JP2001073097A - Nonoriented silicon steel sheet excellent in magnetic characteristic and workability, and its manufacture - Google Patents

Nonoriented silicon steel sheet excellent in magnetic characteristic and workability, and its manufacture

Info

Publication number
JP2001073097A
JP2001073097A JP24971899A JP24971899A JP2001073097A JP 2001073097 A JP2001073097 A JP 2001073097A JP 24971899 A JP24971899 A JP 24971899A JP 24971899 A JP24971899 A JP 24971899A JP 2001073097 A JP2001073097 A JP 2001073097A
Authority
JP
Japan
Prior art keywords
steel sheet
sheet
workability
steel
magnetic properties
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24971899A
Other languages
Japanese (ja)
Other versions
JP3855554B2 (en
Inventor
Yasuyuki Hayakawa
康之 早川
Mitsumasa Kurosawa
光正 黒沢
Masaki Kono
正樹 河野
Michiro Komatsubara
道郎 小松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP24971899A priority Critical patent/JP3855554B2/en
Priority to US09/649,052 priority patent/US6436199B1/en
Priority to EP10011680A priority patent/EP2287347B1/en
Priority to EP00118794A priority patent/EP1081238B1/en
Priority to DE60045810T priority patent/DE60045810D1/en
Priority to CNB001338420A priority patent/CN1138014C/en
Priority to KR1020000051446A priority patent/KR100702875B1/en
Publication of JP2001073097A publication Critical patent/JP2001073097A/en
Priority to US10/140,207 priority patent/US6531001B2/en
Application granted granted Critical
Publication of JP3855554B2 publication Critical patent/JP3855554B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain excellent magnetic characteristics and superior workability by providing a composition containing specific amounts of Si and also containing C, S, N, O and B in amounts made to specific values or below, respectively, specifying average crystal grain size, and regulating the area ratio of such crystal grains that have crystal face orientation within specific angle with respect to the <111> axis at the surface of a steel sheet to a specific percentage or below. SOLUTION: The nonoreinted silicon steel sheet has a composition containing, by weight, 2.0-4.0% Si and containing C, S, N, O and B in amounts made to <=50 ppm respectively and also has 50-500 μm average grain size, and further, the area ratio of grains having crystal face orientation within 15 deg. with respect to the <111> axis at the steel-sheet surface is regulated to <=20%. This steel sheet can be manufactured by forming a molten steel of this composition into slab, hot rolling the slab, carrying out hot rolled plate annealing if necessary, cold rolling the resultant place once or cold rolling it two or more times while performing process annealing between cold rolling steps to finish it to final sheet thickness, and then applying recrystallization annealing to the resultant sheet.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主として電気機器
の鉄心材料として用いられる無方向性電磁鋼板に関し、
特に鉄損や磁束密度等の磁気特性だけでなく、加工性の
有利な改善を図ろうとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-oriented electrical steel sheet mainly used as a core material of electric equipment,
In particular, it is intended to improve not only magnetic properties such as iron loss and magnetic flux density but also workability.

【0002】[0002]

【従来の技術】近年、電気機器の高効率化が、世界的な
電力、エネルギー節減の動きの中で強く要望されてい
る。また、電気機器の小型化の面から、鉄心材料に対す
る小型化の要請も高まっている。
2. Description of the Related Art In recent years, there has been a strong demand for higher efficiency of electric equipment in the context of worldwide power and energy saving. Further, from the aspect of miniaturization of electric equipment, there is an increasing demand for miniaturization of iron core materials.

【0003】従来、無方向性電磁鋼板の鉄損を低減する
手段としては、電気抵抗の増加によって渦電流損を低下
させる目的で、Si、AlおよびMn等の含有量を高める方法
が用いられてきた。しかしながら、この方法では、磁束
密度の低下が免れ得ないという本質的な問題があった。
Conventionally, as a means for reducing iron loss of a non-oriented electrical steel sheet, a method of increasing the content of Si, Al, Mn, or the like has been used in order to reduce eddy current loss by increasing electric resistance. Was. However, this method has an essential problem that the magnetic flux density cannot be reduced.

【0004】また、無方向性電磁鋼板は、主に打抜き加
工後に積層して鉄心が作製されるため、磁気特性だけで
なく、良好な加工性も必要とされる。しかしながら、良
好な鉄損を得るためにSi, AlおよびMn等の含有量を高め
た場合には、硬度が上昇して加工性が劣化するという、
非常に大きな問題が生じていた。そのため、加工性を重
視する場合には、鉄損を犠牲にしてもSi含有量の低い低
級品の使用を余儀なくされている。
[0004] Further, since non-oriented electrical steel sheets are mainly laminated to form an iron core after punching, not only magnetic properties but also good workability are required. However, when the content of Si, Al, Mn, etc. is increased in order to obtain a good iron loss, the hardness is increased and workability is deteriorated.
There was a very big problem. Therefore, when emphasis is placed on workability, it is necessary to use low-grade products having a low Si content even at the expense of iron loss.

【0005】また、単にSiやAlの含有量を高めるだけで
なく、CやSを低減する方法、さらには特開昭58−1514
3 号公報に記載されているようなBを添加する方法、特
開平3−281758号公報に記載されているようなNiを添加
する方法など、合金成分を増加させる方法が一般的に知
られている。しかしながら、これら合金成分を添加する
方法では、鉄損は改善されるものの、磁束密度の改善効
果は小さく、また硬度が合金添加に伴って上昇すること
から、加工性が劣化するという不利があった。
[0005] Further, a method of not only increasing the content of Si and Al but also reducing C and S is disclosed in JP-A-58-1514.
Methods for increasing the alloy component, such as a method for adding B as described in JP-A No. 3 and a method for adding Ni as described in JP-A-3-281758, are generally known. I have. However, in the method of adding these alloy components, although the iron loss is improved, the effect of improving the magnetic flux density is small, and since the hardness increases with the addition of the alloy, there is a disadvantage that the workability is deteriorated. .

【0006】さらに、製造プロセスを変更し、集合組織
を改善することによって、磁気特性を改善する方法がい
くつか提案されている。例えば、特公昭58−181822号公
報には、Si:2.8 〜4.0 %, Al:0.3 〜2.0 %を含む鋼
に 200〜500 ℃の温度範囲で温間圧延を施し、{10
0}<UVW>組織を発達させる方法が、また特公平3
−294422号公報には、Si:1.5 〜4.0 %,Al:0.1 〜2.0
%を含む鋼を、熱延した後、1000℃以上1200℃以下の
温度での熱延板焼鈍と圧下率:80〜90%の冷間圧延を施
すことによって、{100}組織を発達させる方法が提
案されている。
[0006] Further, several methods have been proposed for improving magnetic properties by changing the manufacturing process and improving the texture. For example, Japanese Patent Publication No. 58-181822 discloses that a steel containing 2.8 to 4.0% of Si and 0.3 to 2.0% of Al is warm-rolled in a temperature range of 200 to 500 ° C.
0} <UVW> The method of developing tissue is also
Japanese Patent No. 294422 discloses that Si: 1.5 to 4.0%, Al: 0.1 to 2.0%.
% Hot-rolled steel, then hot-rolled sheet annealing at a temperature of 1000 ° C or more and 1200 ° C or less and cold rolling at a reduction ratio of 80-90% to develop {100} structure Has been proposed.

【0007】しかしながら、これらの方法による磁気特
性の改善幅は小さい。例えば、特公昭58−191922号公報
の実施例2では、Si:3.40%, Al:0.60%を含む成分系
の製品(板厚:0.35mm)で、磁束密度B50:1.70T、鉄
損W15/50 :2.1 W/kg程度、また特公平3−294422号公
報では、Si:3.0 %, Al:0.30%, Mn:0.20%を含む成
分系の製品(板厚:0.50mm)で、磁束密度B50:1.71
T、鉄損W15/50 :2.5 W/kg程度にすぎない。
However, the improvement of the magnetic characteristics by these methods is small. For example, in Example 2 of Japanese Patent Publication No. 58-191922, a component-based product (thickness: 0.35 mm) containing Si: 3.40% and Al: 0.60% has a magnetic flux density B 50 : 1.70 T, iron loss W 15/50 : About 2.1 W / kg, and in Japanese Patent Publication No. 3-294422, it is a component-based product (sheet thickness: 0.50 mm) containing 3.0% Si, 0.30% Al, and 0.20% Mn. density B 50: 1.71
T, iron loss W 15/50 : Only about 2.5 W / kg.

【0008】その他にも、製造プロセス上の処置もなさ
れてきたが、いずれも低鉄損化は図られても不十分であ
り、また磁束密度も十分とは言えなかった。以上述べた
とおり、低鉄損でかつ加工性の良い材料は、これまでの
ところ開発されていない。
[0008] In addition, although measures have been taken in the production process, it is not enough to reduce the iron loss, and it cannot be said that the magnetic flux density is sufficient. As described above, a material with low iron loss and good workability has not been developed so far.

【0009】[0009]

【発明が解決しようとする課題】本発明は、上記の問題
を有利に解決するもので、磁気特性に優れ、しかも加工
性も良好な無方向性電磁鋼板を、その有利な製造方法と
共に提案することを目的とする。
SUMMARY OF THE INVENTION The present invention advantageously solves the above-mentioned problems, and proposes a non-oriented electrical steel sheet having excellent magnetic properties and good workability, together with an advantageous method for producing the same. The purpose is to:

【0010】[0010]

【課題を解決するための手段】従来から、Si含有量の高
い無方向性電磁鋼板の磁気特性は、例えば熱延板焼鈍を
高温で行ったり、熱延板焼鈍前にスキンパス圧延を施す
ことにより、冷延前における結晶粒径を粗大化させるこ
とによって改善されることは知られていたが、その磁気
特性改善効果は冷延前の結晶粒径の増大が一定レベルに
達すると飽和し、場合によってはむしろ劣化することも
併せて知られていた。例えば、特開昭59−74224 号公報
中図1〜4に示されるように、磁気特性は熱延板(母
板)焼鈍温度が約1000℃で最も良好な磁気特性を示して
いる。以上のように、Si量の高い鋼板における従来技術
である冷延前粒径の粗大化技術は、磁気特性の改善技術
としては飽和に達した技術である。
Conventionally, the magnetic properties of non-oriented electrical steel sheets having a high Si content can be determined by, for example, performing hot-rolled sheet annealing at a high temperature or performing skin-pass rolling before hot-rolled sheet annealing. It has been known that the effect can be improved by increasing the crystal grain size before cold rolling, but its magnetic property improving effect is saturated when the increase in crystal grain size before cold rolling reaches a certain level. It was also known that some of them deteriorated. For example, as shown in FIGS. 1 to 4 in JP-A-59-74224, the magnetic properties show the best when the hot-rolled sheet (base plate) annealing temperature is about 1000 ° C. As described above, the technology for increasing the grain size before cold rolling, which is a conventional technology for a steel sheet having a high Si content, is a technology that has reached saturation as a technology for improving magnetic properties.

【0011】そこで、発明者らは、従来の高Si系無方向
性電磁鋼板の磁気特性向上に対する従来技術の限界を打
破すべく鋭意検討を進めた結果、C, S, N, Oおよび
Bの含有量をそれぞれ 50ppm以下に低減した高純度素材
を用い、さらに好ましくはAlを一定量含有させることに
よって、鋼板を構成する結晶の方位を適切に制御してや
れば、磁気特性が格段に向上することの新規知見を得
た。また、これを実現するには、冷延前の結晶粒径に合
わせて圧延温度を適切に制御することが特に有利である
ことも併せて知見した。本発明は、上記の知見に立脚す
るものである。
The present inventors have conducted intensive studies to overcome the limitations of the prior art for improving the magnetic properties of conventional high Si non-oriented electrical steel sheets, and as a result, have found that C, S, N, O and B The use of high-purity materials whose content has been reduced to 50 ppm or less, and more preferably, the inclusion of a fixed amount of Al, if the orientation of the crystals making up the steel sheet is properly controlled, would significantly improve the magnetic properties. New findings were obtained. In order to realize this, it was also found that it is particularly advantageous to appropriately control the rolling temperature in accordance with the crystal grain size before cold rolling. The present invention is based on the above findings.

【0012】すなわち、本発明の要旨構成は次のとおり
である。 1.Si:2.0 〜4.0 wt%を含み、かつC, S, N, Oお
よびBの含有量がそれぞれ 50ppm以下の成分組成にな
り、平均結晶粒径が50〜500 μm で、しかも結晶面方位
が<111>軸から15°以内である結晶粒の鋼板表面に
おける面積率が20%以下であることを特徴とする、磁気
特性および加工性に優れた無方向性電磁鋼板。
That is, the gist configuration of the present invention is as follows. 1. Si: contains 2.0 to 4.0 wt%, and has a component composition in which the contents of C, S, N, O and B are each 50 ppm or less, the average crystal grain size is 50 to 500 μm, and the crystal plane orientation is < A non-oriented electrical steel sheet having excellent magnetic properties and workability, wherein the area ratio of crystal grains within 15 ° from the 111> axis to the steel sheet surface is 20% or less.

【0013】2.上記1において、鋼組成が、さらにA
l:0.0010〜0.10wt%を含有する組成になることを特徴
とする、磁気特性および加工性に優れた無方向性電磁鋼
板。
2. In the above item 1, the steel composition further comprises A
l: A non-oriented electrical steel sheet excellent in magnetic properties and workability, characterized by having a composition containing 0.0010 to 0.10 wt%.

【0014】3.上記1または2において、鋼組成が、
さらにNi:0.01〜1.50wt%、Sn:0.01〜0.50wt%, Sb:
0.005 〜0.50wtwt%, Cu:0.01〜0.50wt%, P:0.005
〜0.50wt%およびCr:0.01〜1.50wt%のうちから選んだ
少なくとも一種を含有する組成になることを特徴とす
る、磁気特性および加工性に優れた無方向性電磁鋼板。
3. In the above 1 or 2, the steel composition is
Ni: 0.01 to 1.50 wt%, Sn: 0.01 to 0.50 wt%, Sb:
0.005 to 0.50 wt%, Cu: 0.01 to 0.50 wt%, P: 0.005
A non-oriented electrical steel sheet having excellent magnetic properties and workability, characterized by having a composition containing at least one selected from 0.50 wt% and Cr: 0.01 to 1.50 wt%.

【0015】4.Si:2.0 〜4.0 wt%、Mn:0.005 〜1.
50wt%およびAl:0.0010〜0.10wt%を含み、かつS,
N, OおよびBの含有量をそれぞれ 50ppm以下に低減し
た組成になる溶鋼を、スラブとし、ついで熱間圧延後、
必要に応じて熱延板焼鈍を施した後、1回または中間焼
鈍を挟む2回以上の冷間圧延を施して最終板厚に仕上
げ、ついで再結晶焼鈍を施すことからなる、平均結晶粒
径が50〜500 μm で、しかも結晶面方位が<111>軸
から15°以内である結晶粒の鋼板表面における面積率が
20%以下を満足する、磁気特性および加工性に優れた無
方向性電磁鋼板の製造方法。
4. Si: 2.0 to 4.0 wt%, Mn: 0.005 to 1.
50 wt% and Al: 0.0010 to 0.10 wt%, and S,
The molten steel having a composition in which the contents of N, O and B are reduced to 50 ppm or less, respectively, is used as a slab, and after hot rolling,
An average crystal grain size consisting of subjecting a hot-rolled sheet to annealing as necessary, performing cold rolling once or twice or more with intermediate annealing to finish to a final sheet thickness, and then performing recrystallization annealing. Is 50 to 500 µm, and the area ratio of the crystal grains whose crystal plane orientation is within 15 ° from the <111> axis is on the steel sheet surface.
A method for manufacturing non-oriented electrical steel sheets that satisfy 20% or less and have excellent magnetic properties and workability.

【0016】5.上記4において、最終冷間圧延前の平
均結晶粒径を 100μm 以上にすると共に、最終冷間圧延
の少なくとも1パスを 150〜350 ℃の圧延温度で行うこ
とを特徴とする、磁気特性および加工性に優れた無方向
性電磁鋼板の製造方法。
5. 4. In the above item 4, wherein the average crystal grain size before final cold rolling is set to 100 μm or more, and at least one pass of final cold rolling is performed at a rolling temperature of 150 to 350 ° C. Method for manufacturing non-oriented electrical steel sheet with excellent properties.

【0017】[0017]

【発明の実施の形態】以下、本発明を具体的に説明す
る。まず、本発明において顕著に現われるAlの影響につ
いての実験結果に基づいて説明する。Si:2.5 wt%, M
n:0.12wt%を含み、かつC, S, N, OおよびBをそ
れぞれ20 ppm以下に低減した鋼をベースとし、このベー
ス鋼にAlを種々の範囲で含有させた鋼塊を製造した。つ
いで、これらの鋼塊を、1100℃に加熱後、熱間圧延によ
り 2.4mm厚の熱延板としたのち、1175℃, 2分間の熱延
板焼鈍を施し、酸洗後、250 ℃の温度の冷間圧延にて最
終板厚:0.35mmの冷延板に仕上げ、ついで1100℃, 5分
間の再結晶焼鈍を施して製品板とした。これらの製品板
から圧延(L)方向、圧延直角(C)方向に30×280 mm
サイズのエプスタイン試験片を等量採取し、各製品板の
磁束密度と鉄損についてL、C方向の平均値を測定し
た。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described below. First, the effect of Al which appears remarkably in the present invention will be described based on experimental results. Si: 2.5 wt%, M
n: A steel ingot containing 0.12 wt% and containing at least 20 ppm or less of each of C, S, N, O and B, and containing Al in various ranges in the base steel. Then, these ingots were heated to 1100 ° C, hot-rolled into 2.4mm-thick hot-rolled sheets, annealed at 1175 ° C for 2 minutes, pickled, and heated to 250 ° C. Was finished into a cold-rolled sheet having a final thickness of 0.35 mm, and then subjected to recrystallization annealing at 1100 ° C. for 5 minutes to obtain a product sheet. 30 × 280 mm in the rolling (L) direction and the rolling right angle (C) direction from these product plates
An equal amount of Epstein test piece of each size was sampled, and the average values of the magnetic flux density and iron loss of each product plate in the L and C directions were measured.

【0018】図1(a), (b)に、素材のAl含有量と製品板
の鉄損および磁束密度との関係を示す。同図に示したよ
うに、磁気特性は素材中のAl量によって大きく変動し、
0.001wt%(10 ppm)以上、0.10wt%(1000 ppm)以下
の範囲でB50が1.72T以上でかつW15/50 が2.2 W/kg以
下の良好な値がほぼ得られ、特にAl量が 0.005〜0.020w
t%(50〜200 pp)の範囲でB50が1.75T以上、W15/50
が1.8 W/kg以下の優れた磁気特性が得られている。
FIGS. 1A and 1B show the relationship between the Al content of the material and the core loss and magnetic flux density of the product plate. As shown in the figure, the magnetic characteristics vary greatly depending on the amount of Al in the material,
0.001wt% (10 ppm) or more, 0.10wt% (1000 ppm) B 50 in the following ranges and W 15/50 or more 1.72T is 2.2 W / kg are substantially obtained following favorable values, in particular the amount of Al Is 0.005-0.020w
t% (50~200 pp) range B 50 or more 1.75T of, W 15/50
However, excellent magnetic properties of 1.8 W / kg or less have been obtained.

【0019】ついで、この中から優れた磁気特性が得ら
れる理由を見い出すために、各製品板の結晶粒径を調査
した。通常、無方向性電磁鋼板では、製品板の結晶粒径
が粗大化すれば鉄損が向上するのであるが、この実験で
は製品板の結晶粒径に及ぼす素材Al量の影響は小さく、
粒径はいずれも 200〜300 μm 程度であって、磁気特性
と再結晶焼鈍時の粒成長挙動とはほぼ無関係であった。
Next, in order to find out the reason why excellent magnetic properties can be obtained, the crystal grain size of each product plate was examined. Normally, in non-oriented electrical steel sheets, iron loss improves when the crystal grain size of the product sheet is coarsened, but in this experiment, the effect of the amount of material Al on the crystal grain size of the product sheet is small,
The grain sizes were all about 200-300 μm, and the magnetic properties were almost independent of the grain growth behavior during recrystallization annealing.

【0020】従って、Al含有量が0.0010〜0.10wt%の範
囲における磁気特性の向上は、結晶方位の改善に起因す
るものと考え、製品板の結晶粒方位の測定を Electron
BackScattering Pattern(EBSP)によって行った。
測定は鋼板表面における10mm×10mm角の領域における約
2000個の結晶粒について行った。得られた測定結果につ
いて、各結晶面方位と<111>軸との最小角度差を解
析したところ、結晶面方位が<111>軸から15°以内
である結晶粒の面積率(以下、P{111}と称す)と
磁気特性との間に強い相関があることが判明した。な
お、比較のため、従来、集合組織を評価する際に一般的
に実施されてきたX線回折法を用いて、{111}面強
度(以下、I{111}と称す)と磁気特性との関係に
ついての調査も行った。また、併せて、結晶面方位が<
111>軸から5°以内である結晶粒の面積率(以下、
Q{111}と称す)についても上述のP{111}と
同等な方法で測定した。
Therefore, it is considered that the improvement of the magnetic properties when the Al content is in the range of 0.0010 to 0.10 wt% is attributed to the improvement of the crystal orientation.
This was performed by BackScattering Pattern (EBSP).
The measurement was performed in a 10 mm × 10 mm square area on the steel plate surface.
Performed on 2000 crystal grains. When the minimum angle difference between each crystal plane direction and the <111> axis was analyzed with respect to the obtained measurement results, the area ratio of crystal grains having a crystal plane direction within 15 ° from the <111> axis (hereinafter referred to as P {) 111 °) and magnetic properties. For comparison, the {111} plane intensity (hereinafter, referred to as I {111}) and the magnetic characteristics were determined by using an X-ray diffraction method that has been generally performed when evaluating a texture. A survey of the relationships was also conducted. In addition, the crystal plane orientation is <
111> The area ratio of crystal grains within 5 ° from the axis (hereinafter, referred to as
Q {111}) was also measured by the same method as that for P {111} described above.

【0021】図2に、製品板の鉄損値とP{111}と
の関係を示す。同図に示したように、製品板の鉄損とP
{111}との間には強い相関があり、P{111}を
20%以下とすることによって良好な鉄損(W15/50 ≦2.
20W/kg)が得られることが分かった。また図3には、製
品板鉄損値とI{111}との関係、さらに図4には、
製品板鉄損値とQ{111}との関係を示すが、いずれ
の場合も明瞭な関係は認められなかった。
FIG. 2 shows the relationship between the iron loss value of the product plate and P {111}. As shown in FIG.
There is a strong correlation between {111} and P {111}
Good iron loss (W 15/50 ≦ 2.
20W / kg). FIG. 3 shows the relationship between the product sheet iron loss value and I {111}, and FIG.
The relationship between the product sheet iron loss value and Q {111} is shown, but no clear relationship was observed in any case.

【0022】このように、製品板の鉄損は、P{11
1}との相関が極めて強いのに対して、I{111}や
Q{111}との相関は弱いという実験結果が得られた
理由については、明らかではないが、I{111}やQ
{111}は{111}近傍の結晶粒のみの強度しか評
価していないのに対し、P{111}は許容範囲を15°
と広くとることにより、{111}以外の方位例えば
{544}、{554}、{221}、{332}など
多くの方位の結晶粒の磁気特性への寄与も併せて評価し
ていることによるものと推定される。
Thus, the iron loss of the product plate is P {11
It is not clear why the experimental results obtained that the correlation with 1 {} is very strong, but the correlation with I {111} and Q {111} are weak, but I {111} and Q
For {111}, only the strength of crystal grains near {111} was evaluated, whereas for P {111}, the allowable range was 15 °.
The contribution to the magnetic properties of crystal grains in many orientations other than {111}, for example, {544}, {554}, {221}, and {332}, is also evaluated. It is presumed that.

【0023】さらに、集合組織の磁気特性に及ぼす影響
を明らかにすべく、次のような実験を行った。Si:2.6
wt%, Mn:0.13wt%, Al:0.009 wt%を含み、C, S,
N, OおよびBをそれぞれ 20ppm以下に低減した鋼塊を
製造した。ついで、この鋼塊を、1050℃に加熱後、熱間
圧延により 2.6mm厚の熱延板としたのち、1150℃, 3分
の熱延板焼鈍を施し、ついで酸洗後、常温から 400℃の
範囲の種々の温度で冷間圧延を施して最終板厚:0.35mm
に仕上げたのち、1050℃, 10分の再結晶焼鈍を施して製
品板とした。
Further, the following experiment was conducted in order to clarify the influence of the texture on the magnetic characteristics. Si: 2.6
wt%, Mn: 0.13wt%, Al: 0.009wt%, C, S,
Steel ingots in which N, O and B were each reduced to 20 ppm or less were produced. Then, the ingot was heated to 1050 ° C, hot-rolled into a hot-rolled sheet having a thickness of 2.6 mm, then annealed at 1150 ° C for 3 minutes, then pickled, and then pickled from normal temperature to 400 ° C. Cold-rolled at various temperatures in the range of: Final thickness: 0.35mm
After refining, a recrystallization annealing was performed at 1050 ° C. for 10 minutes to obtain a product plate.

【0024】得られた製品板から圧延(L)方向、圧延
直角(C)方向に30×280 mmサイズのエプスタイン試験
片をそれぞれ等量採取し、各鋼板の磁束密度と鉄損につ
いてL、C方向の平均値を測定した。製品板の結晶粒方
位の測定を、EBSPにて、鋼板表面における10mm×10
mm角の領域における約2000個の結晶粒について行い、P
{111}を求めた。
From the obtained product plate, 30 × 280 mm size Epstein test pieces were sampled in equal amounts in the rolling (L) direction and the rolling right angle (C) direction, and the magnetic flux density and iron loss of each steel sheet were determined as L and C. The average value in the direction was measured. The crystal grain orientation of the product sheet was measured by EBSP at 10 mm × 10 mm on the steel sheet surface.
Performed on about 2000 crystal grains in the area of mm square, P
{111} was determined.

【0025】図5(a), (b)に、圧延温度と鉄損特性およ
びP{111}との関係を示すが、同図に示したとお
り、P{111}の値は、圧延温度を 150〜350 ℃の範
囲に制御することによって低い値となり、これにより優
れた鉄損値が得られることが分かる。
FIGS. 5 (a) and 5 (b) show the relationship between the rolling temperature, the iron loss characteristics and P {111}. As shown in FIG. It can be seen that a low value is obtained by controlling the temperature in the range of 150 to 350 ° C., whereby an excellent iron loss value is obtained.

【0026】次に、上記の成分の鋼塊を用い、熱延板焼
鈍温度を種々に変化させる以外は、同様な処理を施す実
験を行った。得られた製品板から圧延(L)方向、圧延
直角(C)方向に30×280 mmサイズのエプスタイン試験
片をそれぞれ等量採取し、各鋼板の磁束密度と鉄損につ
いてL、C方向の平均値を測定した。製品板の結晶粒方
位の測定を、EBSPにて、鋼板表面における10mm×10
mm角の領域における約2000個の結晶粒について行い、P
{111}を求めた。
Next, an experiment was conducted in which a similar treatment was carried out using the steel ingot having the above components and changing the annealing temperature of the hot-rolled sheet in various ways. Equal amounts of 30 × 280 mm Epstein test pieces were sampled from the obtained product sheet in the rolling (L) direction and the rolling right angle (C) direction, and the average of the magnetic flux density and iron loss of each steel sheet in the L and C directions was obtained. The value was measured. The crystal grain orientation of the product sheet was measured by EBSP at 10 mm × 10 mm on the steel sheet surface.
Performed on about 2000 crystal grains in the area of mm square, P
{111} was determined.

【0027】図6(a), (b) に、熱延板焼鈍後の平均粒
径Dと製品板の鉄損特性およびP{111}との関係に
ついて調べた結果を示す。同図に示したように、熱延板
焼鈍後の平均粒径すなわち最終冷延前の平均粒径を 100
μm 以上とすることにより、P{111}が大きく低下
して、鉄損特性がさらに向上することが明らかとなっ
た。
FIGS. 6 (a) and 6 (b) show the results of a study on the relationship between the average grain size D after hot-rolled sheet annealing, the iron loss characteristics of the product sheet, and P {111}. As shown in the figure, the average grain size after hot-rolled sheet annealing, that is, the average grain size before final cold rolling was 100%.
It has been clarified that when the thickness is at least μm, P {111} is greatly reduced and the iron loss characteristics are further improved.

【0028】次に、本発明の優れた効果を得たAl含有量
と不純物量との関係について検討した結果について述べ
る。Si:2.5 wt%およびMn:0.12wt%含み、かつC,
S, N, OおよびBをそれぞれ 20ppm以下に低減した鋼
をベースとし、このベース鋼にAlを種々の範囲が含有さ
せた鋼塊群A(本発明の成分範囲内)と、Si:2.5 wt%
および Mn :0.12wt%を含み、かつC, S, N, Oおよ
びBがそれぞれ 50ppm以上で、しかもその合計量が350p
pm以上の鋼をベースとし、このベース鋼にAlを種々の範
囲が含有させた鋼塊群B(本発明の成分範囲外)とを製
造した。ついで、これらの鋼塊を、1100℃に加熱後、熱
間圧延により 2.4mm厚の熱延板としたのち、1150℃, 5
分の熱延板焼鈍を施し、ついで酸洗後、 250℃の温度で
冷間圧延して最終板厚:0.35mmに仕上げたのち、1050
℃, 10分の再結晶焼鈍を施して製品板とした。得られた
製品板について、結晶粒方位の測定をEBSPにて、鋼
板表面における10mm×10mm角の領域における約2000個の
結晶粒について行い、P{111}を求めた。
Next, the results of a study on the relationship between the Al content and the impurity content which have obtained the excellent effects of the present invention will be described. Si: 2.5 wt% and Mn: 0.12 wt%, and C,
A steel ingot group A (within the range of components of the present invention) in which S, N, O and B were each reduced to 20 ppm or less as a base, and the base steel contained various ranges of Al; %
And Mn: 0.12 wt%, and each of C, S, N, O and B is 50 ppm or more, and the total amount is 350 p
A steel ingot group B (outside the component range of the present invention) was manufactured based on a steel of not less than pm and containing various ranges of Al in the base steel. Then, these ingots were heated to 1100 ° C, and then hot-rolled into hot-rolled sheets of 2.4 mm thickness.
After hot-rolled sheet annealing, pickling, cold-rolling at a temperature of 250 ° C, final sheet thickness: 0.35mm, then 1050
The product plate was subjected to recrystallization annealing at ℃ for 10 minutes. With respect to the obtained product sheet, the crystal grain orientation was measured by EBSP for about 2000 crystal grains in a 10 mm × 10 mm square area on the steel sheet surface, and P {111} was obtained.

【0029】図7に、各鋼塊群におけるAl含有量とP
{lll}との関係を示す。同図に示したように、不純
物元素C, S, N, OおよびBを低減した鋼塊群Aで
は、Al量が 0.001〜0.10wt%の範囲でP{lll}が20
%以下となるが、不純物元素C, S, N, OおよびBを
多量に含有した鋼塊群Bでは、20%以下のP{lll}
を得ることができなかった。
FIG. 7 shows the Al content and P in each steel ingot group.
This shows the relationship with {ll}. As shown in the figure, in the steel ingot group A in which the impurity elements C, S, N, O and B are reduced, P {ll} is 20 when the Al content is in the range of 0.001 to 0.10 wt%.
% Or less, but in the steel ingot group B containing a large amount of the impurity elements C, S, N, O and B, the P {ll}
Could not get.

【0030】この実験を基に、さらに鋭意研究を進めた
結果、磁気特性に有利なP{lll}が20%以下である
製品板結晶組織を得るためには、不純物元素であるC,
S,N, OおよびBをそれぞれ 50ppm以下まで低減する
こと、さらに好適にはAl含有量を0.0010〜0.10wt%の範
囲に制御することが重要であることが究明された。
As a result of further intensive studies based on this experiment, in order to obtain a product plate crystal structure in which P {ll}, which is advantageous for magnetic properties, is 20% or less, the impurity elements C,
It has been determined that it is important to reduce each of S, N, O and B to 50 ppm or less, and more preferably to control the Al content in the range of 0.0010 to 0.10 wt%.

【0031】前述したように、Si量の高い高級無方向性
電磁鋼板では、鉄損を改善するために固有電気抵抗を増
加させる手法が採用されてきた。また、この方法は、結
晶粒成長を抑制する鋼中析出物であるAlNを凝集粗大化
させ、結晶粒の粒成長を促進させる効果もある。これら
の効果を得るには、Al含有量は多いほうが有利なので、
従来からAl含有量は少なくとも 0.1wt%とされ、通常ほ
ぼ 0.5〜1.0 wt%程度のAlが含有されてきた。しかしな
がら、発明者らの実験によれば、従来技術の範囲よりも
はるかに低いAl量、特に 0.005〜0.020 wt%のAl量で最
も好適に集合組織が発達してP{lll}が20%以下と
なり、磁束密度、鉄損とも最良値を示すことが究明され
た。
As described above, in a high-grade non-oriented electrical steel sheet having a high Si content, a method of increasing the specific electric resistance has been adopted to improve iron loss. This method also has the effect of agglomerating and coarsening AlN, which is a precipitate in steel, which suppresses the growth of crystal grains, thereby promoting the growth of crystal grains. In order to obtain these effects, the higher the Al content, the better,
Conventionally, the Al content is at least 0.1 wt%, and usually about 0.5 to 1.0 wt% Al has been contained. However, according to experiments by the inventors, it is found that the texture is most preferably developed at an Al content much lower than that of the prior art, particularly at an Al content of 0.005 to 0.020 wt%, and P {ll} is not more than 20%. It was determined that both the magnetic flux density and the iron loss exhibited the best values.

【0032】このように、素材成分における不純物元素
C, S, N, OおよびBをそれぞれ50ppm以下に低減す
ると共に、Al量を所定範囲に制御することによって、P
{lll}が低い良好な集合組織が発達する理由につい
ては、必ずしも明確に解明されたわけではないが、本発
明者らは、不純物の粒界移動抑制効果に関連づけて、以
下のように考えている。すなわち、粒界移動の抑制効果
はドラッグ効果とも言われ、粒界構造の違いによりその
強さが異なっている。本発明者らは、方向性電磁鋼板の
二次再結晶時における粒界性格の影響について研究した
結果、方位差角が20〜45°である粒界が速く移動するこ
とによってゴス方位粒が二次再結晶することを発見し、
Acta Material 45巻(1997)85ページに報告した。ここで
方位差角とは、 2つの結晶粒について、一方の結晶粒を
他方の結晶粒にその結晶方位の回転により一致させるの
に必要な最小角度差のことである。
As described above, the impurity elements C, S, N, O, and B in the raw material components are reduced to 50 ppm or less, respectively, and the amount of Al is controlled within a predetermined range.
Although the reason why a good texture with a low {ll} is developed has not always been clearly elucidated, the present inventors consider the following in connection with the effect of suppressing grain boundary migration of impurities. . That is, the effect of suppressing the movement of the grain boundary is also called a drag effect, and the strength differs depending on the difference in the grain boundary structure. The present inventors have studied the effect of the grain boundary character during the secondary recrystallization of grain-oriented electrical steel sheets. Discover that it will recrystallize next,
Acta Material, vol. 45 (1997), p. 85. Here, the azimuth difference angle is a minimum angle difference required for two crystal grains to make one crystal grain coincide with the other crystal grain by rotating the crystal orientation.

【0033】方位差角が20〜45°の粒界は、C.G.Dunnら
による実験データ(AIME Transaction188巻 (1949) 368
ページ)によれば、高エネルギー粒界である。高エネ
ルギー粒界は、粒界内の自由空間が大きく乱雑な構造を
している。鋼中に存在する不純物元素C, S, N, O,
B等は、粒界特に構造の乱雑なエネルギーの高い粒界に
偏析し易い。一方Alは、これらの元素に比較すると粒界
偏析傾向は小さいと考えられるものの、0.1 wt%以上に
多量添加した場合には、偏析による粒界移動抑制効果が
もたらされる。従って、不純物元素やAlが多量に存在す
る場合には、高エネルギー粒界と他の粒界の移動速度に
差がなくなってしまうものと考えられる。この場合に
は、粒成長は等方的となり、粒成長時の集合組織の変化
は小さくなるものと推定される。これに対し、素材の高
純度化によって、不純物元素、特に粒界偏析傾向の強い
C, S, N, O, B等の影響を極力排除し、さらにはAl
を低減することにより、高エネルギー粒界の構造に依存
する本来的な移動速度差が顕在化し、再結晶に伴う粒成
長過程で高エネルギー粒界のみが優先的に移動してP
{lll}が減少する方向の集合組織変化を起こし、そ
の結果、磁気特性が向上するものと考えられる。
The grain boundary having a misorientation angle of 20 to 45 ° is obtained from experimental data by CGDunn et al. (AIME Transaction 188 (1949) 368).
According to page), it is a high energy grain boundary. The high energy grain boundary has a large free space in the grain boundary and has a random structure. Impurity elements C, S, N, O, present in steel
B and the like are likely to segregate at grain boundaries, particularly at high energy boundaries with disordered structures. On the other hand, Al is considered to have a smaller tendency to segregate at the grain boundary than these elements, but when added in a large amount of 0.1 wt% or more, the effect of suppressing segregation at the grain boundary is brought about. Therefore, when the impurity element or Al is present in a large amount, it is considered that there is no difference in the moving speed between the high energy grain boundary and another grain boundary. In this case, it is estimated that the grain growth becomes isotropic and the change in texture during the grain growth becomes small. On the other hand, by purifying the material, the effects of impurity elements, particularly C, S, N, O, and B, which have a strong tendency to segregate at grain boundaries, are eliminated as much as possible.
, A difference in the intrinsic moving speed depending on the structure of the high energy grain boundary becomes apparent, and only the high energy grain boundary moves preferentially during the grain growth process accompanying the recrystallization, and P
It is considered that the texture changes in the direction in which {ll} decreases, and as a result, the magnetic properties are improved.

【0034】なお、Al量が 10ppm未満の場合に、磁気特
性が劣化する傾向が見られたが、この場合には、鋼中に
粗大な窒化珪素が形成されていることが観察されてお
り、これにより冷間圧延時の変形挙動が変化して、再結
晶焼鈍後の組織におけるP{lll}が増大し、磁気特
性が劣化したものと推定している。これに対し、Al量が
10ppm以上含まれる場合には、このような粗大な窒化珪
素の形成が抑制されており、その結果、上記したような
冷間圧延時の変形挙動の変化によるP{lll}の増加
が回避されたものと考えられる。
When the Al content was less than 10 ppm, the magnetic properties tended to deteriorate, but in this case, it was observed that coarse silicon nitride was formed in the steel. As a result, it is estimated that the deformation behavior during cold rolling changes, P {ll} in the structure after recrystallization annealing increases, and the magnetic properties deteriorate. In contrast, the amount of Al
When it is contained at 10 ppm or more, the formation of such coarse silicon nitride is suppressed, and as a result, an increase in P {ll} due to a change in deformation behavior during cold rolling as described above was avoided. It is considered something.

【0035】このように、再結晶後の組織におけるP
{lll}を低減する作用は、不純物元素C, S, N,
OおよびBをそれぞれ 50ppm以下に低減させることによ
り実現されるが、上述したように、Al含有量を所定の範
囲に制御することによってさらに有利に実現される。
As described above, P in the structure after recrystallization
The action of reducing {ll} is due to impurity elements C, S, N,
This is realized by reducing each of O and B to 50 ppm or less, but is more advantageously realized by controlling the Al content within a predetermined range as described above.

【0036】本発明のように、Alを多量添加することな
く、集合組織を改善して磁気特性を改善する方法では、
合金元素の添加量が少ないので飽和磁束密度が高いとい
う利点の他、硬度上昇が起きないという製品の加工性を
確保する上での利点もある。例えば、本発明におけるSi
含有量の上限値であるSi:4.0 wt%の場合でも、鋼板の
硬度はビッカース硬度で約240 であり、良好な加工性を
確保することが可能である。
As in the present invention, the method of improving the texture and improving the magnetic properties without adding a large amount of Al is as follows:
In addition to the advantage that the saturation magnetic flux density is high due to the small amount of the alloying element added, there is also an advantage in ensuring the workability of the product that does not cause an increase in hardness. For example, in the present invention, Si
Even when the content of Si is 4.0 wt%, which is the upper limit of the content, the hardness of the steel sheet is about 240 in Vickers hardness, and good workability can be ensured.

【0037】また、製品板の結晶粒径については、粗大
なほど鉄損特性は改善されるが、本発明にこの技術を加
えて利用することも可能である。この場合に、適正な平
均結晶粒径は50〜500 μm となる。
As for the crystal grain size of the product sheet, the larger the grain size, the better the iron loss characteristics. However, the present invention can be used by adding this technique. In this case, an appropriate average crystal grain size is 50 to 500 μm.

【0038】なお、本発明者らは、さらに素材の添加元
素について検討を行ったところ、Niを添加することによ
り、製品の磁束密度が向上することを見い出した。この
理由には、明らかではないが、Niが強磁性体元素である
ことが何らかの理由で磁束密度の向上に寄与しているも
のと推定している。また、Sn, Sb, Cu, P, Crなどの添
加によって、鉄損が改善される傾向が認められた。この
理由は、おそらく、電気抵抗を増加させることにより鉄
損が低減されたものと推定している。
The present inventors have further studied the elements to be added to the material, and found that the addition of Ni improves the magnetic flux density of the product. Although it is not clear for this reason, it is presumed that the fact that Ni is a ferromagnetic element contributes to the improvement of the magnetic flux density for some reason. In addition, it was observed that the addition of Sn, Sb, Cu, P, Cr and the like tended to improve iron loss. It is presumed that the reason is that the iron loss was reduced by increasing the electric resistance.

【0039】次に、本発明の構成要件の限定理由につい
て述べる。本発明の電磁鋼板の成分としては、Siを含有
させて、電気抵抗を増大させ鉄損を低減する必要がある
が、鉄損改善のためには少なくとも 2.0wt%の添加が必
要である。しかしながら、4.0 wt%を超えると磁束密度
が低下するだけでなく、製品の二次加工性が著しく劣化
するので、Si量は 2.0〜4.0 wt%の範囲に限定した。
Next, the reasons for limiting the constituent elements of the present invention will be described. As a component of the magnetic steel sheet of the present invention, it is necessary to increase the electric resistance and reduce the iron loss by adding Si, but at least 2.0 wt% is required for improving the iron loss. However, when the content exceeds 4.0 wt%, not only the magnetic flux density decreases, but also the secondary workability of the product deteriorates significantly. Therefore, the Si content is limited to the range of 2.0 to 4.0 wt%.

【0040】また、本発明の結晶方位を実現するため
に、鋼板の微量成分を低減することが不可欠であり、コ
ーティングを除く酸化物被膜を含む鋼板全体における、
C, S,N, OおよびBの含有量をそれぞれ 50ppm以
下、好ましくは 20ppm以下まで低減する必要がある。と
いうのは, これ以上の含有量では、製品板結晶方位にお
けるP{lll}が増大して、鉄損が大きく劣化するか
らである。
Further, in order to realize the crystal orientation of the present invention, it is essential to reduce the trace components of the steel sheet.
It is necessary to reduce the contents of C, S, N, O and B to 50 ppm or less, preferably 20 ppm or less, respectively. This is because if the content is more than this, P {ll} in the crystal orientation of the product sheet increases, and the iron loss is greatly deteriorated.

【0041】さらに、製品板の平均結晶粒径は50〜500
μm とする必要がある。というのは、平均結晶粒径が50
μm 未満では、ヒステリシス損が増加するため本発明の
適用によっても鉄損の劣化が免れ得ず、また製品板の硬
度が増大するために加工性も劣化し、一方 500μm を超
えると渦電流損の増加が甚だしく、本発明の技術の適用
によっても鉄損が劣化するからである。
Further, the average crystal grain size of the product plate is 50 to 500.
μm. This is because the average grain size is 50
If the thickness is less than μm, the hysteresis loss increases, so that the application of the present invention cannot avoid the loss of iron loss.Moreover, the hardness of the product plate increases, thereby deteriorating the workability. This is because the increase is extremely large and the iron loss is deteriorated even by applying the technology of the present invention.

【0042】そして、本発明では、以下に述べるような
結晶方位の制御が最も重要である。すなわち、良好な磁
気特性を得るためには、結晶粒の鋼板表面における、結
晶面方位が<111>軸から15°以内である結晶粒の面
積率P{lll}を20%以下とする必要がある。という
のは、P{lll}が20%を超える場合には製品の磁束
密度、鉄損ともに大きく劣化するからである。なお、良
好な打抜き性を確保するためには、ビッカース硬度が 2
40以下であることが好ましい。これを達成する方法とし
ては、種々考えられるけれども、主としてSi, Al, Mn等
の成分量の調整による方法が有利である。
In the present invention, control of the crystal orientation as described below is most important. That is, in order to obtain good magnetic properties, it is necessary to set the area ratio P {ll} of the crystal grains whose crystal plane orientation is within 15 ° from the <111> axis on the steel sheet surface to 20% or less. is there. This is because when P {ll} exceeds 20%, both the magnetic flux density and iron loss of the product are greatly deteriorated. In order to ensure good punching properties, Vickers hardness must be 2
Preferably it is 40 or less. As a method for achieving this, although various methods are conceivable, a method mainly by adjusting the amounts of components such as Si, Al, and Mn is advantageous.

【0043】次に、本発明の電磁鋼板を製造する際の溶
鋼成分の限定理由について説明する。Mnは、熱間加工性
を良好にするために必要な元素であるが、0.005 wt%未
満ではその添加効果に乏しく、一方1.50wt%を超えると
飽和磁束密度が低下するので、Mn量は 0.005〜1.50wt%
の範囲とする。
Next, the reason for limiting the molten steel component in producing the magnetic steel sheet of the present invention will be described. Mn is an element necessary for improving hot workability. However, if it is less than 0.005 wt%, the effect of its addition is poor. If it exceeds 1.50 wt%, the saturation magnetic flux density decreases. ~ 1.50wt%
Range.

【0044】また、最も重要な要件としては、S, N,
OおよびBの不純物元素の上限値をそれぞれ 50ppm以
下、好ましくは 20ppm以下として規制することが重要で
ある。この点、Cに関しては、溶鋼成分の段階で 50ppm
以下としても勿論良いが、溶鋼段階で50ppm を超えてい
ても途中工程での脱炭処理によって 50ppm以下とするこ
ともでき、要するに再結晶焼鈍時に 50ppm以下、好まし
くは 20ppm以下となっていれば良い。これらの不純物の
含有量が50ppm を超えた場合には、特殊な結晶粒界の選
択的移動が妨げられ、再結晶焼鈍時にP{lll}が増
加し、磁気特性が劣化する。
The most important requirements are S, N,
It is important to regulate the upper limit of the impurity elements of O and B to 50 ppm or less, preferably 20 ppm or less, respectively. In this regard, regarding C, 50ppm at the stage of molten steel component
Of course, it can be set as follows, but even if it exceeds 50 ppm in the molten steel stage, it can be reduced to 50 ppm or less by decarburization treatment in the middle step, in short, it is sufficient if it is 50 ppm or less during recrystallization annealing, preferably 20 ppm or less . When the content of these impurities exceeds 50 ppm, the selective movement of special crystal grain boundaries is hindered, P {ll} increases during recrystallization annealing, and magnetic properties deteriorate.

【0045】さらに、Al量の制御は、本発明の無方向性
電磁鋼板を得るために有利な技術であり、このためには
Alを0.0010〜0.10wt%の範囲に制限する必要がある。と
いうのは、Alが0.10wt%を超えると特殊な結晶粒界の移
動が起こりにくく、製品板におけるP{lll}が増加
して鉄損の劣化を招き、一方Alが0.0010wt%に満たない
と窒化珪素が析出して、同じく特殊な結晶粒界の移動が
起こりにくく、P{lll}が増大して鉄損が劣化する
からである。
Further, control of the Al content is an advantageous technique for obtaining the non-oriented electrical steel sheet of the present invention.
It is necessary to limit Al to the range of 0.0010 to 0.10 wt%. This is because if Al exceeds 0.10 wt%, the movement of special crystal grain boundaries does not easily occur, P {ll} in the product plate increases, and iron loss is deteriorated, while Al is less than 0.0010 wt%. This is because silicon nitride precipitates, and similarly, the movement of special crystal grain boundaries does not easily occur, P {ll} increases, and iron loss deteriorates.

【0046】さらに、磁束密度を向上させるためにNiを
添加することができる。しかしながら、添加量が0.01wt
%未満では磁気特性の改善効果に乏しく、一方1.50wt%
を超えると集合組織の発達が不十分で磁気特性が劣化す
るので、Ni量は0.01〜1.50wt%の範囲で添加するものと
した。また、鉄損を向上させるために、Sn:0.01〜0.50
wt%, Sb:0.005 〜0.50wt%, Cu:0.01〜0.50wt%,
P:0.005 〜0.50wt%, Cr:0.01〜1.50wt%を添加する
ことも有効である。いずれも、上記の範囲より添加量が
少ない場合には鉄損改善効果に乏しく、一方添加量が多
い場合には飽和磁束密度の低下を招く。
Further, Ni can be added to improve the magnetic flux density. However, the addition amount is 0.01wt
%, The effect of improving magnetic properties is poor, while 1.50 wt%
If the Nb content exceeds 1, the texture is insufficiently developed and the magnetic properties are degraded. Therefore, the Ni content is set in the range of 0.01 to 1.50 wt%. Further, in order to improve iron loss, Sn: 0.01 to 0.50
wt%, Sb: 0.005 to 0.50wt%, Cu: 0.01 to 0.50wt%,
It is also effective to add P: 0.005 to 0.50 wt% and Cr: 0.01 to 1.50 wt%. In any case, when the addition amount is less than the above range, the iron loss improving effect is poor, while when the addition amount is large, the saturation magnetic flux density is lowered.

【0047】次に、本発明に従う製造方法について説明
する。上記の好適成分組成に調整した溶鋼を、通常の造
塊法または連続鋳造法でスラブとする。また、100 mm以
下の厚さの薄鋳片を直接鋳造法で製造してもよい。スラ
ブは、通常、加熱して熱間圧延に供するが、鋳造後、加
熱せずに直ちに熱間圧延に供してもよい。また、薄鋳片
の場合には、熱間圧延しても良いし、熱間圧延を省略し
てそのまま以後の工程に進めてもよい。ついで、必要に
応じて熱延板焼鈍を施し、さらに必要に応じて中間焼鈍
を挟む1回以上の冷延を施した後、連続焼鈍を行い、そ
の後必要に応じて絶縁コーティングを施す。なお、絶縁
コーティングは、2種類以上の被膜からなる多層膜であ
ってもよいし、樹脂等を混合させたコーティング膜であ
ってもよい。
Next, a manufacturing method according to the present invention will be described. The molten steel adjusted to the above preferable component composition is made into a slab by a usual ingot-making method or a continuous casting method. Further, a thin cast piece having a thickness of 100 mm or less may be manufactured by a direct casting method. The slab is usually heated and subjected to hot rolling, but may be immediately subjected to hot rolling without heating after casting. In the case of a thin slab, hot rolling may be performed, or hot rolling may be omitted and the process may proceed directly to the subsequent steps. Next, if necessary, hot-rolled sheet annealing is performed, and further, if necessary, one or more times of cold rolling sandwiching intermediate annealing is performed, then continuous annealing is performed, and then, if necessary, insulating coating is performed. The insulating coating may be a multilayer film composed of two or more kinds of films, or may be a coating film in which a resin or the like is mixed.

【0048】本発明では、最終冷延前の冷間圧延前の平
均結晶粒径を 100μm 以上とし、最終冷間圧延工程にお
ける少なくとも1パスの圧延温度を 150〜350 ℃以上と
することが、P{lll}を低減して良好な磁気特性を
得る上で特に有効である。冷間圧延前の平均結晶粒径を
100μm 以上とする手段としては、熱延板焼鈍や中間焼
鈍を1000℃以上の高温で行うこと、また熱延板焼鈍に先
立って3〜7%の冷間圧延を施す手段等が挙げられる。
In the present invention, the average grain size before cold rolling before final cold rolling is set to 100 μm or more, and the rolling temperature of at least one pass in the final cold rolling step is set to 150 to 350 ° C. or more. This is particularly effective in reducing {ll} and obtaining good magnetic properties. Average grain size before cold rolling
Means for increasing the thickness to 100 μm or more include performing hot-rolled sheet annealing or intermediate annealing at a high temperature of 1000 ° C. or more, and performing cold rolling of 3 to 7% prior to hot-rolled sheet annealing.

【0049】[0049]

【実施例】実施例1 表1に示す成分組成になるスラブを連続鋳造にて製造し
た。各スラブは、1150℃で20分加熱したのち、熱間圧延
にて 2.8mm厚に仕上げた。ついで、熱延板焼鈍を1150℃
で60秒の条件で行ったのち、270 ℃の温度で冷間圧延を
行い0.35mmの最終板厚に仕上げた。ついで、水素雰囲気
中にて1050℃, 2分の再結晶焼鈍を施したのち、半有機
コーティング液を塗布し 300℃で焼き付けて製品板とし
た。
Example 1 A slab having the composition shown in Table 1 was produced by continuous casting. Each slab was heated at 1150 ° C. for 20 minutes and then hot-rolled to a 2.8 mm thickness. Then, hot rolled sheet annealing is performed at 1150 ° C.
For 60 seconds, and then cold-rolled at a temperature of 270 ° C. to finish to a final thickness of 0.35 mm. Then, after performing recrystallization annealing at 1050 ° C. for 2 minutes in a hydrogen atmosphere, a semi-organic coating solution was applied and baked at 300 ° C. to obtain a product plate.

【0050】かくして得られた製品板について、磁気特
性(圧延(L)方向と圧延直角(C)方向の平均)を測
定した。また、表面の10mm×10mm角領域のおける結晶粒
の方位をEBSPにより測定し、結晶面方位が<111
>軸から15°以内である結晶粒の鋼板表面における面積
率P{lll}を測定した。さらに、製品板の硬度およ
び加工性について調査した。加工性については、製品板
を高さ約10mmに積層して、押しだし式の打抜き機により
直径:30mmの穴開け加工を 100ポイント実施し、その時
の割れの発生率で評価した。また、熱延板焼鈍後および
製品板における平均粒径についても測定した。得られた
結果を、表1に併記する。
The magnetic properties (average of the rolling (L) direction and the direction perpendicular to the rolling (C) direction) of the product sheet thus obtained were measured. The orientation of crystal grains in a 10 mm × 10 mm square area of the surface was measured by EBSP, and the crystal plane orientation was <111.
> The area ratio P {ll} of the crystal grains on the steel sheet surface within 15 ° from the axis was measured. Further, the hardness and workability of the product plate were investigated. The workability was evaluated by laminating product plates to a height of about 10 mm, punching a hole having a diameter of 30 mm by an extrusion-type punching machine at 100 points, and evaluating the cracking rate at that time. Further, the average particle size after annealing of the hot-rolled sheet and in the product sheet was also measured. The results obtained are also shown in Table 1.

【0051】[0051]

【表1】 [Table 1]

【0052】同表から明らかなように、本発明の成分範
囲を満足する場合には、磁気特性のみならず、加工性の
良好な製品が得られている。
As is clear from the table, when the composition range of the present invention is satisfied, a product having not only good magnetic properties but also good workability is obtained.

【0053】実施例2 C:38 ppm, Si:3.74wt%, Mn:0.35wt%, Al:0.013
wt%, S:11 ppm, O:7 ppmおよびN:9ppmを含有
し、残部は実質的にFeの組成になるスラブを、連続鋳造
にて製造した。ついで、1100℃で20分の加熱後、熱間圧
延により3.2 mm厚に仕上げたのち、熱延板焼鈍を表2に
示す温度で60秒間行った。ついで、表2に示す温度で冷
間圧延にて0.50mmの最終板厚に仕上げたのち、同じく表
2に示す温度で 120秒間の再結晶焼鈍を施し、無機コー
ティング液を塗布して 300℃で焼き付けて製品板とし
た。かくして得られた製品板の磁気特性、P{ll
l}、硬度、加工性、熱延板焼鈍後および製品板におけ
る平均粒径について測定した結果を表2に併記する。
Example 2 C: 38 ppm, Si: 3.74 wt%, Mn: 0.35 wt%, Al: 0.013
A slab containing wt%, S: 11 ppm, O: 7 ppm and N: 9 ppm, and the balance being substantially Fe, was produced by continuous casting. Next, after heating at 1100 ° C. for 20 minutes, the sheet was finished to a thickness of 3.2 mm by hot rolling, and then annealed with a hot rolled sheet at a temperature shown in Table 2 for 60 seconds. Then, after finishing to a final thickness of 0.50 mm by cold rolling at the temperature shown in Table 2, it was also subjected to recrystallization annealing for 120 seconds at the temperature also shown in Table 2, and an inorganic coating solution was applied at 300 ° C. The product plate was baked. The magnetic properties of the product plate thus obtained, P {ll
Table 2 also shows the results of measurements of l}, hardness, workability, average particle size after annealing of the hot-rolled sheet and in the product sheet.

【0054】[0054]

【表2】 [Table 2]

【0055】表2に示したとおり、冷延前粒径を大きく
すること、さらには圧延温度を高くすることにより、特
に磁気特性が良好でかつ加工性の良好な製品板が得られ
ることが分かる。
As shown in Table 2, it is found that by increasing the grain size before cold rolling and further increasing the rolling temperature, a product plate having particularly good magnetic properties and good workability can be obtained. .

【0056】実施例3 表3に示す成分組成になる薄鋳片(板厚:4.5 mm)を直
接鋳造法で製造した。この薄鋳片に、1150℃, 60秒間の
熱延板焼鈍を施したのち、室温での冷間圧延で1.2 mmの
中間厚とし、1000℃, 60秒間の中間焼鈍後、室温での冷
間圧延で0.35mmの最終板厚に仕上げた。ついで、Ar雰囲
気中にて1025℃, 5分間の再結晶焼鈍を施して製品板と
した。かくして得られた製品板の磁気特性、P{ll
l}、硬度、加工性および平均粒径について測定した結
果を表4に示す。
Example 3 A thin slab (sheet thickness: 4.5 mm) having the composition shown in Table 3 was produced by a direct casting method. This thin slab was subjected to hot-rolled sheet annealing at 1150 ° C for 60 seconds, then cold-rolled at room temperature to an intermediate thickness of 1.2 mm, and after intermediate annealing at 1000 ° C for 60 seconds, cold-rolled at room temperature. Rolled to a final thickness of 0.35 mm. Subsequently, recrystallization annealing was performed in an Ar atmosphere at 1025 ° C. for 5 minutes to obtain a product plate. The magnetic properties of the product plate thus obtained, P {ll
Table 4 shows the results measured for l, hardness, workability, and average particle size.

【0057】[0057]

【表3】 [Table 3]

【0058】[0058]

【表4】 [Table 4]

【0059】表4に示したとおり、本発明を満足する成
分系を用いて製造することにより、磁気特性および加工
性の良好な製品が得られている。
As shown in Table 4, by using the component system satisfying the present invention, a product having good magnetic properties and workability was obtained.

【0060】[0060]

【発明の効果】かくして、本発明によれば、良好な磁気
特性と加工性を兼ね備えた電磁鋼板を得ることができ
る。
As described above, according to the present invention, it is possible to obtain an electromagnetic steel sheet having both good magnetic properties and workability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 鋼中Al量と鉄損(W15/50)および磁束密度
(B50)との関係を示したグラフである。
FIG. 1 is a graph showing the relationship between the amount of Al in steel, iron loss (W 15/50 ), and magnetic flux density (B 50 ).

【図2】 P{lll}と鉄損との関係を示したグラフ
である。
FIG. 2 is a graph showing the relationship between P {ll} and iron loss.

【図3】 I{lll}と鉄損との関係を示したグラフ
である。
FIG. 3 is a graph showing a relationship between I {ll} and iron loss.

【図4】 Q{lll}と鉄損との関係を示したグラフ
である。
FIG. 4 is a graph showing a relationship between Q {ll} and iron loss.

【図5】 冷間圧延における圧延温度と鉄損およびP
{lll}との関係を示したグラフである。
FIG. 5: Rolling temperature, iron loss and P in cold rolling
It is the graph which showed the relationship with {ll}.

【図6】 熱延板焼鈍後の平均粒径と鉄損およびP{l
ll}との関係を示したグラフである。
FIG. 6: Average grain size, iron loss and P {l after annealing of hot-rolled sheet
11 is a graph showing a relationship with}.

【図7】 鋼塊群A, Bについて、鋼中Al量とP{ll
l}との関係を示したグラフである。
FIG. 7 shows the amount of Al in steel and P {ll in steel ingot groups A and B.
It is a graph showing the relationship with l}.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01F 1/16 H01F 1/16 A (72)発明者 河野 正樹 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 小松原 道郎 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 Fターム(参考) 4K033 AA01 BA01 CA01 CA02 CA03 CA06 CA07 CA09 FA12 HA01 HA03 HA05 5E041 AA02 AA19 CA02 HB05 HB07 HB11 NN01 NN06 NN18 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01F 1/16 H01F 1/16 A (72) Inventor Masaki Kono 1-chome Mizushima Kawasaki-dori (Kurashiki City, Okayama Prefecture) None) Inside the Mizushima Works of Kawasaki Steel Co., Ltd. (72) Inventor Michio Komatsubara 1-chome, Mizushima Kawasaki-dori, Kurashiki-shi, Okayama Pref. CA07 CA09 FA12 HA01 HA03 HA05 5E041 AA02 AA19 CA02 HB05 HB07 HB11 NN01 NN06 NN18

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Si:2.0 〜4.0 wt%を含み、かつC,
S, N, OおよびBの含有量がそれぞれ 50ppm以下の成
分組成になり、平均結晶粒径が50〜500 μm で、しかも
結晶面方位が<111>軸から15°以内である結晶粒の
鋼板表面における面積率が20%以下であることを特徴と
する、磁気特性および加工性に優れた無方向性電磁鋼
板。
(1) Si: contains 2.0 to 4.0 wt%, and contains C,
A steel sheet of a crystal grain in which the contents of S, N, O and B are each 50 ppm or less, the average crystal grain size is 50 to 500 μm, and the crystal plane orientation is within 15 ° from the <111> axis. Non-oriented electrical steel sheet excellent in magnetic properties and workability, characterized in that the area ratio on the surface is 20% or less.
【請求項2】 請求項1において、鋼組成が、さらにA
l:0.0010〜0.10wt%を含有する組成になることを特徴
とする、磁気特性および加工性に優れた無方向性電磁鋼
板。
2. The steel according to claim 1, wherein the steel composition further comprises A
l: A non-oriented electrical steel sheet excellent in magnetic properties and workability, characterized by having a composition containing 0.0010 to 0.10 wt%.
【請求項3】 請求項1または2において、鋼組成が、
さらにNi:0.01〜1.50wt%、Sn:0.01〜0.50wt%, Sb:
0.005 〜0.50wtwt%, Cu:0.01〜0.50wt%, P:0.005
〜0.50wt%およびCr:0.01〜1.50wt%のうちから選んだ
少なくとも一種を含有する組成になることを特徴とす
る、磁気特性および加工性に優れた無方向性電磁鋼板。
3. The steel composition according to claim 1, wherein the steel composition is
Ni: 0.01 to 1.50 wt%, Sn: 0.01 to 0.50 wt%, Sb:
0.005 to 0.50 wt%, Cu: 0.01 to 0.50 wt%, P: 0.005
A non-oriented electrical steel sheet having excellent magnetic properties and workability, characterized by having a composition containing at least one selected from 0.50 wt% and Cr: 0.01 to 1.50 wt%.
【請求項4】 Si:2.0 〜4.0 wt%、Mn:0.005 〜1.50
wt%およびAl:0.0010〜0.10wt%を含み、かつS, N,
OおよびBの含有量をそれぞれ 50ppm以下に低減した組
成になる溶鋼を、スラブとし、ついで熱間圧延後、必要
に応じて熱延板焼鈍を施した後、1回または中間焼鈍を
挟む2回以上の冷間圧延を施して最終板厚に仕上げ、つ
いで再結晶焼鈍を施すことからなる、平均結晶粒径が50
〜500 μmで、しかも結晶面方位が<111>軸から15
°以内である結晶粒の鋼板表面における面積率が20%以
下を満足する、磁気特性および加工性に優れた無方向性
電磁鋼板の製造方法。
4. Si: 2.0 to 4.0 wt%, Mn: 0.005 to 1.50
wt% and Al: 0.0010 to 0.10 wt%, and S, N,
Molten steel having a composition in which the contents of O and B are reduced to 50 ppm or less, respectively, is used as a slab. Then, after hot rolling, hot-rolled sheet annealing is performed as necessary, and then once or twice with intermediate annealing Applying the above cold rolling to finish the final sheet thickness, and then performing recrystallization annealing, the average crystal grain size is 50
~ 500 μm, and the crystal plane orientation is 15 from the <111> axis.
A method for producing a non-oriented electrical steel sheet excellent in magnetic properties and workability, in which the area ratio of crystal grains within the range of less than 20% on the steel sheet surface is not more than 20%.
【請求項5】 請求項4において、最終冷間圧延前の平
均結晶粒径を 100μm 以上にすると共に、最終冷間圧延
の少なくとも1パスを 150〜350 ℃の圧延温度で行うこ
とを特徴とする、磁気特性および加工性に優れた無方向
性電磁鋼板の製造方法。
5. The method according to claim 4, wherein the average grain size before the final cold rolling is set to 100 μm or more, and at least one pass of the final cold rolling is performed at a rolling temperature of 150 to 350 ° C. For producing non-oriented electrical steel sheets having excellent magnetic properties and workability.
JP24971899A 1999-09-03 1999-09-03 Method for producing non-oriented electrical steel sheet Expired - Lifetime JP3855554B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP24971899A JP3855554B2 (en) 1999-09-03 1999-09-03 Method for producing non-oriented electrical steel sheet
US09/649,052 US6436199B1 (en) 1999-09-03 2000-08-29 Non-oriented magnetic steel sheet having low iron loss and high magnetic flux density and manufacturing method therefor
EP00118794A EP1081238B1 (en) 1999-09-03 2000-08-30 Non-oriented magnetic steel sheet having low iron loss and high magnetic flux density
DE60045810T DE60045810D1 (en) 1999-09-03 2000-08-30 Non-grain oriented electrical steel sheet with low watt losses and high magnetic flux density
EP10011680A EP2287347B1 (en) 1999-09-03 2000-08-30 Non-oriented magnetic steel sheet having low iron loss and high magnetic flux density and manufacturing method therefor
CNB001338420A CN1138014C (en) 1999-09-03 2000-09-01 Non orientation electromagnetic steel plate with low iron loss and high magnetic flux density performance and its manufacturing method
KR1020000051446A KR100702875B1 (en) 1999-09-03 2000-09-01 Non-oriented magnetic steel sheet having low iron loss and high magnetic flux density and manufacturing method thereof
US10/140,207 US6531001B2 (en) 1999-09-03 2002-05-08 Non-oriented magnetic steel sheet having low iron loss and high magnetic flux density and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24971899A JP3855554B2 (en) 1999-09-03 1999-09-03 Method for producing non-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2001073097A true JP2001073097A (en) 2001-03-21
JP3855554B2 JP3855554B2 (en) 2006-12-13

Family

ID=17197175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24971899A Expired - Lifetime JP3855554B2 (en) 1999-09-03 1999-09-03 Method for producing non-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP3855554B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248559A (en) * 2009-04-14 2010-11-04 Nippon Steel Corp Nonoriented electrical steel sheet
KR20160078182A (en) * 2014-12-24 2016-07-04 주식회사 포스코 Non-orientied electrical steel sheet and method for manufacturing the same
WO2017056383A1 (en) * 2015-10-02 2017-04-06 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet and manufacturing method of same
CN106755875A (en) * 2016-12-02 2017-05-31 武汉钢铁股份有限公司 High-magnetic strength non-oriented silicon steel continuous annealing technique high
JP2017128801A (en) * 2016-01-15 2017-07-27 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet and method for producing the same
JP2017133100A (en) * 2016-01-27 2017-08-03 Jfeスチール株式会社 Nonoriented electromagnetic steel sheet and manufacturing method therefor
JP2017193754A (en) * 2016-04-21 2017-10-26 新日鐵住金株式会社 Non-oriented electromagnetic steel sheet for straight moving iron core, manufacturing method therefor and straight moving iron core
JPWO2018164185A1 (en) * 2017-03-07 2019-12-26 日本製鉄株式会社 Non-oriented electrical steel sheet and method for producing non-oriented electrical steel sheet
CN111511948A (en) * 2017-12-26 2020-08-07 Posco公司 Non-oriented electrical steel sheet and method for manufacturing the same
CN112662945A (en) * 2020-12-04 2021-04-16 马鞍山钢铁股份有限公司 Control method for improving silicon content stability of high-grade non-oriented silicon steel
JP2022514793A (en) * 2018-12-19 2022-02-15 ポスコ Non-oriented electrical steel sheet and its manufacturing method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248559A (en) * 2009-04-14 2010-11-04 Nippon Steel Corp Nonoriented electrical steel sheet
KR20160078182A (en) * 2014-12-24 2016-07-04 주식회사 포스코 Non-orientied electrical steel sheet and method for manufacturing the same
KR101650849B1 (en) * 2014-12-24 2016-08-24 주식회사 포스코 Non-orientied electrical steel sheet and method for manufacturing the same
JPWO2017056383A1 (en) * 2015-10-02 2017-10-05 Jfeスチール株式会社 Non-oriented electrical steel sheet and manufacturing method thereof
WO2017056383A1 (en) * 2015-10-02 2017-04-06 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet and manufacturing method of same
JP2019056176A (en) * 2016-01-15 2019-04-11 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet and method for producing the same
JP2017128801A (en) * 2016-01-15 2017-07-27 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet and method for producing the same
JP2017133100A (en) * 2016-01-27 2017-08-03 Jfeスチール株式会社 Nonoriented electromagnetic steel sheet and manufacturing method therefor
JP2017193754A (en) * 2016-04-21 2017-10-26 新日鐵住金株式会社 Non-oriented electromagnetic steel sheet for straight moving iron core, manufacturing method therefor and straight moving iron core
CN106755875A (en) * 2016-12-02 2017-05-31 武汉钢铁股份有限公司 High-magnetic strength non-oriented silicon steel continuous annealing technique high
JPWO2018164185A1 (en) * 2017-03-07 2019-12-26 日本製鉄株式会社 Non-oriented electrical steel sheet and method for producing non-oriented electrical steel sheet
CN111511948A (en) * 2017-12-26 2020-08-07 Posco公司 Non-oriented electrical steel sheet and method for manufacturing the same
JP2022514793A (en) * 2018-12-19 2022-02-15 ポスコ Non-oriented electrical steel sheet and its manufacturing method
JP7478739B2 (en) 2018-12-19 2024-05-07 ポスコ カンパニー リミテッド Non-oriented electrical steel sheet and its manufacturing method
CN112662945A (en) * 2020-12-04 2021-04-16 马鞍山钢铁股份有限公司 Control method for improving silicon content stability of high-grade non-oriented silicon steel

Also Published As

Publication number Publication date
JP3855554B2 (en) 2006-12-13

Similar Documents

Publication Publication Date Title
JP4126479B2 (en) Method for producing non-oriented electrical steel sheet
KR20190112757A (en) Manufacturing method of non-oriented electrical steel sheet and non-oriented electrical steel sheet
KR100658408B1 (en) An electromagnetic steel sheet having superior formability and magnetic properties and a process for the production of the same
JP2006501361A5 (en)
JP2000129356A (en) Production of grain oriented silicon steel sheet
KR20080012957A (en) Grain-oriented magnetic steel sheet with extremely high magnetic property and process for porducing the same
JP3855554B2 (en) Method for producing non-oriented electrical steel sheet
KR940008933B1 (en) Method of producing non-oriented electromagnetic steel strip having superior magnetic properties and appearance
JP2008150697A (en) Production method of magnetic steel sheet
JPH03219020A (en) Production of nonoriented silicon steel sheet
JP2001003145A (en) Grain oriented silicon steel sheet excellent in magnetic property and punchability and its production
JP2003171718A (en) Manufacturing method of magnetic steel sheet of excellent mean magnetic characteristic in rolled surface
JP2019026891A (en) Nonoriented magnetic steel sheet, and method of producing the same
JP3846064B2 (en) Oriented electrical steel sheet
JP4123629B2 (en) Electrical steel sheet and manufacturing method thereof
JPH0978129A (en) Production of nonortiented silicon steel sheet extremely excellent in magnetic property in all orientation
JP2023554123A (en) Non-oriented electrical steel sheet and its manufacturing method
JP3348802B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JP3994667B2 (en) Method for producing grain-oriented electrical steel sheet
JP2001247943A (en) Nonoriented silicon steel sheet with low iron loss and high magnetic flux density, and its manufacturing method
JP2001040449A (en) Manufacture of grain-oriented electrical steel sheet superior in magnetic flux density and iron loss, and steel plate before final cold rolling for manufacturing the steel plate
CN114616353B (en) Non-oriented electromagnetic steel sheet
CN115003845B (en) Non-oriented electrical steel sheet and method for manufacturing same
JPH08269553A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH08931B2 (en) Manufacturing method of steel plate for particle accelerator by continuous annealing

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060904

R150 Certificate of patent or registration of utility model

Ref document number: 3855554

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

EXPY Cancellation because of completion of term