施例1では上述の中間焼鈍
を還元性のH2雰囲気で行ない、重ね圧延前の素材鋼帯
の表面粗度Raを0.2611mとした。
A 2 to 3 m thick hot rolled steel strip containing 0.020% Se and 0.025% SbO was first cold rolled to 060fi.
After finishing to a thick finish, intermediate annealing was performed at 1000° C. for 3 minutes in a continuous annealing furnace. Thereafter, second cold rolling was performed by lap rolling using a reverse mill to obtain a silicon steel plate with a thickness of 0.23 wm. 5 at 800℃ for the silicon steel plate
Decarburization annealing is performed for 1 minute in a wet hydrogen atmosphere, and the surface of the steel plate is M
After applying gO, box annealing was performed at 1200° C. for 5 hours in a hydrogen stream. In particular, in this Example 1, the above-mentioned intermediate annealing was performed in a reducing H2 atmosphere, and the surface roughness Ra of the raw steel strip before lap rolling was set to 0.2611 m.

比較例1゜ 上述の実施例1と他は同様にして、特に中間焼鈍をN、
雰囲気で行ない、重ね圧延−前の素材鋼帯の表面粗度R
aを105μmとした。
Comparative Example 1゜Similar to the above-mentioned Example 1 except that intermediate annealing was performed using N,
The surface roughness R of the raw steel strip before lap rolling is carried out in an atmosphere.
a was set to 105 μm.

実施例2 CO,002%、 Si 3. l OS 、 Mn 
0.21 % 。
Example 2 CO, 002%, Si 3. lOS, Mn
0.21%.

AA! 0.58 %を含有する1、8fi厚の熱延鋼
帯を900℃で5分間焼鈍しだ後、10チH2SO4を
用いた酸洗によって表面酸化物を一除去し、10%HF
+H2O2浴の化学研摩によって表面粗度を0.46μ
mにし、その後冷間圧延するにあたって重ね圧延をタン
デムミルを用いて実施し、Q、35t+on厚の無方向
性珪素鋼板を得た。冷間圧延後の鋼板については920
℃で5分間の再結晶焼鈍を乾燥水素中で行ない、コーテ
ィングを施して製品とした。
AA! After annealing a 1.8 fi thick hot rolled steel strip containing 0.58% at 900°C for 5 minutes, the surface oxide was removed by pickling with 10% H2SO4, and then the surface oxide was removed with 10% HF.
+ Surface roughness reduced to 0.46μ by chemical polishing in H2O2 bath
m, and then during cold rolling, lap rolling was performed using a tandem mill to obtain a non-oriented silicon steel plate with a thickness of Q, 35t+on. 920 for steel plates after cold rolling
Recrystallization annealing for 5 minutes at 0.degree. C. was carried out in dry hydrogen, and the product was coated.

比較例2 実施例2と同様の素材に対し同様の処理を行ない表面酸
化物を除去した後、そのままコイル状に巻取った素材鋼
板を重ね圧延した。その重ね圧延前の素材鋼板の表面平
均粗度Raは3.5μmであった。その後実施例2と同
様にして無方向性珪素鋼板を得た。
Comparative Example 2 The same material as in Example 2 was subjected to the same treatment to remove surface oxides, and then the material steel plate was wound into a coil shape and rolled. The surface average roughness Ra of the raw steel sheet before lap rolling was 3.5 μm. Thereafter, a non-oriented silicon steel plate was obtained in the same manner as in Example 2.

以上の各実施例および比較例によって得られた珪素鋼板
について磁気特性を調べた。その結果を第1表および第
2表に示す。
The magnetic properties of the silicon steel sheets obtained in each of the above Examples and Comparative Examples were investigated. The results are shown in Tables 1 and 2.

第1表 第2表 第1表かられかるように、この発明を実施した実施例1
では比較例1に対し鉄損が小さく、また磁束密度B10
値が大きく、良好な結果が得られておシ、また同様に第
2表かられかるようにこの発明を実施した実施例2では
比較例2よシも格段に鉄損が小さい。
As can be seen from Table 1, Table 2, and Table 1, Example 1 in which this invention was implemented
Compared to Comparative Example 1, the iron loss is smaller and the magnetic flux density B10
The value was large, and good results were obtained. Similarly, as shown in Table 2, in Example 2 in which the present invention was implemented, the iron loss was significantly smaller than in Comparative Example 2.

以上のようにこの発明の珪素鋼板の製造方法によれば、
熱間圧延後の素材鋼帯を2枚重ね合わせて冷間圧延を行
ない、かつその重ね合わせ冷間圧延前の素材鋼帯の少な
くとも合わせ面側の表面の平均粗度(Ra)を予じめ0
,8μm以下に平滑化しておくようにしたことによって
、良好な磁気特性を有する珪素鋼板を効率良く製造する
ことができる。
As described above, according to the method for manufacturing a silicon steel sheet of the present invention,
Two raw material steel strips after hot rolling are stacked and cold rolled, and the average roughness (Ra) of the surface of at least the mating surface side of the raw material steel strips before the stacking and cold rolling is determined in advance. 0
, 8 μm or less, it is possible to efficiently manufacture a silicon steel sheet having good magnetic properties.

【図面の簡単な説明】 第1図は、この発明を実施するために2枚の素材鋼帯を
重ね合わせ冷間圧延前に予じめ重ね合わせるラインの一
例を示す概略図、第2図は種々の表面粗度Ra (μm
)の素材鋼帯に重ね合わせ冷間圧延を施し、得られた製
品について鉄損W+7750(wAg)を測定し、その
結果を表面粗度との関係で示した図である。 1・・・熱延コイル、2・・・素材鋼帯、3・・・2段
連続m鈍炉、4・・・ロニル、5・・・ロール、6・・
・コイル。
[Brief Description of the Drawings] Fig. 1 is a schematic diagram showing an example of a line in which two raw steel strips are overlapped in advance before cold rolling in order to carry out the present invention, and Fig. 2 is a Various surface roughness Ra (μm
Fig. 3 is a diagram showing the iron loss W+7750 (wAg) of the product obtained by superimposing and cold-rolling the raw steel strips of 1.) and illustrating the results in relation to the surface roughness. DESCRIPTION OF SYMBOLS 1...Hot rolled coil, 2...Material steel strip, 3...2-stage continuous m blunt furnace, 4...Ronil, 5...Roll, 6...
·coil.

Claims (1)

【特許請求の範囲】 4.0重量%以下のSiを含有する珪素鋼素材を熱間圧
延し、1回の冷間圧延または中間焼鈍を挾む2回以上の
冷間圧延によって最終板厚とする珪素鋼板の製造方法に
おいて、 冷間圧延工程のうち少なくとも1回の冷間圧延を2枚の
素材鋼帯を重ね合わせて行ない、かつその重ね合わせ冷
間圧延前における素材鋼帯の少なくとも合わせ面側表面
の平均(Ra’)を予め0.8μm以下に平滑化してお
くことを特徴とする珪素鋼板の製造方法。
[Claims] A silicon steel material containing 4.0% by weight or less of Si is hot rolled, and the final plate thickness is reduced by one cold rolling or two or more cold rollings with intermediate annealing in between. In the method for producing a silicon steel sheet, at least one cold rolling step is performed in the cold rolling process by overlapping two raw material steel strips, and at least the mating surface of the raw material steel strips before the overlapping cold rolling. A method for manufacturing a silicon steel sheet, characterized in that the average (Ra') of the side surface is smoothed in advance to 0.8 μm or less.
JP24060683A 1983-12-20 1983-12-20 Manufacture of silicon steel sheet Pending JPS60131917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24060683A JPS60131917A (en) 1983-12-20 1983-12-20 Manufacture of silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24060683A JPS60131917A (en) 1983-12-20 1983-12-20 Manufacture of silicon steel sheet

Publications (1)

Publication Number Publication Date
JPS60131917A true JPS60131917A (en) 1985-07-13

Family

ID=17061987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24060683A Pending JPS60131917A (en) 1983-12-20 1983-12-20 Manufacture of silicon steel sheet

Country Status (1)

Country Link
JP (1) JPS60131917A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007056303A (en) * 2005-08-24 2007-03-08 Jfe Steel Kk Method for producing non-oriented silicon steel sheet excellent in magnetic characteristic

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007056303A (en) * 2005-08-24 2007-03-08 Jfe Steel Kk Method for producing non-oriented silicon steel sheet excellent in magnetic characteristic

Similar Documents

Publication Publication Date Title
WO2020217604A1 (en) Method for producing non-oriented electrical steel sheet
JPH07118750A (en) Production of mirror finished grain oriented silicon steel sheet with low iron loss
JPS60131917A (en) Manufacture of silicon steel sheet
JPS621821A (en) Production of ultra-low iron loss grain oriented silicon steel sheet free from deterioration in characteristic even after stress relief annealing
JPS637333A (en) Production of low iron loss grain oriented electrical steel sheet having excellent glass film characteristic
US4326899A (en) Method of continuous annealing low-carbon electrical sheet steel and duplex product produced thereby
JPS61119620A (en) Annealing method of silicon steel strip by vertical continuous annealing furnace
JPH02301571A (en) Production of grain-oriented electrical steel sheet having uniform glassy coating film
JP2671084B2 (en) High magnetic flux density grain-oriented electrical steel sheet having excellent iron loss characteristics and method for producing the same
JP2647323B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JPH0733547B2 (en) Method of manufacturing bidirectional electrical steel sheet with high magnetic flux density
JPH0432127B2 (en)
JPS62151521A (en) Manufacture of low iron loss grain oriented electrical sheet superior in glass film characteristic
JPS61124525A (en) Manufacture of grain oriented silicon steel sheet having good electromagnetic characteristic
JPH08269554A (en) Production of mirror-finished grain-oriented silicon steel sheet reduced in iron loss
JPS61124526A (en) Manufacture of grain oriented silicon steel sheet having good electromagnetic characteristic
JPS613838A (en) Manufacture of electromagnetic steel sheet having small anisotropy
JP2560090B2 (en) Non-oriented electrical steel sheet manufacturing method
JP3392695B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely excellent iron loss characteristics
JPS61190021A (en) Manufacture of grain-oriented electrical steel sheet having satisfactory magnetism
JP2516441B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent ridging resistance
JPH01139721A (en) Manufacture of semiprocessing non-oriented magnetic steel sheet having low iron loss and high magnetic permeability
JP3300194B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
CN116949265A (en) Non-oriented silicon steel plate and preparation method thereof
JPH1046248A (en) Production of nonoriented magnetic steel sheet high in magnetic flux density and low in core loss