JPH08269554A - Production of mirror-finished grain-oriented silicon steel sheet reduced in iron loss - Google Patents

Production of mirror-finished grain-oriented silicon steel sheet reduced in iron loss

Info

Publication number
JPH08269554A
JPH08269554A JP7072718A JP7271895A JPH08269554A JP H08269554 A JPH08269554 A JP H08269554A JP 7072718 A JP7072718 A JP 7072718A JP 7271895 A JP7271895 A JP 7271895A JP H08269554 A JPH08269554 A JP H08269554A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
iron loss
grain
silicon steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7072718A
Other languages
Japanese (ja)
Other versions
JP3148092B2 (en
Inventor
Yoshiyuki Ushigami
義行 牛神
Shuichi Yamazaki
修一 山崎
Satoshi Arai
聡 新井
Yozo Suga
洋三 菅
Takashi Mogi
尚 茂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP07271895A priority Critical patent/JP3148092B2/en
Publication of JPH08269554A publication Critical patent/JPH08269554A/en
Application granted granted Critical
Publication of JP3148092B2 publication Critical patent/JP3148092B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE: To produce a grain-oriented silicon steel sheet excellent in iron loss characteristics at a low cost. CONSTITUTION: The grain-oriented silicon steel sheet is produced by applying hot rolling to a slab having a composition consisting of, by weight ratio, 0.8-4.8% Si, 0.012-0.05% Al, <=0.01% N, and the balance Fe with inevitable impurities, further applying cold rolling to the resulting plate once or two or more times interposing process annealing between cold rollings, and then subjecting the resulting sheet to decarburizing annealing and to finish annealing. At this time, decauburizing annealing is executed in an atmospheric gas having a degree of oxidation of forming no Fe oxides and, after the application of alumina as a separation agent at annealing, finish annealing is executed. Then, after mechanical local stress is applied to the steel sheet to form grooves, a tension film is formed to increase the number of active magnetic domain walls of the grain oriented silicon steel sheet, thereby, the iron loss can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主として変圧器その他
の電気機器等の鉄心として利用される方向性電磁鋼板の
製造方法に関するものである。特に、その表面の鏡面化
手段及び磁区細分化手段を効果的に導入することによ
り、鉄損特性の向上を低コストで達成する製造方法を開
示するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet mainly used as an iron core of a transformer or other electric equipment. In particular, the present invention discloses a manufacturing method for achieving an improvement in iron loss characteristics at low cost by effectively introducing a mirroring means for the surface and a magnetic domain subdividing means.

【0002】[0002]

【従来の技術】方向性電磁鋼板は、磁気鉄心として多く
の電気機器に用いられている。方向性電磁鋼板は、Si
を0.8〜4.8%含有し製品の結晶粒の方位を{11
0}<001>方位に高度に集積させた鋼板である。そ
の磁気特性として磁束密度が高く(B値で代表され
る)、鉄損が低い(W17/50値で代表される)こと
が要求される。特に、最近では省エネルギーの見地から
電力損失の低減に対する要求が高まっている。
2. Description of the Related Art Grain-oriented electrical steel sheets are used as magnetic iron cores in many electric devices. The grain-oriented electrical steel sheet is Si
Of 0.8 to 4.8% and the crystal grain orientation of the product is {11
It is a steel plate highly integrated in the 0} <001> direction. The magnetic properties are required to have a high magnetic flux density (represented by a B 8 value) and low iron loss (represented by a W17 / 50 value). In particular, recently, there is an increasing demand for reduction of power loss from the viewpoint of energy saving.

【0003】この要求にこたえ、方向性電磁鋼板の鉄損
を低減させる手段として、磁区を細分化する技術が開発
された。仕上げ焼鈍後の鋼板にレーザービームを照射す
ることにより磁区を細分化して鉄損を低減させる方法
が、例えば特開昭58−26405号公報に開示されて
いる。しかしながら、該方法による鉄損の低減はレーザ
ー照射によって導入された歪に起因するので、トランス
に成形したのちに歪取り焼鈍を必要とする巻鉄心トラン
ス用としては使用することができない。
In response to this demand, a technique for subdividing magnetic domains has been developed as a means for reducing the iron loss of grain-oriented electrical steel sheets. For example, Japanese Patent Laid-Open No. 58-26405 discloses a method of irradiating a steel sheet after finish annealing with a laser beam to subdivide magnetic domains to reduce iron loss. However, since the reduction of iron loss by this method is caused by the strain introduced by laser irradiation, it cannot be used for a wound core transformer that requires strain relief annealing after forming into a transformer.

【0004】この改良技術として、例えば特開昭61−
117218号公報において、仕上焼鈍後に例えば歯車
型ロールにより加工歪を加え微細粒を形成させて磁区細
分化する方法が開示されている。しかしながら該方法に
おいては、歯車型ロールによって方向性電磁鋼板の表面
セラミックス層を破砕する必要があるために歯車ロール
摩耗が大きく、製造コストに問題を生じる。
As an improved technique, for example, JP-A-61-161
Japanese Laid-Open Patent Publication No. 117218 discloses a method in which after finishing annealing, a work strain is applied by, for example, a gear-shaped roll to form fine grains to subdivide magnetic domains. However, in this method, since it is necessary to crush the surface ceramics layer of the grain-oriented electrical steel sheet by the gear type roll, the gear roll is largely worn, which causes a problem in manufacturing cost.

【0005】一方、これら磁区細分化処理を施した鋼板
の磁区の動きを詳細に観察すると、静的には細分化した
磁区の中には動かない磁区も存在していることが判っ
た。方向性電磁鋼板の鉄損値を更に低減させるために
は、上記方法による磁区細分化技術と合わせて磁区の動
きを阻害する要因を排除する技術(磁区の活性化技術)
を導入する必要がある。
On the other hand, when the movement of the magnetic domains of the steel sheet subjected to the magnetic domain subdivision processing was observed in detail, it was found that some of the statically subdivided magnetic domains did not move. In order to further reduce the iron loss value of grain-oriented electrical steel sheet, a technology to eliminate the factors that obstruct the movement of the magnetic domain together with the magnetic domain subdivision technology by the above method (magnetic domain activation technology)
Need to be introduced.

【0006】そのためには、磁区の動きを阻害する大き
な要因である鋼板表面のグラス被膜等を除去し表面を鏡
面化する方法が有効である。その手段として、仕上げ焼
鈍後にグラス被膜を酸洗等により除去した後に、化学研
磨或いは電解研磨を行い表面を鏡面化させる方法が、例
えば特開昭64−83620号公報に開示されている。
しかしながら、化学研磨・電解研磨等の方法は、研究室
レベルでの少試料の材料を加工することは可能である
が、工業的規模で行うには薬液の濃度管理、温度管理、
公害防止設備の付与等の点で大きな問題があり、更にこ
のような工程を付加することにより製造コストが高くな
ってしまうために、未だ実用化されるに至っていない。
For that purpose, it is effective to remove the glass coating on the surface of the steel sheet, which is a major factor that hinders the movement of magnetic domains, to make the surface mirror-finished. As a means for this, a method of removing the glass coating by pickling or the like after finish annealing and then performing chemical polishing or electrolytic polishing to make the surface mirror-finished is disclosed in, for example, JP-A-64-83620.
However, methods such as chemical polishing and electrolytic polishing can process a small amount of material at the laboratory level, but for industrial scale, chemical solution concentration control, temperature control,
There is a big problem in terms of providing pollution prevention equipment, etc., and the addition of such a step increases the manufacturing cost, so that it has not yet been put to practical use.

【0007】[0007]

【発明が解決しようとする課題】この発明は、歯車型ロ
ール等により加工歪を加え微細粒を形成させることによ
り低鉄損値は得られるが、歯車ロールの摩耗が大きく製
造コストが高くなるという問題点、更に、この磁区細分
化処理の効果を最大限に発揮して大幅な低鉄損値を得る
ために酸洗・化学研磨等の表面処理を施した場合に、コ
ストが高くなるという問題点を同時に解決するものであ
る。すなわち、歪取り焼鈍を施しても磁気特性が劣化せ
ず、しかも鉄損特性が大幅に向上する安価な方向性電磁
鋼板の製造方法を開示するものである。
SUMMARY OF THE INVENTION According to the present invention, a low iron loss value can be obtained by forming a fine grain by applying processing strain with a gear type roll or the like, but the gear roll is worn out and the manufacturing cost is high. The problem is that the cost increases when surface treatment such as pickling and chemical polishing is performed in order to maximize the effect of this magnetic domain refinement treatment and obtain a significantly low iron loss value. The point is solved at the same time. That is, it discloses a method for manufacturing an inexpensive grain-oriented electrical steel sheet in which magnetic properties are not deteriorated even when strain relief annealing is performed and iron loss properties are significantly improved.

【0008】[0008]

【課題を解決するための手段】本発明は、上記課題を解
決するために、脱炭焼鈍をFe系酸化物の形成しない酸
化度の雰囲気ガス中で脱炭焼鈍し、焼鈍分離剤としてア
ルミナを塗布することにより、仕上げ焼鈍後の鋼板表面
を鏡面状態にし、該鋼板に機械的に局所応力を付加して
溝を形成した後に張力被膜を形成させ、活動磁壁数を増
加させることにより、歪取り焼鈍を施しても特性劣化す
ることがなく、且つ従来製品よりも低い鉄損の方向性電
磁鋼板を提供するものである。また、従来製造工程と比
較して付加工程がないので、製造コストも実質的に高く
ならない。
In order to solve the above-mentioned problems, the present invention performs decarburization annealing in an atmosphere gas having an oxidation degree that does not form Fe-based oxides, and uses alumina as an annealing separator. By applying, the surface of the steel sheet after finish annealing is mirror-finished, a local stress is mechanically applied to the steel sheet to form a groove after forming a groove, and the number of active domain walls is increased to remove strain. It is intended to provide a grain-oriented electrical steel sheet that does not deteriorate in characteristics even when subjected to annealing and has a lower iron loss than conventional products. Further, since there is no additional step as compared with the conventional manufacturing step, the manufacturing cost does not substantially increase.

【0009】[0009]

【作用】以下、本発明を詳細に説明する。基本的な製造
法としては、小松等による(Al,Si)Nを主インヒ
ビターとして用いる製造法(例えば特公昭62−452
85号公報)、又は田口・坂倉等によるAlNとMnS
を主インヒビターとして用いる製造法(例えば特公昭4
0−15644号公報)を適用すればよい。
The present invention will be described in detail below. As a basic manufacturing method, a manufacturing method using (Al, Si) N as a main inhibitor by Komatsu et al. (For example, Japanese Patent Publication No. 62-452).
No. 85), or AlN and MnS by Taguchi, Sakakura, etc.
A production method using as a main inhibitor (for example, Japanese Patent Publication No.
No. 0-15644) may be applied.

【0010】Siは、電気抵抗を高め鉄損を下げる上で
重要な元素である。含有量が4.8%を超えると、冷間
圧延時に材料が割れ易くなり圧延不可能となる。一方、
Si量を下げると仕上げ焼鈍時にα→γ変態を生じ、結
晶の方向性が損なわれるので、仕上げ焼鈍において結晶
の方向性に影響を及ぼさない0.8%を下限とする。
Si is an important element for increasing the electric resistance and reducing the iron loss. If the content exceeds 4.8%, the material tends to crack during cold rolling, making rolling impossible. on the other hand,
If the amount of Si is reduced, α → γ transformation occurs during finish annealing, and the crystal orientation is impaired. Therefore, the lower limit is 0.8%, which does not affect the crystal orientation during finish annealing.

【0011】酸可溶性Alは、Nと結合してAlN又は
(Al,Si)Nとしてインヒビターとして機能するた
めに必須の元素である。磁束密度が高くなる0.012
〜0.050%を限定範囲とする。Nは製鋼時に0.0
1%以上添加するとブリスターと呼ばれる鋼板中の空孔
を生じるので、0.01%を上限とする。
Acid-soluble Al is an essential element for bonding with N and functioning as AlN or (Al, Si) N as an inhibitor. Higher magnetic flux density 0.012
˜0.050% is the limited range. N is 0.0 during steelmaking
If 1% or more is added, voids in the steel sheet called blisters are generated, so 0.01% is made the upper limit.

【0012】MnとSはMnSとして析出して、インヒ
ビターとしての役割を果たす。Mnが0.02%より少
なく、またSが0.005%より少ないと所定量の有効
なMnSインヒビターが確保できない。また、Mnが
0.3%、Sが0.04%より多いとスラブ加熱時の溶
体化が不十分となり、二次再結晶が安定して行われなく
なる。故にMn:0.02〜0.3%、S:0.005
〜0.04%とする。他のインヒビター構成元素とし
て、B,Bi,Se,Pb,Sn,Ti等を添加するこ
ともできる。
Mn and S precipitate as MnS and serve as an inhibitor. When Mn is less than 0.02% and S is less than 0.005%, a predetermined amount of effective MnS inhibitor cannot be secured. Further, if Mn is more than 0.3% and S is more than 0.04%, solution treatment during heating of the slab becomes insufficient, and secondary recrystallization is not stably performed. Therefore, Mn: 0.02-0.3%, S: 0.005
~ 0.04%. B, Bi, Se, Pb, Sn, Ti and the like can be added as other inhibitor constituent elements.

【0013】上記成分の溶鋼は、通常の工程により熱延
板とされる。小松等による(Al,Si)Nを主インヒ
ビターとして用いる製造法(例えば特公昭62−452
85号公報)では、熱間圧延時の温度確保の観点から1
100℃以上、またAlNの完全溶体化しない1280
℃以下の温度で加熱を行った後に熱間圧延を行う。ま
た、田口・坂倉等によるAlNとMnSを主インヒビタ
ーとして用いる製造法(例えば特公昭40−15644
号公報)では、完全溶体化する1300℃以上の温度で
加熱した後に熱延を行えば良い。
The molten steel having the above components is formed into a hot rolled sheet by a usual process. A production method using (Al, Si) N as a main inhibitor by Komatsu et al. (For example, Japanese Patent Publication No. 62-452).
No. 85), from the viewpoint of securing the temperature during hot rolling, 1
100 ° C or higher, and 1280 without complete solution of AlN
Hot rolling is performed after heating at a temperature of ℃ or less. Further, a production method using AlN and MnS as main inhibitors by Taguchi, Sakakura, etc. (see, for example, Japanese Patent Publication No. 40-15644).
In Japanese Patent Laid-Open Publication No. 2003), hot rolling may be performed after heating at a temperature of 1300 ° C. or higher for complete solution treatment.

【0014】前記熱延板は直ちに、もしくは短時間焼鈍
を経て冷間圧延される。焼鈍は750〜1200℃の温
度域で30秒〜30分間行われ、この焼鈍は製品の磁気
特性を高めるために有効である。望む製品の特性レベル
とコストを勘案して採否を決めるとよい。
The hot-rolled sheet is cold-rolled immediately or after being annealed for a short time. Annealing is performed in the temperature range of 750 to 1200 ° C. for 30 seconds to 30 minutes, and this annealing is effective to enhance the magnetic properties of the product. It is advisable to decide whether to accept or reject the product considering the characteristic level and cost of the desired product.

【0015】冷間圧延は、基本的には上記特公昭40−
15644号公報に開示されているように、最終冷延圧
下率80%以上とすれば良い。冷間圧延後の材料は、鋼
中に含まれる炭素を除去するために湿水素雰囲気中で、
750〜900℃の温度域で脱炭焼鈍を行う。
Cold rolling is basically carried out by the above Japanese Patent Publication No. 40-
As disclosed in Japanese Patent No. 15644, the final cold rolling reduction may be 80% or more. The material after cold rolling is in a wet hydrogen atmosphere to remove carbon contained in steel,
Decarburization annealing is performed in the temperature range of 750 to 900 ° C.

【0016】この脱炭焼鈍において、Fe系の酸化物
(Fe2 SiO4 、FeO等)を形成させない酸化度で
焼鈍を行い、焼鈍分離剤としてアルミナを塗布すること
が本発明の一つのポイントである。例えば、通常脱炭焼
鈍が行われる800〜850℃の温度域においては、雰
囲気ガスの酸化度(P H2 O /P H2 )<0.15に調
整することにより、Fe系酸化物の生成を抑制すること
ができる。
In this decarburization annealing, one of the points of the present invention is to perform annealing at an oxidation degree that does not form Fe-based oxides (Fe 2 SiO 4 , FeO, etc.) and apply alumina as an annealing separator. is there. For example, in the temperature range of 800 to 850 ° C. in which decarburization annealing is usually performed, the Fe-based oxide is generated by adjusting the degree of oxidation of the atmospheric gas (PH 2 O / PH 2 ) <0.15. Can be suppressed.

【0017】但し、あまりに酸化度を下げると脱炭速度
が遅くなってしまい、工業的観点から好ましくない。こ
の両者を勘案すると、750〜900℃の温度域におい
て、雰囲気ガスの酸化度(P H2 O /P H2 ):0.0
1〜0.15の範囲で焼鈍することが好ましい。
However, if the degree of oxidation is lowered too much, the decarburization rate becomes slow, which is not preferable from an industrial viewpoint. Considering both of them, in the temperature range of 750 to 900 ° C., the degree of oxidation of atmospheric gas (PH 2 O / PH 2 ): 0.0
It is preferable to anneal in the range of 1 to 0.15.

【0018】この脱炭焼鈍板に(Al,Si)Nを主イ
ンヒビターとして用いる製造法(例えば特公昭62−4
5285号公報)においては、窒化処理を施す。この窒
化処理の方法は特に限定するものではなく、アンモニア
等の窒化能のある雰囲気ガス中で行う方法等がある。量
的には0.005%以上、望ましくは全窒素量として鋼
中のAl当量以上窒化すれば良い。
A production method using (Al, Si) N as a main inhibitor for this decarburized annealed sheet (see, for example, Japanese Examined Patent Publication No. 62-4).
No. 5285), a nitriding treatment is performed. The method of this nitriding treatment is not particularly limited, and there is a method of performing it in an atmosphere gas having a nitriding ability such as ammonia. Quantitatively, 0.005% or more, preferably, the total nitrogen content may be nitrided by Al equivalent or more in the steel.

【0019】これらの脱炭焼鈍板を積層する際に、焼鈍
分離剤としてアルミナを水スラリーもしくは静電塗布法
等によりドライ・コートする。水スラリーで塗布する場
合には、例えば特願平5−211602号明細書で開示
する方法を採用することが好ましい。
When laminating these decarburized annealed sheets, alumina is dry-coated as an annealing separator by a water slurry or an electrostatic coating method. In the case of coating with a water slurry, it is preferable to employ the method disclosed in, for example, Japanese Patent Application No. 5-211602.

【0020】この積層した板を仕上げ焼鈍して、二次再
結晶と窒化物の純化を行う。二次再結晶を特開平2−2
58929号公報で開示されるように、一定の温度で保
持する等の手段により所定の温度で行うことは、磁束密
度を上げるうえで有効である。
This laminated plate is finish annealed to carry out secondary recrystallization and purification of nitride. Secondary recrystallization is described in JP-A-2-2.
As disclosed in Japanese Patent No. 58929, it is effective to increase the magnetic flux density by carrying out at a predetermined temperature by means such as holding at a constant temperature.

【0021】二次再結晶完了後、窒化物等の不純物の純
化と表面の平滑化を行うために、100%水素で110
0℃以上の温度で焼鈍する。仕上げ焼鈍後、該鋼板に機
械的に局所応力を付加して溝を形成した後に張力被膜を
形成させることにより、歪取り焼鈍により影響を受けな
いような方法で活動磁壁数を増加させることが本発明の
重要なポイントである。
After the secondary recrystallization is completed, 110% 100% hydrogen is used to purify impurities such as nitrides and smooth the surface.
Anneal at a temperature of 0 ° C. or higher. After finishing annealing, mechanical stress is applied to the steel sheet to form grooves and then a tension film is formed to increase the number of active domain walls in a manner that is not affected by strain relief annealing. This is an important point of the invention.

【0022】板厚0.23mmの従来製造方法及び上記本
発明法で製造した仕上焼鈍後の板を、歯車ロールにより
幅20μm、深さ10μmの溝を5mm間隔で形成した。
その後、コロイド状シリカとリン酸塩を主成分とするコ
ーティング液を塗布して、850℃で2分間焼き付け張
力被膜を形成した後、800℃で4時間の歪取り焼鈍を
行った。
The finished annealed plate having a plate thickness of 0.23 mm and the above-mentioned method of the present invention was subjected to gear rolling to form grooves having a width of 20 μm and a depth of 10 μm at intervals of 5 mm.
Then, a coating solution containing colloidal silica and phosphate as a main component was applied, and a tension coating was formed by baking at 850 ° C. for 2 minutes, and then strain relief annealing was performed at 800 ° C. for 4 hours.

【0023】図1に、従来製品(a)、及び本発明法で
製造した製品(b)の磁区顕微鏡写真、図2に両者製品
の交流磁界下での磁壁移動速度を示す。図3に、製品の
磁束密度(B値)と鉄損(W17/50)の関係を示
す。図4は、歯車ロールの摩耗による鉄損劣化代を示
す。
FIG. 1 shows magnetic domain micrographs of the conventional product (a) and the product (b) produced by the method of the present invention, and FIG. 2 shows the domain wall moving speed of both products under an alternating magnetic field. FIG. 3 shows the relationship between the magnetic flux density (B 8 value) of the product and the iron loss (W17 / 50). FIG. 4 shows an iron loss deterioration margin due to wear of the gear roll.

【0024】図1の(a)と(b)を比較すると、本発
明法による製品(b)の磁区細分化効果は、静的には従
来材(a)と同じように観察されるが、図2に示すよう
に交流磁界下での磁壁移動挙動をみると、本発明法によ
る製品の磁壁は殆ど全て動いていることが分かる。一
方、従来製品では一部の磁壁はグラス被膜によるピン止
め効果のために全く移動できない。このような、実際の
活動磁壁数の差により、図3に示すように鉄損値として
10〜20%もの差が生じる。
Comparing (a) and (b) of FIG. 1, the magnetic domain refining effect of the product (b) according to the method of the present invention is statically observed as in the conventional material (a). As shown in FIG. 2, the magnetic domain wall movement behavior under an alternating magnetic field shows that almost all the magnetic domain walls of the product according to the method of the present invention are moving. On the other hand, in the conventional product, some domain walls cannot move at all due to the pinning effect of the glass coating. Due to such a difference in the actual number of active domain walls, a difference of 10 to 20% occurs as the iron loss value as shown in FIG.

【0025】また、図4は歯車ロールの摩耗による鉄損
劣化代を示すものであるが、本発明法では仕上焼鈍後の
鋼板表面には従来のようにセラミックス被膜が存在しな
いので、歯車ロールの寿命が5倍以上伸びることが分か
る。このように本発明法によると、従来法と比較して、
新たな製造工程を付加することなく、鉄損が10〜20
%向上し、かつ歯車ロールの寿命も5倍以上伸びること
が分かる。
Further, FIG. 4 shows an iron loss deterioration margin due to wear of the gear roll. In the method of the present invention, since there is no ceramic coating on the surface of the steel sheet after finish annealing as in the conventional case, the gear roll It can be seen that the life is extended by 5 times or more. Thus, according to the method of the present invention, compared with the conventional method,
Iron loss is 10 to 20 without adding new manufacturing process
%, And the life of the gear roll is extended 5 times or more.

【0026】鋼板に形成する溝は、圧延方向に対して直
角もしくは直角から45度の範囲内で、その間隔は2〜
10mmが鉄損低下の観点から好ましい。溝の形状は連続
的、不連続又は点状のいずれでも良い。溝の幅及び深さ
は、それぞれ10〜300μm、5〜50μmの範囲が
鉄損低下の観点から好ましい。溝の幅を狭くすると、曲
率半径の小さな曲げ加工を施す際に折れの起点となり易
い。また溝の幅を広くすると磁束密度が低下してしま
う。溝の深さも同様にあまり深くすると磁束密度が低下
してしまう。
The grooves formed in the steel sheet are at right angles to the rolling direction or within a range of 45 degrees from the right angles, and the intervals are 2 to.
10 mm is preferable from the viewpoint of reducing iron loss. The shape of the groove may be continuous, discontinuous, or dot-shaped. The width and depth of the groove are preferably 10 to 300 μm and 5 to 50 μm, respectively, from the viewpoint of reducing iron loss. If the width of the groove is narrowed, it tends to become a starting point of bending when performing bending with a small radius of curvature. If the width of the groove is widened, the magnetic flux density will decrease. Similarly, if the depth of the groove is too deep, the magnetic flux density will decrease.

【0027】張力被膜としては、例えば特開昭48−3
9338号公報によるコロイド状シリカとリン酸アルミ
ニウムを主体とするコーティング液、特開昭50−79
442号公報によるコロイド状シリカとリン酸マグネシ
ウムを主体とするコーティング液、又は特開平6−65
754号公報によるアルミナ・ゾルとホウ酸を主成分と
するコーティング液を焼き付ける方法等を採用すればよ
い。
As the tension film, for example, JP-A-48-3 is used.
A coating liquid mainly composed of colloidal silica and aluminum phosphate according to Japanese Patent No. 9338, JP-A-50-79.
No. 442, a coating liquid containing colloidal silica and magnesium phosphate as a main component, or JP-A-6-65.
The method of baking an alumina sol and a coating liquid containing boric acid as main components according to Japanese Patent No. 754 may be adopted.

【0028】[0028]

【実施例】【Example】

(実施例1)重量比で、Si: 3.3%、Mn: 0.1%、
C:0.05%、S: 0.007%、酸可溶性Al:0.03%、
N: 0.008%、Sn:0.05%、残部実質的にFe及び不
可避的不純物からなる珪素鋼スラブを1150℃で加熱した
後、熱間圧延し板厚 2.3mmとした。この熱延板を 1.8mm
に冷延し、1100℃で2分間焼鈍した後、最終板厚0.23mm
に冷延した。
(Example 1) Si: 3.3%, Mn: 0.1% by weight,
C: 0.05%, S: 0.007%, acid-soluble Al: 0.03%,
A silicon steel slab consisting of N: 0.008%, Sn: 0.05%, and the balance substantially Fe and unavoidable impurities was heated at 1150 ° C. and then hot rolled to a plate thickness of 2.3 mm. This hot rolled sheet is 1.8mm
Cold-rolled and annealed at 1100 ℃ for 2 minutes, final thickness 0.23mm
Cold rolled.

【0029】この冷延板を窒素と水素の混合ガス中にお
いて酸化度(A:本発明法)0.06、及び(B:従来法)
0.44で 830℃の温度で 100秒焼鈍し一次再結晶させた。
次いでアンモニア雰囲気中で焼鈍することにより、窒素
量を 0.025%に増加して、インヒビターの強化を行っ
た。
This cold-rolled sheet was oxidized in a mixed gas of nitrogen and hydrogen to a degree of oxidation (A: method of the present invention) of 0.06, and (B: conventional method).
It was annealed at 0.48 at a temperature of 830 ° C for 100 seconds for primary recrystallization.
Then, by annealing in an ammonia atmosphere, the amount of nitrogen was increased to 0.025% to strengthen the inhibitor.

【0030】これらの鋼板をその後、(A:本発明法)
アルミナ(Al2 3 )、及び(B:従来法)マグネシ
ア(MgO)を水スラリーで塗布した後、仕上げ焼鈍を
施した。これらの試料に歯車ロールで圧延方向と直角方
向から10度の方向で、幅50μm、深さ15μmの溝
を形成した後、コロイド状シリカとリン酸塩を主成分と
するコーティング液を塗布して 850℃で2分間焼き付け
た。これらの試料の磁気特性を測定した後、更に 800℃
で4時間の歪取り焼鈍を行った。得られた製品の磁気特
性を表1に示す。
These steel sheets were then subjected to (A: method of the present invention).
Alumina (Al 2 O 3 ) and (B: conventional method) magnesia (MgO) were applied as a water slurry, and then finish annealing was performed. A groove having a width of 50 μm and a depth of 15 μm was formed on each of the samples by a gear roll in a direction of 10 ° from the direction perpendicular to the rolling direction, and then a coating liquid containing colloidal silica and phosphate as a main component was applied. It was baked at 850 ° C for 2 minutes. After measuring the magnetic properties of these samples, 800 ° C
Then, strain relief annealing was performed for 4 hours. The magnetic properties of the obtained product are shown in Table 1.

【0031】[0031]

【表1】 [Table 1]

【0032】(実施例2)実施例1の仕上焼鈍後の試料
に、圧延方向と直角方向に、幅30μm、深さ10μm
の溝を歯型の金型をプレスして形成した後、アルミナ・
ゾルとホウ酸を主成分とするコーティング液を塗布して
870℃で2分間焼き付けた。これらの試料の磁気特性を
測定した後、更に 800℃で4時間の歪取り焼鈍を行っ
た。得られた製品の磁気特性を表2に示す。
(Example 2) The sample after the finish annealing of Example 1 was 30 μm wide and 10 μm deep in the direction perpendicular to the rolling direction.
After forming the groove of the tooth mold by pressing,
Apply a coating liquid consisting mainly of sol and boric acid
Baking at 870 ° C for 2 minutes. After measuring the magnetic properties of these samples, strain relief annealing was further performed at 800 ° C. for 4 hours. The magnetic properties of the obtained product are shown in Table 2.

【0033】[0033]

【表2】 [Table 2]

【0034】(実施例3)重量比で、Si: 3.3%、M
n: 0.1%、C:0.05%、S: 0.007%、酸可溶性A
l:0.03%、N: 0.008%、Sn:0.05%、残部実質的
にFe及び不可避的不純物からなる珪素鋼スラブを1150
℃で加熱した後、熱間圧延し板厚 2.3mmとした。この熱
延板を1100℃で2分間焼鈍した後、最終板厚0.30mmに冷
延した。
(Example 3) Si: 3.3% by weight, M
n: 0.1%, C: 0.05%, S: 0.007%, acid-soluble A
l: 0.03%, N: 0.008%, Sn: 0.05%, the balance is 1150 of a silicon steel slab consisting essentially of Fe and inevitable impurities.
After heating at ℃, hot rolled to a plate thickness of 2.3 mm. The hot rolled sheet was annealed at 1100 ° C. for 2 minutes and then cold rolled to a final sheet thickness of 0.30 mm.

【0035】この冷延板を窒素と水素の混合ガス中にお
いて酸化度(A:本発明法)0.06、及び(B:従来法)
0.44で 830℃の温度で 150秒焼鈍し一次再結晶させた。
次いでアンモニア雰囲気中で焼鈍することにより、窒素
量を 0.025%に増加して、インヒビターの強化を行っ
た。
This cold-rolled sheet was oxidized in a mixed gas of nitrogen and hydrogen to a degree of oxidation (A: method of the present invention) of 0.06, and (B: conventional method).
It was annealed at 0.44 at a temperature of 830 ° C for 150 seconds for primary recrystallization.
Then, by annealing in an ammonia atmosphere, the amount of nitrogen was increased to 0.025% to strengthen the inhibitor.

【0036】これらの鋼板をその後、(A:本発明法)
アルミナ(Al2 3 )、及び(B:従来法)マグネシ
ア(MgO)を水スラリーで塗布した後、仕上げ焼鈍を
施した。これらの試料に歯車ロールで圧延方向と直角方
向から10度の方向で、幅50μm、深さ15μmの溝
を形成した後、コロイド状シリカとリン酸塩を主成分と
するコーティング液を塗布して 850℃で2分間焼き付け
た。これらの試料の磁気特性を測定した後、更に 800℃
で4時間の歪取り焼鈍を行った。得られた製品の磁気特
性を表3に示す。
These steel sheets were then subjected to (A: method of the present invention).
Alumina (Al 2 O 3 ) and (B: conventional method) magnesia (MgO) were applied as a water slurry, and then finish annealing was performed. A groove having a width of 50 μm and a depth of 15 μm was formed on each of the samples by a gear roll in a direction of 10 ° from the direction perpendicular to the rolling direction, and then a coating liquid containing colloidal silica and phosphate as a main component was applied. It was baked at 850 ° C for 2 minutes. After measuring the magnetic properties of these samples, 800 ° C
Then, strain relief annealing was performed for 4 hours. Table 3 shows the magnetic properties of the obtained product.

【0037】[0037]

【表3】 [Table 3]

【0038】(実施例4)重量比で、Si: 3.3%、M
n: 0.1%、C:0.05%、S: 0.007%、酸可溶性A
l:0.03%、N: 0.008%、Sn:0.05%、残部実質的
にFe及び不可避的不純物からなる珪素鋼スラブを1150
℃で加熱した後、熱間圧延し板厚 1.8mmとした。この熱
延板を 1.4mmに冷延し、1100℃で2分間焼鈍した後、最
終板厚0.15mmに冷延した。
(Example 4) Si: 3.3% by weight, M
n: 0.1%, C: 0.05%, S: 0.007%, acid-soluble A
l: 0.03%, N: 0.008%, Sn: 0.05%, the balance is 1150 of a silicon steel slab consisting essentially of Fe and inevitable impurities.
After heating at ℃, it was hot rolled to a plate thickness of 1.8 mm. The hot rolled sheet was cold rolled to 1.4 mm, annealed at 1100 ° C. for 2 minutes, and then cold rolled to a final sheet thickness of 0.15 mm.

【0039】この冷延板を窒素と水素の混合ガス中にお
いて酸化度(A:本発明法)0.06、及び(B:従来法)
0.44で 830℃の温度で70秒焼鈍し一次再結晶させた。次
いでアンモニア雰囲気中で焼鈍することにより、窒素量
を 0.025%に増加して、インヒビターの強化を行った。
This cold-rolled sheet was oxidized in a mixed gas of nitrogen and hydrogen to a degree of oxidation (A: method of the present invention) of 0.06, and (B: conventional method).
It was annealed at a temperature of 830 ° C. for 0.4 seconds at 0.44 to perform primary recrystallization. Then, by annealing in an ammonia atmosphere, the amount of nitrogen was increased to 0.025% to strengthen the inhibitor.

【0040】これらの鋼板をその後、(A:本発明法)
アルミナ(Al2 3 )、及び(B:従来法)マグネシ
ア(MgO)を水スラリーで塗布した後、仕上げ焼鈍を
施した。これらの試料に歯車ロールで圧延方向と直角方
向から10度の方向で、幅50μm、深さ15μmの溝
を形成した後、コロイド状シリカとリン酸塩を主成分と
するコーティング液を塗布して 850℃で2分間焼き付け
た。これらの試料の磁気特性を測定した後、更に 800℃
で4時間の歪取り焼鈍を行った。得られた製品の磁気特
性を表4に示す。
These steel sheets were then subjected to (A: method of the present invention).
Alumina (Al 2 O 3 ) and (B: conventional method) magnesia (MgO) were applied as a water slurry, and then finish annealing was performed. A groove having a width of 50 μm and a depth of 15 μm was formed on each of these samples by a gear roll in a direction of 10 degrees from the direction perpendicular to the rolling direction, and then a coating liquid containing colloidal silica and phosphate as a main component was applied. It was baked at 850 ° C for 2 minutes. After measuring the magnetic properties of these samples, 800 ° C
Then, strain relief annealing was performed for 4 hours. Table 4 shows the magnetic properties of the obtained product.

【0041】[0041]

【表4】 [Table 4]

【0042】(実施例5)重量比で、Si: 3.1%、M
n:0.07%、C:0.07%、S: 0.025%、酸可溶性A
l: 0.026%、N: 0.008%、Sn: 0.1%、残部実質
的にFe及び不可避的不純物からなる珪素鋼スラブを13
50℃で加熱した後、熱間圧延し板厚 2.3mmとした。この
熱延板を酸洗後 1.8mmに冷延し、1100℃で2分間焼鈍し
た後、最終板厚0.23mmに冷延した。
(Example 5) Si: 3.1% by weight, M
n: 0.07%, C: 0.07%, S: 0.025%, acid-soluble A
l: 0.026%, N: 0.008%, Sn: 0.1%, the balance is a silicon steel slab consisting essentially of Fe and unavoidable impurities 13
After heating at 50 ° C, hot rolling was performed to a plate thickness of 2.3 mm. The hot rolled sheet was pickled, cold rolled to 1.8 mm, annealed at 1100 ° C. for 2 minutes, and then cold rolled to a final sheet thickness of 0.23 mm.

【0043】この冷延板を窒素と水素の混合ガス中にお
いて酸化度(A:本発明法)0.1 、及び(B:従来法)
0.44で 850℃の温度で 100秒焼鈍し一次再結晶させた。
これらの鋼板をその後、(A:本発明法)アルミナ(A
2 3 )、及び(B:従来法)マグネシア(MgO)
を水スラリーで塗布した後、仕上げ焼鈍を施した。
This cold-rolled sheet was oxidized in a mixed gas of nitrogen and hydrogen to a degree of oxidation (A: method of the present invention) of 0.1, and (B: conventional method).
It was annealed at a temperature of 850 ° C. for 0.4 seconds at 0.44 to perform primary recrystallization.
These steel sheets were then subjected to (A: Inventive method) alumina (A
l 2 O 3 ) and (B: conventional method) magnesia (MgO)
Was applied with a water slurry and then subjected to finish annealing.

【0044】これらの試料に歯車ロールで圧延方向と直
角方向から10度の方向で、幅50μm、深さ15μm
の溝を形成した後、コロイド状シリカとリン酸塩を主成
分とするコーティング液を塗布して 850℃で2分間焼き
付けた。これらの試料の磁気特性を測定した後、更に 8
00℃で4時間の歪取り焼鈍を行った。得られた製品の磁
気特性を表5に示す。
A width of 50 μm and a depth of 15 μm were applied to these samples by a gear roll in a direction 10 ° from the direction perpendicular to the rolling direction.
After forming the groove, a coating liquid containing colloidal silica and phosphate as main components was applied and baked at 850 ° C. for 2 minutes. After measuring the magnetic properties of these samples,
Strain relief annealing was performed at 00 ° C. for 4 hours. Table 5 shows the magnetic properties of the obtained products.

【0045】[0045]

【表5】 [Table 5]

【0046】[0046]

【発明の効果】本発明により、歪取り焼鈍によって磁気
特性が劣化せず、且つ従来よりも格段に鉄損特性の良好
な方向性電磁鋼板をコストアップすることなく製造する
ことができる。
According to the present invention, it is possible to manufacture a grain-oriented electrical steel sheet in which magnetic properties are not deteriorated by strain relief annealing and which has significantly better iron loss properties than conventional ones without increasing the cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来製品(a)、及び本発明法で製造した方向
性電磁鋼板(b)の磁区の状況を示す顕微鏡写真。
FIG. 1 is a photomicrograph showing the state of magnetic domains in a conventional product (a) and a grain-oriented electrical steel sheet (b) produced by the method of the present invention.

【図2】従来製品及び本発明法で製造した方向性電磁鋼
板の交流磁界下での磁壁移動速度の図表。
FIG. 2 is a diagram showing domain wall moving speeds of a conventional product and a grain-oriented electrical steel sheet produced by the method of the present invention under an alternating magnetic field.

【図3】製品の磁束密度(B値)と鉄損(W17/5
0)の関係の図表。
[Fig. 3] Product magnetic flux density (B 8 value) and iron loss (W17 / 5)
Chart of relationship 0).

【図4】歯車ロールの摩耗による鉄損劣化代の図表。FIG. 4 is a chart of an iron loss deterioration margin due to wear of a gear roll.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年3月30日[Submission date] March 30, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図1[Name of item to be corrected] Figure 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 FIG.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 菅 洋三 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 (72)発明者 茂木 尚 北九州市戸畑区飛幡町1−1 新日本製鐵 株式会社八幡製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yozo Suga 20-1 Shintomi, Futtsu City Shin-Nippon Steel Co., Ltd. Technical Development Division (72) Inventor Takashi Mogi 1-1 Hibatacho, Tobata-ku, Kitakyushu Inside the Yawata Works

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量比で、 Si:0.8〜4.8%、 酸可溶性Al:0.012〜0.05%、 N ≦0.01%、 残部実質的にFe及び不可避的不純物からなる珪素鋼ス
ラブを1100℃以上1280℃以下で加熱した後に熱
間圧延し、一回もしくは中間焼鈍をはさむ二回以上の冷
間圧延により最終板厚とし、脱炭焼鈍・窒化処理を行っ
た後、仕上げ焼鈍を施す方向性電磁鋼板の製造方法にお
いて、脱炭焼鈍をFe系酸化物の形成しない酸化度の雰
囲気ガス中で行った後、焼鈍分離剤としてアルミナを塗
布することにより、仕上げ焼鈍後の鋼板表面を鏡面状態
にし、該鋼板に機械的に局所応力を付加して溝を形成し
た後に張力被膜を形成することにより、活動磁壁数を増
加させることを特徴とする鉄損の低い鏡面方向性電磁鋼
板の製造方法。
1. By weight ratio, Si: 0.8 to 4.8%, acid-soluble Al: 0.012 to 0.05%, N ≤ 0.01%, the balance being substantially Fe and unavoidable impurities. After heating the silicon steel slab of 1100 ° C. or higher and 1280 ° C. or lower, it is hot-rolled, and is subjected to decarburization annealing / nitriding treatment to a final sheet thickness by one or two or more cold rollings with intermediate annealing. In the method for producing a grain-oriented electrical steel sheet subjected to finish annealing, after decarburization annealing is performed in an atmosphere gas having an oxidation degree that does not form Fe-based oxides, after applying finish-annealing by applying alumina as an annealing separator. Mirror surface direction of low iron loss characterized by increasing the number of active magnetic domain walls by forming a tension film after forming a groove by mechanically applying a local stress to the steel plate surface of For manufacturing high-performance electrical steel sheet
【請求項2】 重量比で、 Si:0.8〜4.8%、 酸可溶性Al:0.012〜0.05%、 N ≦0.01%、 Mn:0.02〜0.3%、 S :0.005〜0.040%、 残部実質的にFe及び不可避的不純物からなる珪素鋼ス
ラブを1300℃以上に加熱した後に熱間圧延し、一回
もしくは中間焼鈍をはさむ二回以上の冷間圧延により最
終板厚とし、次いで脱炭焼鈍・仕上げ焼鈍を施す方向性
電磁鋼板の製造方法において、脱炭焼鈍をFe系酸化物
の形成しない酸化度の雰囲気ガス中で行った後、焼鈍分
離剤としてアルミナを塗布することにより、仕上げ焼鈍
後の鋼板表面を鏡面状態にし、該鋼板に機械的に局所応
力を付加して溝を形成した後に張力被膜を形成すること
により、活動磁壁数を増加させることを特徴とする鉄損
の低い鏡面方向性電磁鋼板の製造方法。
2. By weight ratio, Si: 0.8-4.8%, acid-soluble Al: 0.012-0.05%, N ≦ 0.01%, Mn: 0.02-0.3% , S: 0.005 to 0.040%, the balance is made by heating a silicon steel slab consisting essentially of Fe and unavoidable impurities to 1300 ° C. or higher, and then hot rolling it once or twice or more with intermediate annealing. In a method for producing a grain-oriented electrical steel sheet, which is cold rolled to a final thickness, and then subjected to decarburization annealing and finish annealing, decarburizing annealing is performed in an atmosphere gas with an oxidation degree that does not form Fe-based oxide, and then annealed. By applying alumina as a separating agent, the surface of the steel sheet after finish annealing is made into a mirror surface state, and mechanical stress is applied to the steel sheet to form a groove after forming a groove, thereby increasing the number of active domain walls. Low iron loss characterized by increasing Method for producing a mirror-oriented electrical steel sheet.
【請求項3】 機械的に局所応力を付加して溝を形成す
る方法において、鋼板に形成する溝が圧延方向に直角も
しくは直角から45度の範囲内で、その間隔が圧延方向
に1〜20mm、幅が10〜300μm、深さが5μm以
上50μm以下であることを特徴とする請求項1もしく
は2記載の鉄損の低い鏡面方向性電磁鋼板の製造方法。
3. A method of forming a groove by mechanically applying a local stress, wherein the groove formed on the steel sheet is at right angles to the rolling direction or within a range of 45 degrees from the right angle, and the interval is 1 to 20 mm in the rolling direction. The width is 10 to 300 μm, and the depth is 5 μm or more and 50 μm or less, the method for producing a mirror-oriented electrical steel sheet with low iron loss according to claim 1 or 2.
JP07271895A 1995-03-30 1995-03-30 Method for manufacturing mirror-oriented electrical steel sheet with low iron loss Expired - Lifetime JP3148092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07271895A JP3148092B2 (en) 1995-03-30 1995-03-30 Method for manufacturing mirror-oriented electrical steel sheet with low iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07271895A JP3148092B2 (en) 1995-03-30 1995-03-30 Method for manufacturing mirror-oriented electrical steel sheet with low iron loss

Publications (2)

Publication Number Publication Date
JPH08269554A true JPH08269554A (en) 1996-10-15
JP3148092B2 JP3148092B2 (en) 2001-03-19

Family

ID=13497423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07271895A Expired - Lifetime JP3148092B2 (en) 1995-03-30 1995-03-30 Method for manufacturing mirror-oriented electrical steel sheet with low iron loss

Country Status (1)

Country Link
JP (1) JP3148092B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019508577A (en) * 2015-12-22 2019-03-28 ポスコPosco Directional electrical steel sheet and method of manufacturing directional electrical steel sheet
WO2020149319A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electrical steel sheet and method for manufacturing same
WO2020149342A1 (en) * 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electrical steel sheet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190331A1 (en) 2022-03-28 2023-10-05 日本製鉄株式会社 Grain-oriented magnetic steel plate and manufacturing method therefor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019508577A (en) * 2015-12-22 2019-03-28 ポスコPosco Directional electrical steel sheet and method of manufacturing directional electrical steel sheet
US11508501B2 (en) 2015-12-22 2022-11-22 Posco Grain-oriented electrical steel sheet and method for manufacturing grain-oriented electrical steel sheet
WO2020149319A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electrical steel sheet and method for manufacturing same
WO2020149342A1 (en) * 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electrical steel sheet
KR20210109601A (en) 2019-01-16 2021-09-06 닛폰세이테츠 가부시키가이샤 Grain-oriented electrical steel sheet and its manufacturing method
JPWO2020149342A1 (en) * 2019-01-16 2021-11-25 日本製鉄株式会社 Directional electrical steel sheet
RU2771036C1 (en) * 2019-01-16 2022-04-25 Ниппон Стил Корпорейшн Isotropic electrical steel sheet
US11898215B2 (en) 2019-01-16 2024-02-13 Nippon Steel Corporation Grain-oriented electrical steel sheet and method for manufacturing the same

Also Published As

Publication number Publication date
JP3148092B2 (en) 2001-03-19

Similar Documents

Publication Publication Date Title
JP2679944B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP3496067B2 (en) Method for manufacturing mirror-oriented unidirectional electrical steel sheet
JP2653638B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JP3489945B2 (en) Method for manufacturing mirror-oriented unidirectional electrical steel sheet
JP3474837B2 (en) Method for manufacturing mirror-oriented unidirectional electrical steel sheet having B8 of 1.91 T or more
JP3148092B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP2680987B2 (en) Method for producing grain-oriented silicon steel sheet with low iron loss
JP4119635B2 (en) Method for producing mirror-oriented electrical steel sheet with good decarburization
JP4331886B2 (en) Method for producing grain-oriented silicon steel sheet
JPH05311353A (en) Ultralow core loss grain-oriented silicon steel sheet without glass coating film and its production
JP3148096B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP3182666B2 (en) Method for producing ultra-low iron loss unidirectional silicon steel sheet
JP3148094B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP3148095B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP2678855B2 (en) Method for manufacturing ultra low iron loss unidirectional silicon steel sheet
JP2680532B2 (en) Method for producing grain-oriented electrical steel sheet with low iron loss
JP2003041320A (en) Method for manufacturing grain-oriented electromagnetic steel sheet with mirror surface superior in core loss
JP3148093B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP2678850B2 (en) Method for manufacturing ultra low iron loss unidirectional silicon steel sheet
JPH07278669A (en) Manufacture of mirror surface oriented silicon steel sheet with low iron loss
JP2719266B2 (en) Method for producing ultra-low iron loss unidirectional silicon steel sheet
JP3300194B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP3154935B2 (en) Manufacturing method of low iron loss mirror-oriented unidirectional electrical steel sheet with high magnetic flux density
JP2678858B2 (en) Method for manufacturing ultra low iron loss unidirectional silicon steel sheet
JP2002332523A (en) Method for producing grain oriented silicon steel sheet having good core loss characteristic, and decarburizing annealing furnace

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 13

EXPY Cancellation because of completion of term