JPH07256468A - Solid phase diffusion joining method - Google Patents

Solid phase diffusion joining method

Info

Publication number
JPH07256468A
JPH07256468A JP7658294A JP7658294A JPH07256468A JP H07256468 A JPH07256468 A JP H07256468A JP 7658294 A JP7658294 A JP 7658294A JP 7658294 A JP7658294 A JP 7658294A JP H07256468 A JPH07256468 A JP H07256468A
Authority
JP
Japan
Prior art keywords
joining
ceramic particles
phase diffusion
solid phase
hydrostatic pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7658294A
Other languages
Japanese (ja)
Inventor
Satoru Ishizuka
哲 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP7658294A priority Critical patent/JPH07256468A/en
Publication of JPH07256468A publication Critical patent/JPH07256468A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To enable solid-phase diffusion joining of intricate joint surfaces by embedding joining members into the ceramic particles packed into a capsule and applying a hydrostatic pressure thereon from outside in a state of pressing the joining members to each other. CONSTITUTION:The ceramic particles 12 are packed into an outside cylinder 11 made of steel to be used as the capsule. The joining members 13, 14 pressed to each other are embedded into these ceramic particles 12. The outside cylinder 11 made of steel is hermetically sealed and the hydrostatic pressure is applied isotropically on the outside cylinder 11 made of steel under heating. The final pressure medium directly acting on the joint parts 3, 4 are formed of the ceramic particles 12 and, therefore, the hydrostatic pressure acts on the joint surfaces and the solid phase diffusion joining is made possible if the ceramic particles 12 are so packed as not to intrude into the spacing between the joint surfaces. The pressurizing force is preferably >=1MPa and the upper limit thereof is sufficient with 1000MPa. The heating time is preferably >=0.5Ks and the upper limit thereof is sufficient with 20Ks.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属材料,複合材料,
セラミックス材料などからなる接合部材を用い、該接合
部材の当接した面に圧力と熱を加えることで、部材を固
相状態で接合する固相拡散接合法に関し、特に圧力媒体
にセラミックス粒子を介設しておこなう固相拡散接合法
に関する。
BACKGROUND OF THE INVENTION The present invention relates to a metal material, a composite material,
The present invention relates to a solid-phase diffusion bonding method in which a joining member made of a ceramic material or the like is used, and pressure and heat are applied to the abutting surfaces of the joining member to join the members in a solid-phase state. The present invention relates to a solid-phase diffusion bonding method that is carried out.

【0002】[0002]

【従来の技術】2つ以上の部材の、互に接合しようとす
る面を精度よく平滑に仕上げ、その面に熱と圧力を加え
ながら固相状態で接合する方法がある。この接合方法
は、一般に拡散接合と呼ばれており、その要領を図6に
示す。即ち、接合しようとする部材A,Bは金属材料の
場合、その結晶粒径が1μm 以下と細かく、接合面が十
点平均粗さで0.1〜0.2μm 以下に仕上げられて清
浄であることが要求される。そして、これらの接合部材
A,Bを、加圧用の治具1,2の間に挾み、所定の温度
に加熱しながら所定の圧力Pのもとで、真空容器3内の
真空中で7.2〜18ks 程度の時間をかけて接合され
る。なお、4は加熱用のヒーター、5は密封用のオイル
シールである。一方、接合部材A,Bの間に、図7に示
すように箔状のインサート材(金属)Cを挾み、圧力と
熱を加えることで接合部材A,Bとインサート材Cとを
反応させて接合する接合方法がある。この方法は接合部
材の結晶粒径は粗くともよく、その接合面の仕上げ精度
も1μm 以下とし、両接合部材A,Bの間に、5〜10
0μm 程度の厚さのインサート金属Cを挾み、真空中又
は不活性ガス中で3.6Ks 以上の時間と圧力と熱を加
えることによって接合するものである。
2. Description of the Related Art There is a method in which the surfaces of two or more members to be bonded to each other are accurately finished to be smooth, and the surfaces are bonded in a solid state while applying heat and pressure. This joining method is generally called diffusion joining, and its procedure is shown in FIG. That is, when the members A and B to be joined are made of a metallic material, the crystal grain size thereof is fine, 1 μm or less, and the joining surface is finished to have a ten-point average roughness of 0.1 to 0.2 μm or less and is clean. Is required. Then, the joining members A and B are sandwiched between the pressurizing jigs 1 and 2 and heated to a predetermined temperature under a predetermined pressure P in a vacuum in the vacuum container 3. Bonding takes about 2 to 18 ks. In addition, 4 is a heater for heating and 5 is an oil seal for sealing. On the other hand, as shown in FIG. 7, a foil-shaped insert material (metal) C is sandwiched between the joining members A and B, and pressure and heat are applied to cause the joining members A and B and the insert material C to react with each other. There is a joining method that joins together. In this method, the crystal grain size of the joining member may be coarse, the finishing accuracy of the joining surface is 1 μm or less, and the distance between the joining members A and B is 5 to 10 μm.
The insert metal C having a thickness of about 0 μm is sandwiched and bonded by applying pressure and heat for 3.6 Ks or more in a vacuum or an inert gas for 3.6 Ks or more.

【0003】[0003]

【発明が解決しようとする課題】前記、図6に示す方法
は、部材の変形を極力抑えて接合でき、接合部強度も優
れているが、その接合条件として、前記のように部材の
結晶粒径が1μm 以下であることが必要であり、接合面
の仕上げ精度が高く、雰囲気が真空であること、接合時
間も7.2Ks 以上かかるという欠点がある。一方、イ
ンサート材を用いる接合方法は、図6の方法も同様であ
るが、加圧手段は基本的にプレスによりおこなうもので
あり、大型プレス機械が必要となる。しかも加圧力に対
して垂直な面でのみの接合しかできない。したがって、
接合部材は単純な形状のもののみに限定され、複雑な形
状面での接合はできない。さらに接合部材の表面部分を
複合材料によって同時に複合化するということも、当然
不可能である。本発明は、前記事情に鑑みてなされたも
ので、前記問題点を解消した固相拡散接合法を提供する
ことを目的とする。
According to the method shown in FIG. 6, the deformation of the members can be bonded as much as possible and the strength of the bonded portion is excellent, but the bonding condition is as described above. The diameter is required to be 1 μm or less, the finishing accuracy of the joining surface is high, the atmosphere is vacuum, and the joining time is 7.2 Ks or more. On the other hand, the joining method using the insert material is the same as the method shown in FIG. 6, but the pressing means is basically performed by pressing, and a large-sized press machine is required. Moreover, it is possible to join only on the surface perpendicular to the applied pressure. Therefore,
The joining members are limited to those having a simple shape, and joining with a complicated shape surface is not possible. Further, it is naturally impossible to simultaneously compound the surface portion of the joining member with the compound material. The present invention has been made in view of the above circumstances, and an object thereof is to provide a solid phase diffusion bonding method that solves the above problems.

【0004】[0004]

【課題を解決するための手段】前記目的に添い、本発明
は接合部材を固相の状態で接合する場合において、接合
部材を当接した状態で、カプセル内に充填したセラミッ
クス粒子内に埋込み密封し、全体を所定温度にしつつ、
カプセル外部より静水圧を加えて固相の状態で接合する
固相拡散接合法により前記課題を解消した。本発明によ
って接合部材の複雑な接合面での固相拡散接ができ、同
時に接合部材表面の複合化ができる。
According to the present invention, in the case of joining a joining member in a solid phase state, the present invention is embedded and sealed in ceramic particles filled in a capsule with the joining member abutting. Then, while keeping the whole at a predetermined temperature,
The above problems were solved by a solid phase diffusion bonding method in which hydrostatic pressure is applied from the outside of the capsule to bond in a solid phase state. According to the present invention, solid-phase diffusion welding can be performed on a complicated joining surface of a joining member, and at the same time, the joining member surface can be composited.

【0005】以下、本発明について、図面を参照しなが
ら詳細に説明する。本発明で用いるセラミックスは、た
とえば、SiC,Si3 4 ,SiO2 ,Al23
どのセラミックス粒子を用いることができる。これらセ
ラミックス粒子は異種複数のセラミックス粒子を混合し
たものでもよい。セラミックス粒子の粒径は、圧力伝達
が円滑にできるように100μm 以下がよく、下限は
0.1μm で充分である。処理には、カプセルとして、
例えば図1に示すように鋼製外筒11を用い、この外筒
11内に前記セラミックス粒子12を充填し、このセラ
ミックス粒子12の間に当接した接合部材13,14を
埋込む。次に、この鋼製外筒11を密封したあと、この
鋼製外筒11に対し、加熱しながら等方から静水圧を加
える。15はその加熱用ヒーターを示す。加圧力は、部
材の接合を円滑かつ均一に行わせるため、0.1MPa
以上がよく、上限は1000MPa で充分である。ま
た、加熱時間は接合を充分行わせるため、0.5ks 以
上が好ましく上限は20ks で充分である。加熱温度は
接合部材の種類,材質に応じて適宜選定する。接合をお
こなう接合部材の構造としては、具体的にはたとえば図
2(a ),(b)に示すように筒状の円筒21と、この
円筒21の頂部に、たとえば高温耐磨耗性材料からなる
円板22を接合するものとし、円板22と円筒21の間
にインサート用の金属箔23を挾んだものを、前記セラ
ミックス粒子の中に埋込む実施例態様がある。
The present invention will be described in detail below with reference to the drawings. As the ceramics used in the present invention, for example, ceramic particles of SiC, Si 3 N 4 , SiO 2 , Al 2 O 3 or the like can be used. These ceramic particles may be a mixture of different kinds of ceramic particles. The particle size of the ceramic particles is preferably 100 μm or less so that pressure transmission can be carried out smoothly, and the lower limit of 0.1 μm is sufficient. For processing, as a capsule,
For example, as shown in FIG. 1, a steel outer cylinder 11 is used, the ceramic particles 12 are filled in the outer cylinder 11, and the joining members 13 and 14 in contact with each other are embedded between the ceramic particles 12. Next, after sealing the steel outer cylinder 11, isostatic pressure is applied to the steel outer cylinder 11 from the isotropic direction while heating. Reference numeral 15 indicates the heating heater. The applied pressure is 0.1MPa in order to join the members smoothly and uniformly.
The above is good, and an upper limit of 1000 MPa is sufficient. In addition, the heating time is preferably 0.5 ks or more, and the upper limit is 20 ks, which is sufficient for sufficient bonding. The heating temperature is appropriately selected according to the type and material of the joining members. As a structure of a joining member for joining, specifically, for example, as shown in FIGS. 2 (a) and 2 (b), a cylindrical cylinder 21 and a top portion of the cylinder 21 are made of, for example, a high-temperature wear-resistant material. There is an embodiment mode in which the disc 22 to be joined is joined and a metal foil 23 for insert sandwiched between the disc 22 and the cylinder 21 is embedded in the ceramic particles.

【0006】なお、本発明に係る前記方法は、接合部材
に直接作用する最終圧力媒体をセラミックス粒子とした
ため、接合部材の接合面にセラミックス粒子が入り込ま
ないようにすれば、接合面に静水圧が加わり、固相拡散
接合が可能となる。いま、仮りに最終圧力媒体にガスを
用いた場合は、接合面に等方静水圧が加わるため接合で
きない。すなわち、本発明の図1(a)に示す状態では
圧力Pは等方的(完全等方圧ではない)であるため、接
合部材13,14の接合面に対し、図示の矢印Mのよう
に、セラミックス粒子を介して作用し、接合面が複雑形
状でも、また、どちらを向いていても接合できる。さら
に部材内部欠陥(巣や空隙など)が存在するときは、こ
れを押し潰してしまう。また必要があれば圧力媒体であ
るセラミックス粒子を、接合部材表面部に侵入させて、
その部分の複合化もできる。よって固相拡散接合に必要
としているプレス機も不要となる。一方、最終圧力媒体
にガスを用いた場合には図1(b)に矢印Nで示すよう
に接合部材13,14の接合面を押し付けるような圧力
は作用しないので接合できない。また部材表面につなが
っている欠陥は潰れない。
In the method according to the present invention, the final pressure medium acting directly on the joining member is ceramic particles. Therefore, if the ceramic particles are prevented from entering the joining surface of the joining member, hydrostatic pressure is applied to the joining surface. In addition, solid phase diffusion bonding becomes possible. Now, if gas is used as the final pressure medium, isotropic hydrostatic pressure is applied to the joint surface, so that joining is not possible. That is, in the state shown in FIG. 1A of the present invention, the pressure P is isotropic (not completely isotropic), and therefore, as indicated by an arrow M in the drawing, with respect to the joint surfaces of the joint members 13 and 14. By acting through the ceramic particles, it is possible to join even if the joint surface has a complicated shape or faces either direction. Further, when there are internal defects (such as cavities and voids) in the member, they are crushed. If necessary, the ceramic particles that are the pressure medium are allowed to enter the surface of the joining member,
The part can be compounded. Therefore, the press machine required for solid phase diffusion bonding is also unnecessary. On the other hand, when gas is used as the final pressure medium, the pressure for pressing the joint surfaces of the joint members 13 and 14 as shown by the arrow N in FIG. In addition, defects connected to the surface of the member will not collapse.

【0007】[0007]

【実施例】以下に、本発明の実施例を示すが、本発明
は、これらの実施例のみに限定されるものではない。実施例1 φ40×45mmのJIS SPCC製外筒内に、平均粒
子径5μm のSiC粒子を充填した。これに接合部材と
して、JIS AC8A合金に平均粒子径5μm のSi
C粒子を5mass%添加した複合材料からなるφ25
×h20mmの円筒と、φ20×h2.5mmのJIS S
KD11の円板を用意し、この部材の間にφ20×h
0.02mmのCu円板箔を挾み、図2に示すように組み
合わせてSiC粒子内に埋没させ、外筒内部を0.1P
a 程度に減圧後、溶接密閉した。更にその後、熱間等方
静水圧(HIP)装置により全体を823Kに加熱しつ
つ、Ar雰囲気で約100MPa の静水圧を約3.6k
s 間加えた。以上の処理によって図3に示すようにAC
8A合金複合材料からなる部材とSKD11の部材とは
固相拡散接合でき、さらにAC8A合金複合材料の表面
にはSiC粒子が侵入し複合化できた。この部材は、次
工程で図2(C)に示すようなバルブリフタに加工し
た。このバルブリフタは、本体マトリックスがアルミ合
金製なので軽量であり、カムとの摺動で耐摩耗性が要求
される頂部が高耐摩耗材料で補われ、使用に十分耐える
良好な部品とすることができた。なお、側面に要求され
る耐摩耗性は、SiC粒子による複合化で十分なものと
なった。
EXAMPLES Examples of the present invention will be shown below, but the present invention is not limited to these examples. Example 1 SiC particles having an average particle diameter of 5 μm were filled in a JIS SPCC outer cylinder of φ40 × 45 mm. As a joining member, a JIS AC8A alloy with Si having an average particle size of 5 μm was used.
Φ25 made of a composite material with C particles added at 5 mass%
× h20mm cylinder and φ20 × h2.5mm JIS S
Prepare a disk of KD11, and place φ20 × h between these members.
A Cu disk foil of 0.02 mm is sandwiched, combined as shown in FIG. 2 and embedded in SiC particles, and the inside of the outer cylinder is set to 0.1 P.
After reducing the pressure to about a, it was sealed by welding. After that, while the whole is heated to 823K by a hot isostatic pressure (HIP) device, a hydrostatic pressure of about 100MPa in Ar atmosphere is about 3.6k.
added for s. As a result of the above processing, as shown in FIG.
The member made of the 8A alloy composite material and the member of SKD11 could be solid phase diffusion bonded, and further, SiC particles could penetrate into the surface of the AC8A alloy composite material to form a composite. This member was processed into a valve lifter as shown in FIG. 2C in the next step. This valve lifter is lightweight because the main body matrix is made of aluminum alloy, and the top part that requires wear resistance due to sliding with the cam is supplemented with a high wear resistant material, and it can be a good part that can withstand sufficient use. It was Note that the abrasion resistance required for the side surface was sufficient with a composite of SiC particles.

【0008】実施例2 φ100×h100mmのJIS SPCC製外筒内に、
平均粒子径5μm のSiC粒子を充填した。これに接合
部材として図5に示すAC4C製シリンダヘッド25
と、その燃焼室の高温強度改善のために、AC8A合金
に径が10μm のSiC粒子を20mass%添加した
複合材料の円板26を接触させ、これらをSiC粒子内
に埋没させ、外筒内部を0.1Pa 程度に減圧後、溶接
密閉した。更にその後、HIP装置により全体を798
Kに加熱しつつ、Ar雰囲気で約100MPa の静水圧
を約3.6ks 間加えた。このことにより図5(b)に
示すように、これらは固相拡散接合でき、AC4C合金
の表面にはSiC粒子が侵入複合化できた。その接合部
分Sの拡大組織を図4に示す。その後仕上げ加工したシ
リンダヘッドは、燃焼室に適用した複合材料のため燃焼
室の高温強度が向上し、また複合材料のマトリックスが
アルミ合金のため、本体との熱伝導(冷却性)が良好
で、高温燃焼,高速回転,長時間作動等によく耐える良
好な部品とすることができた。
Example 2 In an outer cylinder made of JIS SPCC of φ100 × h100 mm,
SiC particles having an average particle diameter of 5 μm were filled. The AC4C cylinder head 25 shown in FIG.
In order to improve the high temperature strength of the combustion chamber, a disk 26 of a composite material in which 20 mass% of SiC particles having a diameter of 10 μm is added to the AC8A alloy is brought into contact, and these are embedded in the SiC particles, and the inside of the outer cylinder is After reducing the pressure to about 0.1 Pa, it was sealed by welding. After that, the entire HIP device
While heating to K, a hydrostatic pressure of about 100 MPa was applied for about 3.6 ks in an Ar atmosphere. As a result, as shown in FIG. 5B, these could be solid-phase diffusion bonded, and the SiC particles could be infiltrated into the surface of the AC4C alloy to form a complex. The enlarged structure of the joint portion S is shown in FIG. The finished cylinder head has a composite material applied to the combustion chamber, which improves the high-temperature strength of the combustion chamber. Also, since the matrix of the composite material is an aluminum alloy, it has good heat conduction (cooling) with the main body. It was a good component that could withstand high temperature combustion, high speed rotation, and long-term operation.

【0009】[0009]

【発明の効果】以上のように本発明によれば、、固相拡
散接合において、従来必要としていた大型のプレス機械
は不要となるとともに、複雑な形状の接合面であっても
接合が可能となった。すなわち接合面に静水圧が加えら
れるので、その面はどちらを向いていても接合できるよ
うになった。また接合部材はHIP効果を受けるため、
内部に巣や隙間があっても押し潰すから、内部欠陥の解
消ができる。さらに接合部材表面の部分に圧力媒体に用
いているセラミックス粒子を同時に侵入させ、その部分
の複合化も可能となった。
As described above, according to the present invention, in solid phase diffusion bonding, a large-sized press machine conventionally required is not necessary, and even a bonding surface having a complicated shape can be bonded. became. That is, since hydrostatic pressure is applied to the joint surface, the joint surface can be joined regardless of which direction it is facing. Also, since the joining member receives the HIP effect,
Even if there are cavities or gaps inside, it will be crushed, so internal defects can be eliminated. In addition, the ceramic particles used as the pressure medium can be simultaneously introduced into the surface of the joining member, and it has become possible to combine the parts.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に関連する方法の説明図で、同図(a)
は本発明の方法を、同図(b)はこれと比較した他の方
法を説明する図である。
FIG. 1 is an explanatory view of a method related to the present invention, in which FIG.
Is a diagram for explaining the method of the present invention, and FIG. 7B is a diagram for explaining another method compared with this.

【図2】本発明の実施例で、同図(a),(b),
(c)は、その要領を説明する図である。
FIG. 2 is an embodiment of the present invention, in which (a), (b),
(C) is a figure explaining the point.

【図3】本発明に係る方法で接合した部材の接合断面を
拡大した金属組織で、図面に代る写真である。
FIG. 3 is a photograph, instead of a drawing, showing an enlarged metallographic structure of a joined cross section of members joined by the method according to the present invention.

【図4】同じく他の実施例の接合断面を拡大した金属組
織で、図面に代る写真である。
FIG. 4 is a photograph, which replaces a drawing, showing a metal structure in which a joint cross section of another example is enlarged.

【図5】本発明の他の実施例の接合要領を説明する図
で、同図(a)はシリンダヘッドの斜視図、同図(b)
は同図(a)のX−X線断面の説明図である。
5A and 5B are views for explaining a joining procedure of another embodiment of the present invention, in which FIG. 5A is a perspective view of a cylinder head and FIG.
FIG. 4 is an explanatory diagram of a cross section taken along line XX of FIG.

【図6】固相拡散接合法の要領を説明する図である。FIG. 6 is a diagram illustrating a procedure of a solid phase diffusion bonding method.

【図7】インサート材を用いた固相拡散接合法の要領を
説明する図である。
FIG. 7 is a diagram illustrating a procedure of a solid phase diffusion bonding method using an insert material.

【符号の説明】[Explanation of symbols]

11 鋼製外筒 12 セラミックス粒子 13 接合部材 14 接合部材 21 円筒 22 円板 23 金属箔 11 Steel Outer Tube 12 Ceramic Particles 13 Joining Member 14 Joining Member 21 Cylinder 22 Disc 23 Metal Foil

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 接合部材を固相の状態で接合する場合に
おいて、接合部材を当接した状態で、カプセル内に充填
したセラミックス粒子内に埋込み密封し、全体を所定温
度にしつつ、カプセル外部より静水圧を加えて固相の状
態で接合することを特徴とする固相拡散接合法。
1. When the joining member is joined in a solid state, the joining member is abutted and embedded in the ceramic particles filled in the capsule and sealed, and the whole is kept at a predetermined temperature from outside the capsule. A solid-phase diffusion bonding method characterized in that hydrostatic pressure is applied to bond in a solid phase.
【請求項2】 接合部材の間にインサート材を介設して
おこなうことを特徴とする請求項1に記載の固相拡散接
合法。
2. The solid phase diffusion bonding method according to claim 1, wherein an insert material is interposed between the bonding members.
JP7658294A 1994-03-23 1994-03-23 Solid phase diffusion joining method Pending JPH07256468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7658294A JPH07256468A (en) 1994-03-23 1994-03-23 Solid phase diffusion joining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7658294A JPH07256468A (en) 1994-03-23 1994-03-23 Solid phase diffusion joining method

Publications (1)

Publication Number Publication Date
JPH07256468A true JPH07256468A (en) 1995-10-09

Family

ID=13609285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7658294A Pending JPH07256468A (en) 1994-03-23 1994-03-23 Solid phase diffusion joining method

Country Status (1)

Country Link
JP (1) JPH07256468A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016072244A1 (en) * 2014-11-05 2016-05-12 日新製鋼株式会社 Stainless steel material for diffusion bonding
CN112453662A (en) * 2020-12-03 2021-03-09 南京钢铁股份有限公司 Submerged-arc welding process suitable for 1000 MPa-grade high-strength steel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016072244A1 (en) * 2014-11-05 2016-05-12 日新製鋼株式会社 Stainless steel material for diffusion bonding
JP2016089223A (en) * 2014-11-05 2016-05-23 日新製鋼株式会社 Stainless steel material for diffusion junction
KR20170084138A (en) * 2014-11-05 2017-07-19 닛신 세이코 가부시키가이샤 Stainless steel material for diffusion bonding
CN107002189A (en) * 2014-11-05 2017-08-01 日新制钢株式会社 Spread engagement stainless steel material
CN107002189B (en) * 2014-11-05 2019-07-05 日铁日新制钢株式会社 Diffusion bonding stainless steel material
TWI680193B (en) * 2014-11-05 2019-12-21 日商日新製鋼股份有限公司 Stainless steel material for diffusion bonding
CN112453662A (en) * 2020-12-03 2021-03-09 南京钢铁股份有限公司 Submerged-arc welding process suitable for 1000 MPa-grade high-strength steel

Similar Documents

Publication Publication Date Title
US4875616A (en) Method of producing a high temperature, high strength bond between a ceramic shape and metal shape
JPH0249267B2 (en)
JPS60212657A (en) Composite heat shield for engine parts and its formation
US4603801A (en) Diffusion bonding of mechanically held components by hot isostatic pressure
US5165591A (en) Diffusion bonding
US4580714A (en) Hard solder alloy for bonding oxide ceramics to one another or to metals
JPH07256468A (en) Solid phase diffusion joining method
JP4646202B2 (en) Composite comprising ceramic layers and method for producing the composite
JP2941382B2 (en) Ceramic-metal bonded body and method of manufacturing the same
JPH05287324A (en) Pretreatment of joining sintered material and engine cylinder head structure
JP3218873B2 (en) Solid phase diffusion bonding
JPS6313664A (en) Joining method for different kinds of materials
JPH02175014A (en) Composite sintered hard alloy roll and its manufacture
JPH0328391B2 (en)
JPS59207885A (en) Method of bonding ceramic member to metal member
JPH1043856A (en) Structure for joining different metal and method therefor
JPS6247114B2 (en)
JPH06234081A (en) Solid phase diffusion joining method
JPH0243303A (en) Production of composite member
JPS6228091A (en) Joining method for ceramics
JPS6247113B2 (en)
JP2748494B2 (en) Composite method of ceramics
JPH02267174A (en) Joining method using low pressure plasma flame spraying
JPH01111783A (en) Joined structure of carbon and ceramics, carbon or metal
JPS63210076A (en) Method of joining ceramic to metal and solder therefor