JP2006051534A - Steel plate line-heating method - Google Patents

Steel plate line-heating method Download PDF

Info

Publication number
JP2006051534A
JP2006051534A JP2004236419A JP2004236419A JP2006051534A JP 2006051534 A JP2006051534 A JP 2006051534A JP 2004236419 A JP2004236419 A JP 2004236419A JP 2004236419 A JP2004236419 A JP 2004236419A JP 2006051534 A JP2006051534 A JP 2006051534A
Authority
JP
Japan
Prior art keywords
temperature
steel plate
heating
steel sheet
yield strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004236419A
Other languages
Japanese (ja)
Inventor
Hiroyuki Shirahata
浩幸 白幡
Kazutoshi Ichikawa
和利 市川
Tadashi Kasuya
正 糟谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004236419A priority Critical patent/JP2006051534A/en
Publication of JP2006051534A publication Critical patent/JP2006051534A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel plate line-heating method capable of obtaining a large angular deformation and consistently obtaining the target angular deformation. <P>SOLUTION: The line heating of a steel plate is performed by selecting T<SB>ms</SB>and T<SB>mr</SB>so as to satisfy conditions and inequalities of T<SB>ms</SB>: 600-1,000°C, T<SB>mr</SB>: 300-600°C, T<SB>ms</SB>-T<SB>mr</SB>≥ 200°C, where T<SB>ms</SB>(°C) is the maximum temperature of a face side of the steel plate reached during the line heating, and T<SB>mr</SB>(°C) is the maximum temperature of a back side of the steel plate, and [YS(T<SB>mr</SB>)-YS(T<SB>ms</SB>)]/(T<SB>ms</SB>-T<SB>mr</SB>)≥ 0.7[N/mm<SP>2</SP>×°C], where YS(T) is the yield point [N/mm<SP>2</SP>] at the temperature T(°C). Thereafter, the surface of the steel plate is cooled so as to satisfy the condition and the inequality of T<SB>fs</SB>: 200-400°C, and T<SB>fr</SB>-T<SB>fs</SB>≥ 50°C, where T<SB>fs</SB>is the temperature of the face side of the steel plate, and T<SB>fr</SB>is the temperature of the back side of the steel plate when cooling is completed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、鋼板を線状加熱して所定の形状に変形させる線状加熱方法に関するものである。   The present invention relates to a linear heating method in which a steel plate is linearly heated to be deformed into a predetermined shape.

平らな鋼板を変形させて最終目的形状の鋼板を製造する場合、ガスバーナーなどを用いて鋼板を線状加熱し、所定の形状に変形させる線状加熱方法が知られている。ブレス加工、機械的加工と比較し、線状加熱方法は高価な加工設備を必要としないため、現在でも多く使用されている。   When manufacturing a steel plate having a final target shape by deforming a flat steel plate, a linear heating method is known in which a steel plate is linearly heated using a gas burner or the like to be deformed into a predetermined shape. Compared with breath processing and mechanical processing, the linear heating method does not require expensive processing equipment, and is still widely used today.

鋼板を加熱したときに熱膨脹により塑性変形が生じた場合、これが冷却後室温に戻っても残留すると鋼板が変形する。温度上昇により生じた熱応力がその温度における鋼板の降伏強度より大きい場合、塑性変形を起こす。ある部分における熱応力は、他の部分からの拘束により生じるが、もし加熱部分がまわりから拘束を受けない場合は、自由熱膨脹となり熱応力は発生しない。すなわち塑性変形は生じない。逆に、まわりからの拘束が大きい場合それだけ大きい塑性変形が導入されることにより、最終変形量は大きくなる。線状加熱の場合、溶接と比較すると、バーナーで比較的ゆっくりと加熱されるため、熱が加熱部分以外にもかなり広く伝わってゆく。すなわち、加熱部分から見て、拘束する部分もまた、かなりの温度上昇を伴うのが普通である。そのため、より大きい変形を得るためには、まわりの拘束を大きくする、すなわち温度が上昇しても降伏強度があまり低くならない鋼材を使用することが効果的である。   When plastic deformation occurs due to thermal expansion when the steel plate is heated, the steel plate is deformed if it remains even after cooling to room temperature. If the thermal stress caused by the temperature rise is greater than the yield strength of the steel plate at that temperature, plastic deformation occurs. Thermal stress in one part is generated by restraint from other parts, but if the heated part is not restrained from the surroundings, it becomes free thermal expansion and no thermal stress is generated. That is, plastic deformation does not occur. On the other hand, when the constraint from the surroundings is large, the amount of final deformation is increased by introducing a large plastic deformation. In the case of linear heating, as compared with welding, heating is performed relatively slowly by a burner, so that heat is transmitted to a wide area other than the heated portion. That is, as viewed from the heated portion, the constrained portion is also usually accompanied by a significant temperature rise. Therefore, in order to obtain a larger deformation, it is effective to use a steel material in which the surrounding restraint is increased, that is, the yield strength does not become so low even if the temperature rises.

特許文献1に記載の線状加熱方法においては、室温から600℃までの温度範囲で温度上昇に伴う降伏強度の低下が少ない鋼板を使用している。温度が上昇しても降伏強度があまり低くならないので、拘束する部分の温度が上昇しても最高温度部分を十分に拘束することができ、大きな変形を得ることができるからである。特許文献1ではさらに、加熱を行う側の鋼板表面最高温度を600℃以上として鋼板内部の温度勾配を大きくし、水冷を行うことで温度勾配を大きくして塑性歪みを導入させ、表面温度200℃以下で水冷を停止する。これにより、鋼板を線状加熱するときに生じる角変形を大きくすることができるとしている。温度上昇に伴う降伏強度の低下が少ない鋼板とするため、Nb及びMoを含有する成分とし、熱間圧延時の加熱温度を1100℃以上としてNbとMoの固溶量を十分に確保して線状加熱の熱履歴中の析出強化を可能とし、圧延の下限温度を850℃として圧延中の析出を抑制している。   In the linear heating method described in Patent Document 1, a steel sheet is used in which the decrease in yield strength accompanying temperature rise is small in the temperature range from room temperature to 600 ° C. This is because even if the temperature rises, the yield strength does not decrease so much, and even if the temperature of the restraining portion rises, the maximum temperature portion can be restrained sufficiently and a large deformation can be obtained. Further, in Patent Document 1, the steel plate maximum temperature on the heating side is set to 600 ° C. or more, the temperature gradient inside the steel plate is increased, and the temperature gradient is increased by water cooling to introduce plastic strain, and the surface temperature is 200 ° C. Stop water cooling at the following. Thereby, the angular deformation that occurs when the steel plate is linearly heated can be increased. In order to obtain a steel sheet with a low decrease in yield strength due to a temperature rise, it is a component containing Nb and Mo, the heating temperature during hot rolling is set to 1100 ° C. or more, and a sufficient amount of Nb and Mo is dissolved to secure the wire. Precipitation strengthening in the heat history of the shape heating is made possible, and the lower limit temperature of rolling is set to 850 ° C. to suppress precipitation during rolling.

特開平8−103824号公報JP-A-8-103824

特許文献1に記載の方法を用いることにより、線状加熱における角変形を大きくすることが可能となった。しかし、線状加熱による角変形量が一定せず、場合によっては十分な変形量が得られないときがあり、安定的に作業時間を短縮させることが困難であった。   By using the method described in Patent Document 1, it becomes possible to increase angular deformation in linear heating. However, the amount of angular deformation due to linear heating is not constant, and in some cases, a sufficient amount of deformation cannot be obtained, and it has been difficult to stably shorten the working time.

本発明は、大きな角変形量が得られると同時に、目標とする角変形量を安定して得ることができる鋼板の線状加熱方法を提供することを目的とする。   An object of this invention is to provide the linear heating method of the steel plate which can obtain the target amount of angular deformation stably while obtaining a large amount of angular deformation.

特許文献1に記載の線状加熱方法においては、室温から600℃までの温度範囲で温度上昇に伴う降伏強度の低下が少ない鋼板を使用し、加熱及び冷却後の鋼板表面温度を所定の温度範囲に制御することによって曲げ変形量を高めていた。しかし、加熱及び冷却後の鋼板表面温度範囲を規定するのみでは安定した角変形量を得ることができないことが分かった。鋼板の高温強度は鋼板材質毎に変化するため、及び表裏面間の温度差が十分に確保されない場合があるためである。   In the linear heating method described in Patent Document 1, a steel plate having a small decrease in yield strength due to temperature rise in a temperature range from room temperature to 600 ° C. is used, and the steel plate surface temperature after heating and cooling is within a predetermined temperature range. The amount of bending deformation was increased by controlling to. However, it has been found that a stable amount of angular deformation cannot be obtained only by defining the steel sheet surface temperature range after heating and cooling. This is because the high-temperature strength of the steel plate varies depending on the material of the steel plate, and the temperature difference between the front and back surfaces may not be ensured sufficiently.

これに対し、加熱後の表裏面間の降伏強度温度勾配を所定の値以上とし、併せて鋼板の表裏面間の温度差を規定してはじめて、常に安定した角変形量が得られることが分かった。   On the other hand, it is understood that a stable angular deformation amount can always be obtained only when the yield strength temperature gradient between the front and back surfaces after heating is set to a predetermined value or more and the temperature difference between the front and back surfaces of the steel sheet is specified. It was.

本発明は上記知見に基づいてなされたものであり、即ち、その要旨とするところは以下のとおりである。
(1)線状加熱時の鋼板表面最高到達温度をTms(℃)、鋼板裏面最高到達温度をTmr(℃)としたとき、
ms:600〜1000℃、Tmr:300〜600℃、Tms−Tmr≧200℃
であって、温度T(℃)での降伏応力[N/mm2]をYS(T)としたとき、
[YS(Tmr)−YS(Tms)]/(Tms−Tmr)≧0.7[N/mm2・℃]
となるようにTms、Tmrを選択して線状加熱を行い、その後鋼板表面を冷却し、冷却終了時の鋼板表面温度をTfs、鋼板裏面温度をTfrとしたとき、
fs:200〜400℃、Tfr−Tfs≧50℃
となるように冷却を行うことを特徴とする鋼板の線状加熱方法。
(2)鋼板として、質量%で、C:0.05〜0.20%、Si:0.05〜1.0%、Mn:0.6〜2.0%、P≦0.025%、S≦0.010%、Al:0.005〜0.10%、N:0.0010〜0.0080%であり、Nb:0.003〜0.050%、Mo:0.05〜0.50%、V:0.005〜0.10%、W:0.05〜0.50%、Ta:0.05〜0.50%のうち1種以上を含有し、残部がFe及び不可避不純物からなる鋼板を用いることを特徴とする上記(1)に記載の鋼板の線状加熱方法。
(3)鋼板はさらに、質量%で、Cu:0.05〜1.5%、Ni:0.05〜3.5%、Cr:0.05〜1.0%、Ti:0.005〜0.10%、B:0.0002〜0.0030%、Ca:0.0003〜0.0050%、REM:0.0005〜0.0060%の1種又は2種以上を含有することを特徴とする上記(2)に記載の鋼板の線状加熱方法。
The present invention has been made based on the above findings, that is, the gist of the present invention is as follows.
(1) When the maximum reached temperature on the steel sheet surface during linear heating is T ms (° C) and the maximum reached temperature on the back surface of the steel plate is T mr (° C),
T ms : 600 to 1000 ° C., T mr : 300 to 600 ° C., T ms −T mr ≧ 200 ° C.
When the yield stress [N / mm 2 ] at temperature T (° C.) is YS (T),
[YS (T mr ) −YS (T ms )] / (T ms −T mr ) ≧ 0.7 [N / mm 2 · ° C.]
Become as T ms, select the T mr performs linear heating, then the steel sheet surface is cooled, when the cooling at the end of the steel plate surface temperature T fs, the steel plate back surface temperature was T fr,
T fs : 200 to 400 ° C., T fr −T fs ≧ 50 ° C.
A method of linearly heating a steel sheet, wherein cooling is performed so that
(2) As a steel sheet, in mass%, C: 0.05 to 0.20%, Si: 0.05 to 1.0%, Mn: 0.6 to 2.0%, P ≦ 0.025%, S ≦ 0.010%, Al: 0.005-0.10%, N: 0.0010-0.0080%, Nb: 0.003-0.050%, Mo: 0.05-0. 50%, V: 0.005 to 0.10%, W: 0.05 to 0.50%, Ta: 0.05 to 0.50%, and the balance is Fe and inevitable impurities A method for linearly heating a steel sheet according to (1) above, wherein a steel sheet comprising:
(3) The steel sheet is further mass%, Cu: 0.05 to 1.5%, Ni: 0.05 to 3.5%, Cr: 0.05 to 1.0%, Ti: 0.005. 0.10%, B: 0.0002 to 0.0030%, Ca: 0.0003 to 0.0050%, REM: 0.0005 to 0.0060%, or one or more types The method for linearly heating a steel sheet according to (2) above.

本発明の鋼板の線状加熱方法においては、加熱時の鋼板表裏面間の降伏強度温度勾配を所定以上の値とし、併せて冷却後の表裏面間温度差を所定以上の値とすることにより、常に大きな角変形量を得ることができ、目標とする角変形量を安定して得ることが可能となる。   In the linear heating method of the steel sheet of the present invention, the yield strength temperature gradient between the front and back surfaces of the steel sheet during heating is set to a predetermined value or more, and the temperature difference between the front and back surfaces after cooling is set to a predetermined value or more. Therefore, it is possible to always obtain a large amount of angular deformation, and to stably obtain the target amount of angular deformation.

本発明において、鋼板の表面側とは、線状加熱で加熱を行う側をいう。また、鋼板の裏面側とは、前記表面側と反対の側をいう。図1に示すように、鋼板1の表面側からバーナー2等で加熱を行い、加熱位置を加熱方向4の方向に順次移動して線状に加熱する。バーナー2による加熱の後に加熱部位に冷却水ノズル3を用いて冷却水を供給することによって冷却を行う。バーナー2と冷却水ノズル3との間隔を一定に保持するように冷却水ノズル3も順次移動する。その結果、図2に示すように鋼板が角変形する。図2に示すδが角変形量である。   In the present invention, the surface side of the steel sheet refers to the side that is heated by linear heating. Moreover, the back surface side of a steel plate means the opposite side to the said surface side. As shown in FIG. 1, heating is performed from the surface side of the steel plate 1 with a burner 2 or the like, and the heating position is sequentially moved in the heating direction 4 to be heated linearly. After the heating by the burner 2, cooling is performed by supplying cooling water to the heating part using the cooling water nozzle 3. The cooling water nozzle 3 also moves sequentially so as to keep a constant distance between the burner 2 and the cooling water nozzle 3. As a result, the steel plate undergoes angular deformation as shown in FIG. Δ shown in FIG. 2 is an angular deformation amount.

線状加熱方法において鋼板を加熱したときに、最高温度に到達した鋼板表面側において圧縮塑性歪が生じ、その後の水冷によって表面側を収縮させたときに生じる引張応力によって、角変形を起こすことができる。   When a steel sheet is heated in the linear heating method, compressive plastic strain occurs on the surface side of the steel sheet that has reached the maximum temperature, and angular deformation may occur due to tensile stress generated when the surface side is contracted by subsequent water cooling. it can.

角変形量を大きくするためには、第1に、加熱時の圧縮塑性歪をできるだけ大きくする必要がある。そのためには、加熱時の鋼板表裏面の降伏強度差を大きくすることが有効である。加熱時における裏面側の降伏強度を高く保つことにより、表面側を有効に拘束することができる。同時に加熱時における表面側の降伏強度を下げることにより、裏面側による拘束と相俟って、表面側に圧縮塑性歪を生じさせることができる。   In order to increase the amount of angular deformation, first, it is necessary to increase the compression plastic strain during heating as much as possible. For this purpose, it is effective to increase the yield strength difference between the front and back surfaces of the steel sheet during heating. By keeping the yield strength on the back side during heating high, the front side can be effectively restrained. At the same time, by reducing the yield strength on the front surface side during heating, compressive plastic strain can be generated on the front surface side in combination with the restraint on the back surface side.

角変形量を大きくするためには、第2に、加熱後の冷却時に表裏面の温度分布を逆転させて、表面側の引張応力を高める必要がある。   To increase the amount of angular deformation, secondly, it is necessary to reverse the temperature distribution on the front and back surfaces during cooling after heating to increase the tensile stress on the front surface side.

以上の第1、第2の要件を具備することにより、線状加熱において安定して大きな角変形量を確保することが可能となる。以下、順次説明を行う。   By having the above first and second requirements, it is possible to stably secure a large amount of angular deformation in linear heating. Hereinafter, the description will be made sequentially.

まず、第1のポイントである、加熱時の鋼板表裏面の降伏強度差を大きくする点について詳細に説明する。   First, the point of increasing the yield strength difference between the front and back surfaces of the steel sheet during heating, which is the first point, will be described in detail.

本発明においては、加熱時の鋼板表裏面の降伏強度差を大きくする手段として、加熱時の鋼板表裏面間の降伏強度温度勾配を大きくするとともに、鋼板表裏面間の温度差を所定の値に確保する。これにより、結果として加熱時の鋼板表裏面間の降伏強度差を大きくすることができる。   In the present invention, as means for increasing the yield strength difference between the front and back surfaces of the steel sheet during heating, the temperature gradient between the front and back surfaces of the steel sheet during heating is increased and the temperature difference between the front and back surfaces of the steel sheet is set to a predetermined value. Secure. Thereby, as a result, the yield strength difference between the front and back surfaces of the steel sheet during heating can be increased.

線状加熱時の鋼板表面最高到達温度をTms(℃)、鋼板裏面最高到達温度をTmr(℃)とする。本発明において具体的には、Tms:600〜1000℃、Tmr:300〜600℃、Tms−Tmr≧200℃とすると同時に、温度T(℃)での降伏応力[N/mm2]をYS(T)としたとき、
[YS(Tmr)−YS(Tms)]/(Tms−Tmr)≧0.7[N/mm2・℃]
となるようにTms、Tmrを選択する。上記式の左辺を、以後「加熱時表裏面降伏強度温度勾配G」と呼ぶ。
The maximum reached temperature on the steel plate surface during linear heating is T ms (° C.), and the highest reached temperature on the back surface of the steel plate is T mr (° C.). Specifically, in the present invention, T ms : 600 to 1000 ° C., T mr : 300 to 600 ° C., T ms −T mr ≧ 200 ° C., and at the same time, yield stress at temperature T (° C.) [N / mm 2 ] Is YS (T),
[YS (T mr ) −YS (T ms )] / (T ms −T mr ) ≧ 0.7 [N / mm 2 · ° C.]
T ms and T mr are selected so that The left side of the above formula is hereinafter referred to as “heating front / back surface yield strength temperature gradient G”.

ms:600〜1000℃、Tmr:300〜600℃、Tms−Tmr≧200℃とし、加熱時表裏面降伏強度温度勾配Gを種々変更したときの角変形量δの実績を図3に示す。図3から明らかなように、加熱時表裏面降伏強度勾配Gを0.7N/mm2・℃以上とすることによって角変形量δの値が大きくなっている。即ち本発明においては、加熱時表裏面降伏強度勾配Gを0.7N/mm2・℃以上とし、併せて加熱時の表裏面温度差を200℃以上とすることにより、表裏面間に大きな降伏強度差を生じさせることができる。その結果、鋼板の表面側が熱膨張しようとしたときに、裏面側に十分な拘束力が生まれるので表面側が十分に膨張できず、表面側に圧縮塑性歪が生成することとなる。 FIG. 3 shows the results of angular deformation δ when T ms is 600 to 1000 ° C., T mr is 300 to 600 ° C., T ms −T mr ≧ 200 ° C., and the front and back surface yield strength temperature gradient G during heating is variously changed. Shown in As apparent from FIG. 3, the value of the angular deformation amount δ is increased by setting the heating front and back surface yield strength gradient G to 0.7 N / mm 2 · ° C. or more. That is, in the present invention, when the heating front / back surface yield strength gradient G is set to 0.7 N / mm 2 · ° C. or higher, and the front / back surface temperature difference during heating is set to 200 ° C. or higher, a large yield is generated between the front and rear surfaces. An intensity difference can be produced. As a result, when the surface side of the steel sheet is about to thermally expand, a sufficient restraining force is generated on the back side, so that the surface side cannot sufficiently expand, and compressive plastic strain is generated on the surface side.

鋼板表面最高到達温度Tmsが600℃未満では鋼板が十分な剛性を有しているため、ほとんど変形が生じない。加熱時表裏面降伏強度温度勾配Gを0.7以上とするためにも、Tmsを600℃以上とすることが必要となる。一方、Tmsが1000℃を超えると、その後の水冷によって表面側に過度の焼きが入り、延性、靭性が低下してしまう。そこで本発明においては、鋼板表面最高到達温度Tmsを600〜1000℃とする。 When the steel sheet surface maximum temperature Tms is less than 600 ° C., the steel sheet has sufficient rigidity, and therefore hardly deforms. In order to set the front and back surface yield strength temperature gradient G during heating to 0.7 or more, it is necessary to set Tms to 600 ° C. or more. On the other hand, if T ms exceeds 1000 ° C., excessive baking occurs on the surface side by subsequent water cooling, and ductility and toughness deteriorate. Therefore, in the present invention, the steel sheet surface maximum temperature T ms is set to 600 to 1000 ° C.

一方、鋼板裏面最高到達温度Tmrが300℃未満である場合には、角変形がほとんど生じない。またTmrが600℃を超えると、表裏面の温度分布が均一に成りすぎて、表裏面温度差を200℃以上確保することが困難となる。加熱時表裏面降伏強度温度勾配Gを0.7以上とするためにも、Tmrを600℃以下とすることが必要となる。そこで本発明においては、鋼板裏面最高到達温度Tmrを300〜600℃とする。 On the other hand, when the maximum temperature T mr at the rear surface of the steel sheet is less than 300 ° C., the angular deformation hardly occurs. On the other hand, if T mr exceeds 600 ° C., the temperature distribution on the front and back surfaces becomes too uniform, and it becomes difficult to ensure a temperature difference of 200 ° C. or more on the front and back surfaces. In order to set the front and back surface yield strength temperature gradient G during heating to 0.7 or more, it is necessary to set T mr to 600 ° C. or less. Therefore, in the present invention, the maximum temperature T mr on the rear surface of the steel sheet is set to 300 to 600 ° C.

本発明の線状加熱方法において、加熱時表裏面降伏強度温度勾配Gを0.7以上とするためには、まず降伏強度の温度依存性が大きい鋼材を選択することが重要である。具体的には、Tmrの温度範囲である300〜600℃の温度領域において降伏強度の高い鋼材を選択する。このような特質を有する好適な鋼成分については後述する。 In the linear heating method of the present invention, in order to make the front and back surface yield strength temperature gradient G during heating to be 0.7 or more, it is important to first select a steel material having a large temperature dependence of yield strength. Specifically, a steel material having a high yield strength is selected in a temperature range of 300 to 600 ° C. that is a temperature range of T mr . Suitable steel components having such characteristics will be described later.

次に、使用する鋼材の降伏強度の温度依存性についてデータを採取しておく。採取したデータに基づき、Tms:600〜1000℃、Tmr:300〜600℃かつTms−Tmr≧200℃の範囲内において、
[YS(Tmr)−YS(Tms)]/(Tms−Tmr)≧0.7[N/mm2・℃]
となるようなTms、Tmrを選択する。
Next, data is collected on the temperature dependence of the yield strength of the steel used. Based on the collected data, T ms : 600 to 1000 ° C., T mr : 300 to 600 ° C. and T ms −T mr ≧ 200 ° C.
[YS (T mr ) −YS (T ms )] / (T ms −T mr ) ≧ 0.7 [N / mm 2 · ° C.]
T ms and T mr are selected such that

上記のようにして選択した鋼材を用い、選択したTms、Tmrを実現するように線状加熱を行うことにより、加熱した鋼板表面に十分な圧縮塑性歪を生成させることが可能となる。 By using the steel material selected as described above and performing linear heating so as to realize the selected T ms and T mr , it becomes possible to generate sufficient compressive plastic strain on the heated steel plate surface.

次に、第2のポイントである、加熱後の冷却時に表裏面の温度分布を逆転させて、表面側の引張応力を高める点について詳細に説明する。   Next, the second point, that is, the point of increasing the tensile stress on the front surface side by reversing the temperature distribution on the front and back surfaces during cooling after heating will be described in detail.

本発明において、冷却終了時の鋼板表面温度をTfs、鋼板裏面温度をTfrとする。そして、Tfs:200〜400℃、Tfr−Tfs≧50℃となるように冷却を行う。表裏面の温度分布を逆転させ、Tfr−Tfs≧50℃とすることにより、表面側の引張応力を十分に高めることができ、角変形量を安定して大きな値とすることが可能となる。 In the present invention, the steel plate surface temperature at the end of cooling is T fs and the steel plate back surface temperature is T fr . Then, T fs: 200~400 ℃, to cool such that the T fr -T fs ≧ 50 ℃. By reversing the temperature distribution on the front and back surfaces so that T fr −T fs ≧ 50 ° C., the tensile stress on the front side can be sufficiently increased, and the angular deformation can be stably increased to a large value. Become.

fsを200℃以上とするのは、200℃未満では表面側のみならず裏面側の温度も低下してしまい、十分な角変形量が得られないからである。Tfsを400℃以下とするのは、400℃を超えると温度分布の逆転が不十分であるために、角変形量も小さくなってしまうからである。なお、加熱時の鋼板裏面最高到達温度Tmrが300℃以上であることも、Tfr−Tfs≧50℃を実現する上で重要なポイントとなっている。 The reason why T fs is set to 200 ° C. or more is that if it is less than 200 ° C., not only the surface side but also the temperature on the back side is lowered, and a sufficient amount of angular deformation cannot be obtained. The reason why T fs is set to 400 ° C. or less is that when the temperature exceeds 400 ° C., the reversal of the temperature distribution is insufficient, and the amount of angular deformation becomes small. In addition, it is also an important point in achieving T fr −T fs ≧ 50 ° C. that the maximum temperature T mr at the rear surface of the steel plate during heating is 300 ° C. or higher.

本発明の線状加熱方法においては、加熱終了後鋼板表面を水冷し、Tfs:200〜400℃において水冷を終了することにより、Tfr−Tfs≧50℃を実現することができる。 In the linear heating method of the present invention, T fr −T fs ≧ 50 ° C. can be realized by cooling the surface of the steel sheet with water after completion of heating and ending water cooling at T fs : 200 to 400 ° C.

次に、本発明の線状加熱方法において使用する鋼板であって、降伏強度の温度依存性が高い鋼板として好適な成分組成について説明する。   Next, the component composition suitable as a steel plate used in the linear heating method of the present invention and having a high temperature dependence of yield strength will be described.

Cは、ベイナイトまたはマルテンサイト組織化および強度確保のために添加し、その効果の限界から下限を0.05%とし、また母材靭性への悪影響、溶接性の劣化、高炭素島状マルテンサイトの生成による溶接継手靭性の劣化を防止するために0.20%を上限とした。   C is added for bainite or martensite organization and securing strength, and the lower limit is set to 0.05% from the limit of the effect, and adverse effects on the base metal toughness, deterioration of weldability, high carbon island martensite In order to prevent deterioration of the toughness of welded joints due to the generation of 0.20%, the upper limit was made.

Siは、脱酸上必要な元素であり、更に強度を高める上で有効な元素であるので0.05%を下限とし、溶接性、溶接継手靭性の劣化を防止するために1.0%を上限とした。   Si is an element necessary for deoxidation and is an element effective for further increasing the strength, so 0.05% is set as the lower limit, and 1.0% is added to prevent deterioration of weldability and weld joint toughness. The upper limit.

Mnは、ベイナイトまたはマルテンサイト組織化および強度と靭性を確保のために0.6%を下限として添加し、多量の添加は焼入れ性を増加させ硬化組織を生成させ、また溶接性を劣化させるので2.0%を上限とする。   Mn is added to the bainite or martensite structure and 0.6% as a lower limit to ensure strength and toughness, and a large amount of addition increases hardenability and produces a hardened structure, and also deteriorates weldability. The upper limit is 2.0%.

Alは、脱酸上必要な元素であるので0.005%を下限とし、多量の添加は鋼の清浄度を損なうので0.10%を上限とした。   Al is an element necessary for deoxidation, so 0.005% is set as the lower limit, and addition of a large amount impairs the cleanliness of the steel, so 0.10% was set as the upper limit.

Nは、Alと結合し、鋼材の結晶粒を微細化し、靭性を高めるのに有効な0.0010%を下限とし、多量に添加すると鋼材の靭性を損なうので0.0080%を上限とした。   N binds to Al, refines the crystal grains of the steel material, and lowers 0.0010%, which is effective for increasing the toughness. If added in a large amount, the toughness of the steel material is impaired, so 0.0080% was made the upper limit.

不純物であるPおよびSは、それぞれ母材および溶接継手靭性を所望のレベルに維持するため、P≦0.025%、S≦0.010%とした。   Impurities P and S are respectively set to P ≦ 0.025% and S ≦ 0.010% in order to maintain the base metal and weld joint toughness at desired levels, respectively.

更に、上記元素に加え、Nb,Mo,V,W,Taの1種以上を含有させ、これら元素による固溶強化を有効活用することにより、300〜600℃の温度領域において降伏強度が高く、降伏強度の温度依存性が高い鋼板を得ることができる。その各添加元素の添加理由を説明する。   Furthermore, in addition to the above elements, one or more of Nb, Mo, V, W, Ta are contained, and by effectively utilizing the solid solution strengthening by these elements, the yield strength is high in the temperature range of 300 to 600 ° C., A steel sheet having high temperature dependency of yield strength can be obtained. The reason for the addition of each additive element will be described.

Nbは、ベイナイトまたはマルテンサイト組織化、組織微細化、固溶強化により常温及び中温域の降伏強度を高めるのに有効な元素であるので、0.003%を下限とし、多量の添加は溶接継手靭性を損なうので上限を0.050%とした。   Nb is an element effective for increasing the yield strength at room temperature and medium temperature by bainite or martensite organization, structure refinement, and solid solution strengthening, so 0.003% is the lower limit, and a large amount of addition is a welded joint. Since the toughness is impaired, the upper limit was made 0.050%.

Mo,V,W,Taは、ベイナイトまたはマルテンサイト組織化、固溶強化により常温及び中温域の降伏強度を高めるのに有効な元素であるので、Mo,W,Taについては0.05%、Vについては0.005%をそれぞれ下限とし、多量の添加は溶接性、溶接継手靭性を損なうので上限をMo,W,Taについて0.50%、Vについては0.10%をそれぞれ上限とした。   Mo, V, W, and Ta are elements effective for increasing the yield strength at room temperature and medium temperature by bainite or martensite organization and solid solution strengthening, so about 0.05% for Mo, W, and Ta, For V, 0.005% is set as the lower limit, and addition of a large amount impairs weldability and weld joint toughness, so the upper limit is set to 0.50% for Mo, W, and Ta, and V is set to 0.10%. .

本発明は更に、上記元素に加え、Cu,Ni,Cr,Ti,B,Ca,REMの1種または2種以上を含有することができる。その各添加元素の添加理由を説明する。   The present invention may further contain one or more of Cu, Ni, Cr, Ti, B, Ca, and REM in addition to the above elements. The reason for the addition of each additive element will be described.

Cu及びCrは、ベイナイトまたはマルテンサイト組織化とともに強度を高めるのに有効な元素であるので、0.05%をそれぞれ下限とし、多量の添加は溶接継手靭性を損なうので、Cuについては1.5%、Crについては1.0%を上限とした。   Since Cu and Cr are effective elements for increasing the strength together with bainite or martensite organization, 0.05% is set as the lower limit, and a large amount of addition impairs the weld joint toughness. For% and Cr, the upper limit was 1.0%.

Niは、靭性を損なうことなくベイナイトまたはマルテンサイト組織化するのに有効な元素であるが一方で高価な元素であるので、経済性の点から0.05〜3.5%の範囲で添加する。   Ni is an element effective for bainite or martensite organization without impairing toughness, but is an expensive element, so it is added in the range of 0.05 to 3.5% from the viewpoint of economy. .

Tiは、溶接熱影響部の靭性確保に有効な元素であるため0.005%を下限とし、更に過剰な添加による靭性の劣化を防止するために0.10%を上限とする。   Ti is an element effective for securing the toughness of the weld heat affected zone, so 0.005% is set as the lower limit, and 0.10% is set as the upper limit in order to prevent toughness deterioration due to excessive addition.

Bは、ベイナイトまたはマルテンサイト組織化とともに鋼材の強度を高め、かつ溶接熱影響部の結晶粒微細化に有効な元素であるが過剰な添加は靭性を劣化させるので0.0002〜0.0030%の範囲に限定した。   B is an element effective for improving the strength of steel materials together with bainite or martensite organization and for refining the crystal grains in the weld heat-affected zone, but excessive addition deteriorates toughness, so 0.0002 to 0.0030% It was limited to the range.

Caは、硫化物の形態制御に有効な元素であるが多量の添加は鋼の清浄度を損なうので0.0003〜0.0050%の範囲に限定した。また、REMは、溶接熱影響部の組織を微細化し、靭性を高めるのに有効な元素であるが、多量の添加は鋼の清浄度を損なうので0.0005〜0.0060%の範囲に限定した。   Ca is an effective element for controlling the form of sulfides, but addition of a large amount impairs the cleanliness of the steel, so it was limited to the range of 0.0003 to 0.0050%. REM is an element effective for refining the structure of the heat affected zone and enhancing toughness, but adding a large amount impairs the cleanliness of the steel, so it is limited to a range of 0.0005 to 0.0060%. did.

以上のような成分を含有する鋼板を用いて線状加熱を行うことにより、特に300〜600℃の温度域で高い降伏強度を実現することができるので、加熱時表裏面降伏強度温度勾配Gが0.7以上となるようなTmsとTmrの組み合わせを見いだすことができる。その結果として表裏面間の降伏強度差を高い値とすることが可能となる。 By performing linear heating using a steel sheet containing the above components, a high yield strength can be realized particularly in the temperature range of 300 to 600 ° C., so that the front and back surface yield strength temperature gradient G during heating is It is possible to find a combination of T ms and T mr that is 0.7 or more. As a result, the yield strength difference between the front and back surfaces can be increased.

表1に示す成分を有する鋼片から鋼板を製造し、図1に示す要領で本発明の線状加熱方法を適用した。角変形量δの算出方法は図2に示すとおりである。表2に鋼板母材の板厚、機械的性質、線状加熱条件、角変形量、加熱部の靭性を示す。No.1〜8が本発明例、No.9〜16が比較例である。線状加熱試験の要領を表3に示す。   A steel plate was produced from a steel piece having the components shown in Table 1, and the linear heating method of the present invention was applied in the manner shown in FIG. The calculation method of the angular deformation amount δ is as shown in FIG. Table 2 shows the plate thickness, mechanical properties, linear heating conditions, amount of angular deformation, and toughness of the heated portion of the steel plate base material. No. 1-8 are examples of the present invention, No.1. 9 to 16 are comparative examples. Table 3 shows the outline of the linear heating test.

Figure 2006051534
Figure 2006051534

Figure 2006051534
Figure 2006051534

Figure 2006051534
Figure 2006051534

表2から明らかなように、本発明例No.1〜8は、成分および線状加熱時の温度における強度が所定の条件を満たしているために、線状加熱による角変形量は3×10-2radian以上と極めて大きくなっている。 As is apparent from Table 2, Example No. In Nos. 1 to 8, since the components and the strength at the temperature during linear heating satisfy predetermined conditions, the amount of angular deformation due to linear heating is as extremely large as 3 × 10 −2 radian or more.

一方、比較例No.9〜16は、鋼板成分、中高温強度、加熱条件のいずれかが所定の範囲から逸脱しているために、角変形量が小さくなっている。   On the other hand, Comparative Example No. In Nos. 9 to 16, the amount of angular deformation is small because any of the steel plate components, medium / high temperature strength, and heating conditions deviates from the predetermined range.

比較例No.9は、加熱時の表面最高到達温度Tmsが本発明下限の600℃より低かったため、鋼板が十分な剛性を有し、圧縮塑性歪を十分に与えることができなかった。No.9は同時に、加熱時の裏面最高到達温度Tmrが低かったことに起因し、冷却終了時の鋼板裏面温度Tfrも低く、そのために表裏面温度差が不十分であった。このため、角変形量が小さかった。 Comparative Example No. In No. 9, since the maximum surface temperature Tms during heating was lower than the lower limit of 600 ° C. of the present invention, the steel sheet had sufficient rigidity and could not give sufficient compressive plastic strain. No. At the same time, the maximum back surface temperature T mr at the time of heating was low, and the steel plate back surface temperature T fr at the end of cooling was also low, so that the temperature difference between the front and back surfaces was insufficient. For this reason, the amount of angular deformation was small.

比較例No.10、12は、TmsとTmrの選択が適切でなかったために加熱時表裏面降伏強度温度勾配Gが0.7未満となってしまい、角変形量が小さかった。比較例No.11はTmsとTmrの差が200℃未満であったため、角変形量が小さかった。 Comparative Example No. For Nos. 10 and 12, the selection of T ms and T mr was not appropriate, so the heating front and back surface yield strength temperature gradient G was less than 0.7, and the amount of angular deformation was small. Comparative Example No. No. 11 had a small amount of angular deformation because the difference between T ms and T mr was less than 200 ° C.

比較例No.13は冷却終了時の鋼板表面温度Tfsが低すぎ、No.14はTfsが高すぎ、結果として両方とも表裏面温度差が50℃未満となり、角変形量が小さかった。 Comparative Example No. No. 13 shows that the steel plate surface temperature Tfs at the end of cooling is too low. No. 14 had too high T fs , and as a result, the temperature difference between the front and back surfaces was less than 50 ° C., and the amount of angular deformation was small.

比較例No.15はTms、Tmrがともに高すぎ、結果として加熱時表裏面降伏強度温度勾配Gが0.7未満となってしまい、角変形量が小さかった。 Comparative Example No. No. 15 had both T ms and T mr too high. As a result, the heating front and back surface yield strength temperature gradient G was less than 0.7, and the amount of angular deformation was small.

No.16は鋼板の成分組成として低C、低Mnであったために中高温の降伏強度を十分に高めることができず、そのために加熱時表裏面降伏強度温度勾配Gを0.7以上とすることのできるTmsとTmrの組み合わせを見つけることができず、角変形量が小さかった。 No. No. 16 has low C and low Mn as the component composition of the steel sheet, so that the yield strength at medium and high temperatures cannot be sufficiently increased. For this reason, the front and back surface yield strength temperature gradient G during heating is set to 0.7 or more. The combination of T ms and T mr that could be found was not found, and the amount of angular deformation was small.

線状加熱方法の要領を示す図である。It is a figure which shows the point of the linear heating method. 角変形量δの算出方法を示す図である。It is a figure which shows the calculation method of angular deformation amount (delta). 加熱時表裏面降伏強度温度勾配と角変形量δの関係を示す図である。It is a figure which shows the relationship between the front and back surface yield strength temperature gradient at the time of heating, and the amount of angular deformation δ.

符号の説明Explanation of symbols

1 鋼板
2 バーナー
3 冷却水ノズル
4 加熱方向
1 Steel plate 2 Burner 3 Cooling water nozzle 4 Heating direction

Claims (3)

線状加熱時の鋼板表面最高到達温度をTms(℃)、鋼板裏面最高到達温度をTmr(℃)としたとき、
ms:600〜1000℃、Tmr:300〜600℃、Tms−Tmr≧200℃
であって、温度T(℃)での降伏応力[N/mm2]をYS(T)としたとき、
[YS(Tmr)−YS(Tms)]/(Tms−Tmr)≧0.7[N/mm2・℃]
となるようにTms、Tmrを選択して線状加熱を行い、その後鋼板表面を冷却し、冷却終了時の鋼板表面温度をTfs、鋼板裏面温度をTfrとしたとき、
fs:200〜400℃、Tfr−Tfs≧50℃
となるように冷却を行うことを特徴とする鋼板の線状加熱方法。
When the maximum temperature reached on the steel sheet surface during linear heating is T ms (° C) and the maximum temperature reached on the back surface of the steel sheet is T mr (° C),
T ms : 600 to 1000 ° C., T mr : 300 to 600 ° C., T ms −T mr ≧ 200 ° C.
When the yield stress [N / mm 2 ] at temperature T (° C.) is YS (T),
[YS (T mr ) −YS (T ms )] / (T ms −T mr ) ≧ 0.7 [N / mm 2 · ° C.]
Become as T ms, select the T mr performs linear heating, then the steel sheet surface is cooled, when the cooling at the end of the steel plate surface temperature T fs, the steel plate back surface temperature was T fr,
T fs : 200 to 400 ° C., T fr −T fs ≧ 50 ° C.
A method of linearly heating a steel sheet, wherein cooling is performed so that
前記鋼板として、質量%で、
C:0.05〜0.20%、Si:0.05〜1.0%、Mn:0.6〜2.0%、P≦0.025%、S≦0.010%、Al:0.005〜0.10%、N:0.0010〜0.0080%であり、
Nb:0.003〜0.050%、Mo:0.05〜0.50%、V:0.005〜0.10%、W:0.05〜0.50%、Ta:0.05〜0.50%のうち1種以上を含有し、残部がFe及び不可避不純物からなる鋼板を用いることを特徴とする請求項1に記載の鋼板の線状加熱方法。
As the steel sheet,
C: 0.05-0.20%, Si: 0.05-1.0%, Mn: 0.6-2.0%, P ≦ 0.025%, S ≦ 0.010%, Al: 0 0.005 to 0.10%, N: 0.0010 to 0.0080%,
Nb: 0.003 to 0.050%, Mo: 0.05 to 0.50%, V: 0.005 to 0.10%, W: 0.05 to 0.50%, Ta: 0.05 to The steel sheet linear heating method according to claim 1, wherein the steel sheet contains at least one of 0.50% and the balance is Fe and inevitable impurities.
前記鋼板はさらに、質量%で、
Cu:0.05〜1.5%、Ni:0.05〜3.5%、Cr:0.05〜1.0%、Ti:0.005〜0.10%、B:0.0002〜0.0030%、Ca:0.0003〜0.0050%、REM:0.0005〜0.0060%の1種又は2種以上を含有することを特徴とする請求項2に記載の鋼板の線状加熱方法。
The steel sheet is further in mass%,
Cu: 0.05-1.5%, Ni: 0.05-3.5%, Cr: 0.05-1.0%, Ti: 0.005-0.10%, B: 0.0002- The steel wire according to claim 2, comprising one or more of 0.0030%, Ca: 0.0003 to 0.0050%, and REM: 0.0005 to 0.0060%. Heating method.
JP2004236419A 2004-08-16 2004-08-16 Steel plate line-heating method Withdrawn JP2006051534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004236419A JP2006051534A (en) 2004-08-16 2004-08-16 Steel plate line-heating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004236419A JP2006051534A (en) 2004-08-16 2004-08-16 Steel plate line-heating method

Publications (1)

Publication Number Publication Date
JP2006051534A true JP2006051534A (en) 2006-02-23

Family

ID=36029323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004236419A Withdrawn JP2006051534A (en) 2004-08-16 2004-08-16 Steel plate line-heating method

Country Status (1)

Country Link
JP (1) JP2006051534A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007222922A (en) * 2006-02-24 2007-09-06 Nippon Steel Corp Linear heating method and linear heating control system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007222922A (en) * 2006-02-24 2007-09-06 Nippon Steel Corp Linear heating method and linear heating control system

Similar Documents

Publication Publication Date Title
CA2980424C (en) Thick steel plate for structural pipes or tubes, method of producing thick steel plate for structural pipes or tubes, and structural pipes and tubes
JP5092358B2 (en) Manufacturing method of high strength and tough steel sheet
JP2006009141A (en) Electric resistance welded tube having excellent cold workability and hardenability and its production method
JP2009270194A (en) PROCESS FOR PRODUCTION OF 780 MPa-GRADE HIGH-TENSILE-STRENGTH STEEL PLATE EXCELLENT IN LOW-TEMPERATURE TOUGHNESS
CN109154041B (en) High-strength steel plate
JP2004190103A (en) Austenitic stainless steel
JP4379085B2 (en) Manufacturing method of high strength and high toughness thick steel plate
JP5028785B2 (en) High toughness high tensile steel sheet and method for producing the same
JP2005264208A (en) Low yield ratio wide flange beam having excellent earthquake resistance and its production method
JP6798041B2 (en) Thick steel sheet with low yield ratio and high strength and high toughness and its manufacturing method
JP4547944B2 (en) Manufacturing method of high strength and high toughness thick steel plate
JP2008189973A (en) Method for producing high-toughness and high-tension steel sheet excellent in strength-elongation balance
JP4846242B2 (en) Bending method of thick steel plate with excellent heat bending characteristics
JP7440740B2 (en) Steel plate for tanks
JP5776472B2 (en) Hollow member for vehicle reinforcement
JP4959167B2 (en) Thermal processing method for steel sheet
JP2005097694A (en) Method for manufacturing non-heat-treated high-strength thick steel plate superior in brittle crack arrestability
JP2006002211A (en) Steel plate with little welding distortion and its production method
JP2006051534A (en) Steel plate line-heating method
JP4951938B2 (en) Manufacturing method of high toughness high tensile steel sheet
JP4732986B2 (en) High strength cold-rolled steel sheet with excellent stretch flangeability and its manufacturing method
KR101597789B1 (en) High-strength steel plate and producing method therefor
JP2004052063A (en) METHOD FOR PRODUCING 780 MPa-CLASS NON-HEAT REFINING THICK STEEL PLATE
JP5187151B2 (en) Thick steel plate excellent in bending workability by linear heating and its manufacturing method
JP2005307312A (en) Method for producing steel plate excellent in earthquake-proof and weldability

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071106