JPH07118750A - Production of mirror finished grain oriented silicon steel sheet with low iron loss - Google Patents

Production of mirror finished grain oriented silicon steel sheet with low iron loss

Info

Publication number
JPH07118750A
JPH07118750A JP5267547A JP26754793A JPH07118750A JP H07118750 A JPH07118750 A JP H07118750A JP 5267547 A JP5267547 A JP 5267547A JP 26754793 A JP26754793 A JP 26754793A JP H07118750 A JPH07118750 A JP H07118750A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
mirror
iron loss
sheets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5267547A
Other languages
Japanese (ja)
Other versions
JP2679944B2 (en
Inventor
Yoshiyuki Ushigami
義行 牛神
Hiroyasu Fujii
浩康 藤井
Shuichi Yamazaki
修一 山崎
Takeo Nagashima
武雄 長島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5267547A priority Critical patent/JP2679944B2/en
Publication of JPH07118750A publication Critical patent/JPH07118750A/en
Application granted granted Critical
Publication of JP2679944B2 publication Critical patent/JP2679944B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • H01F1/14783Fe-Si based alloys in the form of sheets with insulating coating

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To obviate the necessity of an acid pickling stage for removing an oxide layer from a decarburized sheet and to obtain the silicon steel sheet at a low cost by using alumina as a separation agent at annealing at the time of laminating steel sheets, limiting the degree of oxidation at the time of decarburizing annealing, and controlling a surface oxide layer. CONSTITUTION:A steel, having a composition consisting of, by weight, 0.8-4.8% Si, 0.012-0.05% acid soluble Al, <=0.01% N, and the balance Fe, is refined. This silicon steel is cold-rolled to the final sheet thickness, followed by decarburizing annealing and nitrogen enriching treatment. Then, alumina is used as a separation agent at annealing, between sheets at the time of laminating the steel sheets, to form the surface after finish annealing into mirror finished state. In this manufacturing method, decarburizing annealing is clone in an atmosphere of wet hydrogen, etc., not forming Fe oxides.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は主として変圧器その他の
電気機器等の鉄心として利用される一方向性珪素鋼板の
製造方法に関するものである。特に、その表面を効果的
に仕上げることにより、鉄損特性の向上を図ろうとする
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a unidirectional silicon steel sheet mainly used as an iron core of a transformer or other electric equipment. In particular, it is intended to improve the iron loss characteristics by effectively finishing the surface.

【0002】[0002]

【従来の技術】一方向性珪素鋼板は磁気鉄心として多く
の電気機器に用いられている。一方向性珪素鋼板は、S
iを0.8〜4.8%含有し製品の結晶粒の方位を{1
10}〈001〉方位に高度に集積させた鋼板である。
その磁気特性として磁束密度が高く(B8 値で代表され
る)、鉄損が低い(W17/50 値で代表される)ことが要
求される。特に、最近では省エネルギーの見地から電力
損失の低減に対する要求が高まっている。この要求に応
え、一方向性珪素鋼板の鉄損を低減させる手段として、
磁区を細分化する技術が開発された。
2. Description of the Related Art Unidirectional silicon steel sheets are used as magnetic cores in many electric devices. Unidirectional silicon steel sheet is S
The crystal grain orientation of the product is {1
10} <001> orientation is a highly integrated steel sheet.
The magnetic properties are required to have a high magnetic flux density (represented by a B 8 value) and low iron loss (represented by a W 17/50 value). In particular, recently, there is an increasing demand for reduction of power loss from the viewpoint of energy saving. As a means for responding to this demand and reducing the iron loss of the unidirectional silicon steel sheet,
A technique for subdividing magnetic domains has been developed.

【0003】積み鉄心の場合、仕上げ焼鈍後の鋼板にレ
ーザービームを照射して局部的な微少歪を与えることに
より磁区を細分化して鉄損を低減させる方法が、例えば
特開昭58−26405号公報に開示されている。又、
巻き鉄心の場合には、鉄心に加工した後、歪取り焼鈍
(Stress Release Annealing:応力除去焼鈍)を施して
も磁区細分化効果の消失しない方法も、例えば特開昭6
2−8617号公報に開示されている。これらの技術的
手段により磁区を細分化することにより鉄損は大きく低
減されるようになってきている。しかしながら、これら
の磁区の動きを観察すると動かない磁区も存在している
ことが分かり、方向性電磁鋼板の鉄損値を更に低減させ
るためには、磁区細分化と合わせて磁区の動きを阻害す
る鋼板表面のグラス皮膜からのピン止め効果をなくすこ
とが重要であることが分かった。
In the case of a laminated iron core, a method of irradiating a steel sheet after finish annealing with a laser beam to give a local minute strain to subdivide a magnetic domain to reduce iron loss is disclosed in, for example, JP-A-58-26405. It is disclosed in the official gazette. or,
In the case of a wound iron core, a method in which the magnetic domain refinement effect does not disappear even after stress relief annealing (Stress Release Annealing) after processing the iron core is disclosed in, for example, Japanese Patent Laid-Open No.
No. 2-8617. By subdividing the magnetic domains by these technical means, iron loss has been greatly reduced. However, observing the movement of these magnetic domains reveals that some magnetic domains do not move, and in order to further reduce the iron loss value of the grain-oriented electrical steel sheet, the movement of the magnetic domains is obstructed together with the magnetic domain subdivision. It was found that it is important to eliminate the pinning effect from the glass film on the steel plate surface.

【0004】そのためには、磁区の動きを阻害する鋼板
表面のグラス皮膜を形成させないことが有効である。そ
の手段として、焼鈍分離剤として粗大高純アルミナを用
いることによりグラス皮膜を形成させない方法が、例え
ばU.S.Patent3785882に開示されてい
る。しかしながらこの方法では表面直下の介在物をなく
すことができず、鉄損の向上代はW15/60 で高々2%に
過ぎない。
For that purpose, it is effective not to form a glass film on the surface of the steel sheet which hinders the movement of magnetic domains. As a means for this, a method of forming a glass film by using coarse and highly pure alumina as an annealing separator is disclosed in U.S. Pat. S. Patent 3785882. However, with this method, it is not possible to eliminate inclusions just below the surface, and the improvement margin of iron loss is W 15/60 of only 2% at most.

【0005】この表面直下の介在物を制御し、かつ表面
の鏡面化を達成する方法として、仕上げ焼鈍後に化学研
磨或いは電解研磨を行う方法が、例えば特開昭64−8
3620号公報に開示されている。しかしながら、化学
研磨・電解研磨等の方法は、研究室レベルでの少試料の
材料を加工することは可能であるが、工業的規模で行う
には薬液の濃度管理、温度管理、公害設備の付与等の点
で大きな問題があり、いまだ実用化されるに至っていな
い。この問題点を解消する方策として、本発明者等は脱
炭焼鈍板の酸化層を酸洗等により除去し、焼鈍分離剤と
してシリカと反応しない物質を用いることが有効である
ことを開示している(例えば特願平5−43810
号)。
As a method of controlling the inclusions just below the surface and achieving a mirror surface of the surface, a method of performing chemical polishing or electrolytic polishing after finish annealing is disclosed in, for example, Japanese Patent Laid-Open No. 64-8.
It is disclosed in Japanese Patent No. 3620. However, chemical polishing, electrolytic polishing, etc. can process a small amount of material at the laboratory level, but for industrial scale processing, chemical concentration control, temperature control, and provision of pollution equipment are required. There is a big problem in terms of such things, and it has not yet been put to practical use. As a measure to solve this problem, the present inventors have disclosed that it is effective to remove the oxide layer of the decarburized annealed plate by pickling or the like, and use a substance that does not react with silica as an annealing separator. (For example, Japanese Patent Application No. 5-43810)
issue).

【0006】[0006]

【発明が解決しようとする課題】しかしながら、脱炭焼
鈍後に酸洗を行う場合に仕上げ焼鈍後に酸洗・化学研磨
を行う工程に対しては技術的には容易なものであるが、
従来工程に対しては酸洗工程を付加するので、コストア
ップしてしまう。そこで、本発明の目的はコストダウン
できる製造法、具体的には酸洗工程を解消する方策を開
示することである。
However, when pickling is performed after decarburization annealing, the steps of performing pickling and chemical polishing after finish annealing are technically easy.
Since the pickling process is added to the conventional process, the cost increases. Therefore, an object of the present invention is to disclose a manufacturing method capable of reducing the cost, specifically, a measure for eliminating the pickling step.

【0007】[0007]

【課題を解決するための手段】本発明者等は、上記課題
を解決するために種々の実験を行い脱炭焼鈍の露点を制
御し、脱炭焼鈍時に形成される酸化層においてFe系酸
化物(Fe2 SiO4,FeO等)を形成させないこと
により脱炭板の酸洗等による酸化層を除去する工程を省
略できることを見出した。
Means for Solving the Problems The present inventors have conducted various experiments in order to solve the above problems by controlling the dew point of decarburization annealing so that the Fe-based oxide is formed in the oxide layer formed during decarburization annealing. It was found that the step of removing the oxide layer by pickling the decarburized plate can be omitted by not forming (Fe 2 SiO 4 , FeO, etc.).

【0008】以下、詳細に説明する。本発明者等は、脱
炭板の酸化層を除去しない場合に形成される介在物を調
査し、図3に示すようにこれらの介在物がAl−Si−
Feの酸化物であることを見出した。Al−Si−Fe
の酸化物の三元系状態図をみると図4に示すように融点
1150℃以下の領域が存在する。従って、Fe系の酸
化物が存在することにより脱炭焼鈍で形成される酸化層
の主成分であるSiO2 と焼鈍分離剤として塗布したA
2 3 の反応が促進され表面下に磁区の移動を阻害す
る介在物(Al−Si−Fe酸化物)が形成されたもの
と推定された。
The details will be described below. The present inventors investigated the inclusions formed when the oxide layer of the decarburized plate was not removed, and as shown in FIG. 3, these inclusions showed Al-Si-
It was found to be an oxide of Fe. Al-Si-Fe
As shown in FIG. 4, the ternary phase diagram of the oxide has a region having a melting point of 1150 ° C. or lower. Therefore, due to the presence of the Fe-based oxide, SiO 2 which is the main component of the oxide layer formed by decarburization annealing and A applied as the annealing separator.
inclusions reaction to inhibit the movement of the magnetic domains in the subsurface is promoted in l 2 O 3 (Al-Si -Fe oxide) is estimated to have been formed.

【0009】そこで、脱炭焼鈍時の露点を変更し形成さ
れる酸化物を変え、実験を行った。重量で、Si:3.
3%、Mn:0.14%、C:0.05%、S:0.0
07%、酸可溶性Al:0.028%、N:0.008
%の珪素鋼スラブを1150℃で加熱した後、板厚1.
6mmに熱延した。この熱延板を1100℃で2分間焼鈍
した後最終板厚0.15mmに冷延した。この冷延板を湿
潤ガス中で脱炭を兼ね830℃で70秒焼鈍し一次再結
晶させた。脱炭焼鈍の雰囲気ガス露点は酸化度(P H2
O /P H2 )として(1)0.016、(2)0.0
6、(3)0.105、(4)0.185、(5)0.
327の条件で焼鈍を行った。形成される酸化物は後で
実証されるように、条件(1)〜(3)では、Si
2 、条件(4),(5)ではSiO2 とFe2 SiO
4である。
Therefore, an experiment was carried out by changing the dew point during decarburization annealing to change the oxide formed. By weight, Si: 3.
3%, Mn: 0.14%, C: 0.05%, S: 0.0
07%, acid-soluble Al: 0.028%, N: 0.008
% Silicon steel slab after heating at 1150 ° C.
Hot rolled to 6 mm. The hot rolled sheet was annealed at 1100 ° C. for 2 minutes and then cold rolled to a final sheet thickness of 0.15 mm. This cold-rolled sheet was annealed at 830 ° C. for 70 seconds in wet gas for decarburization to perform primary recrystallization. The atmosphere gas dew point of decarburization annealing is the degree of oxidation (PH 2
O / P H 2 ) as (1) 0.016, (2) 0.0
6, (3) 0.105, (4) 0.185, (5) 0.
Annealing was performed under the condition of 327. As will be demonstrated later, the oxide formed forms Si under the conditions (1) to (3).
O 2 , under the conditions (4) and (5) SiO 2 and Fe 2 SiO
Is 4 .

【0010】その後、アンモニア窒化により窒素量を
0.02%まで高めインヒビターを強化した。この脱炭
焼鈍板にアルミナを主成分とする焼鈍分離剤を水スラリ
ー状で塗布した後、仕上げ焼鈍を施した。仕上げ焼鈍は
1200℃まではN2 :100%の雰囲気ガス中で15
℃/hrの昇温速度で行い、1200℃でH2 :100%
に切り替え20時間純化焼鈍を行った。
After that, the amount of nitrogen was increased to 0.02% by ammonia nitriding to strengthen the inhibitor. This decarburized annealed plate was applied with an annealing separator containing alumina as a main component in the form of a water slurry, and then subjected to finish annealing. Finish annealing is performed up to 1200 ° C. in an atmosphere gas of N 2 : 100% for 15
Performed at a temperature rising rate of ℃ / hr, H 2 at 1200 ℃: 100%
After that, purification annealing was performed for 20 hours.

【0011】これらの試料について、張力コーティング
処理とレーザー照射による磁区細分化処理を行った後の
磁気特性を図1に示す。これらの脱炭焼鈍後の表面酸化
物の組成を赤外反射スペクトルにより同定した。その結
果を図2に示す。これらの結果より、Fe系酸化物(F
2 SiO4 )が生成しない酸化度域(実験条件(1)
〜(3))で介在物が生成せず、良好な鉄損値を得るこ
とができることが分かる。
FIG. 1 shows the magnetic properties of these samples after the tension coating treatment and the magnetic domain refinement treatment by laser irradiation. The composition of these surface oxides after decarburization annealing was identified by infrared reflection spectrum. The result is shown in FIG. From these results, Fe-based oxide (F
e 2 SiO 4 ) is not generated in the oxidation range (Experimental condition (1)
It is understood that in (3)), inclusions are not generated and a good iron loss value can be obtained.

【0012】以下、実施形態を説明する。基本的な製造
法としては、田口・坂倉等によるAlNとMnSを主イ
ンヒビターとして用いる製造法(例えば特公昭40−1
5644号)、又は小松等による(Al,Si)Nを主
インヒビターとして用いる製造法(例えば特公昭62−
45285号)を適用すればよい。Siは電気抵抗を高
め、鉄損を下げる上で重要な元素である。含有量が4.
8%を超えると冷間圧延時に材料が割れ易くなり、圧延
不可能となる。一方、Si量を下げると仕上げ焼鈍時に
α→γ変態を生じ、結晶の方向性が損なわれるので、実
質的に結晶の方向性に影響を及ぼさない0.8%を下限
とする。
Embodiments will be described below. As a basic manufacturing method, a manufacturing method using AlN and MnS as a main inhibitor by Taguchi, Sakakura et al.
5644), or a production method using (Al, Si) N as a main inhibitor by Komatsu et al.
No. 45285) may be applied. Si is an important element for increasing electric resistance and reducing iron loss. Content is 4.
If it exceeds 8%, the material tends to crack during cold rolling, making rolling impossible. On the other hand, if the amount of Si is reduced, α → γ transformation occurs during finish annealing, and the crystal orientation is impaired. Therefore, the lower limit is 0.8%, which does not substantially affect the crystal orientation.

【0013】酸可溶性AlはNと結合してAlN又は
(Al,Si)Nとしてインヒビターとして機能するた
めに必須の元素である。磁束密度が高くなる0.012
〜0.050%を限定範囲とする。Nは製鋼時に0.0
1%以上添加するとブリスターと呼ばれる鋼板中の空孔
を生じるので0.01%を上限とする。他のインヒビタ
ー構成元素として、B,Bi,Se,Pb,Sn,Ti
等を添加することもできる。
Acid-soluble Al is an essential element for binding N and functioning as AlN or (Al, Si) N as an inhibitor. Higher magnetic flux density 0.012
˜0.050% is the limited range. N is 0.0 during steelmaking
If 1% or more is added, voids in the steel sheet called blister are generated, so 0.01% is made the upper limit. As other inhibitor constituent elements, B, Bi, Se, Pb, Sn, Ti
Etc. can also be added.

【0014】上記成分の溶鋼は、通常の工程により熱延
板とされるか、もしくは溶鋼を連続鋳造して薄帯とす
る。前記熱延板又は連続鋳造薄帯は直ちに、もしくは短
時間焼鈍を経て冷間圧延される。上記焼鈍は750〜1
200℃の温度域で30秒〜30分間行われ、この焼鈍
は製品の磁気特性を高めるために有効である。望む製品
の特性レベルとコストを勘案して採否を決めるとよい。
冷間圧延は、基本的には特公昭40−15644号公報
に開示されているように最終冷延圧下率80%以上とす
ればよい。
The molten steel having the above components is formed into a hot-rolled sheet by a usual process, or the molten steel is continuously cast into a ribbon. The hot-rolled sheet or the continuously cast strip is cold-rolled immediately or after a short time annealing. The above annealing is 750 to 1
The annealing is performed in the temperature range of 200 ° C. for 30 seconds to 30 minutes, and this annealing is effective to enhance the magnetic properties of the product. It is advisable to decide whether to accept or reject the product considering the characteristic level and cost of the desired product.
The cold rolling may be basically carried out at a final cold rolling reduction of 80% or more as disclosed in Japanese Patent Publication No. 40-15644.

【0015】冷間圧延後の材料は、鋼中に含まれる炭素
を除去するために湿水素雰囲気中で、750〜900℃
の温度域で脱炭焼鈍を行う。この脱炭焼鈍において、F
e系の酸化物(Fe2 SiO4 ,FeO等)を形成させ
ない酸化度で焼鈍を行うことが本発明のポイントであ
る。例えば、通常脱炭焼鈍が行われる800〜850℃
の温度域においては、雰囲気ガスの酸化度(P H2 O /
P H2 )<0.15に調整することにより、Fe系酸化
物の生成を抑制することができる。但し、あまりに酸化
度を下げると脱炭速度が遅くなってしまう。この両者を
勘案すると、この温度域においては雰囲気ガスの酸化度
(P H2 O /P H2 ):0.01〜0.15の範囲が好
ましい。
The material after cold rolling is 750 to 900 ° C. in a wet hydrogen atmosphere in order to remove carbon contained in steel.
Decarburization annealing is performed in the temperature range of. In this decarburization annealing, F
The point of the present invention is to perform annealing at an oxidation degree that does not form an e-based oxide (Fe 2 SiO 4 , FeO, etc.). For example, 800 to 850 ° C. where decarburization annealing is usually performed
In the temperature range of, the degree of oxidation of the atmospheric gas (P H 2 O /
By adjusting P H 2 ) <0.15, generation of Fe-based oxide can be suppressed. However, if the degree of oxidation is lowered too much, the decarburization rate will become slow. Considering both of them, in this temperature range, the degree of oxidation of the atmospheric gas (PH 2 O / PH 2 ): 0.01 to 0.15 is preferable.

【0016】この脱炭焼鈍板に(Al,Si)Nを主イ
ンヒビターとして用いる製造法(例えば特公昭62−4
5285)においては、窒化処理を施す。この窒化処理
の方法は特に限定するものではなく、アンモニア等の窒
化能のある雰囲気ガス中で行う方法等がある。量的には
0.005%以上、望ましくは全窒素量として鋼中のA
l当量以上窒化すればよい。これらの脱炭焼鈍板を積層
する際に、焼鈍分離剤としてアルミナを水スラリーもし
くは静電塗布法等によりドライ・コートする。この積層
した板を仕上げ焼鈍して、二次再結晶と窒化物の純化を
行う。二次再結晶を特開平2−258929に開示され
るように一定の温度で保持する等の手段により所定の温
度域で行うことは磁束密度を上げるうえで有効である。
二次再結晶完了後、窒化物の純化と表面の平滑化を行う
ために100%水素で1100℃以上の温度で焼鈍す
る。仕上げ焼鈍後、表面は既に平滑化されているので、
張力コーティング処理を行い、必要に応じてレーザー照
射等の磁区細分化処理を施せばよい。
A manufacturing method using (Al, Si) N as a main inhibitor for this decarburized annealed plate (see, for example, Japanese Patent Publication No. 62-4).
At 5285), a nitriding process is performed. The method of this nitriding treatment is not particularly limited, and there is a method of performing it in an atmosphere gas having a nitriding ability such as ammonia. Amount of 0.005% or more, preferably A in steel as total nitrogen content
It is sufficient to nitride at least 1 equivalent. When laminating these decarburized annealed plates, alumina is dry-coated as an annealing separator by a water slurry or an electrostatic coating method. This laminated plate is finish annealed to carry out secondary recrystallization and purification of nitride. It is effective to increase the magnetic flux density by carrying out the secondary recrystallization in a predetermined temperature range by means such as holding at a constant temperature as disclosed in JP-A-2-258929.
After completion of the secondary recrystallization, annealing is performed at a temperature of 1100 ° C. or higher with 100% hydrogen in order to purify the nitride and smooth the surface. After finish annealing, the surface is already smoothed,
Tension coating treatment may be performed, and if necessary, magnetic domain subdivision treatment such as laser irradiation may be performed.

【0017】[0017]

【実施例】【Example】

実施例1 重量で、Si:3.3%、Mn:0.1%、C:0.0
5%、S:0.007%、酸可溶性Al:0.03%、
N:0.008%、Sn:0.05%の板厚1.8mm珪
素鋼熱延板を酸洗後1.4mmに冷延した。次いで、11
00℃で2分間焼鈍した後最終板厚0.14mmに冷延し
た。この冷延板を窒素と水素の混合ガス中において酸化
度(1)0.005、(2)0.06、(3)0.44
で830℃の温度で70秒焼鈍し一次再結晶させた。次
いでアンモニア雰囲気中で焼鈍することにより、窒素量
を0.025%に増加して、インヒビターの強化を行っ
た。これらの鋼板をその後、一部は(1)アルミナ(A
2 3 )を、一部は(2)従来のようにマグネシア
(MgO)を水スラリーで塗布した後、仕上げ焼鈍を施
した。
Example 1 By weight, Si: 3.3%, Mn: 0.1%, C: 0.0
5%, S: 0.007%, acid-soluble Al: 0.03%,
A 1.8 mm thick silicon steel hot-rolled steel sheet having N: 0.008% and Sn: 0.05% was pickled and cold-rolled to 1.4 mm. Then 11
After annealing at 00 ° C for 2 minutes, the product was cold-rolled to a final plate thickness of 0.14 mm. The cold-rolled sheet was subjected to a mixed gas of nitrogen and hydrogen in an oxidation degree of (1) 0.005, (2) 0.06, (3) 0.44.
At 830 ° C. for 70 seconds for primary recrystallization. Then, by annealing in an ammonia atmosphere, the amount of nitrogen was increased to 0.025% to strengthen the inhibitor. Some of these steel plates were then (1) Alumina (A
The l 2 O 3), after some of the magnesia (MgO) as in (2) prior to coating with water slurry was subjected to a finish annealing.

【0018】仕上げ焼鈍は1200℃まではN2 :10
0%の雰囲気ガス中で10℃/hrの昇温速度で行い、1
200℃でH2 :100%に切り替え20時間焼鈍を行
った。これらの試料を張力コーティング処理を施した
後、レーザー照射して磁区細分化した。得られた製品の
磁気特性を表1に示す。酸化度0.005の場合、脱炭
焼鈍において脱炭が良好に行われず二次再結晶組織が発
達しなかった。
Finish annealing is N 2 : 10 up to 1200 ° C.
Performed at a temperature rising rate of 10 ° C / hr in 0% atmosphere gas, 1
It was annealed at 200 ° C. for 20 hours while switching to H 2 : 100%. After subjecting these samples to tension coating, laser irradiation was performed to subdivide the magnetic domains. The magnetic properties of the obtained product are shown in Table 1. When the degree of oxidation was 0.005, decarburization was not performed well in the decarburization annealing, and the secondary recrystallization structure did not develop.

【0019】[0019]

【表1】 [Table 1]

【0020】実施例2 重量で、Si:3.3%、Mn:0.07%、C:0.
07%、S:0.025%、酸可溶性Al:0.026
%、N:0.008%、Sn:0.1%の板厚2.0mm
珪素鋼熱延板を1120℃で2分間焼鈍した後最終板厚
0.23mmに冷延した。この冷延板を窒素と水素の混合
ガス中において酸化度(1)0.005、(2)0.0
6、(3)0.44で850℃の温度で90秒焼鈍し一
次再結晶させた。
Example 2 By weight, Si: 3.3%, Mn: 0.07%, C: 0.
07%, S: 0.025%, acid-soluble Al: 0.026
%, N: 0.008%, Sn: 0.1%, plate thickness 2.0 mm
The hot-rolled silicon steel sheet was annealed at 1120 ° C. for 2 minutes and then cold-rolled to a final sheet thickness of 0.23 mm. This cold-rolled sheet was oxidized in a mixed gas of nitrogen and hydrogen at an oxidation degree of (1) 0.005, (2) 0.0
6, (3) 0.44 was annealed at a temperature of 850 ° C. for 90 seconds for primary recrystallization.

【0021】これらの鋼板をその後、一部は(1)アル
ミナ(Al2 3 )を、一部は(2)従来のようにマグ
ネシア(MgO)を水スラリーで塗布した後、仕上げ焼
鈍を施した。
Then, these steel sheets were partially coated with (1) alumina (Al 2 O 3 ) and partially (2) magnesia (MgO) as a conventional water slurry, and then subjected to finish annealing. did.

【0022】仕上げ焼鈍は1200℃まではN2 :15
%+H2 85%の雰囲気ガス中で15℃/hrの昇温速度
で行い、1200℃でH2 :100%に切り替え20時
間焼鈍を行った。これらの試料を張力コーティング処理
を施した後、レーザー照射して磁区細分化した。得られ
た製品の磁気特性を表2に示す。
Finish annealing is N 2 : 15 up to 1200 ° C.
% + H 2 85% in an atmosphere gas at a temperature rising rate of 15 ° C./hr, and switched to H 2 : 100% at 1200 ° C. and annealed for 20 hours. After subjecting these samples to tension coating, laser irradiation was performed to subdivide the magnetic domains. The magnetic properties of the obtained product are shown in Table 2.

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【発明の効果】本発明により、従来ないような低鉄損の
方向性電磁鋼板をコストアップすることなく製造するこ
とができる。
According to the present invention, it is possible to manufacture a grain-oriented electrical steel sheet having a low iron loss, which has never been seen before, without increasing the cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】脱炭焼鈍時の雰囲気ガスの酸化度(P H2 O /
P H2 )と製品の磁気特性(鉄損:W17/50 )の関係を
示す図表である。
[Fig. 1] Oxidation degree of atmosphere gas (P H 2 O /
3 is a chart showing the relationship between P H 2 ) and the magnetic properties of products (iron loss: W 17/50 ).

【図2】脱炭焼鈍時の雰囲気ガスの酸化度を変更した場
合に形成される酸化物を赤外反射スペクトルで調べた図
表である。
FIG. 2 is a chart in which an oxide formed when the degree of oxidation of an atmospheric gas during decarburization annealing is changed is examined by an infrared reflection spectrum.

【図3】(a)は表面下に形成される介在物の組織を示
す写真、(b)は写真24の反射スペクトル、(c)は
写真25の反射スペクトルである。
3A is a photograph showing the texture of inclusions formed under the surface, FIG. 3B is a reflection spectrum of photograph 24, and FIG. 3C is a reflection spectrum of photograph 25.

【図4】Al−Si−Feの酸化物の三元系状態図を示
す図表である。
FIG. 4 is a chart showing a ternary phase diagram of an oxide of Al—Si—Fe.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/06 H01F 1/16 (72)発明者 長島 武雄 富津市新富20−1 新日本製鐵株式会社技 術開発本部内─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical indication C22C 38/06 H01F 1/16 (72) Inventor Takeo Nagashima 20-1 Shintomi, Futtsu-shi Nippon Steel Technology Development Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量で、 Si:0.8〜4.8%、 酸可溶性Al:0.012〜0.05%、 N ≦0.01% 残部実質的にFe及び不可避的不純物からなる珪素鋼帯
を、一回もしくは中間焼鈍をはさむ二回以上の冷間圧延
により最終板厚とし、次いで脱炭焼鈍・増窒素処理を行
った後、該鋼板を積層する際の板間の焼鈍分離剤として
アルミナを用いることにより仕上げ焼鈍後に表面を鏡面
にする鏡面方向性電磁鋼板の製造方法において、脱炭焼
鈍をFe系酸化物の形成しない酸化度の雰囲気ガス中で
行うことを特徴とする鉄損の低い鏡面方向性電磁鋼板の
製造方法。
1. By weight, Si: 0.8 to 4.8%, acid-soluble Al: 0.012 to 0.05%, N ≤ 0.01%, balance balance silicon consisting essentially of Fe and unavoidable impurities. A steel strip is made into a final thickness by cold rolling once or twice or more with intermediate annealing, and then decarburization annealing / nitrogen-enhancing treatment is performed, followed by an annealing separator between the sheets when laminating the steel sheets. In the method for producing a mirror-oriented electrical steel sheet in which the surface is mirror-finished after finish annealing by using alumina as the material, decarburization annealing is performed in an atmosphere gas with an oxidation degree that does not form Fe-based oxides. Of low specular grain oriented electrical steel sheet.
【請求項2】 重量で、 Si:0.8〜4.8%、 酸可溶性Al:0.012〜0.05%、 N ≦0.01%、 Mn:0.02〜0.3%、 S :0.005〜0.040% 残部実質的にFe及び不可避的不純物からなる珪素鋼帯
を、一回もしくは中間焼鈍をはさむ二回以上の冷間圧延
により最終板厚とし、次いで脱炭焼鈍を行った後、該鋼
板を積層する際の板間の焼鈍分離剤としてアルミナを用
いることにより仕上げ焼鈍後に表面を鏡面にする鏡面方
向性電磁鋼板の製造方法において、脱炭焼鈍をFe系酸
化物の形成しない酸化度の雰囲気ガス中で行うことを特
徴とする鉄損の低い鏡面方向性電磁鋼板の製造方法。
2. By weight, Si: 0.8 to 4.8%, acid-soluble Al: 0.012 to 0.05%, N ≤ 0.01%, Mn: 0.02 to 0.3%, S: 0.005-0.040% A silicon steel strip consisting essentially of Fe and unavoidable impurities in the balance is cold-rolled once or twice or more with intermediate annealing to a final plate thickness, and then decarburized and annealed. In the method for producing a mirror-oriented electrical steel sheet having a mirror-finished surface after finish annealing by using alumina as an annealing separator between the sheets when laminating the steel sheets, decarburization annealing is performed using Fe-based oxide. A method for producing a mirror-oriented electrical steel sheet with low iron loss, which is performed in an atmosphere gas having an oxidation degree that does not form.
【請求項3】 脱炭焼鈍の雰囲気ガスの酸化度(P H2
O /P H2 )を0.01以上0.15未満とすることを
特徴とする請求項1又は2記載の鉄損の低い鏡面方向性
電磁鋼板の製造方法。
3. The degree of oxidation (P H 2
O / P H 2) of claim 1 or 2 method for producing a low specular oriented electrical steel sheet iron loss according to, characterized in that less than 0.01 to 0.15.
JP5267547A 1993-10-26 1993-10-26 Method for manufacturing mirror-oriented electrical steel sheet with low iron loss Expired - Fee Related JP2679944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5267547A JP2679944B2 (en) 1993-10-26 1993-10-26 Method for manufacturing mirror-oriented electrical steel sheet with low iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5267547A JP2679944B2 (en) 1993-10-26 1993-10-26 Method for manufacturing mirror-oriented electrical steel sheet with low iron loss

Publications (2)

Publication Number Publication Date
JPH07118750A true JPH07118750A (en) 1995-05-09
JP2679944B2 JP2679944B2 (en) 1997-11-19

Family

ID=17446335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5267547A Expired - Fee Related JP2679944B2 (en) 1993-10-26 1993-10-26 Method for manufacturing mirror-oriented electrical steel sheet with low iron loss

Country Status (1)

Country Link
JP (1) JP2679944B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1179603A2 (en) 2000-08-08 2002-02-13 Nippon Steel Corporation Method to produce grain-oriented electrical steel sheet having high magnetic flux density
WO2002088403A1 (en) * 2001-04-23 2002-11-07 Nippon Steel Corporation Method for producing unidirectional silicon steel sheet free of inorganic mineral coating film
EP2559775A1 (en) 2003-12-03 2013-02-20 JFE Steel Corporation Method for manufacturing a grain-oriented electrical steel sheet
WO2019013348A1 (en) 2017-07-13 2019-01-17 新日鐵住金株式会社 Oriented electromagnetic steel sheet
WO2020012666A1 (en) 2018-07-13 2020-01-16 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet and manufacturing method for same
WO2020149347A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Method for producing grain-oriented electromagnetic steel sheet
WO2020149341A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Method for manufacturing grain-oriented electrical steel sheet
WO2020149320A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Method for manufacturing grain-oriented electrical steel sheet
WO2020149333A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Method for manufacturing grain-oriented electrical steel sheet
WO2020149332A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Method for producing grain-oriented electrical steel sheet
WO2020149348A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Method for producing unidirectional electromagnetic steel sheet
WO2020149342A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electrical steel sheet
WO2020149338A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet
JP2020111815A (en) * 2019-01-16 2020-07-27 日本製鉄株式会社 Grain oriented electromagnetic steel sheet and method for manufacturing the same
JP2020111814A (en) * 2019-01-16 2020-07-27 日本製鉄株式会社 Grain oriented electromagnetic steel sheet and method for manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5844152A (en) * 1981-09-10 1983-03-15 日本設備コア株式会社 Plastic tile

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5844152A (en) * 1981-09-10 1983-03-15 日本設備コア株式会社 Plastic tile

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1179603A2 (en) 2000-08-08 2002-02-13 Nippon Steel Corporation Method to produce grain-oriented electrical steel sheet having high magnetic flux density
US6613160B2 (en) 2000-08-08 2003-09-02 Nippon Steel Corporation Method to produce grain-oriented electrical steel sheet having high magnetic flux density
EP2107130A1 (en) 2000-08-08 2009-10-07 Nippon Steel Corporation Method to produce grain-oriented electrical steel sheet having high magnetic flux density
WO2002088403A1 (en) * 2001-04-23 2002-11-07 Nippon Steel Corporation Method for producing unidirectional silicon steel sheet free of inorganic mineral coating film
US6733599B2 (en) 2001-04-23 2004-05-11 Nippon Steel Corporation Method for producing grain-oriented silicon steel sheet not having inorganic mineral film
CN100413980C (en) * 2001-04-23 2008-08-27 新日本制铁株式会社 Method for producing unidirectional silicons steel sheet free of inorganic mineral coating film
EP2559775A1 (en) 2003-12-03 2013-02-20 JFE Steel Corporation Method for manufacturing a grain-oriented electrical steel sheet
WO2019013348A1 (en) 2017-07-13 2019-01-17 新日鐵住金株式会社 Oriented electromagnetic steel sheet
KR20200021999A (en) 2017-07-13 2020-03-02 닛폰세이테츠 가부시키가이샤 Directional electronic steel sheet
WO2020012666A1 (en) 2018-07-13 2020-01-16 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet and manufacturing method for same
KR20210018433A (en) 2018-07-13 2021-02-17 닛폰세이테츠 가부시키가이샤 Grain-oriented electrical steel sheet and its manufacturing method
WO2020149332A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Method for producing grain-oriented electrical steel sheet
WO2020149347A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Method for producing grain-oriented electromagnetic steel sheet
WO2020149333A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Method for manufacturing grain-oriented electrical steel sheet
WO2020149341A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Method for manufacturing grain-oriented electrical steel sheet
WO2020149348A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Method for producing unidirectional electromagnetic steel sheet
WO2020149342A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electrical steel sheet
WO2020149338A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet
JP2020111815A (en) * 2019-01-16 2020-07-27 日本製鉄株式会社 Grain oriented electromagnetic steel sheet and method for manufacturing the same
JP2020111814A (en) * 2019-01-16 2020-07-27 日本製鉄株式会社 Grain oriented electromagnetic steel sheet and method for manufacturing the same
WO2020149320A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Method for manufacturing grain-oriented electrical steel sheet
KR20210109605A (en) 2019-01-16 2021-09-06 닛폰세이테츠 가부시키가이샤 Method for manufacturing grain-oriented electrical steel sheet
KR20210110366A (en) 2019-01-16 2021-09-07 닛폰세이테츠 가부시키가이샤 Method for manufacturing grain-oriented electrical steel sheet
KR20210110680A (en) 2019-01-16 2021-09-08 닛폰세이테츠 가부시키가이샤 grain-oriented electrical steel sheet
KR20210110866A (en) 2019-01-16 2021-09-09 닛폰세이테츠 가부시키가이샤 Manufacturing method of unidirectional electrical steel sheet
KR20210110868A (en) 2019-01-16 2021-09-09 닛폰세이테츠 가부시키가이샤 Manufacturing method of uni-directional electrical steel sheet
KR20210111287A (en) 2019-01-16 2021-09-10 닛폰세이테츠 가부시키가이샤 grain-oriented electrical steel sheet
KR20210111279A (en) 2019-01-16 2021-09-10 닛폰세이테츠 가부시키가이샤 Method for manufacturing grain-oriented electrical steel sheet
KR20210111812A (en) 2019-01-16 2021-09-13 닛폰세이테츠 가부시키가이샤 Method for manufacturing grain-oriented electrical steel sheet
EP3913082A4 (en) * 2019-01-16 2022-10-12 Nippon Steel Corporation Method for manufacturing grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JP2679944B2 (en) 1997-11-19

Similar Documents

Publication Publication Date Title
JP4288054B2 (en) Method for producing grain-oriented silicon steel sheet
JP2679944B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP2653638B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JP3496067B2 (en) Method for manufacturing mirror-oriented unidirectional electrical steel sheet
JP3474837B2 (en) Method for manufacturing mirror-oriented unidirectional electrical steel sheet having B8 of 1.91 T or more
JPH10130727A (en) Production of low core loss mirror finished grain oriented silicon steel sheet high in magnetic flux density
JP2680987B2 (en) Method for producing grain-oriented silicon steel sheet with low iron loss
JP4331886B2 (en) Method for producing grain-oriented silicon steel sheet
JP4119635B2 (en) Method for producing mirror-oriented electrical steel sheet with good decarburization
JP2674917B2 (en) Method for producing high magnetic flux density grain-oriented silicon steel sheet without forsterite coating
JP2678855B2 (en) Method for manufacturing ultra low iron loss unidirectional silicon steel sheet
JP2680532B2 (en) Method for producing grain-oriented electrical steel sheet with low iron loss
JP3148096B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JPH07278669A (en) Manufacture of mirror surface oriented silicon steel sheet with low iron loss
JP3148092B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP2678850B2 (en) Method for manufacturing ultra low iron loss unidirectional silicon steel sheet
JP2719266B2 (en) Method for producing ultra-low iron loss unidirectional silicon steel sheet
JP3148094B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP4585141B2 (en) Method for producing grain-oriented silicon steel sheet and decarburization annealing furnace
JP3148093B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP3154935B2 (en) Manufacturing method of low iron loss mirror-oriented unidirectional electrical steel sheet with high magnetic flux density
JP3148095B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP3182666B2 (en) Method for producing ultra-low iron loss unidirectional silicon steel sheet
JP3178887B2 (en) Manufacturing method of ultra low iron loss unidirectional silicon steel sheet
JP3300194B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970624

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100801

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100801

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 16

LAPS Cancellation because of no payment of annual fees