JP2021509441A - Bidirectional electromagnetic steel sheet and its manufacturing method - Google Patents

Bidirectional electromagnetic steel sheet and its manufacturing method Download PDF

Info

Publication number
JP2021509441A
JP2021509441A JP2020536037A JP2020536037A JP2021509441A JP 2021509441 A JP2021509441 A JP 2021509441A JP 2020536037 A JP2020536037 A JP 2020536037A JP 2020536037 A JP2020536037 A JP 2020536037A JP 2021509441 A JP2021509441 A JP 2021509441A
Authority
JP
Japan
Prior art keywords
hot
weight
steel sheet
annealing
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020536037A
Other languages
Japanese (ja)
Other versions
JP7174053B2 (en
Inventor
イ,セイル
イ,サン−ウ
シン,スゥ−ヨン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Holdings Inc
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2021509441A publication Critical patent/JP2021509441A/en
Application granted granted Critical
Publication of JP7174053B2 publication Critical patent/JP7174053B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/04Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • H01F1/14783Fe-Si based alloys in the form of sheets with insulating coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

【課題】圧延方向および圧延垂直方向の磁性が非常に優れた二方向性電磁鋼板およびその製造方法を提供する。【解決手段】重量%で、Si:2.0〜6.0%、Al:0.0005〜0.04%、S:0.0001〜0.003%、Mn:0.02〜1.0%、N:0.003%以下(0%を除く)、C:0.01%以下(0%を除く)、Ti:0.01%以下(0%を含まない)、P:0.005〜0.10%を含み、残部はFeおよびその他不可避な不純物を含み、下記数1を満たすことを特徴とする。[数1] [Mn]/[S]≧60(数1中、[Mn]および[S]は、それぞれ、MnおよびSの含有量(重量%)を示す。)【選択図】図なしPROBLEM TO BE SOLVED: To provide a bidirectional electromagnetic steel sheet having excellent magnetism in a rolling direction and a rolling vertical direction, and a method for manufacturing the same. SOLUTION: In% by weight, Si: 2.0 to 6.0%, Al: 0.0005 to 0.04%, S: 0.0001 to 0.003%, Mn: 0.02 to 1.0. %, N: 0.003% or less (excluding 0%), C: 0.01% or less (excluding 0%), Ti: 0.01% or less (excluding 0%), P: 0.005 It contains ~ 0.10%, the balance contains Fe and other unavoidable impurities, and is characterized by satisfying the following equation (1). [Equation 1] [Mn] / [S] ≧ 60 (In Equation 1, [Mn] and [S] indicate the contents (% by weight) of Mn and S, respectively.) [Selection diagram] No figure.

Description

二方向性電磁鋼板およびその製造方法に係り、より詳しくは、合金組成内でMnおよびSの比率を適切に制御して、圧延方向および圧延垂直方向の磁性が非常に優れた二方向性電磁鋼板およびその製造方法に関する。 Regarding the bidirectional magnetic steel sheet and its manufacturing method, more specifically, the bidirectional magnetic steel sheet having excellent magnetism in the rolling direction and the rolling vertical direction by appropriately controlling the ratio of Mn and S in the alloy composition. And its manufacturing method.

電磁鋼板の磁束密度を向上させるためには、鋼の集合組織を向上させて磁化方向に<100>軸を平行に整列させる方法が最も効果的であると知られており、追加的に鋼の合金量を減らしてFe原子が鋼中に占める分率を向上させることで、飽和磁束を純鉄に近くすることによって、磁束密度を向上させる方法が使用される。このうち、方向性電磁鋼板の場合、Goss方位と呼ぶ{110}<001>方位を利用するもので、通常スラブ−熱延−熱延板焼鈍−冷延−1次再結晶中の脱炭−窒化−2次高温焼鈍過程を通じて得ることができる。しかし、これは圧延方向(Rd方向)にのみ磁性に優れ、圧延垂直方向(TD方向)では磁性が極めて劣位となり、磁化の方向が圧延方向に決められている変圧機以外には使用が困難である。そのため、これとは異なる集合組織で磁化方向と<100>軸が平行な集合組織を制御した電磁鋼板の製造が要求される。 In order to improve the magnetic flux density of electrical steel sheets, it is known that the most effective method is to improve the texture of steel and align the <100> axes in parallel in the magnetization direction. A method is used in which the magnetic flux density is improved by reducing the amount of alloy and increasing the proportion of Fe atoms in the steel to bring the saturation magnetic flux closer to that of pure iron. Of these, in the case of grain-oriented electrical steel sheets, the {110} <001> orientation called the Goss orientation is used, and usually slab-hot-rolled-hot-rolled plate annealing-cold-rolled-decarburization during primary recrystallization- It can be obtained through a nitriding-second high temperature annealing process. However, this is excellent in magnetism only in the rolling direction (Rd direction), and the magnetism is extremely inferior in the rolling vertical direction (TD direction), making it difficult to use except for transformers whose magnetization direction is determined in the rolling direction. is there. Therefore, it is required to manufacture an electromagnetic steel sheet having a texture different from this and in which the texture in which the magnetization direction and the <100> axis are parallel is controlled.

回転機器での磁化方向は、通常板面内で回転するため、<100>軸は板面に平行でなければならないが、そのような条件下での方位中の鉄鋼材料でよく観察される方位は{100}<011>方位である。これは圧延方向から45度圧延垂直方向(TD方向)に歪んだ方向に<100>軸が平行になっているため、磁化方向が板の圧延方向から45度である時に最も磁性に優れた特徴がある。しかし、この方位は冷間圧延安定方位で、再結晶焼鈍時には全てなくなる特徴があり、電磁鋼板素材で活用されていない。 Since the magnetization direction in a rotating device usually rotates in the plate surface, the <100> axis must be parallel to the plate surface, but the orientation often observed in steel materials in the orientation under such conditions. Is the {100} <011> orientation. This is because the <100> axis is parallel to the direction distorted in the vertical direction (TD direction) of 45 degrees rolling from the rolling direction, so the most excellent magnetic feature when the magnetization direction is 45 degrees from the rolling direction of the plate. There is. However, this orientation is a stable cold rolling orientation, and has the characteristic of disappearing during recrystallization annealing, and is not used in electrical steel sheet materials.

これと類似するように{100}<001>方位があるが、これはCube on face方位にして過去から有用性が認められてきたが、交差圧延をしたり真空焼鈍するなど、実際の大規模の工業生産が不可能な器具を通じて製造する方法のみが知られている。 Similar to this, there is a {100} <001> orientation, which has been recognized as useful in the past as a Cube on face orientation, but it is actually a large scale such as cross-rolling or vacuum annealing. Only methods are known for manufacturing through equipment that cannot be industrially produced.

特に交差圧延法は、素材の連続生産が不可能なことから活用され得ないが、大型発電機器の場合、数mの直径の円筒形態のコアを製造しなければならないため、板面でコアを数個〜数十個に分割してこれを組み立てる形態に作るようになる工程に適用することができず、生産性も極めて低くなる。 In particular, the cross-rolling method cannot be used because continuous production of materials is not possible, but in the case of large-scale power generation equipment, it is necessary to manufacture a cylindrical core with a diameter of several meters, so the core is made on the plate surface. It cannot be applied to the process of dividing into several to several tens of pieces and assembling them, and the productivity becomes extremely low.

発電機の場合、一般のタービン発電機は、各国の商用電気周波数である50Hz、あるいは60Hzに合わせて電気を生産するため、50Hzおよび60Hzでの磁気的性質が重要であるが、風力発電機など回転速度が遅い発電機ではこのようなDCおよび30Hz下での磁気的特性が重要である。 In the case of a generator, a general turbine generator produces electricity in accordance with the commercial electric frequency of each country, 50 Hz or 60 Hz, so magnetic properties at 50 Hz and 60 Hz are important, but wind power generators, etc. Such magnetic properties under DC and 30 Hz are important for slow rotating generators.

したがって、前記の機器では交流磁気で発生する鉄損よりも、磁化の程度を示す磁束密度特性がより重要な特性であるが、一般にB8磁束密度でこれを評価する。B8磁束密度は、磁場の強度が800A/mでの鋼板の磁束密度値を意味するが、これは主に50Hzの交流磁気で測定し、場合によっては直流で測定したり、50Hz以下の周波数で測定したりもする。 Therefore, in the above-mentioned equipment, the magnetic flux density characteristic indicating the degree of magnetization is more important than the iron loss generated by AC magnetism, but this is generally evaluated by the B8 magnetic flux density. B8 magnetic flux density means the magnetic flux density value of a steel plate when the magnetic field strength is 800 A / m, which is mainly measured by AC magnetism of 50 Hz, and in some cases, measured by direct current or at a frequency of 50 Hz or less. I also measure it.

二方向性電磁鋼板およびその製造方法を提供する。具体的に合金組成内でMnおよびSの比率を適切に制御して、圧延方向および圧延垂直方向の磁性が非常に優れた二方向性電磁鋼板およびその製造方法を提供する。 Provided are a bidirectional electromagnetic steel sheet and a method for manufacturing the same. Specifically, a bidirectional electromagnetic steel sheet having excellent magnetism in the rolling direction and the rolling vertical direction and a method for producing the same are provided by appropriately controlling the ratio of Mn and S in the alloy composition.

本発明の一実施例による二方向性電磁鋼板は、重量%で、Si:2.0〜6.0%、Al:0.0005〜0.04%、S:0.0001〜0.003%、Mn:0.02〜1.0%、N:0.003%以下(0%を除く)、C:0.01%以下(0%を除く)、Ti:0.01%以下(0%を含まない)、P:0.005〜0.10%を含み、残部はFeおよびその他不可避な不純物からなり、下記数1を満たす。
[数1]
[Mn]/[S]≧60
(数1中、[Mn]および[S]は、それぞれ、MnおよびSの含有量(重量%)を示す。)
The grain-oriented electrical steel sheet according to one embodiment of the present invention is Si: 2.0 to 6.0%, Al: 0.0005 to 0.04%, S: 0.0001 to 0.003% in weight%. , Mn: 0.02 to 1.0%, N: 0.003% or less (excluding 0%), C: 0.01% or less (excluding 0%), Ti: 0.01% or less (0%) , P: 0.005 to 0.10%, the balance is composed of Fe and other unavoidable impurities, and satisfies the following equation 1.
[Number 1]
[Mn] / [S] ≧ 60
(In Equation 1, [Mn] and [S] indicate the contents (% by weight) of Mn and S, respectively.)

Sb:0.001〜0.1重量%およびSn:0.001〜0.1重量%のうちの1種以上をさらに含むことができる。
Mo:0.01重量%以下、Bi:0.01重量%以下、Pb:0.01重量%以下、Mg:0.01重量%以下、As:0.01重量%以下、Be:0.01重量%以下、およびSr:0.01重量%以下のうちの1種以上をさらに含むことができる。
One or more of Sb: 0.001 to 0.1% by weight and Sn: 0.001 to 0.1% by weight can be further contained.
Mo: 0.01% by weight or less, Bi: 0.01% by weight or less, Pb: 0.01% by weight or less, Mg: 0.01% by weight or less, As: 0.01% by weight or less, Be: 0.01 One or more of Sr: 0.01% by weight or less can be further contained.

{100}<001>から15°以内の方位を有する結晶粒の面積分率が60〜99%であってもよい。 The surface integral of the crystal grains having an orientation within 15 ° from {100} <001> may be 60 to 99%.

前記電磁鋼板上にフォルステライト層が形成され、前記フォルステライト層は、前記電磁鋼板表面から2μm以内の厚さである面積の分率が75%以上であってもよい。 A forsterite layer is formed on the electromagnetic steel sheet, and the forsterite layer may have a fraction of an area having a thickness of 2 μm or less from the surface of the electromagnetic steel sheet of 75% or more.

前記フォルステライト層上に絶縁層が形成され、上面絶縁層の厚さおよび下面絶縁層の厚さがそれぞれ0.2〜8μmであり、前記上面絶縁層の厚さおよび前記下面絶縁層の厚さの差が前記下面絶縁層の厚さの50%以下であってもよい。 An insulating layer is formed on the forsterite layer, and the thickness of the upper surface insulating layer and the thickness of the lower surface insulating layer are 0.2 to 8 μm, respectively, and the thickness of the upper surface insulating layer and the thickness of the lower surface insulating layer. The difference may be 50% or less of the thickness of the lower surface insulating layer.

上面絶縁層の平均粗さ(Ra)と前記下面絶縁層の平均粗さ(Ra)がそれぞれ1μm以下であり、前記上面絶縁層の平均粗さ(Ra)と前記下面絶縁層の平均粗さ(Ra)の差が0.3μm以下であってもよい。 The average roughness (Ra) of the upper surface insulating layer and the average roughness (Ra) of the lower surface insulating layer are 1 μm or less, respectively, and the average roughness (Ra) of the upper surface insulating layer and the average roughness of the lower surface insulating layer (Ra). The difference in Ra) may be 0.3 μm or less.

圧延方向と圧延垂直方向のBrが全て1.65T以上であり、円周方向のBrが1.55T以上であり、Brは下記数2で計算される。
[数2]
Br=7.87/(7.87−0.0.065×[Si]−0.1105×[Al])×B8
(数2中、[Si]および[Al]は、それぞれ、SiおよびAlの含有量(重量%)を示す。B8は800A/mで誘起した時に誘導される磁場の強度(Tesla)を示す。)
Br in the rolling direction and the rolling vertical direction are all 1.65T or more, Br in the circumferential direction is 1.55T or more, and Br is calculated by the following equation 2.
[Number 2]
Br = 7.87 / (7.87-0.0.065 × [Si] -0.1105 × [Al]) × B8
(In Equation 2, [Si] and [Al] indicate the contents (% by weight) of Si and Al, respectively. B8 indicates the strength of the magnetic field (Tesla) induced when induced at 800 A / m. )

1.5Tの磁場がかかる時、測定周波数が0.01Hz以下での透磁率UDCが50Hzでの透磁率U50の1.2倍以上であってもよい。 When a magnetic field of 1.5 T is applied, the magnetic permeability UDC at a measurement frequency of 0.01 Hz or less may be 1.2 times or more the magnetic permeability U50 at 50 Hz.

電磁鋼板を750℃〜880℃の温度で1〜2時間焼鈍後に測定されたBr値が1.65T以上であってもよい。Brは下記数2で計算される。
[数2]
Br=7.87/(7.87−0.0.065×[Si]−0.1105×[Al])×B8
(数2中、[Si]および[Al]は、それぞれ、SiおよびAlの含有量(重量%)を示す。B8は800A/mで誘起した時に誘導される磁場の強度(Tesla)を示す。)
The Br value measured after annealing the electromagnetic steel sheet at a temperature of 750 ° C. to 880 ° C. for 1 to 2 hours may be 1.65 T or more. Br is calculated by the following equation 2.
[Number 2]
Br = 7.87 / (7.87-0.0.065 × [Si] -0.1105 × [Al]) × B8
(In Equation 2, [Si] and [Al] indicate the contents (% by weight) of Si and Al, respectively. B8 indicates the strength of the magnetic field (Tesla) induced when induced at 800 A / m. )

圧延方向のBhが1.8T以上であり、圧延垂直方向のBhが1.7T以上であり、円周方向のBhが1.6T以上であり、Bhは下記数3で計算される。
[数3]
Bh=7.87/(7.87−0.0.065×[Si]−0.1105×[Al])×B25
(数3中、[Si]および[Al]は、それぞれ、SiおよびAlの含有量(重量%)を示す。B25は2500A/mで誘起した時に誘導される磁場の強度(Tesla)を示す。)
Bh in the rolling direction is 1.8T or more, Bh in the vertical rolling direction is 1.7T or more, Bh in the circumferential direction is 1.6T or more, and Bh is calculated by the following equation 3.
[Number 3]
Bh = 7.87 / (7.87-0.0.065 × [Si] -0.1105 × [Al]) × B25
(In Equation 3, [Si] and [Al] indicate the contents (% by weight) of Si and Al, respectively. B25 indicates the strength of the magnetic field (Tesla) induced when induced at 2500 A / m. )

本発明の一実施例による二方向性電磁鋼板の製造方法は、重量%で、Si:2.0〜6.0%、Al:0.0005〜0.04%、S:0.0001〜0.003%、Mn:0.02〜1.0%、N:0.001〜0.01%、C:0.02〜0.06%、Ti:0.01%以下(0%を含まない)、P:0.005〜0.10%を含み、残部はFeおよびその他不可避な不純物からなり、下記数1を満たすスラブを製造する段階、スラブを加熱する段階、スラブを熱間圧延して熱延板を製造する段階、熱延板を冷間圧延して冷延板を製造する段階、冷延板を1次再結晶焼鈍する段階および1次再結晶焼鈍された冷延板を2次再結晶焼鈍する段階、を含む。
[数1]
[Mn]/[S]≧60
(数1中、[Mn]および[S]は、それぞれ、MnおよびSの含有量(重量%)を示す。)
スラブは、下記数4を満たすことができる。
[数4]
[C]/[Si]≧0.0067
(数4中、[C]および[Si]は、それぞれ、スラブ内のCおよびSiの含有量(重量%)を示す。)
The method for producing a bidirectional electromagnetic steel sheet according to an embodiment of the present invention is, in% weight, Si: 2.0 to 6.0%, Al: 0.0005 to 0.04%, S: 0.0001 to 0. .003%, Mn: 0.02 to 1.0%, N: 0.001 to 0.01%, C: 0.02 to 0.06%, Ti: 0.01% or less (not including 0%) ), P: 0.005 to 0.10%, the balance is composed of Fe and other unavoidable impurities, the stage of producing a slab satisfying the following number 1, the stage of heating the slab, and the stage of hot rolling the slab. The stage of manufacturing the hot-rolled plate, the stage of cold-rolling the hot-rolled plate to manufacture the cold-rolled plate, the stage of primary recrystallization annealing of the cold-rolled plate, and the stage of primary recrystallization annealing of the cold-rolled plate are secondary. Including the step of recrystallization annealing.
[Number 1]
[Mn] / [S] ≧ 60
(In Equation 1, [Mn] and [S] indicate the contents (% by weight) of Mn and S, respectively.)
The slab can satisfy the following number 4.
[Number 4]
[C] / [Si] ≧ 0.0067
(In Equation 4, [C] and [Si] indicate the contents (% by weight) of C and Si in the slab, respectively.)

前記スラブを加熱する段階で、1100℃以上の時間が25〜50分であってもよい。 At the stage of heating the slab, the time of 1100 ° C. or higher may be 25 to 50 minutes.

前記熱延板を製造する段階で、2以上のパスを含み、最終パスおよび最終パス以前のパスでの圧下率がそれぞれ15〜40%であり、前記最終パスおよび前記最終パス以前のパスでの圧下率の合計が55%以下であってもよい。 At the stage of manufacturing the hot-rolled plate, two or more passes are included, the reduction rate in the final pass and the pass before the final pass is 15 to 40%, respectively, and in the final pass and the pass before the final pass. The total reduction rate may be 55% or less.

前記熱延板を製造する段階後、前記熱延板を焼鈍する段階をさらに含み、熱延板を焼鈍する段階で、1100℃以上の時間が5〜50秒であってもよい。 After the step of manufacturing the hot-rolled plate, the step of annealing the hot-rolled plate is further included, and the time of 1100 ° C. or higher may be 5 to 50 seconds at the stage of annealing the hot-rolled plate.

前記熱延板を焼鈍する段階後、前記熱延板の平均結晶粒径が100〜200μmであってもよい。 After the step of annealing the hot-rolled plate, the average crystal grain size of the hot-rolled plate may be 100 to 200 μm.

前記熱延板を焼鈍する段階後、前記熱延板の1mm2面積で、粒径が0.1μm以上である析出物の数が100〜4000個であり、粒径である0.5μm超過である析出物の数(B)に対する、粒径が0.1〜0.5μmである析出物の数(A)の比率(A/B)が1以上であってもよい。 After the step of annealing the hot-rolled plate, the number of precipitates having a particle size of 0.1 μm or more in a 1 mm2 area of the hot-rolled plate is 100 to 4000, and the number of precipitates exceeding the particle size of 0.5 μm. The ratio (A / B) of the number of precipitates (A) having a particle size of 0.1 to 0.5 μm to (B) may be 1 or more.

熱延板を焼鈍する段階の温度(T2)およびスラブを加熱する段階の温度(T1)が下記数5を満たすことができる。
[数5]
−200≦T1−T2≦30
The temperature at the stage of annealing the hot-rolled plate (T2) and the temperature at the stage of heating the slab (T1) can satisfy the following equation (5).
[Number 5]
-200 ≤ T1-T2 ≤ 30

前記スラブを加熱する段階後、前記熱延板を製造する段階までの時間が3〜20分であり、前記スラブ加熱する段階から前記熱延板を製造する段階までの最大温度が前記熱延を板焼鈍する段階の焼鈍温度の20℃以下であってもよい。 The time from the step of heating the slab to the step of manufacturing the hot-rolled plate is 3 to 20 minutes, and the maximum temperature from the step of heating the slab to the stage of manufacturing the hot-rolled plate is the hot-rolling. The annealing temperature at the stage of plate annealing may be 20 ° C. or lower.

前記冷延板を製造する段階で、圧下率が50〜70%であってもよい。
前記1次再結晶焼鈍する段階で、窒化量が0.01〜0.023重量%であってもよい。
At the stage of manufacturing the cold-rolled plate, the reduction rate may be 50 to 70%.
At the stage of primary recrystallization annealing, the amount of nitriding may be 0.01 to 0.023% by weight.

前記1次再結晶焼鈍する段階後、前記1次再結晶焼鈍された鋼板の平均結晶粒径が32〜50μmであってもよい。 After the step of primary recrystallization annealing, the average crystal grain size of the primary recrystallization annealed steel sheet may be 32 to 50 μm.

前記1次再結晶焼鈍する段階後、MgOを含む焼鈍分離剤を塗布する段階をさらに含むことができる。 After the step of primary recrystallization annealing, a step of applying an annealing separator containing MgO can be further included.

本発明の一実施例による二方向性電磁鋼板は、合金組成内でMnおよびSの比率を適切に制御して、圧延方向および圧延垂直方向の磁性が非常に優れている。
特に、風力発電機など回転速度が遅い発電機に有用に使用することができる。
The bidirectional electromagnetic steel sheet according to the embodiment of the present invention has excellent magnetism in the rolling direction and the rolling vertical direction by appropriately controlling the ratio of Mn and S in the alloy composition.
In particular, it can be usefully used for a generator having a slow rotation speed such as a wind power generator.

第1、第2および第3などの用語を、多様な部分、成分、領域、層および/またはセクションを説明するために使用するが、これらに限定されない。これらの用語は、ある部分、成分、領域、層またはセクションを他の部分、成分、領域、層またはセクションと区別するためだけに使用する。したがって、以下で記述する第1部分、成分、領域、層またはセクションは、本発明の範囲を逸脱しない範囲内で第2部分、成分、領域、層またはセクションとして言及され得る。 Terms such as first, second and third are used to describe various parts, components, regions, layers and / or sections, but are not limited thereto. These terms are used only to distinguish one part, component, area, layer or section from another part, component, area, layer or section. Therefore, the first part, component, region, layer or section described below may be referred to as the second part, component, region, layer or section without departing from the scope of the present invention.

ここで使用する専門用語は、単に特定の実施例を言及するためのものであり、本発明を限定することを意図しない。ここで使用する単数の形態は、文言がこれと明確に反対の意味を示さない限り、複数の形態も含む。明細書で使用される「含む」の意味は、特定の特性、領域、整数、段階、動作、要素および/または成分を具体化し、他の特性、領域、整数、段階、動作、要素および/または成分の存在や付加を除外させるものではない。 The terminology used herein is merely to refer to a particular embodiment and is not intended to limit the invention. The singular form used herein also includes multiple forms unless the wording has a clear opposite meaning. As used herein, the meaning of "contains" embodies a particular property, region, integer, stage, behavior, element and / or component, and other characteristics, region, integer, stage, behavior, element and / or. It does not exclude the presence or addition of ingredients.

ある部分が他の部分の「上に」あると言及する場合、これは他の部分の直上または上にあるか、またはその間に他の部分が介され得る。対照的に、ある部分が他の部分の「直上に」あると言及する場合、その間に他の部分が介されない。 When referring to one part being "above" another part, it may be directly above or above the other part, or may be intervened by another part in between. In contrast, when one mentions that one part is "directly above" another, no other part is intervened between them.

特に定義していないが、ここで使用する技術用語および科学用語を含む全ての用語は、本発明が属する技術分野における通常の知識を有する者が一般に理解する意味と同一の意味を有する。通常使用される辞書に定義された用語は、関連技術文献と現在開示する内容に符合する意味を有するものに追加解釈され、定義しない限り、理想的または非常に公式的な意味に解釈されない。 Although not specifically defined, all terms, including the technical and scientific terms used herein, have the same meaning as generally understood by those with ordinary knowledge in the technical field to which the present invention belongs. Terms defined in commonly used dictionaries are additionally interpreted to have meanings that are consistent with the relevant technical literature and what is currently disclosed, and unless defined, they are not interpreted in an ideal or very formal sense.

また、特に言及しない限り、%は重量%を意味し、1ppmは0.0001重量%である。 Further, unless otherwise specified,% means% by weight, and 1 ppm is 0.0001% by weight.

本発明の一実施例で追加元素をさらに含むことの意味は、追加元素の追加量の分、残部である鉄(Fe)を代替して含むことを意味する。 In one embodiment of the present invention, the meaning of further containing an additional element means that iron (Fe), which is the balance, is contained in place of the additional amount of the additional element.

以下、本発明の実施例について本発明が属する技術分野における通常の知識を有する者が容易に実施することができるように詳細に説明する。しかし、本発明は多様な異なる形態に実現することができ、ここで説明する実施例に限定されない。 Hereinafter, examples of the present invention will be described in detail so that those having ordinary knowledge in the technical field to which the present invention belongs can easily carry out the examples. However, the present invention can be realized in a variety of different forms and is not limited to the examples described herein.

本発明の一実施例による二方向性電磁鋼板は、重量%で、Si:2.0〜6.0%、Al:0.0005〜0.04%、S:0.0001〜0.003%、Mn:0.02〜1.0%、N:0.003%以下(0%を除く)、C:0.01%以下(0%を除く)、Ti:0.01%以下(0%を含まない)、P:0.005〜0.10%を含む。 The grain-oriented electrical steel sheet according to one embodiment of the present invention is Si: 2.0 to 6.0%, Al: 0.0005 to 0.04%, S: 0.0001 to 0.003% in weight%. , Mn: 0.02 to 1.0%, N: 0.003% or less (excluding 0%), C: 0.01% or less (excluding 0%), Ti: 0.01% or less (0%) Includes), P: 0.005 to 0.10%.

まず、二方向性電磁鋼板の成分限定の理由から説明する。
Si:2.0〜6.0重量%
シリコン(Si)は、熱間圧延ではオーステナイトを形成する元素であり、スラブ加熱温度付近と熱延板焼鈍温度付近で10%内外のオーステナイト分率を有するようにするために添加量を制限する必要がある。また2次再結晶焼鈍ではフェライト単相であってこそ焼鈍時に2次再結晶微細組織の形成が円滑に起こり得るため、フェライト単相になる成分に制限する必要がある。純鉄では2.0重量%以上添加時にフェライト単相が形成され、そこで、Cの添加を通じてオーステナイト分率を調節することができるため、Si含有量の下限を2.0重量%に限定することができる。また6重量%超過時、冷間圧延が不可能であるため、これを制限する。より具体的にSiは2.2〜3.1重量%含まれてもよい。より具体的に、磁束密度が高い鋼板を得るためにはSiは2.4〜2.9重量%含まれてもよい。
First, the reason for limiting the components of the bidirectional electromagnetic steel sheet will be described.
Si: 2.0 to 6.0% by weight
Silicon (Si) is an element that forms austenite in hot rolling, and it is necessary to limit the amount of silicon (Si) added in order to have an austenite fraction inside and outside 10% near the slab heating temperature and near the hot-rolled sheet annealing temperature. There is. Further, in the secondary recrystallization annealing, the formation of the secondary recrystallization fine structure can occur smoothly at the time of annealing only in the case of the ferrite single phase, so it is necessary to limit the components to the ferrite single phase. In pure iron, a ferrite single phase is formed when 2.0% by weight or more is added, and the austenite fraction can be adjusted through the addition of C. Therefore, the lower limit of the Si content should be limited to 2.0% by weight. Can be done. Further, when 6% by weight is exceeded, cold rolling is impossible, so this is limited. More specifically, Si may be contained in an amount of 2.2 to 3.1% by weight. More specifically, in order to obtain a steel sheet having a high magnetic flux density, Si may be contained in an amount of 2.4 to 2.9% by weight.

Al:0.0005〜0.04重量%
アルミニウム(Al)は、AlNを形成して2次再結晶のインヒビタとして使用される。本発明の一実施例では通常の方向性電磁鋼板の窒化工程以外のインヒビタ使用時にもCube集合組織を得ることができるため、Alの添加量は通常の方向性電磁鋼板より広い範囲に制御されてもよい。ただし、0.0005重量%未満添加時には鋼中の酸化物が大きく増加して磁性を劣位になるようにし、また2次再結晶温度を変化させてCube方位の形成を妨害するため、その下限を0.0005重量%とする。0.04重量%を超えれば2次再結晶温度が大きく増加して工業的生産が難しい。より具体的にAlは0.001〜0.003重量%含まれてもよい。
Al: 0.0005 to 0.04% by weight
Aluminum (Al) forms AlN and is used as an inhibitor for secondary recrystallization. In one embodiment of the present invention, since the Cube texture can be obtained even when an inhibitor is used other than the nitriding step of the ordinary grain-oriented electrical steel sheet, the amount of Al added is controlled in a wider range than that of the grain-oriented electrical steel sheet. May be good. However, when less than 0.0005% by weight is added, the oxide in the steel increases significantly to make the magnetism inferior, and the secondary recrystallization temperature is changed to hinder the formation of the Cube orientation. It shall be 0.0005% by weight. If it exceeds 0.04% by weight, the secondary recrystallization temperature will increase significantly, making industrial production difficult. More specifically, Al may be contained in an amount of 0.001 to 0.003% by weight.

S:0.0001〜0.003重量%
硫黄(S)は、鋼中CuやMnと結合してMnSを微細に形成し、微細に形成された析出物は2次再結晶を助けるため、その添加量を0.0001〜0.003重量%とすることができる。過量で添加時にはSの偏析により表面欠陥および2次再結晶時の集合組織の制御がなさらないため、0.003重量%に制限する。
S: 0.0001 to 0.003% by weight
Sulfur (S) combines with Cu and Mn in steel to form MnS finely, and the finely formed precipitates assist secondary recrystallization, so the amount added is 0.0001 to 0.003 by weight. Can be%. When added in an excessive amount, the segregation of S does not control the surface defects and the texture at the time of secondary recrystallization, so the content is limited to 0.003% by weight.

Mn:0.02〜1.0重量%
マンガン(Mn)は、不可避に溶鋼に存在するものであるが、少量が入れば析出物として使用され得、FeSの形成後にMnSに変化する元素で鋼中添加することができる。ただし、1.0%超えて添加時には高温焼鈍中Mnによる表面欠陥が問題になるため、その限界を1.0%とする。0.02重量%未満含まれれば、磁性が劣位になるため、その下限を0.02重量%とする。より具体的にMnは0.05〜0.5重量%含まれてもよい。
Mn: 0.02 to 1.0% by weight
Manganese (Mn) is inevitably present in molten steel, but if it is contained in a small amount, it can be used as a precipitate, and it can be added to steel as an element that changes to MnS after the formation of FeS. However, if it exceeds 1.0%, surface defects due to Mn during high-temperature annealing become a problem, so the limit is set to 1.0%. If it is contained less than 0.02% by weight, the magnetism becomes inferior, so the lower limit is set to 0.02% by weight. More specifically, Mn may be contained in an amount of 0.05 to 0.5% by weight.

Mn/S重量比:60以上
Mn/Sは、熱間圧延時の熱延脆性を防止するために使用される数値で、方向性電磁鋼板では10〜20が適当であると知られている。本発明ではSによるGoss成長を抑制するために十分に高いMn/S重量比を維持することが必要である。Mn/S重量比を制御することによってMnとSの結合により形成される析出物の形成温度と大きさ、分布を制御することができ、Mn/S重量比を調節して2次再結晶時にCube集合組織の強化および圧延方向と圧延垂直方向の磁束密度向上を誘導することができる。したがって、Mn/S重量比を60以上に制御することができる。より具体的にMn/S重量比を130〜1000に制御することができる。
Mn / S weight ratio: 60 or more Mn / S is a numerical value used to prevent hot-rolled brittleness during hot rolling, and it is known that 10 to 20 is suitable for grain-oriented electrical steel sheets. In the present invention, it is necessary to maintain a sufficiently high Mn / S weight ratio in order to suppress Goss growth due to S. By controlling the Mn / S weight ratio, the formation temperature, size, and distribution of the precipitate formed by the bond between Mn and S can be controlled, and the Mn / S weight ratio can be adjusted during secondary recrystallization. It is possible to strengthen the Cube texture and improve the magnetic flux density in the rolling direction and the rolling vertical direction. Therefore, the Mn / S weight ratio can be controlled to 60 or more. More specifically, the Mn / S weight ratio can be controlled to 130 to 1000.

N:0.003重量%以下
窒素(N)は、AlNを形成する元素でAlNをインヒビタとして用いるため、適切な含有量を確保する必要がある。Nを過度に少なく含む時、冷間圧延時に組織不均一変形度を十分に増加させて1次再結晶時にCubeの成長を促進し、Gossの成長を抑制できなくなる。Nを過量で含む時、熱延後の工程で窒素拡散によるブリスター(blister)のような表面欠陥を誘発するようになるだけでなく、スラブ状態で過剰の硝酸塩が形成され、圧延が容易でないため、製造単価が上昇する原因になる。より具体的にNは0.001〜0.003重量%含むことができる。
N: 0.003% by weight or less Nitrogen (N) is an element that forms AlN, and since AlN is used as an inhibitor, it is necessary to secure an appropriate content. When N is contained in an excessively small amount, the degree of microstructure non-uniform deformation is sufficiently increased during cold rolling to promote the growth of Cube during primary recrystallization, and the growth of Goss cannot be suppressed. When N is contained in an excessive amount, not only surface defects such as blister due to nitrogen diffusion are induced in the post-rolling process, but also excess nitrate is formed in the slab state, which makes rolling difficult. , Causes the manufacturing unit price to rise. More specifically, N can contain 0.001 to 0.003% by weight.

スラブ内でNは0.001〜0.1重量%含まれてもよい。本発明の一実施例で1次再結晶焼鈍時、窒化する過程が含まれ、2次再結晶焼鈍時に一部Nが除去されるため、スラブと最終製造された電磁鋼板のN含有量は異なってもよい。 N may be contained in the slab in an amount of 0.001 to 0.1% by weight. In one embodiment of the present invention, the process of nitriding is included during the primary recrystallization annealing, and a part of N is removed during the secondary recrystallization annealing, so that the N content of the slab and the final manufactured electrical steel sheet are different. You may.

C:0.01重量%以下
炭素(C)は、2次再結晶焼鈍後にも多量含まれれば、磁気時効を起こして鉄損が大きく増加するため、上限は0.01重量%とする。より具体的には0.005重量%以下に調節する。より具体的にCを0.0001〜0.005重量%含むことができる。
C: 0.01% by weight or less If a large amount of carbon (C) is contained even after the secondary recrystallization annealing, magnetic aging occurs and iron loss greatly increases. Therefore, the upper limit is 0.01% by weight. More specifically, it is adjusted to 0.005% by weight or less. More specifically, C can be contained in an amount of 0.0001 to 0.005% by weight.

スラブ内でCは、0.02〜0.06重量%含まれてもよい。これを通じて、熱延板内の応力集中とゴス(Goss)形成を抑制することができ、析出物を微細化することができる。またCは、冷間圧延時に組織不均一変形度を増加させて1次再結晶時にキューブ(Cube)の成長を促進し、Gossの成長を抑制することができる。ただし、過量で添加されれば熱延板内の応力集中は解消することができるが、Goss形成を抑制することができず、析出物の微細化も難しい。冷間圧延時にも冷間圧延性を大きく劣位になるようにするため、その添加量は限界を有する。本発明の一実施例で1次再結晶焼鈍時、脱炭する過程が含まれるため、スラブと最終製造された電磁鋼板のC含有量は異なってもよい。 In the slab, C may be contained in an amount of 0.02 to 0.06% by weight. Through this, stress concentration and Goth formation in the hot-rolled plate can be suppressed, and the precipitate can be miniaturized. Further, C can increase the degree of microstructure non-uniform deformation during cold rolling, promote the growth of cubes during primary recrystallization, and suppress the growth of Goss. However, if it is added in an excessive amount, the stress concentration in the hot-rolled plate can be eliminated, but the formation of Goss cannot be suppressed, and it is difficult to miniaturize the precipitate. The amount of addition is limited in order to make the cold rollability significantly inferior even during cold rolling. Since one embodiment of the present invention includes a process of decarburization during primary recrystallization annealing, the C content of the slab and the final manufactured electrical steel sheet may be different.

Ti:0.01重量%以下、
チタニウム(Ti)は、TiSiCNなどの複合析出物を形成したり酸化物を形成する元素として、0.01重量%以下添加することが好ましい。また高温で安定した析出物と酸化物は2次再結晶に妨害となるため、その添加量を0.01重量%以下にする必要がある。ただし、完全に除去することは通常の製鋼工程では極めて難しい。より具体的にTiを0.005重量%以下含むことができる。
Ti: 0.01% by weight or less,
Titanium (Ti) is preferably added in an amount of 0.01% by weight or less as an element for forming a composite precipitate such as TiSiCN or forming an oxide. Further, since the precipitates and oxides stable at high temperature interfere with the secondary recrystallization, it is necessary to add the amount to 0.01% by weight or less. However, it is extremely difficult to completely remove it in a normal steelmaking process. More specifically, Ti can be contained in an amount of 0.005% by weight or less.

P:0.005〜0.10重量%
リン(P)は、鋼の比抵抗を向上させ、2次再結晶時にCubeの分率を向上させる役割を果たし、冷間圧延時に不均一変形量も増加させるため、少なくとも0.005重量%以上は添加することが好ましい。ただし、0.10重量%超えて添加時に冷間圧延性が極めて脆弱になるため、その添加量を制限する。より具体的にPが0.01〜0.08重量%含まれてもよい。
Sb:0.001〜0.1重量%およびSn:0.001〜0.1重量%のうちの1種以上をさらに含むことができる。
P: 0.005 to 0.10% by weight
Phosphorus (P) plays a role of improving the specific resistance of steel, improving the fraction of Cube during secondary recrystallization, and also increases the amount of non-uniform deformation during cold rolling, so that it is at least 0.005% by weight or more. Is preferably added. However, since the cold rollability becomes extremely fragile when added in excess of 0.10% by weight, the amount of addition is limited. More specifically, P may be contained in an amount of 0.01 to 0.08% by weight.
One or more of Sb: 0.001 to 0.1% by weight and Sn: 0.001 to 0.1% by weight can be further contained.

SnおよびSb:0.001%〜0.1%
錫(Sn)とアンチモン(Sb)は、1次再結晶集合組織制御のために添加することが可能な元素である。また0.001重量%以上添加すれば酸化層の形成厚さを変化させて圧延垂直方向と圧延方向の磁性差を減らす元素であるが、0.1重量%超えて添加時には冷間圧延時にロールでのスリップが大きく増加するため、これを制限する。
Sn and Sb: 0.001% to 0.1%
Tin (Sn) and antimony (Sb) are elements that can be added for controlling the primary recrystallization texture. Further, if 0.001% by weight or more is added, it is an element that changes the formation thickness of the oxide layer and reduces the magnetic difference between the vertical rolling direction and the rolling direction. Limit this as it will greatly increase slippage in.

Mo:0.01重量%以下、Bi:0.01重量%以下、Pb:0.01重量%以下、Mg:0.01重量%以下、As:0.01重量%以下、Be:0.01重量%以下、およびSr:0.01重量%以下のうちの1種以上をさらに含むことができる。 Mo: 0.01% by weight or less, Bi: 0.01% by weight or less, Pb: 0.01% by weight or less, Mg: 0.01% by weight or less, As: 0.01% by weight or less, Be: 0.01 One or more of Sr: 0.01% by weight or less can be further contained.

モリブデン(Mo)は、粒界に偏析元素として追加添加時に電磁鋼板でのSiによる粒界脆化を抑制する効果がある反面、Cと結合してMo炭化物などの析出物を形成して磁性に悪影響を与えるため、0.01重量%以下に制限する必要がある。 Molybdenum (Mo) has the effect of suppressing grain boundary embrittlement due to Si in electrical steel sheets when it is added as a segregating element to the grain boundaries, but on the other hand, it combines with C to form precipitates such as Mo carbides and becomes magnetic. Since it has an adverse effect, it is necessary to limit it to 0.01% by weight or less.

ビスマス(Bi)、鉛(Pb)、マグネシウム(Mg)、砒素(As)、ベリリウム(Be)およびストロンチウム(Sr)は、鋼中に酸化物、窒化物、炭化物が微細に形成される元素で2次再結晶を助ける元素であり、追加添加することができる。ただし、0.01重量%超えて添加時には2次再結晶形成が不安定になる問題を引き起こすため、その添加量を制限する必要がある。 Bismuth (Bi), lead (Pb), magnesium (Mg), arsenic (As), beryllium (Be) and strontium (Sr) are elements in which oxides, nitrides and carbides are finely formed in steel. It is an element that helps the next recrystallization and can be added additionally. However, when it is added in excess of 0.01% by weight, it causes a problem that secondary recrystallization is unstable, so it is necessary to limit the amount of addition.

また、本発明の二方向性電磁鋼板は、前述した成分以外の残部は、Feおよび不可避的不純物である。ただし、本発明の作用効果を阻害しない範囲内であれば、他の元素の含有を排除するのではない。 Further, in the bidirectional electromagnetic steel sheet of the present invention, the balance other than the above-mentioned components is Fe and unavoidable impurities. However, the content of other elements is not excluded as long as it does not interfere with the action and effect of the present invention.

このように本発明の一実施例による二方向性電磁鋼板は、合金組成を精密に制御して、キューブ集合組織を多数形成させる。具体的に{100}<001>から15°以内の方位を有する結晶粒の面積分率が60〜99%であってもよい。この時、99%を超えることは、2次再結晶中に不可避に形成されるIsland grainの形成を抑制し、また、析出物を完全に除去することを意味するが、このためには、高温での焼鈍時間が大きく増加するため、これを60〜99%に限定する。 As described above, the bidirectional electromagnetic steel sheet according to the embodiment of the present invention precisely controls the alloy composition to form a large number of cube textures. Specifically, the surface integral of the crystal grains having an orientation within 15 ° from {100} <001> may be 60 to 99%. At this time, if it exceeds 99%, it means that the formation of Island grains inevitably formed during the secondary recrystallization is suppressed and the precipitate is completely removed. This is limited to 60-99% as the annealing time in.

本発明の一実施例で鋼板上にフォルステライト層が形成され、フォルステライト層は、鋼板表面から2μm以内の厚さである面積の分率が75%以上であってもよい。方向性電磁鋼板は、圧延方向に張力を付与するためにフォルステライト(Mg2SiO4)を含む酸化層を表面から2〜3μm厚さに形成し、これと母材の熱膨張係数差を利用して張力を付与する。しかし、本発明の一実施例の場合、圧延方向への張力は直ちに圧延垂直方向への圧縮を意味するため、これを極めて減らすことが好ましい。2.0μm以内の薄い酸化層は張力付与効果が極めて落ちるため、このような薄い酸化層を表面積の75面積%以上分布させることによって板全体にかかる張力を除去することができる。 In one embodiment of the present invention, a forsterite layer is formed on the steel sheet, and the forsterite layer may have a fraction of an area having a thickness of 2 μm or less from the surface of the steel sheet of 75% or more. In grain-oriented electrical steel sheets, an oxide layer containing forsterite (Mg2SiO4) is formed to a thickness of 2 to 3 μm from the surface in order to apply tension in the rolling direction, and the tension is utilized by utilizing the difference in thermal expansion coefficient between this and the base metal. Is given. However, in the case of one embodiment of the present invention, the tension in the rolling direction immediately means compression in the rolling vertical direction, so it is preferable to extremely reduce this. Since the tension applying effect of a thin oxide layer of 2.0 μm or less is extremely reduced, the tension applied to the entire plate can be removed by distributing such a thin oxide layer in an area of 75 area% or more of the surface area.

フォルステライト層上に絶縁層が形成され、上面絶縁層の厚さおよび下面絶縁層の厚さがそれぞれ0.2〜8μmであり、上面絶縁層の厚さおよび下面絶縁層の厚さ差が前記下面絶縁層の厚さの50%以下であってもよい。フォルステライト層は、鋼板の両面(上面および下面)に形成されてもよく、その上面および下面に形成されたフォルステライト層上に絶縁層が形成されてもよい。上面に形成された絶縁層を上面絶縁層、下面に形成された絶縁層を下面絶縁層という。上面および下面の絶縁層により適切な絶縁性を確保することができ、発電機などに活用するための打抜性を確保することができる。特に、上面絶縁層と下面絶縁層の厚さ差を制御して、打抜時にバリ(bur)を抑制することができる。 An insulating layer is formed on the forsterite layer, and the thickness of the upper surface insulating layer and the thickness of the lower surface insulating layer are 0.2 to 8 μm, respectively, and the difference between the thickness of the upper surface insulating layer and the thickness of the lower surface insulating layer is as described above. It may be 50% or less of the thickness of the lower surface insulating layer. The forsterite layer may be formed on both surfaces (upper surface and lower surface) of the steel sheet, or an insulating layer may be formed on the forsterite layer formed on the upper surface and the lower surface thereof. The insulating layer formed on the upper surface is called an upper surface insulating layer, and the insulating layer formed on the lower surface is called a lower surface insulating layer. Appropriate insulation can be ensured by the insulating layers on the upper surface and the lower surface, and punching property for use in a generator or the like can be ensured. In particular, the difference in thickness between the upper surface insulating layer and the lower surface insulating layer can be controlled to suppress burs during punching.

上面絶縁層の平均粗さ(Ra)と前記下面絶縁層の平均粗さ(Ra)がそれぞれ1μm以下であり、上面絶縁層の平均粗さ(Ra)と前記下面絶縁層の平均粗さ(Ra)の差が0.3μm以下であってもよい。粗さが高い材料は打抜時にburを抑制することができず、特に上面と下面の粗さ差が過度に大きい場合、burを抑制することができない。 The average roughness (Ra) of the upper surface insulating layer and the average roughness (Ra) of the lower surface insulating layer are 1 μm or less, respectively, and the average roughness (Ra) of the upper surface insulating layer and the average roughness (Ra) of the lower surface insulating layer are ) May be 0.3 μm or less. A material having a high roughness cannot suppress the bur at the time of punching, and particularly when the roughness difference between the upper surface and the lower surface is excessively large, the bur cannot be suppressed.

本発明の一実施例による二方向性電磁鋼板は、圧延方向と圧延垂直方向の磁性が全て優れている。具体的に圧延方向と圧延垂直方向のBrが全て1.65T以上であり、円周方向のBrが1.55T以上であり、Brは下記数2で計算される。
[数2]
Br=7.87/(7.87−0.0.065×[Si]−0.1105×[Al])×B8
(数2中、[Si]および[Al]は、それぞれ、SiおよびAlの含有量(重量%)を示す。B8は800A/mで誘起した時に誘導される磁場の強度(Tesla)を示す。)
The bidirectional electromagnetic steel sheet according to the embodiment of the present invention is excellent in magnetism in the rolling direction and the rolling vertical direction. Specifically, Br in the rolling direction and the rolling vertical direction are all 1.65T or more, Br in the circumferential direction is 1.55T or more, and Br is calculated by the following equation 2.
[Number 2]
Br = 7.87 / (7.87-0.0.065 × [Si] -0.1105 × [Al]) × B8
(In Equation 2, [Si] and [Al] indicate the contents (% by weight) of Si and Al, respectively. B8 indicates the strength of the magnetic field (Tesla) induced when induced at 800 A / m. )

大型発電機の場合、環状フレームの直径が数メートルであり、T字型の歯(Teeth)で電磁鋼板を切断して環状フレームを形成する。この時、T字型のTeeth部位を圧延垂直方向にし、環状のフレームに圧延方向を置いたり、反対にT字型のTeeth部位を圧延方向に置き、環状のフレームに圧延垂直方向を置くことができる。このような設計の変更は、Teethの長さと環状フレームの直径の長さ、また環状フレームの幅により決定される。通常Teeth部位は発電機稼働時に大きい磁束が流れる部位であり、このような磁束が環状部位に抜け出るようになる。この時の発生するエネルギーを考慮して、圧延方向と圧延垂直方向をTeeth部にするか、環状部位にするかを決めるようになるが、Brが全て1.65T以上で非常に高い磁束密度を有する材料の場合、このような圧延方向と圧延垂直方向がいずれの部位に使用されるのかの区分が必要ないため、いずれにしても非常に高いエネルギー効率を有するようになる。また円周方向のBr磁束密度が1.55T以上で高くなればT字のTeeth部位と環状フレームの連結部位での磁束によるエネルギー損失が大きく減少する。これを通じて、発電機の効率を向上させたり、環状フレームの幅とTeeth部位の大きさを減少させて小さいサイズのコアでも高い効率の発電機を作ることができる。 In the case of a large generator, the diameter of the annular frame is several meters, and the electromagnetic steel plate is cut by T-shaped teeth (Teeth) to form the annular frame. At this time, the T-shaped Yeth portion may be set in the rolling vertical direction and the rolling direction may be placed on the annular frame, or conversely, the T-shaped Teath portion may be placed in the rolling direction and the rolling vertical direction may be placed on the annular frame. it can. Such design changes are determined by the length of the teeth, the length of the diameter of the annular frame, and the width of the annular frame. Normally, the Teth portion is a portion through which a large magnetic flux flows when the generator is operating, and such magnetic flux escapes to the annular portion. In consideration of the energy generated at this time, it is decided whether the rolling direction and the rolling vertical direction are the Teth part or the annular part, but all Br are 1.65T or more and the magnetic flux density is very high. In the case of the material to have, since it is not necessary to distinguish which part the rolling direction and the rolling vertical direction are used for, in any case, the material has very high energy efficiency. Further, if the Br magnetic flux density in the circumferential direction becomes high at 1.55 T or more, the energy loss due to the magnetic flux at the T-shaped Teeth portion and the connecting portion of the annular frame is greatly reduced. Through this, it is possible to improve the efficiency of the generator or reduce the width of the annular frame and the size of the teeth portion to make a highly efficient generator even with a small-sized core.

圧延方向のBhが1.8T以上で高く、圧延垂直方向も1.7T以上で非常に優れた特性の電磁鋼板を使用することによって設計磁束が高い電気機器、例えば発電機あるいはモータに分割されたコアの形態あるいはより小さいコアで分割せずに使用されるコアで加工する場合に、これを通じて励磁電流の量を減少させることによって、電気機器の効率を大きく向上させることができる。 By using an electromagnetic steel plate with a high Bh in the rolling direction of 1.8T or more and a very good characteristic in the rolling vertical direction of 1.7T or more, it was divided into electrical equipment with a high design magnetic flux, such as a generator or a motor. When machining in the form of a core or in a core that is used without splitting into smaller cores, the efficiency of the electrical equipment can be greatly improved by reducing the amount of exciting current through this.

1.5Tの磁場がかかる時、測定周波数が0.01Hz以下での透磁率UDCが50Hzでの透磁率U50の1.2倍以上であってもよい。 When a magnetic field of 1.5 T is applied, the magnetic permeability UDC at a measurement frequency of 0.01 Hz or less may be 1.2 times or more the magnetic permeability U50 at 50 Hz.

発電機のうち、ギヤがない風力発電機の場合、回転磁界が非常に遅いため、通常の50Hz透磁率より0.01Hz以下の透磁率により回路に流れる電流の値が大きく影響を受けるようになり、0.01Hz以下の透磁率が50Hzの透磁率より1.2倍以上高い場合、電流による発熱が大きく減って発電機の効率が向上することができる。
電磁鋼板を750℃〜880℃の温度で1〜2時間焼鈍後に測定されたBr値が1.65T以上であってもよい。
[数2]
Br=7.87/(7.87−0.0.065×[Si]−0.1105×[Al])×B8
(数2中、[Si]および[Al]は、それぞれ、SiおよびAlの含有量(重量%)を示す。B8は800A/mで誘起した時に誘導される磁場の強度(Tesla)を示す。)
Of the generators, in the case of a wind generator without gears, the rotating magnetic field is very slow, so the value of the current flowing through the circuit is greatly affected by the magnetic permeability of 0.01 Hz or less than the normal 50 Hz magnetic permeability. When the magnetic permeability of 0.01 Hz or less is 1.2 times or more higher than the magnetic permeability of 50 Hz, the heat generated by the current is greatly reduced and the efficiency of the generator can be improved.
The Br value measured after annealing the electromagnetic steel sheet at a temperature of 750 ° C. to 880 ° C. for 1 to 2 hours may be 1.65 T or more.
[Number 2]
Br = 7.87 / (7.87-0.0.065 × [Si] -0.1105 × [Al]) × B8
(In Equation 2, [Si] and [Al] indicate the contents (% by weight) of Si and Al, respectively. B8 indicates the strength of the magnetic field (Tesla) induced when induced at 800 A / m. )

圧延方向のBhが1.8T以上であり、圧延垂直方向のBhが1.7T以上であり、円周方向のBhが1.6T以上であり、Bhは下記数3で計算される。
[数3]
Bh=7.87/(7.87−0.0.065×[Si]−0.1105×[Al])×B25
(数3中、[Si]および[Al]は、それぞれ、SiおよびAlの含有量(重量%)を示す。B25は2500A/mで誘起した時に誘導される磁場の強度(Tesla)を示す。)
Bh in the rolling direction is 1.8T or more, Bh in the vertical rolling direction is 1.7T or more, Bh in the circumferential direction is 1.6T or more, and Bh is calculated by the following equation 3.
[Number 3]
Bh = 7.87 / (7.87-0.0.065 × [Si] -0.1105 × [Al]) × B25
(In Equation 3, [Si] and [Al] indicate the contents (% by weight) of Si and Al, respectively. B25 indicates the strength of the magnetic field (Tesla) induced when induced at 2500 A / m. )

本発明の一実施例による二方向性電磁鋼板の製造方法は、重量%で、Si:2.0〜6.0%、Al:0.0005〜0.04%、S:0.0001〜0.003%、Mn:0.02〜1.0%、N:0.001〜0.01%、C:0.02〜0.06%、Ti:0.01%以下(0%を含まない)、P:0.005〜0.10%を含み、残部はFeおよびその他不可避な不純物を含み、下記数1を満たすスラブを製造する段階、スラブを加熱する段階、スラブを熱間圧延して熱延板を製造する段階、熱延板を冷間圧延して冷延板を製造する段階、冷延板を1次再結晶焼鈍する段階、および1次再結晶焼鈍された冷延板を2次再結晶焼鈍する段階、を含む。
[数1]
[Mn]/[S]≧60
(数1中、[Mn]および[S]は、それぞれ、MnおよびSの含有量(重量%)を示す。)
The method for producing a bidirectional electromagnetic steel sheet according to an embodiment of the present invention is, in% weight, Si: 2.0 to 6.0%, Al: 0.0005 to 0.04%, S: 0.0001 to 0. .003%, Mn: 0.02 to 1.0%, N: 0.001 to 0.01%, C: 0.02 to 0.06%, Ti: 0.01% or less (not including 0%) ), P: 0.005 to 0.10%, the balance contains Fe and other unavoidable impurities, a step of producing a slab satisfying the following number 1, a step of heating the slab, and a step of hot rolling the slab. The stage of manufacturing the hot-rolled plate, the stage of cold-rolling the hot-rolled plate to manufacture the cold-rolled plate, the stage of primary recrystallization annealing of the cold-rolled plate, and the stage of primary recrystallization annealing of the cold-rolled plate 2 Includes the next step of recrystallization annealing.
[Number 1]
[Mn] / [S] ≧ 60
(In Equation 1, [Mn] and [S] indicate the contents (% by weight) of Mn and S, respectively.)

以下、各段階別に具体的に説明する。
まず、スラブを製造する。スラブ内の各組成の添加比率を限定した理由は、前述した二方向性電磁鋼板の組成限定の理由と同一であるため、重複する説明を省略する。後述する熱間圧延、熱延板焼鈍、冷間圧延、1次再結晶焼鈍、2次再結晶焼鈍などの製造過程でC、N以外のスラブの組成は実質的に変動しないため、スラブの組成と二方向性電磁鋼板の組成が実質的に同一である。
スラブは、下記数4を満たすことができる。
[数4]
[C]/[Si]≧0.0067
(数4中、[C]および[Si]は、それぞれ、スラブ内のCおよびSiの含有量(重量%)を示す。)
Hereinafter, each step will be specifically described.
First, the slab is manufactured. Since the reason for limiting the addition ratio of each composition in the slab is the same as the reason for limiting the composition of the bidirectional magnetic steel sheet described above, a duplicate description will be omitted. The composition of slabs other than C and N does not substantially change during the manufacturing process such as hot rolling, hot-rolled sheet annealing, cold rolling, primary recrystallization annealing, and secondary recrystallization annealing, which will be described later. And the composition of the bidirectional electromagnetic steel sheet are substantially the same.
The slab can satisfy the following number 4.
[Number 4]
[C] / [Si] ≧ 0.0067
(In Equation 4, [C] and [Si] indicate the contents (% by weight) of C and Si in the slab, respectively.)

Cが過度に少なく含まれたり、Siが過量で含まれる場合、Cubeの成長を促進し、Gossの成長を抑制することが難しくなり得る。より具体的に数4の左辺は0.0083以上であってもよい。
スラブは、薄物スラブ法またはストリップキャスティング法を利用して製造することができる。スラブの厚さは200〜300mmになることができる。
When C is contained in an excessively small amount or Si is contained in an excessive amount, it may be difficult to promote the growth of Cube and suppress the growth of Goss. More specifically, the left side of Equation 4 may be 0.0083 or more.
The slab can be manufactured by utilizing the thin slab method or the strip casting method. The thickness of the slab can be 200-300 mm.

次に、スラブを加熱する。
スラブを加熱する段階で1100℃以上の時間が25〜50分であってもよい。
1100℃以上の時間を適切に確保できなければ、熱延板の結晶粒径を適切に確保できないか、または0.5μm以上の粗大析出物が多量生成されて、圧延垂直方向での磁性を適切に確保することができない。
Next, the slab is heated.
The time of 1100 ° C. or higher may be 25 to 50 minutes at the stage of heating the slab.
If the time of 1100 ° C. or higher cannot be properly secured, the crystal grain size of the hot-rolled plate cannot be properly secured, or a large amount of coarse precipitates of 0.5 μm or higher are generated, and the magnetism in the vertical rolling direction is appropriate. Cannot be secured.

次に、スラブを熱間圧延して熱延板を製造する。
熱延板を製造する段階で、2以上のパスを含み、最終パスおよび最終パス以前のパスでの圧下率がそれぞれ15〜40%であり、最終パスおよび最終パス以前のパスでの圧下率の合計が55%以下であってもよい。
Next, the slab is hot-rolled to produce a hot-rolled plate.
In the stage of manufacturing the hot-rolled plate, it contains two or more passes, the reduction rate in the final pass and the pass before the final pass is 15 to 40%, respectively, and the reduction rate in the final pass and the pass before the final pass. The total may be 55% or less.

熱間圧延の最後のパスは、熱間圧延温度が最も低い温度として、圧延性が極めて劣位にある。このような温度領域で多い圧下率で圧延をすることが好ましくない。また最後の二つのパスで圧下率が大きくなることによって熱延板の表面でGoss方位の結晶粒の分率が大きく増加する傾向にあるため、これを抑制するために、各パスでの圧下率を10〜40%以下にし、二つのパスでの圧下率の合計を55%以下にすることが必要である。 The final pass of hot rolling has extremely poor rollability as the temperature at which the hot rolling temperature is the lowest. It is not preferable to roll at a large rolling reduction in such a temperature range. In addition, as the reduction rate increases in the last two passes, the fraction of crystal grains in the Goss direction tends to increase significantly on the surface of the hot-rolled plate. To suppress this, the reduction rate in each pass tends to increase. It is necessary to make it 10 to 40% or less, and make the total reduction rate in the two passes 55% or less.

熱間圧延終了温度は、950℃以下になることができる。熱間圧延終了温度が低いことから、熱延板内部の延伸されたCube方位を有する結晶粒がより多いエネルギーを蓄積し、そのために熱延板焼鈍時にCubeの分率が増加することがある。
熱延板の厚さは、1〜2mmになることができる。
The hot rolling end temperature can be 950 ° C. or lower. Since the hot rolling end temperature is low, the crystal grains having the stretched Cube orientation inside the hot-rolled plate accumulate more energy, which may increase the Cube fraction during hot-rolled plate annealing.
The thickness of the hot-rolled plate can be 1-2 mm.

熱延板を製造する段階後、熱延板を焼鈍する段階をさらに含むことができる。
熱延板を焼鈍する段階で1100℃以上の時間が5〜50秒であってもよい。熱延板焼鈍後に微細析出物を作るためであり、スラブで形成された析出物をより粗大化せず、より好ましくは、より微細化するために時間を制限する必要がある。
After the step of manufacturing the hot-rolled plate, a step of annealing the hot-rolled plate can be further included.
The time of 1100 ° C. or higher may be 5 to 50 seconds at the stage of annealing the hot-rolled plate. This is to form fine precipitates after annealing on a hot-rolled plate, and it is necessary to limit the time in order to make the precipitates formed by the slabs finer without making them coarser.

また、スラブの厚さをTslabとし、前記熱延板の厚さをThot−coilとする時、スラブを加熱する段階でスラブの焼鈍時間中1100℃以上での焼鈍時間が熱延板焼鈍する段階で1100℃以上での熱延板焼鈍時間より2×Tslab/Thot−coil倍以上、4×Tslab/Thot−coil倍以下に短く実施することができる。これはスラブで形成される析出物の大きさをより微細化するためであり、スラブは熱延板より板の厚さが厚いため、微細な析出物を厚さ方向により均一に得にくい。したがって、時間制限を通じてスラブで形成される析出物が粗大化されることを抑制することができる。 Further, when the thickness of the slab is Tslab and the thickness of the hot-rolled plate is Hot-coil, the annealing time at 1100 ° C. or higher during the annealing time of the slab at the stage of heating the slab is the stage of annealing the hot-rolled plate. It can be carried out as short as 2 × Tslab / Hot-coil times or more and 4 × Tslab / Hot-coil times or less from the annealing time of the hot-rolled plate at 1100 ° C. or higher. This is to make the size of the precipitate formed by the slab finer, and since the slab is thicker than the hot-rolled plate, it is difficult to obtain fine precipitates more uniformly in the thickness direction. Therefore, it is possible to prevent the precipitate formed by the slab from being coarsened through the time limit.

熱延板を焼鈍する段階後、熱延板の平均結晶粒径が100〜200μmであってもよい。結晶粒径が粗大化されれば、圧延時に形成されるせん断帯(Shear band)によりGoss方位の結晶粒核が形成される可能性が多くなるため、その大きさを200μm以下に制限する必要がある。結晶粒径は標準の結晶粒径測定法で同一の体積の球を仮定して、その球の直径を測定する方式で測定することができる。 After the step of annealing the hot-rolled plate, the average crystal grain size of the hot-rolled plate may be 100 to 200 μm. If the crystal grain size is coarsened, there is a high possibility that crystal grain nuclei in the Goss orientation will be formed by the shear band formed during rolling, so it is necessary to limit the size to 200 μm or less. is there. The crystal grain size can be measured by a method of measuring the diameter of a sphere assuming the same volume of spheres by a standard crystal grain size measuring method.

熱延板を焼鈍する段階後、熱延板1mm2面積で、粒径が0.1μm以上である析出物の数が100〜4000個であり、粒径が0.5μm超過である析出物の数(B)に対する、粒径が0.1〜0.5μmである析出物の数(A)の比率(A/B)が1以上であってもよい。
析出物の個数を適切に確保してこそ、Cube集合組織を得ることができるためである。また、粗大析出物および微細析出物の比率が適切に形成されてこそ、2次再結晶が円滑に行われ、圧延方向および圧延垂直方向での磁性が全て優秀になり得る。
After the step of annealing the hot-rolled plate, the number of precipitates having a particle size of 0.1 μm or more in a 1 mm2 area of the hot-rolled plate is 100 to 4000, and the number of precipitates having a particle size exceeding 0.5 μm (B). The ratio (A / B) of the number of precipitates (A) having a particle size of 0.1 to 0.5 μm may be 1 or more.
This is because the Cube texture can be obtained only when the number of precipitates is appropriately secured. Further, only when the ratio of the coarse precipitate and the fine precipitate is appropriately formed, the secondary recrystallization can be smoothly performed, and the magnetism in the rolling direction and the rolling vertical direction can all be excellent.

熱延板を焼鈍する段階の焼鈍温度は、1000〜1200℃であってもよい。
熱延板を焼鈍する段階の温度(T2)およびスラブを加熱する段階の温度(T1)が下記数5を満たすことができる。
[数5]
−200≦T1−T2≦30
前記数5を満たさない場合、熱延板で粗大析出物が多量発生して、圧延垂直方向での磁性が劣化することがある。
The annealing temperature at the stage of annealing the hot-rolled plate may be 1000 to 1200 ° C.
The temperature at the stage of annealing the hot-rolled plate (T2) and the temperature at the stage of heating the slab (T1) can satisfy the following equation (5).
[Number 5]
-200 ≤ T1-T2 ≤ 30
If the number 5 is not satisfied, a large amount of coarse precipitates may be generated on the hot-rolled plate, and the magnetism in the vertical rolling direction may deteriorate.

スラブを加熱する段階後、熱延板を製造する段階までの時間が3〜20分であり、スラブ加熱する段階から熱延板を製造する段階までの最大温度が熱延板焼鈍する段階の焼鈍温度の20℃以下であってもよい。 The time from the stage of heating the slab to the stage of manufacturing the hot-rolled plate is 3 to 20 minutes, and the maximum temperature from the stage of heating the slab to the stage of manufacturing the hot-rolled plate is annealing at the stage of annealing the hot-rolled plate. The temperature may be 20 ° C. or lower.

スラブを加熱する段階後、熱延板を製造する段階までの時間を適切に維持し、同時に、スラブ加熱する段階から熱延板を製造する段階までの最大温度が熱延板焼鈍する段階の焼鈍温度の関係を制御することによって、析出物の大きさは極めて微細化されて2次再結晶が有利になり得る。 The time from the stage of heating the slab to the stage of manufacturing the hot-rolled plate is properly maintained, and at the same time, the maximum temperature from the stage of heating the slab to the stage of manufacturing the hot-rolled plate is annealed at the stage of annealing the hot-rolled plate. By controlling the temperature relationship, the size of the precipitate can be made extremely fine and secondary recrystallization can be advantageous.

冷延板を製造する段階で、圧下率が50〜70%であってもよい。圧下率が過度に高い時、GOSS結晶が多数形成される問題がある。圧下率が過度に低い時、最終製造される鋼板の厚さが厚くなる問題がある。 At the stage of manufacturing the cold-rolled plate, the reduction rate may be 50 to 70%. When the reduction rate is excessively high, there is a problem that a large number of GOSS crystals are formed. When the reduction rate is excessively low, there is a problem that the thickness of the final manufactured steel sheet becomes thick.

1次再結晶焼鈍する段階で窒化量が0.01〜0.023重量%であってもよい。窒化量が適切に確保されない場合、2次再結晶が円滑に形成されず、磁性が劣化する問題が発生することがある。 The amount of nitriding may be 0.01 to 0.023% by weight at the stage of primary recrystallization annealing. If the amount of nitriding is not properly secured, secondary recrystallization may not be smoothly formed, and a problem of deterioration of magnetism may occur.

1次再結晶焼鈍する段階後、1次再結晶焼鈍された鋼板の平均結晶粒径が32〜50μmであってもよい。1次再結晶焼鈍された鋼板の平均結晶粒径を適切に確保できない場合、2次再結晶が円滑に形成されず、磁性が劣化する問題が発生することがある。 After the step of primary recrystallization annealing, the average crystal grain size of the primary recrystallization annealed steel sheet may be 32 to 50 μm. If the average crystal grain size of the primary recrystallization annealed steel sheet cannot be appropriately secured, the secondary recrystallization may not be smoothly formed and a problem of deterioration of magnetism may occur.

1次再結晶焼鈍する段階後、MgOを含む焼鈍分離剤を塗布する段階をさらに含むことができる。
焼鈍分離剤塗布により形成されるフォルステライト層については前述したものと同一であるため、重複する説明は省略する。
After the step of primary recrystallization annealing, a step of applying an annealing separator containing MgO can be further included.
Since the forsterite layer formed by applying the annealing separator is the same as that described above, the overlapping description will be omitted.

以下、本発明の好ましい実施例および比較例を記載する。しかし、下記の実施例は、本発明の好ましい一実施例に過ぎず、本発明が下記の実施例に限定されるのではない。 Hereinafter, preferred examples and comparative examples of the present invention will be described. However, the following examples are merely preferred examples of the present invention, and the present invention is not limited to the following examples.

実験例1
表1および表2で示す成分および残部Feおよび不可避な不純物からなるスラブを製造し、1150℃で加熱後に熱間圧延して1.6mmの厚さの熱延コイルを製造して1100℃〜1140℃で30秒間焼鈍し、900℃で90秒間焼鈍後に急冷した熱延焼鈍板を圧下率63%まで冷間圧延した。
Experimental Example 1
A slab consisting of the components shown in Tables 1 and 2 and the balance Fe and unavoidable impurities was produced, heated at 1150 ° C. and then hot-rolled to produce a 1.6 mm thick hot-rolled coil at 1100 ° C. to 1140 ° C. The hot-rolled annealed sheet, which was annealed at ° C. for 30 seconds, annealed at 900 ° C. for 90 seconds, and then rapidly cooled, was cold-rolled to a reduction ratio of 63%.

冷間圧延した板は0.02wt%に窒化して露点60℃水素75%雰囲気で脱炭する1次再結晶焼鈍工程を経て結晶粒径を36μmになるようにした。その後、MgO成分を含む焼鈍分離剤を塗布した後に時間当り20℃の昇温速度で1200℃まで昇温した後、20時間にかけて2次再結晶焼鈍を実施した。冷却された板はMgO焼鈍分離剤を除去した後に絶縁コーティングを実施し、磁性を測定して表3に整理した。磁性測定後に800℃で2時間焼鈍後に磁性を再測定した結果を表3に示した。 The cold-rolled plate was nitrided to 0.02 wt% and decarburized at a dew point of 60 ° C. and a hydrogen of 75% to a crystal grain size of 36 μm through a primary recrystallization annealing step. Then, after applying an annealing separator containing an MgO component, the temperature was raised to 1200 ° C. at a heating rate of 20 ° C. per hour, and then secondary recrystallization annealing was carried out over 20 hours. The cooled plate was subjected to an insulating coating after removing the MgO annealing separator, and the magnetism was measured and arranged in Table 3. Table 3 shows the results of re-measurement of magnetism after annealing at 800 ° C. for 2 hours after magnetism measurement.

Figure 2021509441
Figure 2021509441
Figure 2021509441
Figure 2021509441
Figure 2021509441
Figure 2021509441
Figure 2021509441
Figure 2021509441
Figure 2021509441
Figure 2021509441

表1〜表3に示したように、本発明の合金組成を満たす発明例は、磁性が優れていることを確認できる。反面、本発明の合金組成を満たさない比較例は、磁性が劣悪であることを確認できる。 As shown in Tables 1 to 3, it can be confirmed that the examples of the invention satisfying the alloy composition of the present invention have excellent magnetism. On the other hand, in the comparative example which does not satisfy the alloy composition of the present invention, it can be confirmed that the magnetism is poor.

実験例2
実施例1のA1試片を焼鈍分離剤を除去せずに、下記表4のように、厚さ分率を制御し、上面絶縁コーティングおよび下面絶縁コーティングを形成して、磁性を測定して下記表5に整理した。
Experimental Example 2
As shown in Table 4 below, the A1 specimen of Example 1 was formed with an upper surface insulating coating and a lower surface insulating coating without removing the annealing separator, and the magnetism was measured as shown below. It is organized in Table 5.

Figure 2021509441
Figure 2021509441
Figure 2021509441
Figure 2021509441

表4および表5に示すように、フォルステライト層の厚さ分率、上面および下面絶縁層の厚さおよび粗面範囲を満たす発明例は、磁性が優れていることを確認できる。反面、フォルステライト層の厚さ分率、上面および下面絶縁層の厚さおよび粗面範囲を満たさない比較例は、圧延垂直方向の磁性が特に劣化することを確認できる。 As shown in Tables 4 and 5, it can be confirmed that the invention examples satisfying the thickness fraction of the forsterite layer, the thickness of the upper surface and lower surface insulating layers, and the rough surface range are excellent in magnetism. On the other hand, in the comparative example which does not satisfy the thickness fraction of the forsterite layer, the thickness of the upper surface and lower surface insulating layers and the rough surface range, it can be confirmed that the magnetism in the rolling vertical direction is particularly deteriorated.

実験例3
重量%でSi:2.8%、Al:0.029%、S:0.001%、Mn:0.15%、N:0.003%、C:0.025%、Ti:0.002%、P:0.05%を含み、残部Feおよび不可避な不純物からなるスラブを製造した。スラブを1150℃で加熱後、熱間圧延して1.6mmの厚さの熱延コイルを製造して1100℃〜1140℃で30秒間焼鈍し、900℃で90秒間焼鈍後に急冷した熱延焼鈍板を下記表6に記載された圧下率で冷間圧延した。
Experimental Example 3
By weight% Si: 2.8%, Al: 0.029%, S: 0.001%, Mn: 0.15%, N: 0.003%, C: 0.025%, Ti: 0.002 %, P: 0.05%, and a slab composed of the balance Fe and unavoidable impurities was produced. After heating the slab at 1150 ° C, it is hot-rolled to produce a hot-rolled coil with a thickness of 1.6 mm, annealed at 1100 ° C to 1140 ° C for 30 seconds, annealed at 900 ° C for 90 seconds, and then rapidly cooled. The plate was cold rolled at the rolling reduction rates listed in Table 6 below.

冷間圧延した板は、下記表6に記載したように、窒化したり窒化しないままで露点60℃水素75%雰囲気で脱炭する焼鈍工程を経て下記表6に記載した平均結晶粒径になるようにした。窒化しない1次再結晶試片は、窒素100%雰囲気で昇温速度10℃/sに温度を上げて1150℃で30分間焼鈍を実施し、窒化した試片はMgO成分を主にする焼鈍分離剤を塗布した後に時間当り20℃の昇温速度で1200℃まで昇温した後、20時間にかけて2次再結晶焼鈍を実施した。二つの焼鈍工程から出た素材は全て絶縁コーティングを付着して磁性とCubeの分率を測定した。 As shown in Table 6 below, the cold-rolled plate undergoes an annealing step of decarburizing or decarburizing in an atmosphere with a dew point of 60 ° C. and 75% hydrogen to obtain the average grain size shown in Table 6 below. I did. The non-nitriding primary recrystallization specimen was annealed at 1150 ° C. for 30 minutes at a temperature rise rate of 10 ° C./s in a 100% nitrogen atmosphere, and the nitrided specimen was annealed and separated mainly containing the MgO component. After the agent was applied, the temperature was raised to 1200 ° C. at a heating rate of 20 ° C. per hour, and then secondary recrystallization annealing was carried out over 20 hours. All the materials from the two annealing steps were coated with an insulating coating and the magnetism and cube fractions were measured.

Figure 2021509441
Figure 2021509441

表6に示すように、冷間圧下率および窒化量範囲を満たす発明例は、キューブ組織を適切に確保し、磁性が優れていることを確認できる。反面、冷間圧下率を適切に制御できなかったり、窒化しない場合、圧延垂直方向の磁性が劣化したり、円周方向での磁性が劣化することを確認できる。 As shown in Table 6, it can be confirmed that in the invention example satisfying the cold reduction ratio and the nitriding amount range, the cube structure is appropriately secured and the magnetism is excellent. On the other hand, if the cold reduction rate cannot be controlled appropriately or if nitriding is not performed, it can be confirmed that the magnetism in the vertical rolling direction deteriorates and the magnetism in the circumferential direction deteriorates.

実験例4
重量%でSi:2.8%、Al:0.029%、S:0.001%、Mn:0.15%、N:0.003%、C:0.025%、Ti:0.002%、P:0.05%を含み、残部Feおよび不可避な不純物からなるスラブを製造した。スラブを下記表7の温度で加熱後に熱間圧延して1.6mmの厚さの熱延コイルを製造した。この時、熱間圧延終了温度を表7に整理した。
Experimental Example 4
By weight% Si: 2.8%, Al: 0.029%, S: 0.001%, Mn: 0.15%, N: 0.003%, C: 0.025%, Ti: 0.002 %, P: 0.05%, and a slab composed of the balance Fe and unavoidable impurities was produced. The slab was heated at the temperatures shown in Table 7 below and then hot-rolled to produce a hot-rolled coil having a thickness of 1.6 mm. At this time, the hot rolling end temperatures are arranged in Table 7.

その後、下記表7の温度で焼鈍し、焼鈍した熱延板の平均結晶粒径、析出物を下記表7に整理した。析出物は直径0.1μm以上である析出物を基準に個数を測定し、任意の1m×1m面積内の析出物個数を測定した。 Then, it was annealed at the temperature shown in Table 7 below, and the average crystal grain size and precipitates of the annealed hot-rolled plate were arranged in Table 7 below. The number of precipitates was measured based on the precipitates having a diameter of 0.1 μm or more, and the number of precipitates within an arbitrary 1 m × 1 m area was measured.

その後、熱延焼鈍板を圧下率63%まで冷間圧延した。
冷間圧延した板は0.02wt%に窒化して露点60℃水素75%雰囲気で脱炭する1次再結晶焼鈍工程を経て結晶粒径を下記表7のようになるようにした。その後、MgO成分を含む焼鈍分離剤を塗布した後に時間当り20℃の昇温速度で1200℃まで昇温した後、20時間にかけて2次再結晶焼鈍を実施した。絶縁コーティングを実施して磁性を測定して表8に整理した。
Then, the hot-rolled annealed sheet was cold-rolled to a rolling reduction of 63%.
The cold-rolled plate was subjected to a primary recrystallization annealing step of nitriding to 0.02 wt% and decarburizing at a dew point of 60 ° C. and a hydrogen of 75% atmosphere so that the crystal grain size was as shown in Table 7 below. Then, after applying an annealing separator containing an MgO component, the temperature was raised to 1200 ° C. at a heating rate of 20 ° C. per hour, and then secondary recrystallization annealing was carried out over 20 hours. Insulation coating was applied, magnetism was measured, and Table 8 was arranged.

Figure 2021509441
Figure 2021509441
Figure 2021509441
Figure 2021509441

表7〜表8に開示したように、1次再結晶直径を適切に確保できなかったD1〜D4、D6、D7は、圧延垂直方向の磁性が劣化し、円周方向の磁性も良くないことを確認できる。 As disclosed in Tables 7 to 8, D1 to D4, D6, and D7, for which the primary recrystallization diameter could not be appropriately secured, have deteriorated magnetism in the vertical rolling direction and poor magnetism in the circumferential direction. Can be confirmed.

特にD4は、加熱温度が熱延板焼鈍温度に比べて非常に高くて熱延板結晶粒径が小さく、粗大析出物が多量生成されて、磁性が劣化することを確認できる。また、D5、D6は、スラブ加熱する段階で、1100℃以上の時間を確保できず、析出物が適切に析出されなかったり、粗大析出物が多量生成されることによって、磁性が劣化することを確認できる。D7およびD8は、熱延板焼鈍時間が過度に長いか過度に短いため、析出物が過度に少なく生成されたり、過度に多量生成されて、磁性が劣化することを確認できる。 In particular, it can be confirmed that the heating temperature of D4 is much higher than the annealing temperature of the hot-rolled plate, the grain size of the hot-rolled plate is small, a large amount of coarse precipitates are generated, and the magnetism deteriorates. Further, D5 and D6 cannot secure a time of 1100 ° C. or higher at the stage of slab heating, and the magnetism deteriorates due to improper precipitation of precipitates or generation of a large amount of coarse precipitates. You can check. Since the hot-rolled plate annealing time of D7 and D8 is excessively long or excessively short, it can be confirmed that the precipitates are generated in an excessively small amount or in an excessively large amount, and the magnetism is deteriorated.

実験例5
重量%でSi:2.8%、Al:0.029%、S:0.001%、Mn:0.15%、N:0.003%、C:0.025%、Ti:0.002%、P:0.05%を含み、残部Feおよび不可避な不純物からなるスラブを製造した。スラブを1150℃で加熱後に熱間圧延して1.6mmの厚さの熱延コイルを製造した。スラブ製造後、熱間圧延終了時間を下記表9に整理した。スラブ加熱する段階から熱延板を製造する段階までの最大温度を表9に整理した。熱間圧延時、最終パスの圧下率および最終パス前パスの圧下率を表9に整理し、最終パスおよびその前パスの圧下率の合計を下記表9に整理した。1100℃〜1140℃で30秒間焼鈍し、900℃で90秒間焼鈍後に急冷した熱延焼鈍板を圧下率63%まで冷間圧延した。
Experimental Example 5
By weight% Si: 2.8%, Al: 0.029%, S: 0.001%, Mn: 0.15%, N: 0.003%, C: 0.025%, Ti: 0.002 %, P: 0.05%, and a slab composed of the balance Fe and unavoidable impurities was produced. The slab was heated at 1150 ° C. and then hot-rolled to produce a hot-rolled coil having a thickness of 1.6 mm. After the slab was manufactured, the hot rolling end times were arranged in Table 9 below. Table 9 summarizes the maximum temperature from the stage of heating the slab to the stage of manufacturing the hot-rolled plate. At the time of hot rolling, the reduction rate of the final pass and the reduction rate of the pass before the final pass are arranged in Table 9, and the total reduction rate of the final pass and the previous pass is arranged in Table 9 below. The hot-rolled annealed sheet, which was annealed at 1100 ° C. to 1140 ° C. for 30 seconds, annealed at 900 ° C. for 90 seconds, and then rapidly cooled, was cold-rolled to a reduction rate of 63%.

冷間圧延した板は、0.02wt%に窒化して露点60℃水素75%雰囲気で脱炭する1次再結晶焼鈍工程を経て結晶粒径を下記表7のようになるようにした。その後、MgO成分を含む焼鈍分離剤を塗布した後に時間当り20℃の昇温速度で1200℃まで昇温した後、20時間にかけて2次再結晶焼鈍を実施した。絶縁コーティングを実施して磁性を測定して表10に整理した。 The cold-rolled plate was subjected to a primary recrystallization annealing step of nitriding to 0.02 wt% and decarburizing at a dew point of 60 ° C. and a hydrogen of 75% atmosphere so that the crystal grain size was as shown in Table 7 below. Then, after applying an annealing separator containing an MgO component, the temperature was raised to 1200 ° C. at a heating rate of 20 ° C. per hour, and then secondary recrystallization annealing was carried out over 20 hours. Insulation coating was applied, magnetism was measured, and Table 10 was arranged.

Figure 2021509441
Figure 2021509441
Figure 2021509441
Figure 2021509441

表9および表10に示すように、全ての条件を満たす発明例は、磁性が優れていることを確認できる。反面、E3は、熱間圧延での最終パスおよび最終パス前パスの圧下率が高いため、磁性が劣位にあることを確認できる。E4は、熱間圧延での最終パスおよび最終パス前パスの圧下率合計が高いため、磁性が劣位にあることを確認できる。E5は、スラブ製造後熱間圧延までの時間が長いため、磁性が劣位にあることを確認できる。E6は、スラブ製造後熱間圧延の最大温度が熱延板焼鈍温度に比べて高く、最終パス圧下率が低いため、磁性が劣位にあることを確認できる。 As shown in Tables 9 and 10, it can be confirmed that the invention examples satisfying all the conditions are excellent in magnetism. On the other hand, it can be confirmed that E3 has inferior magnetism because the rolling reduction of the final pass and the pass before the final pass in hot rolling is high. Since the total reduction rate of the final pass and the pass before the final pass in hot rolling is high in E4, it can be confirmed that the magnetism is inferior. Since it takes a long time from the production of the slab to the hot rolling of E5, it can be confirmed that the magnetism is inferior. In E6, the maximum temperature of hot rolling after slab production is higher than the hot-rolled sheet annealing temperature, and the final pass reduction rate is low, so it can be confirmed that the magnetism is inferior.

本発明は、前記実施例に限定されるのではなく、互いに異なる多様な形態に製造可能であり、本発明が属する技術分野における通常の知識を有する者は、本発明の技術的な思想や必須の特徴を変更することなく他の具体的な形態に実施可能であることを理解できるはずである。したがって、以上で記述した実施例は、全ての面で例示的なものであり、限定的なものではないと理解しなければならない。


The present invention is not limited to the above-mentioned examples, and can be produced in various forms different from each other, and a person having ordinary knowledge in the technical field to which the present invention belongs is required to have the technical idea of the present invention. It should be understood that it can be implemented in other concrete forms without changing the characteristics of. Therefore, it should be understood that the examples described above are exemplary in all respects and are not limiting.


Claims (24)

重量%で、Si:2.0〜6.0%、Al:0.0005〜0.04%、S:0.0001〜0.003%、Mn:0.02〜1.0%、N:0.003%以下(0%を除く)、C:0.01%以下(0%を除く)、Ti:0.01%以下(0%を含まない)、P:0.005〜0.10%を含み、残部はFeおよびその他不可避な不純物からなり、下記数1を満たす、ことを特徴とする二方向性電磁鋼板。
[数1]
[Mn]/[S]≧60
(数1中、[Mn]および[S]は、それぞれ、MnおよびSの含有量(重量%)を示す。)
By weight%, Si: 2.0 to 6.0%, Al: 0.0005 to 0.04%, S: 0.0001 to 0.003%, Mn: 0.02 to 1.0%, N: 0.003% or less (excluding 0%), C: 0.01% or less (excluding 0%), Ti: 0.01% or less (excluding 0%), P: 0.005 to 0.10. A bidirectional electromagnetic steel sheet containing%, the balance being Fe and other unavoidable impurities, and satisfying the following equation (1).
[Number 1]
[Mn] / [S] ≧ 60
(In Equation 1, [Mn] and [S] indicate the contents (% by weight) of Mn and S, respectively.)
Sb:0.001〜0.1重量%およびSn:0.001〜0.1重量%のうちの1種以上をさらに含む、ことを特徴とする請求項1に記載の二方向性電磁鋼板。 The bidirectional electromagnetic steel plate according to claim 1, further comprising one or more of Sb: 0.001 to 0.1% by weight and Sn: 0.001 to 0.1% by weight. Mo:0.01重量%以下、Bi:0.01重量%以下、Pb:0.01重量%以下、Mg:0.01重量%以下、As:0.01重量%以下、Be:0.01重量%以下、およびSr:0.01重量%以下のうちの1種以上をさらに含む、ことを特徴とする請求項1に記載の二方向性電磁鋼板。 Mo: 0.01% by weight or less, Bi: 0.01% by weight or less, Pb: 0.01% by weight or less, Mg: 0.01% by weight or less, As: 0.01% by weight or less, Be: 0.01 The bidirectional electromagnetic steel plate according to claim 1, further comprising one or more of Sr: 0.01% by weight or less. {100}<001>から15°以内の方位を有する結晶粒の面積分率が60〜99%である、ことを特徴とする請求項1に記載の二方向性電磁鋼板。 The bidirectional electromagnetic steel sheet according to claim 1, wherein the surface integral of the crystal grains having an orientation within 15 ° from {100} <001> is 60 to 99%. 前記電磁鋼板上にフォルステライト層が形成され、前記フォルステライト層は、前記電磁鋼板の表面から2μm以内の厚さである面積の分率が75%以上である、ことを特徴とする請求項1に記載の二方向性電磁鋼板。 Claim 1 is characterized in that a forsterite layer is formed on the electromagnetic steel sheet, and the forsterite layer has a fraction of an area having a thickness within 2 μm from the surface of the electromagnetic steel sheet of 75% or more. Bidirectional electromagnetic steel sheet described in. 前記フォルステライト層上に絶縁層が形成され、上面絶縁層の厚さおよび下面絶縁層の厚さがそれぞれ0.2〜8μmであり、
前記上面絶縁層の厚さおよび前記下面絶縁層の厚さの差が前記下面絶縁層の厚さの50%以下である、ことを特徴とする請求項5に記載の二方向性電磁鋼板。
An insulating layer is formed on the forsterite layer, and the thickness of the upper surface insulating layer and the thickness of the lower surface insulating layer are 0.2 to 8 μm, respectively.
The bidirectional electromagnetic steel sheet according to claim 5, wherein the difference between the thickness of the upper surface insulating layer and the thickness of the lower surface insulating layer is 50% or less of the thickness of the lower surface insulating layer.
前記上面絶縁層の平均粗さ(Ra)と前記下面絶縁層の平均粗さ(Ra)がそれぞれ1μm以下であり、
前記上面絶縁層の平均粗さ(Ra)と前記下面絶縁層の平均粗さ(Ra)の差が0.3μm以下である、ことを特徴とする請求項6に記載の二方向性電磁鋼板。
The average roughness (Ra) of the upper surface insulating layer and the average roughness (Ra) of the lower surface insulating layer are 1 μm or less, respectively.
The bidirectional electromagnetic steel sheet according to claim 6, wherein the difference between the average roughness (Ra) of the upper surface insulating layer and the average roughness (Ra) of the lower surface insulating layer is 0.3 μm or less.
圧延方向と圧延垂直方向のBrが全て1.65T以上であり、円周方向のBrが1.55T以上であり、Brは下記数2で計算される、ことを特徴とする請求項1に記載の二方向性電磁鋼板。
[数2]
Br=7.87/(7.87−0.0.065×[Si]−0.1105×[Al])×B8
(数2中、[Si]および[Al]は、それぞれ、SiおよびAlの含有量(重量%)を示す。B8は800A/mで誘起された時に誘導される磁場の強度(Tesla)を示す。)
The first aspect of claim 1, wherein Br in the rolling direction and Br in the rolling vertical direction are all 1.65 T or more, Br in the circumferential direction is 1.55 T or more, and Br is calculated by the following equation 2. Bidirectional electromagnetic steel plate.
[Number 2]
Br = 7.87 / (7.87-0.0.065 × [Si] -0.1105 × [Al]) × B8
(In Equation 2, [Si] and [Al] indicate the Si and Al contents (% by weight), respectively. B8 indicates the strength of the magnetic field (Tesla) induced when induced at 800 A / m. .)
1.5Tの磁場がかかる時、測定周波数が0.01Hz以下での透磁率UDCが50Hzでの透磁率U50の1.2倍以上である、ことを特徴とする請求項1に記載の二方向性電磁鋼板。 The two directions according to claim 1, wherein the magnetic permeability UDC at a measurement frequency of 0.01 Hz or less is 1.2 times or more the magnetic permeability U50 at 50 Hz when a magnetic field of 1.5 T is applied. Electrical steel sheet. 前記電磁鋼板を750℃〜880℃の温度で1〜2時間焼鈍後に測定されたBr値が1.65T以上であり、Brは下記数2で計算される、ことを特徴とする請求項1に記載の二方向性電磁鋼板。
[数2]
Br=7.87/(7.87−0.0.065×[Si]−0.1105×[Al])×B8
(数2中、[Si]および[Al]は、それぞれ、SiおよびAlの含有量(重量%)を示す。B8は800A/mで誘起された時に誘導される磁場の強度(Tesla)を示す。)
The first aspect of the present invention is that the Br value measured after annealing the electromagnetic steel sheet at a temperature of 750 ° C. to 880 ° C. for 1 to 2 hours is 1.65 T or more, and Br is calculated by the following equation 2. The described bidirectional electrical steel sheet.
[Number 2]
Br = 7.87 / (7.87-0.0.065 × [Si] -0.1105 × [Al]) × B8
(In Equation 2, [Si] and [Al] indicate the Si and Al contents (% by weight), respectively. B8 indicates the strength of the magnetic field (Tesla) induced when induced at 800 A / m. .)
圧延方向のBhが1.8T以上であり、圧延垂直方向のBhが1.7T以上であり、円周方向のBhが1.6T以上であり、Bhは下記数3で計算される、ことを特徴とする請求項1に記載の二方向性電磁鋼板。
[数3]
Bh=7.87/(7.87−0.0.065×[Si]−0.1105×[Al])×B25
(数3中、[Si]および[Al]は、それぞれ、SiおよびAlの含有量(重量%)を示す。B25は2500A/mで誘起された時に誘導される磁場の強度(Tesla)を示す。)
The Bh in the rolling direction is 1.8T or more, the Bh in the vertical rolling direction is 1.7T or more, the Bh in the circumferential direction is 1.6T or more, and the Bh is calculated by the following equation 3. The bidirectional electromagnetic steel sheet according to claim 1.
[Number 3]
Bh = 7.87 / (7.87-0.0.065 × [Si] -0.1105 × [Al]) × B25
(In Equation 3, [Si] and [Al] indicate the Si and Al contents (% by weight), respectively. B25 indicates the strength of the magnetic field (Tesla) induced when induced at 2500 A / m. .)
重量%で、Si:2.0〜6.0%、Al:0.0005〜0.04%、S:0.0001〜0.003%、Mn:0.02〜1.0%、N:0.001〜0.01%、C:0.02〜0.06%、Ti:0.01%以下(0%を含まない)、P:0.005〜0.10%を含み、残部はFeおよびその他不可避な不純物からなり、下記数1を満たすスラブを製造する段階、
前記スラブを加熱する段階、
前記スラブを熱間圧延して熱延板を製造する段階、
前記熱延板を冷間圧延して冷延板を製造する段階、
前記冷延板を1次再結晶焼鈍する段階、および
前記1次再結晶焼鈍された冷延板を2次再結晶焼鈍する段階を含む、ことを特徴とする二方向性電磁鋼板の製造方法。
[数1]
[Mn]/[S]≧60
(数1中、[Mn]および[S]は、それぞれ、スラブ内のMnおよびSの含有量(重量%)を示す。)
By weight%, Si: 2.0 to 6.0%, Al: 0.0005 to 0.04%, S: 0.0001 to 0.003%, Mn: 0.02 to 1.0%, N: 0.001 to 0.01%, C: 0.02 to 0.06%, Ti: 0.01% or less (excluding 0%), P: 0.005 to 0.10%, the balance is The stage of producing a slab consisting of Fe and other unavoidable impurities and satisfying the following number 1.
The stage of heating the slab,
The stage of hot-rolling the slab to produce a hot-rolled plate,
The stage of cold-rolling the hot-rolled plate to manufacture a cold-rolled plate,
A method for producing a grain-oriented electrical steel sheet, which comprises a step of primary recrystallization annealing of the cold-rolled plate and a step of secondary recrystallization annealing of the primary recrystallization-annealed cold-rolled plate.
[Number 1]
[Mn] / [S] ≧ 60
(In Equation 1, [Mn] and [S] indicate the contents (% by weight) of Mn and S in the slab, respectively.)
前記スラブは、下記数4を満たす、ことを特徴とする請求項12に記載の二方向性電磁鋼板の製造方法。
[数4]
[C]/[Si]≧0.0067
(数4中、[C]および[Si]は、それぞれ、スラブ内のCおよびSiの含有量(重量%)を示す。)
The method for manufacturing a grain-oriented electrical steel sheet according to claim 12, wherein the slab satisfies the following equation (4).
[Number 4]
[C] / [Si] ≧ 0.0067
(In Equation 4, [C] and [Si] indicate the contents (% by weight) of C and Si in the slab, respectively.)
前記冷延板を製造する段階で、圧下率が50〜70%である、ことを特徴とする請求項12に記載の二方向性電磁鋼板の製造方法。 The method for manufacturing a grain-oriented electrical steel sheet according to claim 12, wherein the reduction ratio is 50 to 70% at the stage of manufacturing the cold-rolled plate. 前記1次再結晶焼鈍する段階で、窒化量が0.01〜0.023重量%である、ことを特徴とする請求項14に記載の二方向性電磁鋼板の製造方法。 The method for producing a grain-oriented electrical steel sheet according to claim 14, wherein the amount of nitriding is 0.01 to 0.023% by weight at the stage of primary recrystallization annealing. 前記1次再結晶焼鈍する段階後、1次再結晶焼鈍された鋼板の平均結晶粒径が32〜50μmである、ことを特徴とする請求項15に記載の二方向性電磁鋼板の製造方法。 The method for producing a bidirectional electromagnetic steel sheet according to claim 15, wherein after the step of primary recrystallization annealing, the average crystal grain size of the primary recrystallized annealed steel sheet is 32 to 50 μm. 前記熱延板を製造する段階後、前記熱延板を焼鈍する段階をさらに含み、前記熱延板を焼鈍する段階の温度(T2)およびスラブを加熱する段階の温度(T1)が下記数5を満たす、ことを特徴とする請求項12に記載の二方向性電磁鋼板の製造方法。
[数5]
−200≦T1−T2≦30
After the step of manufacturing the hot-rolled plate, the temperature of the step of annealing the hot-rolled plate (T2) and the temperature of the stage of heating the slab (T1) are further included in the step of annealing the hot-rolled plate. The method for manufacturing a bidirectional electromagnetic steel plate according to claim 12, wherein the bidirectional electromagnetic steel plate is satisfied.
[Number 5]
-200 ≤ T1-T2 ≤ 30
前記スラブを加熱する段階で、1100℃以上の時間が25〜50分である、ことを特徴とする請求項17に記載の二方向性電磁鋼板の製造方法。 The method for producing a grain-oriented electrical steel sheet according to claim 17, wherein the time of 1100 ° C. or higher is 25 to 50 minutes at the stage of heating the slab. 前記熱延板を焼鈍する段階で、1100℃以上の時間が5〜50秒である、ことを特徴とする請求項18に記載の二方向性電磁鋼板の製造方法。 The method for producing a grain-oriented electrical steel sheet according to claim 18, wherein the time at 1100 ° C. or higher is 5 to 50 seconds at the stage of annealing the hot-rolled sheet. 前記熱延板を焼鈍する段階後、前記熱延板の平均結晶粒径が100〜200μmである、ことを特徴とする請求項19に記載の二方向性電磁鋼板の製造方法。 The method for producing a grain-oriented electrical steel sheet according to claim 19, wherein after the step of annealing the hot-rolled plate, the average crystal grain size of the hot-rolled plate is 100 to 200 μm. 前記熱延板を焼鈍する段階後、前記熱延板の1mm面積で、粒径が0.1μm以上である析出物の数が100〜4000個であり、
粒径が0.5μm超過である析出物の数(B)に対する、粒径が0.1〜0.5μmである析出物の数(A)の比率(A/B)が1以上である、ことを特徴とする請求項20に記載の二方向性電磁鋼板の製造方法。
After the step of annealing the hot-rolled plate, the number of precipitates having a particle size of 0.1 μm or more in a 1 mm 2 area of the hot-rolled plate is 100 to 4000.
The feature is that the ratio (A / B) of the number of precipitates (A) having a particle size of 0.1 to 0.5 μm to the number of precipitates (B) having a particle size exceeding 0.5 μm is 1 or more. The method for manufacturing a bidirectional electromagnetic steel plate according to claim 20.
前記熱延板を製造する段階後、前記熱延板を焼鈍する段階をさらに含み、
前記スラブを加熱する段階後、前記熱延板を製造する段階までの時間が3〜20分であり、前記スラブを加熱する段階から前記熱延板を製造する段階までの最大温度が前記熱延板を焼鈍する段階の焼鈍温度の20℃以下である、ことを特徴とする請求項12に記載の二方向性電磁鋼板の製造方法。
After the step of manufacturing the hot-rolled plate, the step of annealing the hot-rolled plate is further included.
The time from the step of heating the slab to the step of manufacturing the hot-rolled plate is 3 to 20 minutes, and the maximum temperature from the step of heating the slab to the stage of manufacturing the hot-rolled plate is the hot-rolling. The method for producing a bidirectional electromagnetic steel plate according to claim 12, wherein the annealing temperature at the stage of annealing the plate is 20 ° C. or lower.
前記熱延板を製造する段階で、2以上のパスを含み、最終パスおよび最終パス以前のパスでの圧下率がそれぞれ15〜40%であり、前記最終パスおよび最終パス以前のパスでの圧下率の合計が55%以下である、ことを特徴とする請求項21に記載の二方向性電磁鋼板の製造方法。 At the stage of manufacturing the hot-rolled sheet, two or more passes are included, the reduction rate in the final pass and the pass before the final pass is 15 to 40%, respectively, and the reduction in the final pass and the pass before the final pass, respectively. The method for manufacturing a grain-oriented electrical steel sheet according to claim 21, wherein the total rate is 55% or less. 前記1次再結晶焼鈍する段階後、MgOを含む焼鈍分離剤を塗布する段階をさらに含む、ことを特徴とする請求項12に記載の二方向性電磁鋼板の製造方法。


The method for producing a grain-oriented electrical steel sheet according to claim 12, further comprising a step of applying an annealing separator containing MgO after the step of primary recrystallization annealing.


JP2020536037A 2017-12-26 2018-12-17 Bidirectional electrical steel sheet and manufacturing method thereof Active JP7174053B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2017-0179929 2017-12-26
KR1020170179929A KR102009834B1 (en) 2017-12-26 2017-12-26 Double oriented electrical steel sheet method for manufacturing the same
PCT/KR2018/016041 WO2019132363A1 (en) 2017-12-26 2018-12-17 Double oriented electrical steel sheet and method for manufacturing same

Publications (2)

Publication Number Publication Date
JP2021509441A true JP2021509441A (en) 2021-03-25
JP7174053B2 JP7174053B2 (en) 2022-11-17

Family

ID=67064002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020536037A Active JP7174053B2 (en) 2017-12-26 2018-12-17 Bidirectional electrical steel sheet and manufacturing method thereof

Country Status (6)

Country Link
US (1) US11802319B2 (en)
EP (1) EP3733900A4 (en)
JP (1) JP7174053B2 (en)
KR (1) KR102009834B1 (en)
CN (1) CN111566245A (en)
WO (1) WO2019132363A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102105529B1 (en) * 2018-09-27 2020-04-28 주식회사 포스코 Double oriented electrical steel sheet method for manufacturing the same
KR102271299B1 (en) * 2019-12-19 2021-06-29 주식회사 포스코 Double oriented electrical steel sheet method for manufacturing the same
KR102323332B1 (en) * 2019-12-20 2021-11-05 주식회사 포스코 Double oriented electrical steel sheet method for manufacturing the same
KR102357270B1 (en) * 2019-12-20 2022-01-27 주식회사 포스코 {100}<0uv> ELECTRICAL STEEL SHEET METHOD FOR MANUFACTURING THE SAME
KR102493771B1 (en) * 2020-12-21 2023-01-30 주식회사 포스코 Double oriented electrical steel sheet method for manufacturing the same
CN114762911B (en) * 2021-01-11 2023-05-09 宝山钢铁股份有限公司 Low magnetostriction oriented silicon steel and manufacturing method thereof
CN114752861B (en) * 2022-04-29 2022-10-18 鞍钢股份有限公司 Low-yield-ratio electrical pure iron hot rolled plate and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002129233A (en) * 2000-10-19 2002-05-09 Kawasaki Steel Corp Method for producing grain oriented silicon steel sheet having excellent magnetic property in rolling direction and rolling orthogonal direction
JP2005179745A (en) * 2003-12-19 2005-07-07 Jfe Steel Kk Method for producing bi-directional silicon steel sheet
JP2008106367A (en) * 2007-11-19 2008-05-08 Jfe Steel Kk Double oriented silicon steel sheet
JP2008150697A (en) * 2006-12-20 2008-07-03 Jfe Steel Kk Production method of magnetic steel sheet
JP2012126980A (en) * 2010-12-17 2012-07-05 Jfe Steel Corp Electromagnetic steel sheet and method for manufacturing the same

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3240638A (en) * 1964-10-21 1966-03-15 Westinghouse Electric Corp Use of silicon steel alloy having a critical sulfur range to insure cube-onface orientation
JPS61183479A (en) * 1985-02-09 1986-08-16 Nippon Steel Corp Surface treatment of electrical steel sheet
JPH01139722A (en) 1987-11-27 1989-06-01 Nippon Steel Corp Manufacture of bidirectional oriented magnetic steel sheet
EP0452153B1 (en) 1990-04-12 1998-03-25 Nippon Steel Corporation Process for manufacturing double oriented electrical steel sheet having high magnetic flux density
KR950005010B1 (en) 1991-11-23 1995-05-17 유겐가이샤 가이신 Device for collecting sand or sludge
EP0906963B1 (en) * 1996-11-01 2002-05-22 Sumitomo Metal Industries, Ltd. Bidirectional electromagnetic steel plate and method of manufacturing the same
TW476790B (en) * 1998-05-18 2002-02-21 Kawasaki Steel Co Electrical sheet of excellent magnetic characteristics and its manufacturing method
JP3870625B2 (en) * 1999-09-27 2007-01-24 住友金属工業株式会社 Manufacturing method of bi-directional electrical steel sheet
US6562473B1 (en) * 1999-12-03 2003-05-13 Kawasaki Steel Corporation Electrical steel sheet suitable for compact iron core and manufacturing method therefor
JP4075258B2 (en) * 1999-12-06 2008-04-16 Jfeスチール株式会社 Manufacturing method of bi-directional electrical steel sheet
JP4300661B2 (en) * 1999-12-17 2009-07-22 住友金属工業株式会社 Method for producing bi-directional silicon steel sheet with excellent magnetic properties
JP4119689B2 (en) 2002-06-07 2008-07-16 新日本製鐵株式会社 Manufacturing method of bi-directional electrical steel sheet
JP4608467B2 (en) 2006-07-11 2011-01-12 新日本製鐵株式会社 Manufacturing method of electrical steel sheet
KR100797895B1 (en) 2006-12-22 2008-01-24 성진경 Method of forming cube-on-face texture on surface, method of manufacturing non-oriented electrical steel sheets using the same and non-oriented electrical steel sheets manufactured by using the same
BR112017017403B1 (en) * 2015-02-13 2021-03-09 Jfe Steel Corporation grain-oriented electric steel plate and method for producing the same
CN105274427A (en) 2015-11-24 2016-01-27 武汉钢铁(集团)公司 High-magnetic-induction oriented silicon steel and production method
JP6690244B2 (en) * 2016-01-08 2020-04-28 日本製鉄株式会社 Bidirectional electrical steel sheet and method for manufacturing bidirectional electrical steel sheet
JP6443355B2 (en) 2016-01-29 2018-12-26 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
KR102105529B1 (en) * 2018-09-27 2020-04-28 주식회사 포스코 Double oriented electrical steel sheet method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002129233A (en) * 2000-10-19 2002-05-09 Kawasaki Steel Corp Method for producing grain oriented silicon steel sheet having excellent magnetic property in rolling direction and rolling orthogonal direction
JP2005179745A (en) * 2003-12-19 2005-07-07 Jfe Steel Kk Method for producing bi-directional silicon steel sheet
JP2008150697A (en) * 2006-12-20 2008-07-03 Jfe Steel Kk Production method of magnetic steel sheet
JP2008106367A (en) * 2007-11-19 2008-05-08 Jfe Steel Kk Double oriented silicon steel sheet
JP2012126980A (en) * 2010-12-17 2012-07-05 Jfe Steel Corp Electromagnetic steel sheet and method for manufacturing the same

Also Published As

Publication number Publication date
CN111566245A (en) 2020-08-21
US11802319B2 (en) 2023-10-31
KR102009834B1 (en) 2019-08-12
US20210054474A1 (en) 2021-02-25
EP3733900A4 (en) 2021-04-07
EP3733900A1 (en) 2020-11-04
KR20190078166A (en) 2019-07-04
JP7174053B2 (en) 2022-11-17
WO2019132363A1 (en) 2019-07-04

Similar Documents

Publication Publication Date Title
JP7174053B2 (en) Bidirectional electrical steel sheet and manufacturing method thereof
KR102239708B1 (en) Grain-oriented electrical steel sheet and its manufacturing method
JP5724824B2 (en) Method for producing non-oriented electrical steel sheet with good magnetic properties in rolling direction
JP5423629B2 (en) Method for producing non-directional electromagnetic hot-rolled steel strip with high magnetic flux density
JP7312249B2 (en) Bidirectional electrical steel sheet and manufacturing method thereof
JP2017222898A (en) Production method of grain oriented magnetic steel sheet
JP5388506B2 (en) Method for producing non-oriented electrical steel sheet with high magnetic flux density
JPWO2014013615A1 (en) Method for producing grain-oriented electrical steel sheet
KR101980940B1 (en) Production method for grain-oriented electrical steel sheet and primary recrystallized steel sheet for production of grain-oriented electrical steel sheet
JP2001158950A (en) Silicon steel sheet for small-size electrical equipment, and its manufacturing method
JP6515323B2 (en) Non-oriented electrical steel sheet
JP2022509676A (en) Non-oriented electrical steel sheet and its manufacturing method
JP6842550B2 (en) Directional electrical steel sheet and its manufacturing method
CN108431244B (en) Oriented electrical steel sheet and method for manufacturing the same
JP6690244B2 (en) Bidirectional electrical steel sheet and method for manufacturing bidirectional electrical steel sheet
JP2009209428A (en) Method for manufacturing grain-oriented electromagnetic steel sheet with remarkably high magnetic flux density
KR102271303B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
JPH055126A (en) Production of nonoriented silicon steel sheet
JP2022509670A (en) Non-oriented electrical steel sheet and its manufacturing method
KR102493771B1 (en) Double oriented electrical steel sheet method for manufacturing the same
JPH11241120A (en) Production of grain-oriented silicon steel sheet having uniform forsterite film
JP2023507437A (en) Bidirectional electrical steel sheet and manufacturing method thereof
JP2023508294A (en) Non-oriented electrical steel sheet and manufacturing method thereof
JPS59104429A (en) Preparation of non-directional electromagnetic steel strip
JP2024500843A (en) Non-oriented electrical steel sheet and its manufacturing method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200626

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221104

R150 Certificate of patent or registration of utility model

Ref document number: 7174053

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350