JPS61119620A - Annealing method of silicon steel strip by vertical continuous annealing furnace - Google Patents

Annealing method of silicon steel strip by vertical continuous annealing furnace

Info

Publication number
JPS61119620A
JPS61119620A JP23855584A JP23855584A JPS61119620A JP S61119620 A JPS61119620 A JP S61119620A JP 23855584 A JP23855584 A JP 23855584A JP 23855584 A JP23855584 A JP 23855584A JP S61119620 A JPS61119620 A JP S61119620A
Authority
JP
Japan
Prior art keywords
silicon steel
steel strip
hearth roll
thickness
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23855584A
Other languages
Japanese (ja)
Inventor
Hiroshi Shimizu
洋 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP23855584A priority Critical patent/JPS61119620A/en
Publication of JPS61119620A publication Critical patent/JPS61119620A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/562Details
    • C21D9/563Rolls; Drums; Roll arrangements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To make annealing treatment possible without deteriorating magnetic characteristic, by specifying the diameter of hearth roll, at annealing of a specified Si steel strip by vertical continuous annealing furnace. CONSTITUTION:Si steel cold rolled strip contg. 1-4wt% Si and having 0.15-0.6mm thickness is passed through vertical continuous annealing furnace, in which up-and-down revolution and shuttling are repeated by hearth roll, in reducing gas atmosphere of 760-950 deg.C, to perform decarbonization or recrystallization annealing. Thereat, hearth roll whose diameter DA(mm) satisfies a relation of DA>=1.6X10<3>.d according to thickness d(mm) of said steel strip, is used. By this method, disadvantageous deteriorating magnetism of products due to plastic deformation accompanying with bending along hearth roll can be eliminated.

Description

【発明の詳細な説明】 (産業上の利用分野) 変圧器や電動機などの鉄心材料として用いられるけい素
鋼板の製造には、複雑精緻な工程組合せが必要である。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The manufacture of silicon steel sheets used as core materials for transformers, electric motors, etc. requires a complex and precise combination of processes.

周知のようにけい素鋼は大きく分けて方向性けい素鋼板
と無方向性けい素鋼板とがあり、用途に応じて使い分け
られている。
As is well known, silicon steel can be broadly divided into oriented silicon steel sheets and non-oriented silicon steel sheets, which are used depending on the purpose.

方向性けい素鋼板を製造する場合には最終製品で強いゴ
ス方位の集積をもった2次再結晶粒を得るために熱間圧
延で鋼板表面に形成されたゴス方位を冷延工程中に消滅
させないように育てていく必要があり、また無方向性け
い素鋼板の製造工程においても理想的には(100) 
[:ovw 〕で表わされる面内無方向性が望ましいも
のの、ある程度ゴス方位を発達させることが有害な(1
11)面強度を減5らす上で有利と考えられている。
When producing grain-oriented silicon steel sheets, the Goss orientation formed on the steel sheet surface during hot rolling is eliminated during the cold rolling process in order to obtain secondary recrystallized grains with a strong accumulation of Goss orientation in the final product. Ideally, in the manufacturing process of non-oriented silicon steel sheets, (100)
Although in-plane non-direction represented by [:ovw] is desirable, it is harmful to develop Goss orientation to some extent (1
11) It is considered advantageous in reducing surface strength.

ところで近年、省エネや低コスト化に対する、要請はま
すます強く、けい素鋼板の連続焼鈍設備に対しても出来
る限り高速化して生産性を高めると同時に設備被検体を
低くすることが要求されている。
However, in recent years, there has been an increasingly strong demand for energy saving and cost reduction, and continuous annealing equipment for silicon steel sheets is required to be as fast as possible to increase productivity and at the same time to lower the equipment test object. .

しかしその一方で製品の鉄損低減のだ、めに、製品板厚
が薄くなる傾向にあり、そのため従来の設備では生産性
はさげざるをえない。
On the other hand, however, in order to reduce the iron loss of products, the thickness of the product plates tends to become thinner, and as a result, productivity with conventional equipment has to be reduced.

これを有利に解決するため、ハースロールよりコイルを
上下に転回して折返しを繰返す、いわゆる、たて型連続
焼鈍炉の使用を検討し、その適合を以下に述べるように
して成就した。一般冷延鋼板に対するたて型連続焼鈍炉
の適用はすでに特公昭4B−32249号や特開昭50
−43708号公報などでいくつかのタイプのものが報
告されている。
In order to advantageously solve this problem, we investigated the use of a so-called vertical continuous annealing furnace in which the coil is rotated up and down from a hearth roll and repeatedly folded, and its suitability was achieved as described below. The application of vertical continuous annealing furnaces to general cold-rolled steel sheets has already been reported in Japanese Patent Publication No. 4B-32249 and Japanese Patent Application Laid-open No. 50
Several types have been reported, such as in Publication No. -43708.

しかしながら4重量%に及ぶSiを含むけい素鋼板の連
続焼鈍にこの種のたて型連続焼鈍炉を適用した事例は、
これまでにはなく、その理由としてけい素鋼板は高温で
の熱間強度が弱く、折返しのためのハースロールの部分
で鋼板張力と自重のため塑性変形をおこし、これが最終
製品の磁気特性を劣化させるためであり、更にゴス方位
の結晶粒を含む、−次回結晶粒が形成、成長する昇温過
程で、鋼板表面層に加わる張力が大きすぎる場合、磁性
への悪影響が加わるためと推察される。
However, in the case where this type of vertical continuous annealing furnace was applied to continuous annealing of silicon steel sheets containing up to 4% by weight of Si,
This has never happened before, and the reason for this is that silicon steel sheets have poor hot strength at high temperatures, and plastic deformation occurs at the hearth roll section for folding due to the steel sheet tension and its own weight, which deteriorates the magnetic properties of the final product. This is thought to be because if the tension applied to the surface layer of the steel sheet is too large during the temperature rising process in which crystal grains containing Goss-oriented crystal grains form and grow, this may have an adverse effect on magnetism. .

(発明が解決しようとする問題点) けい素鋼板の磁気特性に及ぼすハースロール直径の影嘗
を種々の焼鈍条件において調べ、磁気特性を損なうこと
なく、たて型連続焼鈍炉にょるけい素鋼帯の適切な焼鈍
処理を可能とすることがこの発明の目的である。
(Problems to be Solved by the Invention) The influence of the hearth roll diameter on the magnetic properties of silicon steel sheets was investigated under various annealing conditions, and silicon steel sheets that could be processed in a vertical continuous annealing furnace without impairing the magnetic properties were investigated. It is an object of the invention to enable a suitable annealing treatment of the strip.

(問題点を解決するための手段) 上記の発明目的は次の各手順にて有利に達成できる。(Means for solving problems) The above objects of the invention can be advantageously achieved by the following steps.

1、 1〜4重量%のSiを含む、0.15〜0.6 
mm厚のけい素鋼冷延鋼帯を、760〜950 t:の
温度下に還元性ガス雰囲気中で、ハースロールにより上
下の転回折返しを繰返すたて型連続焼鈍炉に通板させる
、脱炭ないし再結晶焼鈍に際して、けい素鋼冷延鋼帯の
厚さに応じて下記式の関係を満たすハースロールを用い
ることを特徴とする、たて型連続焼鈍炉によるけい素鋼
帯の焼鈍方法。
1, 0.15-0.6 containing 1-4% by weight of Si
Decarburization is carried out by passing a cold-rolled silicon steel strip with a thickness of 760 mm to 950 t in a reducing gas atmosphere through a vertical continuous annealing furnace that repeatedly rotates up and down with hearth rolls. A method for annealing a silicon steel strip using a vertical continuous annealing furnace, which is characterized in that during recrystallization annealing, a hearth roll that satisfies the following formula depending on the thickness of the silicon steel cold rolled steel strip is used.

口え ≧1.6  XIO’   ・dDA: ハース
ロール直径(cm) d:けい素鋼冷延鋼帯の厚さ(mm) 2.1〜4重量%のSiを含む、0.15〜0.6市厚
のけい素鋼冷延鋼帯を、760〜950 ℃の温度下に
還元性ガス雰囲気中で、ハースロールにより上下の転回
折返しを繰返すたて型連続焼鈍炉に通板させる、脱炭な
いし再結晶焼鈍に際して、けい素鋼冷延鋼帯の厚みに応
じて下記式(1)の関係を満たすハースロールを用い、
かつこの通板に先立つ昇温過程中、500〜750 ℃
の温度域にて、けい素鋼冷延鋼帯のSi量、厚みおよび
温度に応じて下記式(2)の関係を満たすハースロール
を用いることを特徴とする、たで型連続焼鈍炉における
けい素鋼帯の焼鈍方法。
Mouth ≧1.6 A cold-rolled silicon steel strip of 6 city thickness is decarburized by passing it through a vertical continuous annealing furnace in which it is repeatedly turned up and down with hearth rolls in a reducing gas atmosphere at a temperature of 760 to 950 °C. or during recrystallization annealing, using a hearth roll that satisfies the relationship of the following formula (1) depending on the thickness of the silicon steel cold rolled steel strip,
During the temperature raising process prior to threading, the temperature was 500 to 750°C.
Silicon steel in a continuous annealing furnace characterized by using a hearth roll that satisfies the following formula (2) according to the Si content, thickness, and temperature of the silicon steel cold-rolled steel strip in the temperature range of Method of annealing raw steel strip.

記 DA ≧1.6  xto3 ・d  −−−−−(1
)0交 ≧(6XIO”  −1,1XIO”   −
1.1×102〔Si)  +1,4  4)XdDA
ニア60〜950 ℃域ハースロール直径(mm)D、
 +500〜750 ℃域ハース0− ル直径(mm)
d: けい素鋼冷延 鋼帯厚み(mm)〔Si):  けい集金有量(重量%
)T: けい素鋼冷 延鋼帯温度(℃)ハースロールの直径DA、D、を上記
のように決めることの有用性は以下の実験結果によって
確認された。
DA ≧1.6 xto3 ・d -----(1
)0 crossing ≧(6XIO"-1,1XIO" -
1.1×102 [Si) +1,4 4)XdDA
Near 60-950℃ range hearth roll diameter (mm) D,
+500~750℃ range hearth diameter (mm)
d: Silicon steel cold-rolled steel strip thickness (mm) [Si]: Silicon gold collection amount (weight%
)T: Silicon steel cold rolled steel strip temperature (°C) The usefulness of determining the hearth roll diameters DA and D as described above was confirmed by the following experimental results.

第1図は、3.10%Si を含有する0、30.m1
11厚および0.20mm厚の方向性けい素鋼用冷延鋼
帯をたて型連続焼鈍炉で800 ℃湿水素中・で脱炭焼
鈍する際に、鋼帯を炉中にて上下転回して、繰返し折り
返すためのハースロールの直径DAmmと鋼板厚さd 
mmO比0/d に対する最終製品の磁束密度(B、o
)  の変化をまとめて示している。D/d ≧1.6
  XIO’ において製品の磁束密度810 が1.
90量以上の高い値を示しているのが判る。
Figure 1 shows 0,30. m1
When decarburizing cold-rolled steel strips for grain-oriented silicon steel with a thickness of 11 and 0.20 mm in a vertical continuous annealing furnace at 800 °C in wet hydrogen, the steel strips were rotated up and down in the furnace. The diameter DAmm of the hearth roll for repeated folding and the steel plate thickness d
The magnetic flux density of the final product (B, o
) changes are summarized. D/d ≧1.6
At XIO', the magnetic flux density 810 of the product is 1.
It can be seen that it shows a high value of 90 or more.

次に昇温過程におけるハースロールの直径ORの影響を
調べるための実験としてSi3.4%を含有する0、2
0mm厚の方向性けい素鋼用冷延鋼帯をたて型連続焼鈍
炉にて800 ℃で脱炭・再結晶処理するに際し、昇温
途中において1次再結晶が進行する温度域500〜75
0 ℃の範囲で1分間保持する段階焼鈍を行い、この間
のハースロールの直径0. ヲいくつか変えて最#製品
の磁気特性とハースロール径の関係を調べた。なお、階
段焼鈍域以外のハースロールの直径DA は800 m
mであった。第2図はこの結果を示すもので8.、 l
、90量以上を示すハースロールの直径D11 は斜線
部の領域に相当し、昇温時の温度上昇とともに磁性を劣
化させない臨界半径が大きくなるのが明らかである。
Next, as an experiment to investigate the influence of the diameter OR of the hearth roll in the temperature rising process,
When decarburizing and recrystallizing a 0 mm thick cold-rolled steel strip for grain-oriented silicon steel at 800 °C in a vertical continuous annealing furnace, the temperature range is 500 to 75 where primary recrystallization progresses during heating.
Stage annealing is performed by holding the temperature in the range of 0°C for 1 minute, during which time the diameter of the hearth roll is reduced to 0. We investigated the relationship between the magnetic properties of the latest product and the hearth roll diameter by changing a few things. The diameter DA of the hearth roll other than the step annealing area is 800 m.
It was m. Figure 2 shows this result.8. , l
The diameter D11 of the hearth roll exhibiting an amount of 90 or more corresponds to the shaded area, and it is clear that the critical radius at which magnetism is not deteriorated increases as the temperature increases.

次に、昇温過程における適当なハースロールの直径り、
と81量との関係を求めるために行った実験例を示す。
Next, determine the appropriate hearth roll diameter during the temperature rising process,
An example of an experiment conducted to determine the relationship between

Si を2.51.2.90.3.20および3.44
重量%の4水準で含むOJOmm厚方向性けい素鋼用冷
延鋼帯をたて型連続焼鈍炉にて、ハースロールによって
上下の転回折り返しを繰返しつつ脱炭焼鈍するに際し、
−次再結晶の進行する昇温途中の600 ℃で1分間保
持し、このときハースロール径を種々変化させ、ひきつ
づき800 ℃3m1nの脱炭焼鈍を行った。600℃
保持に用いた以外のハースロールの直径DA は全て8
00 mmであった。
Si 2.51.2.90.3.20 and 3.44
When decarburizing cold-rolled steel strips for grain-oriented silicon steel containing OJOmm thickness at four levels of weight percent in a vertical continuous annealing furnace while repeating up and down turns with hearth rolls,
The temperature was maintained at 600° C. for 1 minute while the temperature was rising while recrystallization progressed, and the diameter of the hearth roll was varied at this time, followed by decarburization annealing at 800° C. for 3 ml. 600℃
The diameter DA of all hearth rolls other than those used for holding is 8.
00 mm.

第3図はこうして得られた最終製品の磁束密度(B、、
)  (7)ハースロールの直径0.の減少に伴う劣化
傾向をみるため、直径800 n++nのノ\−スロー
ルで600 ℃1m10保持を行った場合の610を)
i、準として、各Si量に対し、810 の差を示した
。B1゜の劣化度で表示したのはSi量による飽和磁束
密度の違いを考慮したものである。
Figure 3 shows the magnetic flux density (B,...
) (7) Hearth roll diameter 0. In order to see the tendency of deterioration due to the decrease of
i, a difference of 810 was shown for each amount of Si. The deterioration degree of B1° is expressed in consideration of the difference in saturation magnetic flux density depending on the amount of Si.

第3図にみられるように、Si量のアップに滓いLo 
劣化を示す臨界ロール径は小さくなる傾向があり、Lo
 を0.OIT 以上劣化させない条件として斜線部の
領域が与えられる。
As seen in Figure 3, as the amount of Si increases, Lo
The critical roll diameter that indicates deterioration tends to become smaller, and Lo
0. The shaded area is given as a condition to prevent deterioration beyond OIT.

第4図は昇温過程における/%−スロール径と電磁特性
の関係が鋼板厚さによってどのように変化するかを示し
たものである。Si3.20%を含む、厚さ0.1?、
 0.23.0.30.0.35 mmの方向性けい素
鋼用冷延鋼帯をだて型焼鈍炉にてハースロールによって
上下の転回折り返しを繰り返しつつ脱炭焼鈍するに際し
、−次再結晶の進行する昇温途中の600 ℃で1分間
保持し、このときのハースロール直径を種々変化させ、
ひきつづき800 ℃3m1n の脱炭焼鈍を行った。
FIG. 4 shows how the relationship between /%-throttle diameter and electromagnetic properties during the temperature rising process changes depending on the steel plate thickness. Contains 3.20% Si, thickness 0.1? ,
When a 0.23.0.30.0.35 mm grain-oriented cold-rolled steel strip for silicon steel is decarburized and annealed in a vertical annealing furnace by repeatedly turning and turning up and down using hearth rolls, The temperature was held at 600 °C for 1 minute while the temperature was rising while crystallization progressed, and the diameter of the hearth roll at this time was varied.
Subsequently, decarburization annealing was performed at 800° C. for 3 ml.

600 ℃保持に用いた以外のハースロールの直径DA
 は全て800 mmであ・った。第4図にみられるご
とく、板厚が薄いほど磁束密度が悪くなるハースロール
径が小さくなり、1.90量以上のB、。を満たす条件
として斜線部が求められる。
Diameter DA of hearth rolls other than those used to maintain 600 °C
were all 800 mm. As seen in FIG. 4, the thinner the plate thickness, the smaller the hearth roll diameter at which the magnetic flux density becomes worse, and the B of 1.90 or more. The shaded area is required as a condition that is satisfied.

ハースロール径が小さい場合におこる、これらの磁性劣
化はゴス方位の発達が昇温途中に鋼板表層部に加わった
ひずみによって損なわれたためと判断され、これらの図
より、磁性劣化を生じないハースロールの直径り、がS
i量、板温、板厚の関数として次式のように求められる
These magnetic deteriorations that occur when the hearth roll diameter is small are determined to be due to the development of the Goss orientation being impaired by the strain applied to the surface layer of the steel sheet during heating. The diameter is S
It is obtained as a function of i amount, plate temperature, and plate thickness as shown in the following equation.

0、≧[6X102−1.I  X102Si  +1
.4T)  xdこの発明を適用する素材は、Si1.
O〜4.0%を含有するけい素鋼である。Siの上限を
4.0%としているのは、加工性の面から定めたもので
、Si 1%未満では、ゴス方位形成に対するハースロ
ール径の影響をそれ程問題にしな(でよいからである。
0, ≧[6X102-1. I X102Si +1
.. 4T) xdThe material to which this invention is applied is Si1.
It is a silicon steel containing O~4.0%. The reason why the upper limit of Si is 4.0% is determined from the viewpoint of workability, and is because if Si is less than 1%, the influence of the hearth roll diameter on the formation of Goss orientation will not be a problem.

方向性けい素鋼の場合81の他にインヒビターとして知
られるS、 Se、 A R、B、 Sb、 Biなど
の元素が0.002〜0.lO%程度必要に応じ含まれ
る。
In the case of grain-oriented silicon steel, in addition to 81, elements such as S, Se, AR, B, Sb, and Bi, which are known as inhibitors, are present in the range of 0.002 to 0. Approximately 10% is included as necessary.

また無方向性けい素鋼においては通常Aj!、Mnが0
.010〜3%の範囲で含まれる。
Also, in non-oriented silicon steel, Aj! , Mn is 0
.. It is contained in the range of 0.010 to 3%.

これらの成分を含有するけい素鋼スラブでは公知の方法
によって熱間圧延で1.4〜3,0ml11厚の熱延鋼
帯に仕上げ、1回ないし中間焼鈍をはさむ2回の冷間圧
延によって0,15〜0.60mm厚の冷延鋼板に仕上
げる。
Silicon steel slabs containing these components are hot-rolled using a known method to form a hot-rolled steel strip with a thickness of 1.4 to 3.0 ml, and then cold-rolled once or twice with an intermediate annealing in between. , finished into a cold-rolled steel plate with a thickness of 15 to 0.60 mm.

この後無方向性けい素鋼においては再結晶と必要に応じ
脱炭を目的とした最終焼鈍が行われ、また、方向性けい
素鋼においては、脱炭焼鈍が行われるが、この発明の対
称となるのはこれらの焼鈍をたて型連続焼鈍炉によって
効率よく、しかも磁性を損なうことなく行うことにある
After this, in non-oriented silicon steel, final annealing is performed for the purpose of recrystallization and decarburization if necessary, and in grain-oriented silicon steel, decarburization annealing is performed. The reason for this is that these annealing operations can be carried out efficiently using a vertical continuous annealing furnace without impairing the magnetism.

(作  用) はじめに述べたように、方向性けい素鋼においては勿論
のこと、無方向性けい素鋼においてもある程度ゴス方位
を発達させることが最終製品の磁気特性を向上させる上
で重要であり、そのためにはたて型連続焼鈍炉で一定以
上の張力を特に、ゴス方位が発達しやすい鋼板表面近傍
に与えないことが大切である。
(Function) As stated in the introduction, it is important to develop the Goss orientation to some extent not only in grain-oriented silicon steel but also in non-grained silicon steel in order to improve the magnetic properties of the final product. For this purpose, it is important not to apply tension above a certain level in a vertical continuous annealing furnace, especially near the surface of the steel sheet where Goss orientation is likely to develop.

この発明のハースロール径の規制はゴス方位の発達にか
かわるけい素鋼特有の問題としであるもので、焼鈍温度
範囲は、一般に760〜950 ℃であることから、こ
の温度範囲におけるハースロール・の直径口えを板厚d
に対し、口、≧1.6  XIO’ dと定めた。
The regulation of the diameter of the hearth roll in this invention is due to the problem peculiar to silicon steel related to the development of Goss orientation, and since the annealing temperature range is generally 760 to 950 °C, Diameter opening to plate thickness d
In contrast, it was determined that ≧1.6 XIO'd.

また、ゴス方位の一次再結晶粒が形成される昇温途中の
温度域として500〜750 ℃の温度範囲で、この温
度域におけるへ〜スロールの直径Dimmが板厚da+
m、Si(%) 、板温T(t’)  に応じ口直≧(
6XlO”−1,I  X102Si  +1.47)
 xdの条件を満たすことが必要である。
In addition, in the temperature range of 500 to 750 °C during heating in which primary recrystallized grains with Goss orientation are formed, the diameter Dimm of the hex roll in this temperature range is equal to the plate thickness da +
m, Si (%), plate temperature T (t')
6XlO"-1, IX102Si +1.47)
It is necessary to satisfy the condition xd.

ここでけい素鋼冷延鋼帯にかかる張力は、転回ロールの
ところで特に大きくなることから上記のようにロール径
を規制しているが、たて型炉に入る前後の鋼板張力につ
いても通常のライン張力1.0kg/ mn+’以下、
望ましくは0.2〜0.6 kg/ mm2が適当であ
る。
The tension applied to the silicon steel cold-rolled steel strip is particularly large at the turning rolls, so the roll diameter is regulated as described above, but the tension of the steel strip before and after entering the vertical furnace is also within the normal range. Line tension 1.0kg/mn+' or less,
Desirably, 0.2 to 0.6 kg/mm2 is appropriate.

このようにして脱炭焼鈍された方向性けい素鋼冷延鋼帯
は、この後MgOの如き焼鈍分離剤を塗布して、2次再
結晶と純化のための高温ボックス焼鈍に供し、ついで上
塗りコーティングを施して最1% 5品に仕上げるのは
いうまでもない。
The grain-oriented silicon steel cold-rolled steel strip decarburized and annealed in this way is then coated with an annealing separator such as MgO, subjected to high-temperature box annealing for secondary recrystallization and purification, and then top coated. Needless to say, coating is applied to achieve a finish of up to 1% of the product.

(実施例) 実施例I C0,050%、Si 3JO%、Mn 0.080%
、5eO1025%:Sb O,030%を含有する方
向性けい素鋼スラブを熱間圧延によって2.5mm厚の
熱延板とし、次いで75%の1次冷間圧延によって0.
63mm厚の中間厚みとし、1000℃、1m1nの中
間焼鈍を施した後2法論間圧延で0.23mmの製品厚
とした。
(Example) Example I C0,050%, Si 3JO%, Mn 0.080%
A grain-oriented silicon steel slab containing 1025% of SbO, 5eO and 30% of SbO was hot-rolled into a hot-rolled sheet of 2.5 mm thickness, and then first cold-rolled to 75% to 0.0.
The intermediate thickness was 63 mm, and after intermediate annealing at 1000° C. and 1 ml, the product was rolled between two methods to give a product thickness of 0.23 mm.

この後脱炭焼鈍をたて型連続焼鈍炉を用いて800t、
5m1n 、露点50℃の湿水素雰囲気中で行うに際し
鋼板温度が500〜750 ℃にある加熱帯のハースロ
ール直径をDR1鋼板温度が760 ℃以上になる加熱
帯後半および均熱帯のハースロール径DA を表1のよ
うに変えて焼鈍した。脱炭焼鈍機分離剤としてMgOを
塗布した鋼板は840 ℃、30Hrの2次再結晶保定
処理を含む1200℃、5 Hr の高温ボックス焼鈍
を水素中で行い、張力コートを施して最終製品を得た。
After that, 800 tons of decarburization annealing was performed using a vertical continuous annealing furnace.
5m1n, when conducting in a wet hydrogen atmosphere with a dew point of 50°C, the diameter of the hearth roll in the heating zone where the steel plate temperature is 500 to 750°C is DR1. Annealing was performed with the changes shown in Table 1. Decarburization annealing The steel plate coated with MgO as a separator was subjected to high-temperature box annealing at 1200°C for 5 hours in hydrogen, including secondary recrystallization retention treatment at 840°C for 30 hours, and then tension coated to obtain the final product. Ta.

最終製品の磁気特性は表1のとおりであり、この発明の
条件を満足するものが、すぐれた磁気特性を示した。
The magnetic properties of the final product are shown in Table 1, and those that satisfied the conditions of this invention showed excellent magnetic properties.

表   1 C0,003%、Si 3.02%、Aj’0.4%、
Mn0.15%を含有する無方向性けい素鋼スラブを熱
間圧延によって2.Om+n厚の熱延板とし、900 
℃、5m1n のノ/L、?処理の後1回の冷間圧延で
0.50+nm厚の製品板厚とした。
Table 1 C0,003%, Si 3.02%, Aj'0.4%,
2. A non-oriented silicon steel slab containing 0.15% Mn was hot rolled. Hot-rolled plate with Om+n thickness, 900
°C, 5m1n no/L,? After the treatment, the product plate was cold rolled once to give a product thickness of 0.50+nm.

次いで再結晶焼鈍を、たて型連続焼鈍炉を用いて920
 ℃で5m1n間乾燥水累中で行うにあたり、鋼板温度
が500〜750 ℃にある間の加熱帯の/’%−スロ
ール直径をOR、鋼板温度が750 ℃以上になる加熱
帯後半および均熱帯のノ\−スロール直径DAを表2の
ように変えて焼鈍した、この後表面に絶縁コーティング
を施して得られた最終製品の磁気特性は表2のとおりで
あり、この発明の条件を満足するものですぐれた磁気特
性を示した。
Then, recrystallization annealing was performed using a vertical continuous annealing furnace at 920°C.
℃ for 5 ml of dry water, OR the /'%-throll diameter of the heating zone when the steel plate temperature is between 500 and 750 ℃, and the second half of the heating zone and the soaking zone when the steel plate temperature is 750 ℃ or higher. The magnetic properties of the final product obtained by annealing with the nozzle roll diameter DA changed as shown in Table 2 and then applying an insulating coating to the surface are shown in Table 2, which satisfies the conditions of this invention. It showed excellent magnetic properties.

(発明の効果) 第1発明によればけい素鋼板が高温における熱間強度上
、たて型連続焼鈍炉におけるノ1−スロールに沿う曲げ
に伴う塑性変形に由来して製品磁性を損・なう不利をな
くし、また第2発明ではさらにゴス方位の結晶粒を含む
一次再結晶粒の形成成長がもたらされる昇温過程での過
大張力によって磁性が劣化するうれいを除いて、上記連
続焼鈍炉における、脱炭ないしは再結晶のための焼鈍処
理を、極めて高い生産能率の下で実現することが可能と
なる。
(Effects of the Invention) According to the first invention, silicon steel sheets do not lose product magnetism due to plastic deformation due to bending along the nozzle roll in a vertical continuous annealing furnace due to hot strength at high temperatures. In addition, in the second invention, the continuous annealing furnace described above has the advantage that the magnetism deteriorates due to excessive tension during the temperature rising process, which results in the formation and growth of primary recrystallized grains including Goss-oriented crystal grains. It becomes possible to realize the annealing treatment for decarburization or recrystallization at extremely high production efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は方向性けい素鋼板をたて型連続焼鈍炉で脱炭焼
鈍する際のハースロール直径DA(mm)と鋼板厚d 
mmの比D/d の変化に対し最終製品の磁束密度B 
、 Q (T)の関係を示した図表、第2図は方向性け
い素鋼板をたて片連続焼鈍炉で脱炭焼鈍する際の昇温過
程において鋼板温度が500〜700 ℃におけるハー
スロール直径DII(mm)と最終製品の磁束密度B 
、 0 (T)の関係を示した図表、第3図は方向性け
い素鋼板をたて型連続焼鈍炉子を示す図表である。 l     2   3   4 DA/d(XlOす 1度(t) S、(%) 第4図 015  0.20   0.25   0.30  
 0.35R厚d伽9n)
Figure 1 shows the hearth roll diameter DA (mm) and steel plate thickness d when grain-oriented silicon steel plate is decarburized and annealed in a vertical continuous annealing furnace.
The magnetic flux density B of the final product varies with the change in the ratio D/d of mm.
, Q (T). Figure 2 shows the hearth roll diameter when the steel plate temperature is 500 to 700 °C during the temperature increase process when decarburizing a grain-oriented silicon steel plate in a vertical piece continuous annealing furnace. DII (mm) and magnetic flux density B of the final product
, 0 (T), and FIG. 3 is a diagram showing a vertical continuous annealing furnace for grain-oriented silicon steel sheets. l 2 3 4 DA/d (XlO 1 degree (t) S, (%) Fig. 4015 0.20 0.25 0.30
0.35R thickness d9n)

Claims (1)

【特許請求の範囲】 1、1〜4重量%のSiを含む、0.15〜0.6mm
厚のけい素鋼冷延鋼帯を、760〜950℃の温度下に
還元性ガス雰囲気中で、ハースロールにより上下の転回
折返しを繰返すたて型連続焼鈍炉に通板させる、脱炭な
いし再結晶焼鈍に際して、けい素鋼冷延鋼帯の厚さに応
じて下記式の関係を満たすハースロールを用いることを
特徴とする、たて型連続焼鈍炉によるけい素鋼帯の焼鈍
方法。 記 D_A≧1.6×10^3・d D_A:ハースロール直径(mm) d:けい素鋼冷延鋼帯の厚さ(mm) 2、1〜4重量%のSiを含む、0.15〜0.6mm
厚のけい素鋼冷延鋼帯を、760〜950℃の温度下に
還元性ガス雰囲気中で、ハースロールにより上下の転回
折返しを繰返すたて型連続焼鈍炉に通板させる、脱炭な
いし再結晶焼鈍に際して、 けい素鋼冷延鋼帯の厚みに応じて下記式(1)の関係を
満たすハースロールを用い、かつこの通板に先立つ昇温
過程中、500〜750℃の温度域にて、けい素鋼冷延
鋼帯のSi量、厚みおよび温度に応じて下記式(2)の
関係を満たすハースロールを用いることを特徴とする、
たて型連続焼鈍炉におけるけい素鋼帯の焼鈍方法 記 D_A≧1.6×10^3・d−−−(1)D_R≧(
6×10^2−1.1×10^2〔Si〕+1.4・T
)×d−−−(2)D_A:760〜950℃域ハース
ロール直径(mm)D_R:500〜750℃域ハース
ロール直径(mm)d:けい素鋼冷延鋼帯厚み(mm) 〔Si〕:けい素含有量(重量%) T:けい素鋼冷延鋼帯温度(℃)
[Claims] 1.0.15 to 0.6 mm containing 1 to 4% by weight of Si
A thick cold-rolled silicon steel strip is passed through a vertical continuous annealing furnace in which it is repeatedly turned up and down with hearth rolls in a reducing gas atmosphere at a temperature of 760 to 950°C for decarburization or re-rolling. A method for annealing a silicon steel strip using a vertical continuous annealing furnace, which is characterized in that during crystal annealing, a hearth roll that satisfies the following formula depending on the thickness of the silicon steel cold rolled steel strip is used. D_A≧1.6×10^3・d D_A: Hearth roll diameter (mm) d: Thickness of silicon steel cold-rolled steel strip (mm) 2. Contains 1 to 4% by weight of Si, 0.15 ~0.6mm
A thick cold-rolled silicon steel strip is passed through a vertical continuous annealing furnace in which it is repeatedly turned up and down with hearth rolls in a reducing gas atmosphere at a temperature of 760 to 950°C for decarburization or re-rolling. During crystal annealing, a hearth roll that satisfies the following formula (1) according to the thickness of the silicon steel cold-rolled steel strip is used, and during the temperature raising process prior to threading, in the temperature range of 500 to 750 ° C. , characterized by using a hearth roll that satisfies the relationship of the following formula (2) depending on the Si amount, thickness and temperature of the silicon steel cold rolled steel strip,
Method for annealing silicon steel strip in a vertical continuous annealing furnace
6×10^2-1.1×10^2 [Si]+1.4・T
) × d---(2) D_A: Diameter of hearth roll in 760-950°C range (mm) D_R: Diameter of hearth roll in 500-750°C range (mm) d: Thickness of silicon steel cold-rolled steel strip (mm) [Si ]: Silicon content (weight%) T: Silicon steel cold-rolled steel strip temperature (°C)
JP23855584A 1984-11-14 1984-11-14 Annealing method of silicon steel strip by vertical continuous annealing furnace Pending JPS61119620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23855584A JPS61119620A (en) 1984-11-14 1984-11-14 Annealing method of silicon steel strip by vertical continuous annealing furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23855584A JPS61119620A (en) 1984-11-14 1984-11-14 Annealing method of silicon steel strip by vertical continuous annealing furnace

Publications (1)

Publication Number Publication Date
JPS61119620A true JPS61119620A (en) 1986-06-06

Family

ID=17031981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23855584A Pending JPS61119620A (en) 1984-11-14 1984-11-14 Annealing method of silicon steel strip by vertical continuous annealing furnace

Country Status (1)

Country Link
JP (1) JPS61119620A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01234525A (en) * 1988-03-11 1989-09-19 Nkk Corp Continuous annealing method for non-oriented silicon steel sheet
JPH01234524A (en) * 1988-03-11 1989-09-19 Nkk Corp Continuous annealing method for non-oriented silicon steel sheet
JP2009185357A (en) * 2008-02-07 2009-08-20 Jfe Steel Corp Non-oriented electrical steel sheet, and method for producing the same
CN103468922A (en) * 2012-06-06 2013-12-25 上海梅山钢铁股份有限公司 Control method for preventing thermal buckling of annealing furnace strip steel
CN112301192A (en) * 2020-10-13 2021-02-02 安阳钢铁股份有限公司 Vertical annealing process of low-carbon-content cold-rolled non-oriented silicon steel galvanizing unit
WO2022036382A1 (en) * 2020-08-20 2022-02-24 Nntech Gmbh Method for producing an electric strip

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01234525A (en) * 1988-03-11 1989-09-19 Nkk Corp Continuous annealing method for non-oriented silicon steel sheet
JPH01234524A (en) * 1988-03-11 1989-09-19 Nkk Corp Continuous annealing method for non-oriented silicon steel sheet
JP2009185357A (en) * 2008-02-07 2009-08-20 Jfe Steel Corp Non-oriented electrical steel sheet, and method for producing the same
CN103468922A (en) * 2012-06-06 2013-12-25 上海梅山钢铁股份有限公司 Control method for preventing thermal buckling of annealing furnace strip steel
WO2022036382A1 (en) * 2020-08-20 2022-02-24 Nntech Gmbh Method for producing an electric strip
AT524148A1 (en) * 2020-08-20 2022-03-15 Nntech Gmbh Process for manufacturing an electrical strip
AT524148B1 (en) * 2020-08-20 2022-08-15 Nntech Gmbh Process for manufacturing an electrical strip
CN112301192A (en) * 2020-10-13 2021-02-02 安阳钢铁股份有限公司 Vertical annealing process of low-carbon-content cold-rolled non-oriented silicon steel galvanizing unit

Similar Documents

Publication Publication Date Title
US5139582A (en) Method of manufacturing an oriented silicon steel sheet having improved magnetic characeristics
US5190597A (en) Process for producing grain-oriented electrical steel sheet having improved magnetic and surface film properties
JPS61119620A (en) Annealing method of silicon steel strip by vertical continuous annealing furnace
JP5920387B2 (en) Method for producing grain-oriented electrical steel sheet
JPS6311406B2 (en)
CN108431244B (en) Oriented electrical steel sheet and method for manufacturing the same
KR100430601B1 (en) Method f0r manufacturing a grain-oriented electrical steel sheet with high magnetic flux density
JPH0317892B2 (en)
JPS58107417A (en) Method of making unidirectional silicon steel sheet excellent in iron loss
JPH09287025A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JP2001192732A (en) Cold rolling method for obtaining grain oriented silicon steel sheet excellent in magnetic property
JPH02259016A (en) Production of grain-oriented silicon steel sheet free from surface blister defect
JP2002363646A (en) Method for producing specular grain oriented silicon steel sheet having no need of decarburizing annealing
JPH04350124A (en) Production of grain-oriented silicon steel sheet reduced in thickness
JP2023116341A (en) Production method of electromagnetic steel sheet
JPS61190021A (en) Manufacture of grain-oriented electrical steel sheet having satisfactory magnetism
JPS62180015A (en) Manufacture of grain oriented thin electrical sheet having low iron loss and high magnetic flux density
JP2023155059A (en) Production method of grain-oriented electromagnetic steel sheet
JPS61124526A (en) Manufacture of grain oriented silicon steel sheet having good electromagnetic characteristic
JP2000345305A (en) High magnetic flux density grain oriented silicon steel sheet excellent in high magnetic field core loss and its production
JPS6315967B2 (en)
CN117355622A (en) Method for producing oriented electrical steel sheet
KR960003900B1 (en) Process for the production of oriented electrical steel sheet having excellent magnetic properties
JPH04289121A (en) Production of thin grain-oriented silicon steel sheet having stable magnetic property
JPH10110217A (en) Production of grain oriented silicon steel sheet