JP2008150697A - Production method of magnetic steel sheet - Google Patents

Production method of magnetic steel sheet Download PDF

Info

Publication number
JP2008150697A
JP2008150697A JP2006342903A JP2006342903A JP2008150697A JP 2008150697 A JP2008150697 A JP 2008150697A JP 2006342903 A JP2006342903 A JP 2006342903A JP 2006342903 A JP2006342903 A JP 2006342903A JP 2008150697 A JP2008150697 A JP 2008150697A
Authority
JP
Japan
Prior art keywords
annealing
rolling
steel sheet
recrystallization
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006342903A
Other languages
Japanese (ja)
Inventor
Kunihiro Senda
邦浩 千田
Yasuyuki Hayakawa
康之 早川
Takeshi Omura
大村  健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006342903A priority Critical patent/JP2008150697A/en
Publication of JP2008150697A publication Critical patent/JP2008150697A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic steel sheet which comprises a secondary recrystallized grain and has a regular cubic orientation with a high magnetic permeability (magnetic flux density), both in the rolling direction and the direction perpendicular thereto. <P>SOLUTION: In a production method of the magnetic steel sheet, the amount of Al added to steel is 0.001-0.009%, which has been reduced compared to that in conventional methods; the amounts of Se, S, O and N are each reduced to ≤30 ppm; an Sn content in the steel is controlled to 0.01-0.20%; an average temperature-rising rate is controlled to ≥20°C/s between 500-750°C for decarburization and recrystallization annealing, and final finish annealing is subsequently carried out. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、主としてモータや発電機等の鉄心材料として好適な圧延方向と圧延直角方向の磁気特性に優れる電磁鋼板の製造方法に関するものである。   The present invention relates to a method for producing an electrical steel sheet that is excellent in magnetic properties in the rolling direction and the direction perpendicular to the rolling direction, which is suitable as a core material for motors and generators.

電磁鋼板の磁気特性は、結晶方位の影響を受け、優れた磁気特性を得るためには磁化容易軸<001>が鋼板面に平行になっている必要があることが知られている。
ところで、従来の電磁鋼板は、一般用冷延鋼板、それを脱炭した低級品、あるいはSiを添加し、さらに不純物を減少して鉄損を低減した無方向性電磁鋼板または二次再結晶を利用して{110}<001>方位を優先成長させた一方向性電磁鋼板または{100}<001>方位を発達させた二方向性電磁鋼板に分かれている。しかしながら、従来の無方向性電磁鋼板は、集合組織の発達が弱く、鋼板面内に<001>軸が平行である結晶粒の数が少ないために、良好な磁気特性を得るには至っていない。
It is known that the magnetic properties of an electrical steel sheet are affected by the crystal orientation, and in order to obtain excellent magnetic properties, the easy magnetization axis <001> needs to be parallel to the steel sheet surface.
By the way, the conventional electrical steel sheet is a non-oriented electrical steel sheet or secondary recrystallization in which a general cold-rolled steel sheet, a low-grade product obtained by decarburizing the steel sheet, or Si is added to further reduce impurities by reducing impurities. It is divided into a unidirectional electrical steel sheet that is preferentially grown in the {110} <001> orientation and a bi-directional electrical steel sheet that is developed in the {100} <001> orientation. However, conventional non-oriented electrical steel sheets have poor texture development, and the number of crystal grains whose <001> axes are parallel in the steel sheet surface is small, so that good magnetic properties have not been obtained.

変圧器の鉄心材料として最も一般的に使用されている、{110}<001>方位(ゴス方位)に集積した結晶粒からなる一方向性電磁鋼板は、圧延方向に<001>が高度に集積しているため、圧延方向に磁化する場合には優れた磁気特性を示す。しかしながら、面内には最も磁化が困難な<111>軸が含まれているため、この方向に磁化する場合には磁気特性は極めて悪い。そのため、変圧器のように一方向の磁気特性が良好であればよい用途には有効であるが、モータや発電機の鉄心材料のように面内のあらゆる方向で良好な磁気特性が必要とされる場合には、一方向性電磁鋼板を使用しても良好な磁気特性は得られない。   The unidirectional electrical steel sheet made of crystal grains accumulated in the {110} <001> orientation (Goth orientation), which is most commonly used as a core material for transformers, is highly integrated in the rolling direction. Therefore, it exhibits excellent magnetic properties when magnetized in the rolling direction. However, since the <111> axis, which is the most difficult to magnetize, is included in the plane, the magnetic properties are extremely poor when magnetized in this direction. Therefore, it is effective for applications where the magnetic properties in one direction are good like a transformer, but good magnetic properties are required in all directions in the plane like iron core materials for motors and generators. In this case, good magnetic properties cannot be obtained even if a unidirectional electrical steel sheet is used.

これらの電磁鋼板に対し、{100}を圧延面とする組織を持つ電磁鋼板を製造することができれば、圧延面内には<100>軸が多く、また面内に<111>軸が存在しないために、非常に有利である。特に圧延面において<001>軸の方向がランダムな{100}<uvw>組織は、面内における磁気特性の異方性が全く無く、モータ用の材料として理想的である。そのため、{100}組織を発達させる技術が古くから試みられてきた。   If an electrical steel sheet having a structure with {100} as the rolling surface can be produced for these electrical steel sheets, there are many <100> axes in the rolling surface and no <111> axes in the surface. Therefore, it is very advantageous. In particular, a {100} <uvw> structure in which the direction of the <001> axis is random on the rolled surface has no magnetic property anisotropy in the surface and is ideal as a material for a motor. Therefore, techniques for developing {100} structures have been tried for a long time.

例えば、無方向性電磁鋼板の製造方法において、冷間圧延の圧下率を85%以上好ましくは90%以上とし、700〜1200℃で1分から1時間の長時間にわたって焼鈍を施す方法が、特許文献1に開示されている。しかしながら、この方法では、圧延後に{100}組織が発達はするものの、再結晶させると{111}組織も発達するために、良好な磁気特性は得られない。
特公昭51−942号公報
For example, in a method for producing a non-oriented electrical steel sheet, a method in which the reduction ratio of cold rolling is 85% or more, preferably 90% or more, and annealing is performed at 700 to 1200 ° C. for a period of 1 minute to 1 hour is disclosed in Patent Document 1 is disclosed. However, in this method, although the {100} structure develops after rolling, the {111} structure also develops when recrystallized, so that good magnetic properties cannot be obtained.
Japanese Patent Publication No.51-942

また、特許文献2には、冷間圧延後の再結晶時にγ相からα相への相変態における冷却速度を制御することによって{100}組織を発達させる方法が開示されている。しかしながら、この方法は、再結晶時にγ変態を起こすことが前提になるので、α相を安定化するSi量を高めることはできない。例えば、C,Mnを含まない場合には、Si量が約2%以上になるとγ変態は起こらず、その場合にはこの技術を適用することができない。このように、この方法は、鉄損を低減させるために有効なSiの増量を利用することができない不利な方法といえる。
特公昭57−14411号公報
Patent Document 2 discloses a method of developing a {100} structure by controlling the cooling rate in the phase transformation from the γ phase to the α phase during recrystallization after cold rolling. However, since this method is premised on causing a γ transformation during recrystallization, the amount of Si that stabilizes the α phase cannot be increased. For example, when C and Mn are not included, the γ transformation does not occur when the Si content is about 2% or more, and in this case, this technique cannot be applied. Thus, this method can be said to be a disadvantageous method in which it is not possible to use an effective Si increase for reducing iron loss.
Japanese Patent Publication No.57-14411

さらに、特許文献3には、C:0.006〜0.020%を含む成分の鋼を、冷間圧延後、900〜 1100℃に加熱して再結晶させたのち、900℃以下の温度で脱炭焼鈍する技術が開示されている。この技術により得られる磁気特性は、実施例1によると圧延方向および圧延方向と直角方向の磁束密度B50の平均値で1.66〜1.68T程度にすぎず、従って鋼板面内における<001>軸の集積度は低いものと考えられる。
以上述べたように、無方向性電磁鋼板の製造法に改良を加える従来の技術では、集積度の高い{100}組織を得ることができず、従って磁気特性の改善は不十分であった。
特開平5−5126号公報
Furthermore, in Patent Document 3, steel having a component containing C: 0.006 to 0.020% is cold-rolled, heated to 900 to 1100 ° C. and recrystallized, and then decarburized and annealed at a temperature of 900 ° C. or less. Technology is disclosed. According to Example 1, the magnetic properties obtained by this technique are only about 1.66 to 1.68 T in average value of the magnetic flux density B 50 in the rolling direction and in the direction perpendicular to the rolling direction. The degree of integration is considered low.
As described above, the conventional technique for improving the manufacturing method of the non-oriented electrical steel sheet cannot obtain a {100} structure with a high degree of integration, and therefore the improvement in magnetic properties is insufficient.
JP-A-5-5126

一方、二次再結晶で{100}<001>組織を発達させる、いわゆる二方向性電磁鋼板の製造方法も古くから検討されてきた。
例えば、特許文献4には、一方向に冷間圧延したのち、さらにこの冷延方向と交差する方向に冷間圧延を加え、短時間焼鈍と900〜1300℃の高温焼鈍を行う、クロス圧延によって、{100}<001>方位粒をインヒビターを利用して二次再結晶させる方法が、また特許文献5には、熱延方向に対して直角の方向に50〜90%の圧下率で冷延し、ついで一次再結晶を目的とする焼鈍を施したのち、二次再結晶と純化を目的とする最終仕上焼鈍を施して、{100」<001>方位粒をAlNを利用して二次再結晶させる方法が、それぞれ開示されている。しかしながら、これらの方法はいずれもクロス圧延や特殊な最終仕上げ焼鈍など製造コストの増加を余儀なくされる工程を必要とするため、現実的なキューブ組織鋼板の製造方法とはいえなかった。
特公昭35−2657号公報 特開平4−362132号公報
On the other hand, a method for producing a so-called bidirectional electrical steel sheet that develops a {100} <001> structure by secondary recrystallization has long been studied.
For example, in Patent Document 4, after cold rolling in one direction, cold rolling is further performed in a direction crossing the cold rolling direction, and short time annealing and high temperature annealing at 900 to 1300 ° C. are performed. , {100} <001> oriented grains are secondarily recrystallized using an inhibitor, and Patent Document 5 discloses cold rolling at a rolling reduction of 50 to 90% in a direction perpendicular to the hot rolling direction. Next, after annealing for the purpose of primary recrystallization, final finishing annealing for the purpose of secondary recrystallization and purification is performed, and {100 "<001> oriented grains are subjected to secondary recrystallization using AlN. Each method of crystallization is disclosed. However, none of these methods is a realistic method for producing a cube-structure steel sheet because it requires a process that requires an increase in production cost such as cross rolling and special final finish annealing.
Japanese Patent Publication No. 35-2657 JP-A-4-362132

これに対し、特許文献6には、鋼成分として、Al:0.0010〜0.012mass%を含有し、Se,S,O,Nをそれぞれ30ppm以下にすると共に、最終圧延前における平均粒径を100μm以上とすることで、好ましい程度に発達した{100}<001>組織を得る技術が開示されている。この技術では、従来の製造方法に比べて、極めて安価に{100}<001>近傍組織の鋼板が得られるものの、圧延前の平均粒径を100μm以上に制御することが成分の変動の影響を受けるために困難なことから、必ずしも圧延直角方向の磁気特性に優れた製品が得られず、製品歩留りの低下を招くという欠点があった。また、圧延前の平均粒径の増加に伴う圧延性の劣化という問題も発生していた。
特開2000−309859号公報
On the other hand, Patent Document 6 contains Al: 0.0010 to 0.012 mass% as a steel component, Se, S, O, and N are each 30 ppm or less, and the average particle size before final rolling is 100 μm or more. Thus, a technique for obtaining a {100} <001> structure developed to a preferable level is disclosed. In this technique, a steel sheet with a {100} <001> neighborhood structure can be obtained at a very low cost compared to the conventional manufacturing method. However, controlling the average grain size before rolling to 100 μm or more has the effect of component fluctuations. Since it is difficult to receive, a product excellent in magnetic properties in the direction perpendicular to the rolling cannot always be obtained, leading to a decrease in product yield. In addition, there has been a problem of deterioration in rollability accompanying an increase in the average particle size before rolling.
JP 2000-309859 A

本発明は、上記の現状に鑑み開発されたもので、特許文献6の技術を基礎として、圧延方向とともに圧延直角方向の透磁率(磁束密度)が高い正キューブ方位を有する二次再結晶粒からなる電磁鋼板を、生産性良く安定して製造することができる方法を提案することを目的とする。   The present invention was developed in view of the above-mentioned present situation, and based on the technique of Patent Document 6, secondary recrystallized grains having a positive cube orientation having a high permeability (magnetic flux density) in the direction perpendicular to the rolling direction as well as the rolling direction. An object of the present invention is to propose a method capable of stably producing a magnetic steel sheet having high productivity.

ここで、モータや発電機の鉄心用の材料としては、圧延方向の磁束密度B50が1.80T以上、圧延直角方向の磁束密度B50が1.75T以上であることが望ましい。
本発明では、このような材料を安価かつ安定的に製造する方法の確立を目的とした。また、このような特性を有する{100}<001>に近い方位(方位差20°以内)をもつ方位を総称して、本発明では「正キューブ方位」と呼ぶこととした。
Here, as a material for the core of a motor or generator, the rolling direction of the magnetic flux density B 50 is more than 1.80T, perpendicular to the rolling direction of the magnetic flux density B 50 is desirably not less than 1.75 T.
The object of the present invention is to establish a method for stably and inexpensively producing such materials. In addition, the azimuth having such characteristics and having an azimuth close to {100} <001> (within an azimuth difference of 20 ° or less) is generically referred to as a “normal cube azimuth” in the present invention.

さて、発明者らは、上記の課題を解決すべく、鋼中の添加元素と再結晶焼鈍方法について鋭意研究を重ねた結果、鋼中へのAl添加量を従来よりも低減し、さらにSe,S,O,Nを低減することによる圧延方向および圧延直角方向の磁束密度の高い電磁鋼板の製造方法において、鋼中に適量のSnを添加するととともに、脱炭・再結晶焼鈍における500〜750℃の温度域の昇温速度を20℃/s以上とすることにより、たとえ最終冷延前の平均結晶粒径が100μmに満たない場合であっても最終仕上げ焼鈍後に安定して正キューブ組織を得ることができることの新規知見を得た。
本発明は上記の知見に立脚するものである。
Now, in order to solve the above-mentioned problems, the inventors have conducted extensive research on the additive elements in steel and the recrystallization annealing method. As a result, the amount of Al added to the steel has been reduced more than before, and Se, In the method for producing a magnetic steel sheet having a high magnetic flux density in the rolling direction and the direction perpendicular to the rolling by reducing S, O, N, an appropriate amount of Sn is added to the steel, and at 500 to 750 ° C. in decarburization / recrystallization annealing. By increasing the rate of temperature rise in the temperature range of 20 ° C./s or higher, a positive cube structure can be obtained stably after final finish annealing even if the average crystal grain size before the final cold rolling is less than 100 μm. I got new knowledge that I can do it.
The present invention is based on the above findings.

すなわち、本発明の要旨構成は次のとおりである。
1.質量%で、C:0.003〜0.080%、Si:2.0〜8.0%、Mn:0.005〜3.0%、Al:0.0010〜0.0090%およびSn:0.01〜0.20%を含み、かつS,Se,O,Nをそれぞれ30ppm以下に低減し、残部はFeおよび不可避的不純物の組成になる鋼スラブを、熱間圧延後、必要に応じて熱延板焼鈍を施したのち、1回または中間焼鈍を挟む2回以上の冷間圧延を施して最終板厚に仕上げ、ついで脱炭・再結晶焼鈍後、必要に応じて焼鈍分離剤を塗布してから最終仕上げ焼鈍を施す一連の工程からなる電磁鋼板の製造方法において、
該脱炭・再結晶焼鈍における500〜750℃間の平均昇温速度を20℃/s以上とすることを特徴とする電磁鋼板の製造方法。
That is, the gist configuration of the present invention is as follows.
1. In mass%, C: 0.003-0.080%, Si: 2.0-8.0%, Mn: 0.005-3.0%, Al: 0.0010-0.0090% and Sn: 0.01-0.20%, and S, Se, O, N Steel slabs, each reduced to 30ppm or less, with the balance being Fe and inevitable impurities, hot-rolled, if necessary, and then hot-rolled sheet annealing, or once or two or more times with intermediate annealing In the manufacturing method of electrical steel sheet, which consists of a series of processes in which cold rolling is performed to finish to the final plate thickness, followed by decarburization and recrystallization annealing, and if necessary, an annealing separator is applied and then final finishing annealing is performed. ,
A method for producing an electrical steel sheet, wherein an average rate of temperature increase between 500 and 750 ° C. in the decarburization / recrystallization annealing is set to 20 ° C./s or more.

2.上記1において、最終冷間圧延前の焼鈍温度を900℃以上 1000℃未満とすることを特徴する電磁鋼板の製造方法。 2. In the method 1, the annealing temperature before the final cold rolling is set to 900 ° C. or higher and lower than 1000 ° C.

3.上記1または2において、鋼スラブが、質量%でさらに、Sb:0.005〜0.50%,Cu:0.01〜0.50%,Mo:0.005〜0.50%およびCr:0.01〜1.0%のうちから選んだ1種または2種以上を含有することを特徴とする電磁鋼板の製造方法。 3. In the above 1 or 2, the steel slab is one type selected from Sb: 0.005 to 0.50%, Cu: 0.01 to 0.50%, Mo: 0.005 to 0.50%, and Cr: 0.01 to 1.0% by mass%. The manufacturing method of the electrical steel sheet characterized by including 2 or more types.

本発明によれば、必ずしも最終冷延前の焼鈍温度を1000℃以上の高温として最終冷延前の結晶粒径を平均粒径で100μm以上とせずとも、最終仕上焼鈍時に正キューブ組織を適度に発達させることができ、その結果、圧延方向はいうまでもなく圧延直角方向の磁束密度が高い電磁鋼板を、高い製造歩留りと低い製造コストの下で安定して製造することができる。   According to the present invention, the normal cube structure is appropriately set at the time of final finishing annealing without necessarily setting the annealing temperature before the final cold rolling to a high temperature of 1000 ° C. or higher and setting the grain size before the final cold rolling to an average grain size of 100 μm or more. As a result, it is possible to stably produce an electromagnetic steel sheet having a high magnetic flux density in the direction perpendicular to the rolling direction, not to mention the rolling direction, under a high production yield and a low production cost.

以下、本発明を由来するに到った実験結果について説明する。なお、鋼板の成分組成に関する「%」表示は特に断らない限りmass%(質量%)を意味するものとする。
実験1
添加元素の効果を明らかにするために、表1に示す成分の鋼塊を溶製し、1150℃に加熱後、熱間圧延により2.2mm厚の熱延板とした後、950℃,1050℃で30秒間保持する熱延板焼鈍を施してから、200℃の温度で冷間圧延して0.30mmの最終板厚に仕上げたのち、850℃,15秒間の再結晶焼鈍を施した。ここで、再結晶焼鈍の昇温速度(500〜750℃間)は15℃/sまたは25℃/sとした。ついで、焼鈍分離剤を塗布してから、900℃,30時間の最終仕上げ焼鈍を施したのち、圧延方向および圧延直角方向の試片(30mm×280mm)を切り出し、エプスタイン試験法により圧延方向および圧延直角方向の磁気特性を測定した。
得られた結果を表1に併記する。
Hereinafter, experimental results that led to the present invention will be described. In addition, unless otherwise indicated, "%" display regarding the component composition of a steel plate shall mean mass% (mass%).
Experiment 1
In order to clarify the effects of the additive elements, steel ingots with the components shown in Table 1 were melted and heated to 1150 ° C, then hot rolled into a hot-rolled sheet with a thickness of 2.2 mm, and then 950 ° C and 1050 ° C. After performing hot-rolled sheet annealing for 30 seconds, cold rolling at a temperature of 200 ° C. to a final thickness of 0.30 mm, followed by recrystallization annealing at 850 ° C. for 15 seconds. Here, the temperature increase rate (between 500 and 750 ° C.) of the recrystallization annealing was set to 15 ° C./s or 25 ° C./s. Next, after applying an annealing separator, after final finishing annealing at 900 ° C for 30 hours, a specimen (30 mm x 280 mm) in the rolling direction and in the direction perpendicular to the rolling direction is cut out, and the rolling direction and rolling are performed by the Epstein test method. The perpendicular magnetic properties were measured.
The obtained results are also shown in Table 1.

Figure 2008150697
Figure 2008150697

同表に示したように、Snを添加していない場合には熱延板焼鈍温度を1050℃まで高温としなければ、圧延直角方向の磁束密度B50が1.80Tを超えることはなく、正キューブ組織が得られていないのに対し、Snを添加すると共に、再結晶焼鈍の昇温速度を25℃/sとすることで熱延板焼鈍温度が950℃の場合にも圧延直角方向のB50が1.80Tを超えるレベルにまで達しており、熱延板焼鈍温度によらず安定して正キューブ組織が得られることが判明した。 As shown in the table, when Sn is not added, the magnetic flux density B 50 in the direction perpendicular to the rolling does not exceed 1.80 T unless the hot-rolled sheet annealing temperature is raised to 1050 ° C. Whereas no structure is obtained, Sn is added and the rate of temperature increase in recrystallization annealing is set to 25 ° C./s, so that the B 50 in the direction perpendicular to the rolling direction is also obtained when the hot-rolled sheet annealing temperature is 950 ° C. Has reached a level exceeding 1.80 T, and it has been found that a positive cube structure can be obtained stably regardless of the hot-rolled sheet annealing temperature.

ここで、鋼塊1と鋼塊2の熱延板焼鈍後の平均粒径はいずれも、熱延板焼鈍温度が950℃の場合は65μm、1050℃の場合は110μmであった。
従って、Snを添加した鋼塊2では、最終冷間圧延前の平均粒径が100μmに満たない場合であったも安定して正キューブ方位の結晶粒が二次再結晶したといえる。
このように、Snを添加し、さらに再結晶焼鈍の昇温速度を25℃/sとすることにより、最終冷延前粒径が100μmに満たない場合であっても正キューブ方位の鋼板が得られることから、最終冷延での割れ等を防止することが可能となり、安定的に歩留り良く生産することが可能となる。
Here, the average particle diameter of the ingot 1 and the ingot 2 after hot-rolled sheet annealing was 65 μm when the hot-rolled sheet annealing temperature was 950 ° C. and 110 μm when the temperature was 1050 ° C.
Therefore, in the steel ingot 2 to which Sn was added, it can be said that the crystal grains having the positive cube orientation were stably recrystallized even when the average grain size before the final cold rolling was less than 100 μm.
Thus, by adding Sn and further increasing the heating rate of recrystallization annealing to 25 ° C./s, a steel sheet with a normal cube orientation can be obtained even when the grain size before the final cold rolling is less than 100 μm. Therefore, it becomes possible to prevent cracks and the like in the final cold rolling, and it is possible to stably produce with good yield.

また、鋼中にSnを適量添加すると共に、再結晶焼鈍の昇温速度を25℃/sとし、さらに最終冷延前の焼鈍を1050℃とすることで冷延前の平均粒径を110μmまで粗大化した場合には、平均磁束密度(L+C+2D)/4で1.86Tに達する優れた特性が得られている。   In addition, an appropriate amount of Sn is added to the steel, the temperature increase rate of recrystallization annealing is set to 25 ° C / s, and the annealing before final cold rolling is set to 1050 ° C, so that the average particle size before cold rolling is reduced to 110 µm. In the case of coarsening, excellent characteristics reaching 1.86 T at an average magnetic flux density (L + C + 2D) / 4 are obtained.

実験2
次に、Snの適正範囲を明らかにするための実験を行った。
C:0.004%,Si:2.5%,Mn:0.10%,O:0.0010%,N:0.0010%,Al:0.0020%,S:0.0010%,Se≦0.0003%およびSn:0〜0.5%を含有する鋼塊を溶製し、1150℃に加熱後、熱間圧延により2.2mm厚の熱延板とし、ついで950℃,30秒間の熱延板焼鈍後、200℃の温度で冷間圧延して0.30mmの最終板厚としたのち、850℃に15秒間保持する再結晶焼鈍を施した。ここで、再結晶焼鈍の昇温速度(500〜750℃間)は25℃/sとした。
ついで、焼鈍分離剤を塗布してから、900℃,30時間の最終仕上げ焼鈍を施したのち、圧延方向および圧延直角方向の試片(30mm×280mm)を切り出し、エプスタイン試験法により圧延方向および圧延直角方向の磁気特性を測定した。
得られた結果を図1に示す。
Experiment 2
Next, an experiment was conducted to clarify the appropriate range of Sn.
Steel containing C: 0.004%, Si: 2.5%, Mn: 0.10%, O: 0.0010%, N: 0.0010%, Al: 0.0020%, S: 0.0010%, Se ≦ 0.0003% and Sn: 0 to 0.5% The ingot is melted, heated to 1150 ° C, hot rolled to a hot rolled sheet of 2.2mm thickness, then annealed at 950 ° C for 30 seconds, then cold rolled at a temperature of 200 ° C to 0.30mm After the final plate thickness was reached, recrystallization annealing was performed at 850 ° C. for 15 seconds. Here, the heating rate (between 500 and 750 ° C.) of the recrystallization annealing was set to 25 ° C./s.
Next, after applying an annealing separator, after final finishing annealing at 900 ° C for 30 hours, a specimen (30 mm x 280 mm) in the rolling direction and in the direction perpendicular to the rolling direction is cut out, and the rolling direction and rolling are performed by the Epstein test method. The perpendicular magnetic properties were measured.
The obtained results are shown in FIG.

同図に示したとおり、Sn添加量が0.01〜0.20%の場合に圧延方向B50≧1.80T、圧延直角方向B50≧1.75Tの目標とする特性が得られており、Sn添加量として0.01〜0.20%の範囲が適正であることが判明した。 As shown in the figure, when the Sn addition amount is 0.01 to 0.20%, the target characteristics of the rolling direction B 50 ≧ 1.80 T and the perpendicular direction B 50 ≧ 1.75 T are obtained, and the Sn addition amount is 0.01 A range of ~ 0.20% was found to be appropriate.

実験3
続いて、再結晶焼鈍の昇温速度の適正範囲を求めるための実験を行った。
C:0.004%,Si:2.5%,Mn:0.10%,O:0.0010%,N:0.0010%,Al:0.0020%,S:0.0010%,Se≦0.0003%およびSn:0.02%または0%を含有する鋼塊を溶製し、1150℃に加熱後、熱間圧延により2.2mm厚の熱延板とし、ついで950℃,30秒間の熱延板焼鈍後、200℃の温度で冷間圧延して0.30mnの最終板厚としたのち、850℃に15秒間保持する再結晶焼鈍を施した。ここで、再結晶焼鈍の昇温速度(500〜750℃間)を5〜70℃/sの間で種々に変化させた。
ついで、焼鈍分離剤を塗布してから、1900℃、30時間の最終仕上げ焼鈍を施したのち、圧延方向および圧延直角方向の試片(30mm×280mm)を切り出し、エプスタイン試験法により圧延方向および圧延直角方向の磁気特性を測定した。
圧延直角方向のB50の変化を図2に示す。なお、圧延方向のB50は全ての範囲で1.80T以上であった。
Experiment 3
Subsequently, an experiment was performed to obtain an appropriate range of the temperature increase rate of recrystallization annealing.
Contains C: 0.004%, Si: 2.5%, Mn: 0.10%, O: 0.0010%, N: 0.0010%, Al: 0.0020%, S: 0.0010%, Se ≦ 0.0003% and Sn: 0.02% or 0% The steel ingot is melted, heated to 1150 ° C, hot-rolled into a 2.2mm thick hot-rolled sheet, then annealed at 950 ° C for 30 seconds, then cold-rolled at a temperature of 200 ° C to 0.30 After the final thickness of mn was reached, recrystallization annealing was performed at 850 ° C. for 15 seconds. Here, the temperature increase rate (between 500 and 750 ° C.) of the recrystallization annealing was variously changed between 5 and 70 ° C./s.
Next, after applying an annealing separator, after final finishing annealing at 1900 ° C for 30 hours, specimens (30mm x 280mm) in the rolling direction and in the direction perpendicular to the rolling direction are cut out, and the rolling direction and rolling are performed by the Epstein test method. The perpendicular magnetic properties were measured.
The change of B 50 in the direction perpendicular to the rolling is shown in FIG. The B 50 in the rolling direction was 1.80 T or more in the entire range.

図2に示したように、Snを含有する素材において 再結晶焼鈍の際、500〜750℃の温度域の昇温速度を20℃/s以上とすることにより、圧延方向B50≧1.80Tで、かつ圧延直角方向B50≧1.75という目標とする特性が得られた。 また、昇温速度を25℃/s以上とした場合には、圧延直角方向B50≧1.80Tと特に優れた特性が得られており、さらに40℃/s以上とすることで圧延直角方向のB50は1.83T以上に向上している。 As shown in FIG. 2, when the recrystallization annealing is performed on the Sn-containing material, the temperature increase rate in the temperature range of 500 to 750 ° C. is set to 20 ° C./s or more, so that the rolling direction B 50 ≧ 1.80T. And the target characteristic of the perpendicular direction of rolling B 50 ≧ 1.75 was obtained. In addition, when the rate of temperature rise is 25 ° C / s or more, particularly excellent characteristics such as a perpendicular direction of rolling B 50 ≧ 1.80T have been obtained. B 50 is improved more than 1.83T.

作用Action

本発明に従い、鋼成分としてSnを0.01〜0.20%含有させると共に、再結晶焼鈍の 500〜750℃間の昇温速度を20℃/s以上とすることにより、最終冷延前粒径が100μmに満たない場合であっても、正キューブに集積した集合組織を、二次再結晶後に得ることができる。
この理由については、まだ明確に解明されたわけではないが、発明者らは次のように推察している。
According to the present invention, 0.01 to 0.20% of Sn is contained as a steel component, and the temperature increase rate between 500 to 750 ° C. during recrystallization annealing is set to 20 ° C./s or more, so that the grain size before the final cold rolling becomes 100 μm. Even if it is less, a texture accumulated in the positive cube can be obtained after secondary recrystallization.
Although the reason for this has not been clearly clarified yet, the inventors speculate as follows.

2次再結晶により正キューブ組織を得ようとする場合、競合するゴス方位の組織が2次再結晶粒として成長するのを抑制する必要がある。このためには、発明者らは、ゴス方位と結晶粒界エネルギーが最も高くなる{111}<112>付近の方位の強度を低下させるのがよいとの考えを得るに至った。   When trying to obtain a positive cube structure by secondary recrystallization, it is necessary to suppress the growth of competing Goss orientation structures as secondary recrystallized grains. For this purpose, the inventors have come up with the idea that the intensity of the orientation in the vicinity of {111} <112> where the Goss orientation and the grain boundary energy are the highest should be reduced.

ところで、従来のゴス方位を有する一方向性電磁鋼板の製造法においては、ゴス方位を含む{110}方位の一次再結晶粒を増加させる目的で再結晶焼鈍の昇温速度を高くする方法が用いられることがあった。しかしながら、この作用が強く働くとゴス方位の成長性が増加するため、正キューブ組織の発達をかえって阻害することになる。   By the way, in the conventional method for producing a unidirectional electrical steel sheet having Goss orientation, a method of increasing the temperature raising rate of recrystallization annealing is used for the purpose of increasing the primary recrystallized grains of {110} orientation including Goss orientation. It was sometimes done. However, if this action works strongly, the growth of the Goss orientation increases, which inhibits the development of the regular cube structure.

一方で、再結晶焼鈍の昇温速度増加により一次再結晶組織中の{111}強度が低下することから、本発明では、昇温速度増加による{111}強度の低下が正キューブ組織の成長性向上に有効に寄与したと考えられる。ただし、実際には、図2に示したように、再結晶焼鈍の昇温速度増加のみでは二次再結晶による正キューブの発達には至らなかった。この理由は、一次再結晶組織の{100}強度が不足したまま{111}強度を低下させただけでは、正キューブ方位が二次再結晶しなかったためと考えられる。   On the other hand, since the {111} strength in the primary recrystallized structure decreases due to an increase in the rate of temperature increase during recrystallization annealing, in the present invention, the decrease in {111} strength due to the increase in the rate of temperature increase indicates the growth of the normal cube structure. It is thought that it contributed effectively to improvement. However, in actuality, as shown in FIG. 2, the increase in the temperature increase rate of recrystallization annealing did not lead to the development of positive cubes by secondary recrystallization. The reason for this is considered that the normal cube orientation did not undergo secondary recrystallization only by reducing the {111} strength while the {100} strength of the primary recrystallized structure was insufficient.

これに対し、適量のSnを添加することで、一次再結晶組織中の{100}強度が増加して二次再結晶による正キューブ方位が成長し易くなったものと推定される。Sn添加による一次再結晶組織改善の機構については明らかではないが、鋼中のSnが圧延前の結晶粒界に偏析することで粒界の性格が変化し、結晶粒界からの{111}方位の生成を抑制する結果、あたかも冷延前粒径が粗大となった場合と同様の効果がもたらされたと考えられる。ただし、Sn添加についても表1に示したように、これのみでは最終冷延前の焼鈍温度が低く結晶粒径が100μmに満たないような場合には、圧延直角方向の磁気特性の改善には至らない。   On the other hand, it is presumed that by adding an appropriate amount of Sn, the {100} strength in the primary recrystallized structure increases and the positive cube orientation by secondary recrystallization is easily grown. The mechanism of primary recrystallized structure improvement by Sn addition is not clear, but the nature of the grain boundary changes due to the segregation of Sn in the steel to the grain boundary before rolling, and the {111} orientation from the grain boundary As a result of suppressing the formation of, it is considered that the same effect as that when the grain diameter before cold rolling becomes coarse was brought about. However, as shown in Table 1, the Sn addition is also effective for improving the magnetic properties in the direction perpendicular to the rolling when the annealing temperature before the final cold rolling is low and the crystal grain size is less than 100 μm. It does n’t come.

本発明は、上記のように、再結晶焼鈍の昇温速度増加による正キューブ組織の発達阻害因子の排除と、Sn添加による良好方位の増加を、同時に達成することによって得られる特段の効果であり、これらが一方でも欠けると、最終冷延前の粒径が100μmに満たないような条件では二次再結晶後に正キューブ組織を得ることができない。   The present invention, as described above, is a special effect obtained by simultaneously eliminating the inhibition factor of the development of the positive cube structure by increasing the temperature increase rate of recrystallization annealing and increasing the good orientation by adding Sn. If one of these is missing, a normal cube structure cannot be obtained after secondary recrystallization under the condition that the grain size before the final cold rolling is less than 100 μm.

すなわち、本発明では、一次再結晶組織中のゴス強度の増加と{111}方位の抑制という2つの作用を持つ再結晶焼鈍の昇温速度増加に関し、Sn添加による{100}強度の増加を組み合わせることで、正キューブ組織発達に不利な前者({110}方位増)の効果に対して後者({111}方位減)の効果を、効果的に抽出したことに成功していると考えられる。
また、本発明の方法において、圧延前の結晶粒径が100μm以上となる場合は、上記の効果と相乗して、さらに優れた方位集積度を実現するものと推定される。
That is, in the present invention, the increase in the temperature increase rate of recrystallization annealing having two actions of increasing the Goss strength in the primary recrystallized structure and suppressing the {111} orientation is combined with the increase in {100} strength by Sn addition. Thus, it is considered that the effect of the latter (reduction in {111} orientation) is successfully extracted with respect to the effect of the former (increase in {110} orientation), which is disadvantageous for the development of the normal cube structure.
Further, in the method of the present invention, when the crystal grain size before rolling is 100 μm or more, it is presumed that a further excellent orientation integration degree is realized in synergy with the above effect.

ここで、正キューブ方位を有する二方向性電磁鋼板の製造方法として、特開平5−287384号公報に、冷間圧延後に200℃から800℃までの平均昇温速度を10℃/min(0.17℃/s)以上とする技術が開示されているが、この技術は、酸可溶性Al:0.010〜0.050%、N:0.0120%以下という、本発明に比べるとインヒビター成分を多量に含有する成分系において、圧延直角方向の圧延を行う手法により、二次再結晶後に正キューブ組織を発達させる手法である。従って、Al,N量を低減し、かつ圧延直角方向の圧延なしに安価に正キューブ組織の鋼板を得ることができる本発明とは、技術内容が根本的に異なる技術といえる。この技術での再結晶焼鈍における平均昇温速度の好適範囲は、0.17℃/s以上と、一般的な再結晶焼鈍の昇温速度範囲のほぼ全てを含む範囲であることから、正キューブ組織の発達に有利な一次再結晶組織の制御のほとんどはインヒビターの含有量と圧延直角方向の圧延により担われているものと考えられる。   Here, as a method for producing a bi-directional electrical steel sheet having a normal cube orientation, Japanese Patent Application Laid-Open No. 5-287384 discloses an average temperature increase rate from 200 ° C. to 800 ° C. after cold rolling at 10 ° C./min (0.17 ° C. / s), the technology is disclosed, but this technology is an acid-soluble Al: 0.010 to 0.050%, N: 0.0120% or less in a component system containing a large amount of inhibitor component compared to the present invention, This is a technique for developing a positive cube structure after secondary recrystallization by a technique of rolling in the direction perpendicular to the rolling. Therefore, it can be said that the technical content is fundamentally different from the present invention in which the amount of Al and N can be reduced and a steel sheet having a normal cube structure can be obtained at low cost without rolling in the direction perpendicular to the rolling. The preferred range of the average rate of temperature increase in recrystallization annealing with this technique is 0.17 ° C / s or more, which is a range that includes almost the entire range of temperature increase rate of general recrystallization annealing. It is considered that most of the control of the primary recrystallization structure advantageous to the development is borne by the content of the inhibitor and rolling in the direction perpendicular to the rolling.

また、特開2000−309859号公報には、最終冷間圧延前の粒径を100μm以上とする技術において、鋼中にSn等を含有させる方法が開示されているが、Sn添加による特段の効果は何ら示されていない。その理由は、本発明で見い出した再結晶焼鈍における昇温速度の効果が組み合わされていないからである。   In addition, JP 2000-309859 A discloses a method of containing Sn or the like in steel in a technique for setting the grain size before the final cold rolling to 100 μm or more, but the special effect by adding Sn is disclosed. Is not shown at all. The reason is that the effect of the temperature rising rate in the recrystallization annealing found in the present invention is not combined.

以下、本発明の構成要件の限定理由について述べる。
まず、本発明において、鋼スラブの成分組成を前記の範囲に限定した理由について説明する。
The reasons for limiting the constituent requirements of the present invention will be described below.
First, the reason why the component composition of the steel slab is limited to the above range in the present invention will be described.

Si:2.0〜8.0%
電磁鋼板の製造において、素材の必須成分としてSiを2.0〜8.0%の範囲で含有させる必要がある。というのは、含有量が2.0%に満たないと満足いくほどの鉄損の低減が望めず、一方8.0%を超えると加工性が劣化するからである。
Si: 2.0-8.0%
In the production of electrical steel sheets, Si must be contained in the range of 2.0 to 8.0% as an essential component of the material. This is because if the content is less than 2.0%, a satisfactory reduction in iron loss cannot be expected, while if it exceeds 8.0%, the workability deteriorates.

C:0.003〜0.080%
Cは、結晶粒内における局所変形を促進させ、正キューブ組織の発達を促して磁気特性を向上させるのに有効に寄与する。しかしながら、含有量が0.003%に満たないと{100}<001>粒の生成効果が小さくなるために磁束密度の低下を招き、一方0.080%を超えると脱炭焼鈍で除去することが困難になるだけでなく、熱延板焼鈍時に部分的にγ変態を起こし100μm以上の粗大な冷延前粒径を過度に微細化するため、C量は0.003〜0.080%の範囲に限定した。
C: 0.003-0.080%
C promotes local deformation within the crystal grains and promotes the development of a positive cube structure, thereby effectively contributing to improving magnetic properties. However, if the content is less than 0.003%, the effect of forming {100} <001> grains is reduced, leading to a decrease in magnetic flux density. On the other hand, if it exceeds 0.080%, it is difficult to remove by decarburization annealing. In addition, the C content was limited to a range of 0.003 to 0.080% in order to cause partial γ transformation during hot-rolled sheet annealing and excessively refine the coarse grain size before cold rolling of 100 μm or more.

Mn:0.005〜3.0%
Mnは、熱間加工性を改善するのに有用な元素であるが、含有量が0.005%未満ではその効果に乏しく、一方3.0%を超えると二次再結晶が困難となるので、Mn量は0.005〜3.0%の範囲に限定した。
Mn: 0.005-3.0%
Mn is an element useful for improving hot workability. However, if the content is less than 0.005%, its effect is poor, while if it exceeds 3.0%, secondary recrystallization becomes difficult. It was limited to the range of 0.005 to 3.0%.

Al:0.0010〜0.0090%
Alは、その含有量を従来よりも少ない0.0010〜0.0090%の範囲に制限することにより、仕上焼鈍時に正キューブ粒を適度に発達させることができる。ここに、Al量が0.0010%に満たないと正キューブ方位の集積度が低下して良好な磁束密度が得られず、一方0.0090%を超えると、やはり正キューブ方位の集積度が低下するだけでなく、ゴス方位が増加して、圧延直角方向の磁気特性の劣化を招くので、Al量は0.0010〜0.0090%の範囲に限定した。
Al: 0.0010 to 0.0090%
By limiting the content of Al to a range of 0.0010 to 0.0090%, which is less than that of the conventional Al, it is possible to appropriately develop positive cube grains during finish annealing. Here, if the amount of Al is less than 0.0010%, the degree of integration of the positive cube orientation is reduced and a good magnetic flux density cannot be obtained. On the other hand, if it exceeds 0.0090%, the degree of integration of the positive cube orientation is also reduced. However, the Goss direction is increased and the magnetic properties in the direction perpendicular to the rolling are deteriorated. Therefore, the Al content is limited to the range of 0.0010 to 0.0090%.

Sn:0.01〜0.20%
Snの添加により、再結晶焼鈍後の一次再結晶組織中の{100}方位の存在比率が増加し、正キューブ方位の二次再結晶を促進させることができる。ただし{100}方位の増加のみではゴス方位の成長を抑制することができないため、再結晶焼鈍の昇温速度の増加と併用することで正キューブ方位の二次再結晶を促す効果を発揮する。ここに、Sn含有量が0.01%に満たない場合、上記の効果が発揮されず磁気特性が不良となり、一方0.20%を超えて添加した場合は二次再結晶に悪影響を及ぼしてやはり磁気特性を劣化させるため、Sn量は0.01〜0.20%の範囲に限定した。
Sn: 0.01-0.20%
By adding Sn, the abundance ratio of the {100} orientation in the primary recrystallization structure after recrystallization annealing increases, and secondary recrystallization in the positive cube orientation can be promoted. However, since the growth of the Goth orientation cannot be suppressed only by increasing the {100} orientation, the effect of promoting the secondary recrystallization in the positive cube orientation is exhibited by using it together with the increase in the heating rate of recrystallization annealing. Here, if the Sn content is less than 0.01%, the above effect is not exerted and the magnetic characteristics become poor. On the other hand, if it exceeds 0.20%, the secondary recrystallization is adversely affected and the magnetic characteristics are still deteriorated. In order to cause deterioration, the Sn content was limited to a range of 0.01 to 0.20%.

Se,S,O,N:それぞれ30ppm以下
Se,S,OおよびNはいずれも、正キューブ組織の発現を著しく阻害し、また後工程で除去が困難なので、いずれも溶鋼成分において30ppm以下、望ましくは20ppm以下に低減する必要がある。
Se, S, O, N: 30ppm or less each
All of Se, S, O and N remarkably inhibit the expression of the normal cube structure, and are difficult to remove in the subsequent process, so all of them need to be reduced to 30 ppm or less, preferably 20 ppm or less in the molten steel component.

以上、必須成分および抑制成分について説明したが、本発明では、その他にも、鉄損を向上させる目的で、Sb,Cu,MoおよびCrのうちから選んだ1種または2種以上を適宜含有させることができる。但し、これらの添加量はそれぞれSb:0.005〜0.50%,Cu:0.01〜0.50%,Mo:0.005〜0.50%,Cr:0.01〜1.0%とすることが好ましい。それぞれの添加量が下限値に満たない場合には鉄損の改善効果に乏しく、一方上限値を超えると正キューブ組織の発達が阻害される。   As described above, the essential component and the suppressing component have been described. In addition, in the present invention, one or more selected from Sb, Cu, Mo, and Cr are appropriately included for the purpose of improving iron loss. be able to. However, these addition amounts are preferably Sb: 0.005 to 0.50%, Cu: 0.01 to 0.50%, Mo: 0.005 to 0.50%, and Cr: 0.01 to 1.0%, respectively. When the amount of each additive is less than the lower limit, the effect of improving iron loss is poor. On the other hand, when the amount exceeds the upper limit, the development of the normal cube structure is inhibited.

次に、本発明の方向性電磁鋼板の好適製造条件について説明する。
上記の好適成分組成に調整した溶鋼は、通常の造塊法または連続鋳造法でスラブとする。また、100mm以下の厚さの薄鋳片を直接鋳造法で製造してもよい。
スラブは、通常の方法で加熱したのち、熱間圧延に供するが、鋳造後、加熱せずに直ちに熱間圧延に供しても良い。また、薄鋳片の場合には、熱間圧延を施しても良いし、熱間圧延を省略してそのまま以後の工程に進めても良い。
Next, preferred production conditions for the grain-oriented electrical steel sheet of the present invention will be described.
The molten steel adjusted to the above preferred component composition is made into a slab by a normal ingot-making method or a continuous casting method. Further, a thin cast piece having a thickness of 100 mm or less may be manufactured by a direct casting method.
The slab is heated by a normal method and then subjected to hot rolling. However, the slab may be immediately subjected to hot rolling without being heated after casting. In the case of a thin slab, hot rolling may be performed, or the hot rolling may be omitted and the subsequent process may be performed as it is.

ついで、必要に応じて熱延板焼鈍を施したのち、1回または中間焼鈍を挟む2回以上の冷間圧延を施して最終板厚に仕上げ、脱炭・一次再結晶焼鈍後、必要に応じて焼鈍分離剤を塗布してから、最終仕上焼鈍を施すことにより、正キューブ組織を発達させる。
その後、必要に応じて絶縁コーティングを施す。
Next, after performing hot-rolled sheet annealing as necessary, finish it to the final sheet thickness by cold rolling at least once with one or two intermediate sandwiches, and after decarburization and primary recrystallization annealing, as necessary After applying the annealing separator, the final cube annealing is performed to develop a normal cube structure.
Thereafter, an insulating coating is applied as necessary.

本発明では、上記の製造工程において、再結晶焼鈍における500〜750℃間の平均昇温速度を20℃/s以上、望ましくは25℃/s以上、さらに望ましくは40℃/s以上とすることが肝要である。この昇温速度が20℃/sに満たない場合は、一次再結晶組織中にゴス方位の成長に有利な{111}<112>組織の存在割合が高くなり、二次再結晶によってキューブ方位が発達しなくなる。一方、再結晶焼鈍における500〜750℃間の平均昇温速度を20℃/s以上とすることで{111}<112>方位の存在比率が低下し、Sn添加による{100}方位の増加が同時に達成されることで、正キューブ方位が二次再結晶する。この結果、圧延方向の磁束密度B50が1.80Tを超えると共に、圧延直角方向の磁束密度が1.75T以上となる。さらに、平均昇温速度を25℃/s 以上とすることで圧延直角方向のB50も1.80T以上となる。 In the present invention, in the above manufacturing process, the average temperature increase rate between 500 and 750 ° C. in recrystallization annealing is 20 ° C./s or more, preferably 25 ° C./s or more, more preferably 40 ° C./s or more. Is essential. When this rate of temperature rise is less than 20 ° C./s, the presence ratio of {111} <112> structure, which is advantageous for the growth of Goth orientation in the primary recrystallized structure, becomes high, and the cube orientation is changed by secondary recrystallization. It will not develop. On the other hand, by setting the average temperature increase rate between 500 and 750 ° C. in recrystallization annealing to 20 ° C./s or more, the abundance ratio of {111} <112> orientation decreases, and the increase of {100} orientation due to Sn addition By achieving at the same time, the positive cube orientation is secondarily recrystallized. As a result, the magnetic flux density B 50 in the rolling direction exceeds 1.80 T, and the magnetic flux density in the direction perpendicular to the rolling is 1.75 T or more. Furthermore, by setting the average heating rate to 25 ° C./s or more, B 50 in the direction perpendicular to the rolling also becomes 1.80 T or more.

制御加熱を施すべき温度範囲を500〜750℃としたのは、この温度域で再結晶粒の核が生成するため、集合組織への影響が強く、この温度域での昇温速度を適正に制御することで{111}<112>方位の低減を図ることが可能だからである。   The reason why the temperature range for controlled heating is set to 500 to 750 ° C is that the nuclei of recrystallized grains are generated in this temperature range, so the effect on the texture is strong, and the heating rate in this temperature range is set appropriately. This is because it is possible to reduce the {111} <112> orientation by controlling.

また、本発明では、上記の方策によって、従来のように最終冷延前の結晶粒径を100μm以上まで粗大化させる必要がないため、その後の冷間圧延での割れの発生等を防止することができる。ただし、結晶粒内からの{100}組織の生成頻度を確保する観点からは、最終冷延前の粒径は60μm以上とすることが好ましい。このような観点で、生産性良く正キューブ組織の鋼板を造ろうとする場合、最終冷間圧延前の平均結晶粒径を60〜100μmとするためには、最終冷間圧延前の焼鈍温度は900℃以上 1000℃未満とするのよい。   Further, in the present invention, it is not necessary to coarsen the crystal grain size before the final cold rolling to 100 μm or more as in the prior art by the above-mentioned measures, so that the occurrence of cracks in the subsequent cold rolling is prevented. Can do. However, from the viewpoint of ensuring the frequency of {100} structure formation from within the crystal grains, the grain size before the final cold rolling is preferably 60 μm or more. From this point of view, when trying to produce a steel sheet having a normal cube structure with good productivity, in order to set the average grain size before the final cold rolling to 60 to 100 μm, the annealing temperature before the final cold rolling is 900. It should be higher than 1000 ℃ and lower than 1000 ℃.

一方、より集積度の高い正キューブ組織を得ようとする場合、冷間圧延性などの製造上の制約が許す範囲で、最終冷延前の結晶粒径はできるだけ粗大化することが望ましい。このためには、1000℃以上の温度の焼鈍を最終冷間圧延の前に施して圧延前の粒径を100μm以上に粗大化させることは、磁気特性を向上させる上で有用である。さらに、中間焼鈍を冷間圧延の間に挟むことも磁気特性の安定化に有用である。   On the other hand, when trying to obtain a positive cube structure with a higher degree of integration, it is desirable to make the crystal grain size before the final cold rolling as coarse as possible within the range allowed by manufacturing restrictions such as cold rolling properties. For this purpose, annealing at a temperature of 1000 ° C. or higher before the final cold rolling to increase the grain size before rolling to 100 μm or more is useful for improving the magnetic properties. Furthermore, sandwiching the intermediate annealing between cold rolling is also useful for stabilizing the magnetic properties.

また、最終の冷間圧延により最終板厚に仕上げるが、その際の圧下率は、正キューブ組織を発達させるためには70〜90%程度とすることが好適である。また、最終冷間圧延の少なくとも1パスの温度を100〜350℃にすることにより、正キューブ組織をより発達させ、磁気特性の向上を図ることができる。なお、圧延温度が100℃に満たないと組織改善効果が十分とはいい難く、一方350℃を超えると動的歪時効による圧延荷重の変動により圧延性が低下する。   Further, the final sheet thickness is finished by the final cold rolling, and the reduction ratio at that time is preferably about 70 to 90% in order to develop the normal cube structure. Further, by setting the temperature of at least one pass of the final cold rolling to 100 to 350 ° C., the positive cube structure can be further developed and the magnetic properties can be improved. If the rolling temperature is less than 100 ° C., the effect of improving the structure is hardly sufficient. On the other hand, if the rolling temperature exceeds 350 ° C., the rollability deteriorates due to the rolling load variation due to dynamic strain aging.

最終冷延後の再結晶焼鈍は、750〜950℃の温度範囲で行うことが好適である。この際、素材C量が多い場合には、湿潤水素雰囲気中で行い、C量は磁気時効の起こらない50ppm以下に低減することが好ましい。最終冷間圧延後あるいは脱炭焼鈍後に浸珪法によってSi量を増加させる技術を併用してもよい。また、仕上焼鈍は850〜1050℃の温度範囲が好ましく、850℃未満、1050℃超では共に二次再結晶の進行が阻害される。そして、二次再結晶を完了させるためには30時間以上この温度範囲に保定することが望ましい。
また、鋼板を積層して使用する場合には、鉄損を改善するために、鋼板表面に絶縁コーティングを施すことが有効である。この目的のためには2種類以上の被膜からなる多層膜であってもよい。さらに、用途に応じて、樹脂等を混合させたコーティングを施してもよい。特に張力を付与する燐酸塩を主体とする絶縁コーティングは、鉄損や騒音を低下させる上で有効である。
The recrystallization annealing after the final cold rolling is preferably performed in a temperature range of 750 to 950 ° C. At this time, when the amount of material C is large, it is preferably carried out in a wet hydrogen atmosphere, and the amount of C is preferably reduced to 50 ppm or less at which magnetic aging does not occur. You may use together the technique which increases Si amount by the siliconization method after final cold rolling or after decarburization annealing. The finish annealing is preferably in the temperature range of 850 to 1050 ° C. When the temperature is lower than 850 ° C. or higher than 1050 ° C., the progress of secondary recrystallization is inhibited. And in order to complete secondary recrystallization, it is desirable to hold | maintain in this temperature range for 30 hours or more.
Moreover, when using it, laminating | stacking a steel plate, in order to improve an iron loss, it is effective to give an insulating coating to the steel plate surface. For this purpose, a multilayer film composed of two or more kinds of coatings may be used. Furthermore, you may give the coating which mixed resin etc. according to a use. In particular, an insulating coating mainly composed of a phosphate that imparts tension is effective in reducing iron loss and noise.

実施例1
次に示すA,B2種類の組成になる鋼スラブを、1150℃で30分間加熱してから、熱間圧延により2.2mm厚に仕上げた。
(A) C:0.010%,Si:2.8%,Mn:0.15%,Al:0.0050%,Se:2ppm,S:10ppm,O:10ppm,N:10ppm。
(B) C:0.010%,Si:2.8%,Mn:0.15%,Al:0.0050%,Se:2ppm,S:10ppm,O:10ppm,N:10ppm,Sn:0.06%。
ついで、表2に示す条件で熱延板焼鈍を行ったのち、酸洗処理後、圧延による加工発熱で圧延直後の温度にして200℃となる条件で6パスの冷間圧延により0.30mmの最終板厚に仕上げた。その後、水素:75%、窒素:25%、露点:50℃の雰囲気中にて930℃、均熱時間:30秒の再結晶焼鈍を行い、鋼中Cを10ppmまで低減した。この再結晶焼鈍においては、表2に示すように、500〜750℃間の平均昇温速度を10〜60℃/sの間で種々に変化させた。
Example 1
Steel slabs having the following two types of compositions A and B were heated at 1150 ° C. for 30 minutes and then finished to a thickness of 2.2 mm by hot rolling.
(A) C: 0.010%, Si: 2.8%, Mn: 0.15%, Al: 0.0050%, Se: 2ppm, S: 10ppm, O: 10ppm, N: 10ppm.
(B) C: 0.010%, Si: 2.8%, Mn: 0.15%, Al: 0.0050%, Se: 2ppm, S: 10ppm, O: 10ppm, N: 10ppm, Sn: 0.06%.
Next, after performing hot-rolled sheet annealing under the conditions shown in Table 2, after pickling treatment, the final heat of 0.30 mm was obtained by cold rolling for 6 passes under the condition that the temperature immediately after rolling was 200 ° C due to the heat generated by rolling. Finished to plate thickness. Thereafter, recrystallization annealing was performed in an atmosphere of hydrogen: 75%, nitrogen: 25%, dew point: 50 ° C, 930 ° C, soaking time: 30 seconds, and C in the steel was reduced to 10 ppm. In this recrystallization annealing, as shown in Table 2, the average heating rate between 500 and 750 ° C. was variously changed between 10 and 60 ° C./s.

ついで、窒素雰囲気中にて950℃、35時間の最終仕上焼鈍を行った。その後、900℃に30秒間保持する平坦化焼鈍を施した後、重クロム酸アルミニウム、エマルジョン樹脂、エチレングリコールを混合したコーティング液を塗布し、300℃で焼き付けて、製品とした。
かくして得られた製品板から、圧延方向および圧延直角方向のエプスタイン試片を切り出し、ぞれぞれの方向について磁束密度B50を測定した。
得られた結果を表2に併記する。
Next, a final finish annealing was performed in a nitrogen atmosphere at 950 ° C. for 35 hours. Then, after performing flattening annealing which hold | maintains at 900 degreeC for 30 second, the coating liquid which mixed aluminum dichromate, emulsion resin, and ethylene glycol was apply | coated, and it baked at 300 degreeC, and was set as the product.
From the product plate thus obtained, Epstein specimens in the rolling direction and the direction perpendicular to the rolling direction were cut out, and the magnetic flux density B 50 was measured in each direction.
The obtained results are also shown in Table 2.

Figure 2008150697
Figure 2008150697

表2中、No.1〜10とNo.11〜20は、比較鋼である素材Aと適合鋼である素材Bを、それぞれ同じ条件で処理して得られた結果である。両グループを対比すると明らかなように、いずれの場合もSnを添加することにより圧延直角方向のB50が改善されている。
特に、Snを添加した素材Bにおいては、熱延板焼鈍温度が900℃以上 1000℃未満の場合でも、再結晶焼鈍(脱炭焼鈍)の昇温速度を20℃/s以上とすることによって、圧延方向のB50が1.80T以上、圧延直角方向のB50が1.75T以上の正キューブ組織が得られている。さらに、Snを添加した素材Bで、熱延板焼鈍温度を1050℃とすると共に、再結晶焼鈍の昇温速度を20℃/s以上とした場合には、圧延直角方向のB50が1.84Tを超える優れた特性が得られている。
In Table 2, Nos. 1 to 10 and Nos. 11 to 20 are results obtained by treating the material A, which is a comparative steel, and the material B, which is a compatible steel, under the same conditions. As is clear from the comparison between the two groups, in each case, B 50 in the direction perpendicular to the rolling direction is improved by adding Sn.
In particular, in the material B to which Sn is added, even when the hot-rolled sheet annealing temperature is 900 ° C. or higher and lower than 1000 ° C., by increasing the temperature increase rate of recrystallization annealing (decarburization annealing) to 20 ° C./s or more, rolling direction of B 50 or more 1.80T, perpendicular to the rolling direction of B 50 is positive cube tissue obtained than 1.75 T. Further, when the material B to which Sn is added has a hot-rolled sheet annealing temperature of 1050 ° C. and a recrystallization annealing temperature increase rate of 20 ° C./s or more, B 50 in the direction perpendicular to the rolling is 1.84 T. Excellent characteristics exceeding the above are obtained.

実施例2
次に示すC〜Gの5種類の組成になる鋼スラブを、1150℃で30分間加熱してから、熱間圧延により2.5mm厚に仕上げた。
(C) C:0.0020%,Si:3.0%,Mn:0.10%,Al:0.0040%,Se:2ppm,S:10ppm,O:10ppm,N:10ppm
(D) C:0.0020%、Si:3.0%,Mn:0.10%,Al:0.0040%,Se:2ppm,S:10ppm,O:10ppm,N:10ppm,Sn:0.12%
(E) C:0.0020%,Si:3.0%,Mn:0.05%,Al:0.0040%,Se:1ppm,S:10ppm,O:10ppm,N:10ppm,Sn:0.05%,Sb:0.02%
(F) C:0.0020%,Si:3.0%,Mn:0.05%,Al:0.0040%,Se:1ppm,S:10ppm,O:10ppm,N:10ppm,Sn:0.05%,Cu:0.05%,Mo:0.1%
(G) C:0.0020%,Si:3.0%,Mn:0.05%,Al:0.0040%,Se:1ppm,S:10ppm,O:10ppm,N:10ppm,Sn:0.05%,Cr:0.1%
Example 2
Steel slabs having the following five compositions of C to G were heated at 1150 ° C. for 30 minutes, and then finished to 2.5 mm thickness by hot rolling.
(C) C: 0.0020%, Si: 3.0%, Mn: 0.10%, Al: 0.0040%, Se: 2ppm, S: 10ppm, O: 10ppm, N: 10ppm
(D) C: 0.0020%, Si: 3.0%, Mn: 0.10%, Al: 0.0040%, Se: 2ppm, S: 10ppm, O: 10ppm, N: 10ppm, Sn: 0.12%
(E) C: 0.0020%, Si: 3.0%, Mn: 0.05%, Al: 0.0040%, Se: 1ppm, S: 10ppm, O: 10ppm, N: 10ppm, Sn: 0.05%, Sb: 0.02%
(F) C: 0.0020%, Si: 3.0%, Mn: 0.05%, Al: 0.0040%, Se: 1ppm, S: 10ppm, O: 10ppm, N: 10ppm, Sn: 0.05%, Cu: 0.05%, Mo : 0.1%
(G) C: 0.0020%, Si: 3.0%, Mn: 0.05%, Al: 0.0040%, Se: 1ppm, S: 10ppm, O: 10ppm, N: 10ppm, Sn: 0.05%, Cr: 0.1%

ついで、得られた熱延板に酸洗処理を行ったのち、200℃、4パスの冷間圧延により1.5mmに圧延してから、窒素雰囲気中で950℃に30秒間保持する中間焼鈍を施してから150℃,4パスの冷間圧延により0.35mmの最終板厚に仕上げた。その後、水素:75%、窒素:25%の雰囲気中にて保持温度:930℃,均熱時間:30秒の再結晶焼鈍を行った。この再結晶焼鈍においては、表3に示すように、500〜750℃間の平均昇温速度を10〜60℃/sの間で種々に変化させた。   Next, after pickling the obtained hot-rolled sheet, it was rolled to 1.5 mm by cold rolling at 200 ° C. and 4 passes, and then subjected to intermediate annealing that was held at 950 ° C. for 30 seconds in a nitrogen atmosphere. After that, it was finished to a final thickness of 0.35mm by cold rolling at 150 ° C for 4 passes. Thereafter, recrystallization annealing was performed in an atmosphere of hydrogen: 75%, nitrogen: 25%, holding temperature: 930 ° C., soaking time: 30 seconds. In this recrystallization annealing, as shown in Table 3, the average heating rate between 500 and 750 ° C. was variously changed between 10 and 60 ° C./s.

ついで、窒素雰囲気中にて950℃、35時間の最終仕上焼鈍を行った。その後、900℃に30秒間保持する平坦化焼鈍を施した後、重クロム酸アルミニウム、エマルジョン樹脂、エチレングリコールを混合したコーティング液を塗布し、300℃で焼き付けて、製品とした。
かくして得られた製品板から、圧延方向および圧延直角方向のエプスタイン試片を切り出し、それぞれの方向について磁束密度B50を測定した。
得られた結果を表3に併記する。
Next, a final finish annealing was performed in a nitrogen atmosphere at 950 ° C. for 35 hours. Then, after performing flattening annealing which hold | maintains at 900 degreeC for 30 second, the coating liquid which mixed aluminum dichromate, emulsion resin, and ethylene glycol was apply | coated, and it baked at 300 degreeC, and was set as the product.
From the product plate thus obtained, Epstein specimens in the rolling direction and the direction perpendicular to the rolling direction were cut out, and the magnetic flux density B 50 was measured in each direction.
The results obtained are also shown in Table 3.

Figure 2008150697
Figure 2008150697

同表に示したように、Snを添加した素材Dにおいては、再結晶焼鈍(脱炭焼鈍)の昇温速度を20℃/s以上とすることにより、中間焼鈍温度が950℃と比較的低温の場合でも、圧延方向のB50が1.80T以上で、圧延直角方向のB50が1.75T以上の正キューブ組織が得られている。この点は、素材E〜Gも同様で、適量のSn添加と共に、再結晶焼鈍(脱炭焼鈍)の昇温速度を20℃/s以上とすることにより、中間焼鈍温度が950℃と比較的低温の場合でも、圧延方向のB50が1.80T以上で、圧延直角方向のB50が1.75T以上の正キューブ組織が得られている。
さらに、Snを添加した素材Bでは、熱延板焼鈍温度を1050℃とし、かつ再結晶焼鈍の昇温速度を20℃/s以上とした場合には、圧延直角方向のB50が1.84Tを超える優れた特性が得られている。
As shown in the table, in the material D to which Sn is added, the intermediate annealing temperature is 950 ° C, which is relatively low, by increasing the rate of temperature increase in recrystallization annealing (decarburization annealing) to 20 ° C / s or more. Even in this case, a normal cube structure in which the B 50 in the rolling direction is 1.80 T or more and the B 50 in the direction perpendicular to the rolling is 1.75 T or more is obtained. This is the same for the raw materials E to G, and with the addition of an appropriate amount of Sn, the temperature increase rate of recrystallization annealing (decarburization annealing) is set to 20 ° C./s or more, so that the intermediate annealing temperature is relatively 950 ° C. Even in the case of a low temperature, a positive cube structure is obtained in which the B 50 in the rolling direction is 1.80 T or more and the B 50 in the direction perpendicular to the rolling is 1.75 T or more.
Further, in the material B to which Sn is added, when the hot-rolled sheet annealing temperature is set to 1050 ° C. and the recrystallization annealing temperature rise rate is set to 20 ° C./s or more, B 50 in the direction perpendicular to the rolling is 1.84T. Excellent characteristics that exceed it are obtained.

鋼中のSn添加量と製品板のB50との関係を示す図である。It is a diagram showing the relationship between the Sn addition amount and the B 50 Product plate in the steel. 再結晶焼鈍の昇温速度(500〜750℃間)と製品板のB50との関係を示す図である。Is a diagram showing the relationship between heating rate of recrystallization annealing and (inter 500 to 750 ° C.) and B 50 of the product sheet.

Claims (3)

質量%で、C:0.003〜0.080%、Si:2.0〜8.0%、Mn:0.005〜3.0%、Al:0.0010〜0.0090%およびSn:0.01〜0.20%を含み、かつS,Se,O,Nをそれぞれ30ppm以下に低減し、残部はFeおよび不可避的不純物の組成になる鋼スラブを、熱間圧延後、必要に応じて熱延板焼鈍を施したのち、1回または中間焼鈍を挟む2回以上の冷間圧延を施して最終板厚に仕上げ、ついで脱炭・再結晶焼鈍後、必要に応じて焼鈍分離剤を塗布してから最終仕上げ焼鈍を施す一連の工程からなる電磁鋼板の製造方法において、
該脱炭・再結晶焼鈍における500〜750℃間の平均昇温速度を20℃/s以上とすることを特徴とする電磁鋼板の製造方法。
In mass%, C: 0.003-0.080%, Si: 2.0-8.0%, Mn: 0.005-3.0%, Al: 0.0010-0.0090% and Sn: 0.01-0.20%, and S, Se, O, N Steel slabs, each reduced to 30ppm or less, with the balance being Fe and inevitable impurities, hot-rolled, if necessary, and then hot-rolled sheet annealing, or once or two or more times with intermediate annealing In the manufacturing method of electrical steel sheet, which consists of a series of processes in which cold rolling is performed to finish to the final plate thickness, followed by decarburization and recrystallization annealing, and if necessary, an annealing separator is applied and then final finishing annealing is performed. ,
A method for producing an electrical steel sheet, wherein an average rate of temperature increase between 500 and 750 ° C. in the decarburization / recrystallization annealing is set to 20 ° C./s or more.
請求項1において、最終冷間圧延前の焼鈍温度を900℃以上 1000℃未満とすることを特徴する電磁鋼板の製造方法。   The method for manufacturing an electrical steel sheet according to claim 1, wherein an annealing temperature before final cold rolling is set to 900 ° C or higher and lower than 1000 ° C. 請求項1または2において、鋼スラブが、質量%でさらに、Sb:0.005〜0.50%,Cu:0.01〜0.50%,Mo:0.005〜0.50%およびCr:0.01〜1.0%のうちから選んだ1種または2種以上を含有することを特徴とする電磁鋼板の製造方法。   3. The steel slab according to claim 1, wherein the steel slab is further selected by mass% from Sb: 0.005 to 0.50%, Cu: 0.01 to 0.50%, Mo: 0.005 to 0.50%, and Cr: 0.01 to 1.0%. Or the manufacturing method of the electrical steel sheet characterized by containing 2 or more types.
JP2006342903A 2006-12-20 2006-12-20 Production method of magnetic steel sheet Withdrawn JP2008150697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006342903A JP2008150697A (en) 2006-12-20 2006-12-20 Production method of magnetic steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006342903A JP2008150697A (en) 2006-12-20 2006-12-20 Production method of magnetic steel sheet

Publications (1)

Publication Number Publication Date
JP2008150697A true JP2008150697A (en) 2008-07-03

Family

ID=39653184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006342903A Withdrawn JP2008150697A (en) 2006-12-20 2006-12-20 Production method of magnetic steel sheet

Country Status (1)

Country Link
JP (1) JP2008150697A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012126980A (en) * 2010-12-17 2012-07-05 Jfe Steel Corp Electromagnetic steel sheet and method for manufacturing the same
EP2960345A4 (en) * 2013-02-21 2016-06-08 Jfe Steel Corp Production method for semi-processed non-oriented electromagnetic steel sheet exhibiting superior magnetic properties
US9920393B2 (en) 2012-03-15 2018-03-20 Jfe Steel Corporation Method of producing non-oriented electrical steel sheet
JP2019183232A (en) * 2018-04-11 2019-10-24 Jfeスチール株式会社 Electrical steel sheet and manufacturing method thereof
JP2020147842A (en) * 2019-03-05 2020-09-17 住友重機械工業株式会社 Magnetic field heat treatment apparatus, electromagnetic steel sheet, motor, and manufacturing method of motor
JP2021509441A (en) * 2017-12-26 2021-03-25 ポスコPosco Bidirectional electromagnetic steel sheet and its manufacturing method
CN115151674A (en) * 2019-12-20 2022-10-04 Posco公司 Dual-orientation electrical steel sheet and method for manufacturing the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012126980A (en) * 2010-12-17 2012-07-05 Jfe Steel Corp Electromagnetic steel sheet and method for manufacturing the same
US9920393B2 (en) 2012-03-15 2018-03-20 Jfe Steel Corporation Method of producing non-oriented electrical steel sheet
EP2960345A4 (en) * 2013-02-21 2016-06-08 Jfe Steel Corp Production method for semi-processed non-oriented electromagnetic steel sheet exhibiting superior magnetic properties
US9978488B2 (en) 2013-02-21 2018-05-22 Jfe Steel Corporation Method for producing semi-processed non-oriented electrical steel sheet having excellent magnetic properties
JP2021509441A (en) * 2017-12-26 2021-03-25 ポスコPosco Bidirectional electromagnetic steel sheet and its manufacturing method
JP7174053B2 (en) 2017-12-26 2022-11-17 ポスコ Bidirectional electrical steel sheet and manufacturing method thereof
US11802319B2 (en) 2017-12-26 2023-10-31 Posco Co., Ltd Double oriented electrical steel sheet and method for manufacturing same
JP2019183232A (en) * 2018-04-11 2019-10-24 Jfeスチール株式会社 Electrical steel sheet and manufacturing method thereof
JP2020147842A (en) * 2019-03-05 2020-09-17 住友重機械工業株式会社 Magnetic field heat treatment apparatus, electromagnetic steel sheet, motor, and manufacturing method of motor
CN115151674A (en) * 2019-12-20 2022-10-04 Posco公司 Dual-orientation electrical steel sheet and method for manufacturing the same
JP2023508295A (en) * 2019-12-20 2023-03-02 ポスコホールディングス インコーポレーティッド Bidirectional electrical steel sheet and manufacturing method thereof
CN115151674B (en) * 2019-12-20 2024-03-26 Posco公司 Bi-oriented electrical steel sheet and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP6478004B1 (en) Non-oriented electrical steel sheet
KR101591222B1 (en) Method of producing non-oriented electrical steel sheet
WO2013058239A1 (en) Oriented electromagnetic steel sheet and method for manufacturing same
KR20180016522A (en) Grain-oriented electromagnetic steel sheet and method for manufacturing same
JP2001316729A (en) Method for manufacturing nonoriented silicon steel sheet having low core loss and high magnetic flux density
KR20140044928A (en) Process for producing grain-oriented electromagnetic steel sheet with excellent core loss characteristics
JP2008150697A (en) Production method of magnetic steel sheet
JP4123662B2 (en) Electrical steel sheet for small electrical equipment and manufacturing method thereof
JP5839172B2 (en) Method for producing grain-oriented electrical steel sheet
JP2003171718A (en) Manufacturing method of magnetic steel sheet of excellent mean magnetic characteristic in rolled surface
JP2012177162A (en) Method for manufacturing grain-oriented magnetic steel sheet
JP7078009B2 (en) Electrical steel sheet and its manufacturing method
JP2001073097A (en) Nonoriented silicon steel sheet excellent in magnetic characteristic and workability, and its manufacture
JP4123629B2 (en) Electrical steel sheet and manufacturing method thereof
JP4692518B2 (en) Oriented electrical steel sheet for EI core
KR950002895B1 (en) Ultrahigh-silicon directional electrical steel sheet and production thereof
JP2011063829A (en) Method for manufacturing grain-oriented magnetic steel sheet
JP3994667B2 (en) Method for producing grain-oriented electrical steel sheet
JP3492965B2 (en) Cold rolling method to obtain unidirectional electrical steel sheet with excellent magnetic properties
JP4123663B2 (en) Electrical steel sheet and manufacturing method thereof
JP2000034521A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JP2003193131A (en) Method of producing grain oriented silicon steel sheet having excellent magnetic property
JP2002348613A (en) Method for manufacturing grain-oriented electromagnetic steel sheet superior in blanking property without needing decarburization annealing
JPH0949023A (en) Production of grain oriented silicon steel sheet excellent in iron loss
JPH11323438A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100302