JP4959167B2 - Thermal processing method for steel sheet - Google Patents

Thermal processing method for steel sheet Download PDF

Info

Publication number
JP4959167B2
JP4959167B2 JP2005280135A JP2005280135A JP4959167B2 JP 4959167 B2 JP4959167 B2 JP 4959167B2 JP 2005280135 A JP2005280135 A JP 2005280135A JP 2005280135 A JP2005280135 A JP 2005280135A JP 4959167 B2 JP4959167 B2 JP 4959167B2
Authority
JP
Japan
Prior art keywords
steel sheet
heating
steel
steel plate
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005280135A
Other languages
Japanese (ja)
Other versions
JP2007090363A (en
Inventor
正 糟谷
直樹 小田
浩幸 白幡
俊永 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005280135A priority Critical patent/JP4959167B2/en
Publication of JP2007090363A publication Critical patent/JP2007090363A/en
Application granted granted Critical
Publication of JP4959167B2 publication Critical patent/JP4959167B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、特に造船分野などにおいて、複数の曲率面を有する鋼板を溶接して流線形状の溶接構造体を製造する際に適用される鋼板の加熱変形方法に関し、特にガスバーナーにより鋼板の表面または裏面を線状に加熱後、水冷して鋼板を変形加工する際の作業効率を向上させる鋼板の線状熱変形方法に関するものである。   The present invention relates to a method of heating and deforming a steel plate applied when manufacturing a streamlined welded structure by welding a steel plate having a plurality of curvature surfaces, particularly in the shipbuilding field, and in particular, the surface of the steel plate by a gas burner. Alternatively, the present invention relates to a linear thermal deformation method for a steel sheet that improves work efficiency when the back surface is linearly heated and then cooled by water to deform the steel sheet.

造船分野における船殻などの船舶構造体は、航海中の水流抵抗を少なくするために外面が連続したなめらかな曲率面とする必要があり、予め鋼板を所定形状に曲げ加工した後、鋼板の端面同士を溶接して連続したなめらかな曲率面を有する溶接構造体とする。   Ship structures such as hulls in the shipbuilding field need to have a smooth surface with a continuous outer surface in order to reduce water flow resistance during voyage. A welded structure having a smooth and continuous curvature surface is formed by welding each other.

この鋼板の曲げ加工は、船舶構造体の部位によって複雑かつ微妙な曲率に加工する必要があるため、単純かつ画一的なプレス加工などでは対処できず、通常は線状加熱変形による曲げ加工が行われている。この線状加熱変形は、ガスバーナー等を用いて鋼板を線状に局所加熱し、かつ、加熱直後に水冷を行う方法である。   Since this steel plate needs to be bent with a complex and delicate curvature depending on the part of the ship structure, it cannot be handled by simple and uniform press work. Has been done. This linear heating deformation is a method in which a steel plate is locally heated linearly using a gas burner or the like, and water cooling is performed immediately after heating.

実際の船舶構造体の製造では、なめらかな曲率面を得るために鋼板面の複数箇所を線状加熱変形させ、かつ同じ箇所を複数回の線状加熱、水冷を繰り返し行う。また、これらは全て熟練者の勘や技能により行うため、1つの鋼板を所定形状に曲げ加工させるために5日以上の時間を要する場合がある。そのなかでも、船体先頭部分などは海水から抵抗を直接受ける部分であり、その抵抗を低減するためにより曲率半径が小さい曲面に加工する必要があり、加工工程に長い時間を要するため、人件費及び造船コストアップの主要因になっている。このため、造船コスト低減および製造日数の短縮の点から、鋼板の線状加熱変形による曲げ加工作業効率の向上および自動化が従来から検討されている。   In the actual manufacturing of a ship structure, in order to obtain a smooth curvature surface, a plurality of locations on the steel plate surface are linearly heated and deformed, and the same location is repeatedly subjected to linear heating and water cooling a plurality of times. Moreover, since these are all performed by the intuition and skill of a skilled person, it may take 5 days or more to bend a single steel plate into a predetermined shape. Among them, the hull head part is the part that directly receives resistance from seawater, and it is necessary to process it into a curved surface with a smaller radius of curvature to reduce the resistance, and it takes a long time for the processing process, so labor costs and This is a major factor in increasing shipbuilding costs. For this reason, from the viewpoint of reducing shipbuilding costs and shortening the number of manufacturing days, improvement and automation of bending work efficiency by linear heating deformation of steel sheets have been studied conventionally.

近年、鋼板の線状加熱変形による曲げ加工の作業効率向上、さらには自動化を狙って、有限要素法(FEM)による数値解析を用いて鋼板を線状加熱変形させる際の熱変形を予測し、目的とする形状に変形するための加熱条件を決定する方法が提案されている(例えば、特許文献1、特許文献2参照)。しかし、有限要素法(FEM)の数値解析による推定式の精度が充分でないため、これに基づき設定された加熱条件では目的形状とならないことがあり、作業環境や加熱条件の変更に合わせてその都度推定式を修正しなければならず、未だに自動化は実現されていない。   In recent years, with the aim of improving the work efficiency of bending work by linear heat deformation of steel plates, and further aiming for automation, predicting the heat deformation at the time of linear heat deformation of steel plates using numerical analysis by the finite element method (FEM), A method for determining a heating condition for deformation into a target shape has been proposed (see, for example, Patent Document 1 and Patent Document 2). However, since the accuracy of the estimation formula by numerical analysis of the finite element method (FEM) is not sufficient, the target shape may not be obtained under the heating conditions set based on this, and each time according to changes in the work environment and heating conditions. The estimation formula must be corrected, and automation has not yet been realized.

一方、鋼板の線状加熱特性の点から、線状加熱時の曲げ加工が容易な鋼板に関する技術も提案されている(特許文献3および4)。しかし、線状加熱により鋼板を曲げ加工する際の作業効率を飛躍的に向上するためには、線状加熱特性のうち、横変形特性を十分向上させる必要があるが、従来の鋼板は、角変形特性を向上させるには効果があるものの、鋼板の横変形特性を十分向上させることは困難であった。このため、従来鋼板では、線状加熱による曲げ加工の作業効率を飛躍的に向上するまでに至っていないのが現状である。このような従来技術の現状から、鋼板の線状加熱変形による曲げ加工の加熱変形を安定して制御し、さらに作業効率を向上させる方法が望まれている。   On the other hand, from the viewpoint of the linear heating characteristics of a steel plate, techniques relating to a steel plate that can be easily bent during linear heating have also been proposed (Patent Documents 3 and 4). However, in order to dramatically improve the working efficiency when bending a steel sheet by linear heating, it is necessary to sufficiently improve the lateral deformation characteristics of the linear heating characteristics. Although effective in improving the deformation characteristics, it has been difficult to sufficiently improve the lateral deformation characteristics of the steel sheet. For this reason, in the conventional steel plate, it is the present condition that it has not led to improving the working efficiency of the bending process by linear heating dramatically. From such a state of the art, there is a demand for a method for stably controlling the heating deformation of the bending process by the linear heating deformation of the steel sheet and further improving the working efficiency.

特開平09−285823号公報JP 09-285823 A 特開平09−323129号公報JP 09-323129 A 特開平07−136720号公報JP 07-136720 A 特開平07−138715号公報Japanese Patent Laid-Open No. 07-138715

これら従来技術の問題点に鑑み、本発明は、主として複雑かつ微妙な曲率面を有する船舶用溶接構造体を製造する場合に適用され、同一線状加熱条件でも横収縮による横変形量が大きい特性を有する鋼板を選定し、線状加熱変形条件を制限することにより、従来に比べて高い作業能率で鋼板を目標形状に曲げ加工できる加熱変形方法を提供することを目的とする。   In view of the problems of these prior arts, the present invention is mainly applied in the case of manufacturing a marine welded structure having a complicated and delicate curvature surface, and has a large amount of lateral deformation due to lateral contraction even under the same linear heating condition. It is an object of the present invention to provide a heating deformation method that can bend a steel sheet into a target shape with higher work efficiency than before, by selecting a steel sheet having a thickness and limiting linear heating deformation conditions.

本発明は、上記従来技術の技術的課題を解決するものであり、その発明の要旨とするところは以下のとおりである。   The present invention solves the technical problems of the above prior art, and the gist of the invention is as follows.

(1) ガスバーナーにより鋼板の表面または裏面を線状加熱し、引き続き該加熱部を水冷して鋼板を曲げ変形させることにより最大曲率半径が4.0m以下となるように加工する鋼板の熱加工方法において、前記鋼板として、質量%で、C:0.001〜0.048%、Si:0.005〜0.4%、Mn:0.05〜0.6%、Al:0.002〜0.12%、N:0.001〜0.01%を含有し、P:0.03%以下、S:0.01%以下を制限し、残部が鉄および不可避不純物からなり、室温における降伏強度が200〜300MPaであり、かつ室温における引張り強度が250〜400MPaである鋼板を用い、該鋼板の何れかの辺に対して垂直な方向で、かつ中央部を除く鋼板の表面または裏面上の範囲を、加熱部の最高到達温度が900℃以下となるように線状加熱することにより、該辺に沿って間隔を隔てて複数の線状加熱領域を形成し、該辺に沿う方向に生じる該線状加熱領域の収縮変形により該鋼板を曲げ変形させることを特徴とする鋼板の熱加工方法。
(1) the front or rear surface of the steel sheet by a gas burner heating a linear, continued thermal processing of steel sheet up to the radius of curvature machined so as not to exceed 4.0m to the heating unit by causing bending deformation of the steel sheet by water cooling In the method, as the steel sheet, by mass%, C: 0.001 to 0.048 %, Si: 0.005 to 0.4%, Mn: 0.05 to 0.6%, Al: 0.002 0.12%, N: 0.001 to 0.01%, P: 0.03% or less, S: 0.01% or less, the balance is iron and inevitable impurities, yield at room temperature strength is 200~300MPa, and using a steel tensile strength of 250~400MPa at room temperature, in a vertical direction with respect to one of the sides of the steel plate, and the steel sheet except for the central portion surface or back on Range, the highest of the heating part By performing linear heating so that the temperature is 900 ° C. or lower, a plurality of linear heating regions are formed at intervals along the side, and shrinkage deformation of the linear heating region occurs in a direction along the side. A method of thermally processing a steel sheet, comprising bending and deforming the steel sheet.

(2)前記鋼板がミクロ組織中に加工あるいは変態歪により転位が導入されたフェライト相を20〜95%含有することを特徴とする上記(1)に記載の鋼板の熱加工方法。   (2) The steel sheet thermal processing method according to (1) above, wherein the steel sheet contains 20 to 95% of a ferrite phase in which dislocations are introduced by processing or transformation strain in the microstructure.

(3)前記鋼板が、さらに、質量%で、Ti:0.0005〜0.02%、V:0.005〜0.1%、Nb:0.0005〜0.05%、および、Mo:0.05〜0.3%のうちの1種または2種以上を含有することを特徴とする上記(1)または(2)記載の鋼板の熱加工方法。   (3) The said steel plate is further mass%, Ti: 0.0005-0.02%, V: 0.005-0.1%, Nb: 0.0005-0.05%, and Mo: 1 type or 2 types or more of 0.05-0.3% are contained, The heat processing method of the steel plate of the said (1) or (2) description characterized by the above-mentioned.

(4) 前記鋼板が、さらに、質量%で、Ni、Cu、および、Crのうちの1種または2種以上を、合計量で0.05〜0.3%含有することを特徴とする上記(1)〜(3)の何れかに記載の鋼板の熱加工方法。   (4) The above steel sheet further comprising 0.05 to 0.3% in total of one or more of Ni, Cu and Cr in mass%. (1) -The heat processing method of the steel plate in any one of (3).

(5)前記鋼板が、さらに、質量%で、Mg、Ca、および、REMのうちの1種または2種以上を、合計量で0.0005〜0.03%含有することを特徴とする上記(1)〜(4)の何れかに記載の鋼板の熱加工方法。   (5) The above steel sheet further containing 0.0005 to 0.03% of the total amount of Mg, Ca, and REM in one or more of Mg, Ca, and REM in mass%. (1) -The thermal processing method of the steel plate in any one of (4).

本発明によれば、主として複雑かつ微妙な曲率面を有する船舶用溶接構造体を製造する場合に適用され、これまで多くの加熱・冷却作業工程を繰り返し行う必要があった加熱変形における作業工程を少なくし、従来に比べて作業効率を飛躍的に向上することができるため、本発明による造船分野など産業上の貢献は非常に多大である。   According to the present invention, a work process in heating deformation, which is mainly applied when manufacturing a marine welded structure having a complicated and subtle curvature surface, has been required to repeatedly perform many heating and cooling work processes so far. The working efficiency can be dramatically improved as compared with the prior art, and the industrial contribution such as the shipbuilding field according to the present invention is very large.

以下に、本発明を詳細に説明する。   The present invention is described in detail below.

一般に船舶用溶接構造体の製造において主として用いられる鋼板の線状加熱変形による曲げ加工は、概略以下のように行われる。   In general, bending by linear heating deformation of a steel plate mainly used in the manufacture of a marine welded structure is performed as follows.

つまり、通常ガスバーナー等の加熱源を用いて鋼板の表面または裏面上の所定領域を線状に局所加熱し、該加熱領域が熱膨張後、冷却により収縮する際に、その周囲の非加熱領域からの拘束により鋼板は塑性変形する。目的とする加工形状に合わせて前記塑性変形を鋼板に導入することにより、鋼板の加工を行うことができる。但し、目的とする最終形状が複雑な場合は、鋼板の加熱変形特性により加熱された各部分がどのように変形するか、は必ずしも明確でない場合が多く、予測が難しい。   That is, when a heating source such as a gas burner is usually used to locally heat a predetermined region on the front or back surface of the steel sheet in a linear manner, and the heating region shrinks by cooling after thermal expansion, the surrounding non-heating region The steel plate is plastically deformed by the restraint from. The steel sheet can be processed by introducing the plastic deformation into the steel sheet in accordance with the intended processing shape. However, when the intended final shape is complicated, it is often not always clear how each part heated by the heat deformation characteristics of the steel plate is deformed, and it is difficult to predict.

一般に、鋼板の線状加熱による曲げ変形においては、鋼板の熱収縮形態の違いにより、大きく角変形と横変形の2種類の変形モードが利用される。   In general, in bending deformation by linear heating of a steel sheet, two types of deformation modes, angular deformation and lateral deformation, are largely used due to the difference in heat shrinkage of the steel sheet.

図1は鋼板の線状加熱による横変形(A)と角変形(B)の2種類の変形モードを説明するための概念図である。   FIG. 1 is a conceptual diagram for explaining two types of deformation modes of lateral deformation (A) and angular deformation (B) by linear heating of a steel plate.

鋼板の線状加熱による横変形は、図1(A)に示されるように鋼板9の板厚方向で(a)に示すように横収縮量10の差が小さくなる場合に、加熱部全体が鋼板面に(b)に示すように水平な方向に収縮する変形である。   As shown in FIG. 1 (A), the horizontal deformation of the steel sheet by linear heating is performed when the difference between the amount of lateral shrinkage 10 is small in the thickness direction of the steel sheet 9 as shown in FIG. It is a deformation that shrinks in the horizontal direction as shown in FIG.

また、鋼板の線状加熱による角変形は、図1(B)に示されるように鋼板の表裏面のいずれか一方の横収縮量が(c)に示すように他方に比べて相対的に大きくなる場合に、(d)に示すように横収縮量の大きい鋼板面側に屈曲する変形である。   Further, as shown in FIG. 1 (B), the angular deformation due to linear heating of the steel sheet is relatively larger than the other as shown in FIG. In this case, as shown in (d), it is a deformation that bends to the steel plate surface side with a large amount of lateral shrinkage.

図1の(A)、(B)中の矢印の長さは、横収縮量10の大きさを示すものであるが、横変形および角変形の何れの場合も、線状加熱された鋼板表面とその裏面に横収縮が発生するが、鋼板の厚み方向における局所的な横収縮量の違いにより、鋼板全体の変形は大きく異なるものとなる。   The lengths of the arrows in FIGS. 1 (A) and 1 (B) indicate the magnitude of the amount of lateral shrinkage 10. In both cases of lateral deformation and angular deformation, the surface of the steel sheet heated linearly However, due to the difference in the amount of local shrinkage in the thickness direction of the steel sheet, the deformation of the entire steel sheet is greatly different.

従来の線状加熱による曲げ加工用の鋼板(例えば、特許文献3および4、参照)は、特に500〜600℃程度の中高温における鋼板強度を高め、線状加熱時に、図1(B)に示されるように、加熱された鋼板表面とその裏面とで生じる横収縮量の差が大きくなるようにし、角変形モードによる曲げ加工量を改善するものである。つまり、従来の鋼板は、500〜600℃の高温降伏強度を向上させ、図1(B)に示される加熱面における横収縮量を確保しつつ、その裏面における横収縮量を減少させ、加熱面とその裏面の横収縮量の差を相対的に大きくし、角変形を促進させるものである。しかし、従来の鋼板は、線状加熱による鋼板の曲げ加工の作業効率を向上させるために、必ずしも十分な効果は得られないものである。以下にその理由について説明する。   Conventional steel plates for bending by linear heating (see, for example, Patent Documents 3 and 4) increase the strength of steel plates particularly at medium to high temperatures of about 500 to 600 ° C., and during linear heating, FIG. As shown, the difference in lateral shrinkage generated between the heated steel plate surface and its back surface is increased, and the bending amount in the angular deformation mode is improved. That is, the conventional steel sheet improves the high-temperature yield strength of 500 to 600 ° C., reduces the amount of lateral shrinkage on the back surface while ensuring the amount of lateral shrinkage on the heating surface shown in FIG. And the difference in lateral shrinkage between the back surface and the back surface thereof are relatively increased to promote angular deformation. However, a conventional steel plate does not necessarily have a sufficient effect in order to improve the work efficiency of bending the steel plate by linear heating. The reason will be described below.

図1(B)に示される角変形モードを利用した鋼板の熱加工は、例えば、図2(A)に示されるように、鋼板の辺に対して垂直な方向に線状加熱領域を、辺に沿って所定間隔を隔てて形成し、加熱部表裏面の横収縮量の差による角変形を生じさせ、方向1から見て円弧状に曲げ変形させるものである。従来の中高温の降伏強度を高めた鋼板(例えば特許文献3および4、参照)は、このような角変形モードを利用した鋼板の熱加工において、一定の作業効率を向上させることが期待できる。
Thermal processing of the steel plate using the angular deformation mode shown in FIG. 1 (B), for example, as shown in FIG. 2 (A), a linear heating region vertical direction with respect to the sides of the steel sheet, It is formed along the side at a predetermined interval, causes an angular deformation due to a difference in lateral shrinkage between the front and back surfaces of the heating unit, and is bent and deformed in an arc shape when viewed from the direction 1. Conventional steel plates with increased yield strength at medium and high temperatures (see, for example, Patent Documents 3 and 4) can be expected to improve certain working efficiency in the thermal processing of steel plates using such an angular deformation mode.

しかし、このような角変形モードを利用した鋼板の熱加工は、以下の理由から、鋼板を目的とする形状に曲げ加工する際の効率向上のために、必ずしも十分な効果が得られるものとは言えない。すなわち、角変形モードを利用した鋼板の熱加工では、例えば、図2(B)に示される方向1から見ると、図2(A)に示す曲率半径11が所定以下の円弧上の曲げ形状が得られるが、図2(B)に示される方向2から見ると鋼板の曲げ形状は得られない。このため、例えば、船体先頭部分などの方向1及び方向2の何れから見ても、曲率半径が所定以下の曲げ形状を得るためには、方向2にも、上記と同様な線状加熱による曲げ加工を施す必要が生じる。しかしながら、線状加熱による角変形を利用し、図2(B)に示す形状に加熱加工した後は、曲げ変形をする前に比べて、鋼板の曲げ剛性が増加するため、線状加熱による鋼板の曲げ加工は困難となり、加熱の繰り返し数が増加するなど、作業効率は低下する。   However, the thermal processing of a steel sheet using such an angular deformation mode is not necessarily sufficient for improving the efficiency when bending the steel sheet into the intended shape for the following reasons. I can not say. That is, in the thermal processing of the steel sheet using the angular deformation mode, for example, when viewed from the direction 1 shown in FIG. 2 (B), the bending shape on the arc having a curvature radius 11 shown in FIG. Although it is obtained, the bent shape of the steel sheet cannot be obtained when viewed from the direction 2 shown in FIG. For this reason, for example, in order to obtain a bent shape with a radius of curvature equal to or less than a predetermined value when viewed from both the direction 1 and the direction 2 such as the hull head portion, the direction 2 is also bent by linear heating as described above. It is necessary to apply processing. However, since the bending rigidity of the steel sheet is increased after the heat processing into the shape shown in FIG. 2 (B) using the angular deformation due to the linear heating, the steel sheet by the linear heating is increased. The bending efficiency becomes difficult, and the working efficiency decreases, for example, the number of repeated heating increases.

造船分野における船殻などの船舶構造体を製造する際には、航海中の水流抵抗を少なくするために鋼板の外面が連続したなめらかな曲率面とする必要があり、また、特に海水から抵抗を直接受ける船体先頭部分などは、抵抗を低減するために曲率半径がより小さい曲げ形状に鋼板を曲げ加工する必要がある。このような複雑でかつ曲率半径がより小さい曲げ形状に鋼板を加熱加工するためには、従来の鋼板では、その作業効率を十分に向上させるためには限界があった。   When manufacturing ship structures such as hulls in the shipbuilding field, it is necessary to make the outer surface of the steel plate have a smooth and smooth curvature surface in order to reduce water flow resistance during voyage. It is necessary to bend the steel plate into a bent shape with a smaller radius of curvature in order to reduce the resistance of the hull head portion directly received. In order to heat-process a steel plate into such a complicated bent shape with a smaller curvature radius, the conventional steel plate has a limit to sufficiently improve the working efficiency.

本発明では、従来の船舶溶接構造体の製造において特に作業効率の改善が望まれていた、船体先頭部分のような小さな曲率半径が要求される曲げ加工を行う際に、加熱加工の作業効率を向上させる方法を鋭意検討した。   In the present invention, when manufacturing a conventional ship welded structure, improvement in work efficiency is particularly desired, and when performing bending work that requires a small radius of curvature such as the front part of the hull, the work efficiency of heating work is reduced. The method of improving was studied earnestly.

その結果、従来から特に作業効率向上が望まれていた、最終形状の最大曲率半径が4.0m以下の曲げ加工を前提とし、その作業効率を向上させるためには、従来の線状加熱による角変形を利用した曲げ変形加工ではなく、横変形を利用した変形加工を前提とする必要があることが明らかとなった。本発明では、最終形状の最大曲率半径が4.0m以下の曲げ加工の作業効率を向上させるために、線状加熱時の横変形量が大きい鋼板を利用し、線状加熱時の横変形を促進することにより、最終形状に曲げ変形をする際の加熱繰り返し数を減少し、作業効率を向上させることを技術思想とする。   As a result, it is assumed that the work efficiency should be improved in the past, and the bending of the final shape with a maximum curvature radius of 4.0 m or less is assumed. It became clear that it is necessary to presume deformation processing using lateral deformation, not bending deformation processing using deformation. In the present invention, in order to improve the working efficiency of the bending process with the maximum curvature radius of the final shape of 4.0 m or less, a steel plate having a large amount of lateral deformation at the time of linear heating is used, and the lateral deformation at the time of linear heating is performed. By promoting, the technical idea is to reduce the number of heating repetitions when bending deformation to the final shape, and to improve work efficiency.

先ず、本発明が前提とする線状加熱時による鋼板の横変形モードを利用し、最終形状の最大曲率半径が4.0m以下の曲げ加工を行う方法について説明する。   First, a method of performing bending with a maximum curvature radius of 4.0 m or less using a transverse deformation mode of a steel sheet during linear heating assumed in the present invention will be described.

上述の通り、鋼板の線状加熱による横変形モードは、図1(A)に示されるように鋼板の板厚方向で横収縮量の差が小さくなる場合に、加熱部全体が鋼板面に水平な方向に収縮する変形である。線状加熱による鋼板の横変形は、図1(A)に示すように面内変形であるため、鋼板の1箇所を線状加熱するだけでは、図1(B)に示す角変形モードのような面外変形を生じさせることはできない。しかし、以下のように線状加熱領域及び非加熱領域の位置、線状加熱領域の間隔や幅などの条件を調整することにより、鋼板を目的とする曲率を有する形状に曲げ変形させることが可能となる。   As described above, the transverse deformation mode by linear heating of the steel sheet is as follows. When the difference in lateral shrinkage is small in the sheet thickness direction of the steel sheet as shown in FIG. Deformation that shrinks in any direction. Since the lateral deformation of the steel sheet by linear heating is in-plane deformation as shown in FIG. 1 (A), just by linearly heating one place of the steel sheet, the angular deformation mode shown in FIG. Cannot cause out-of-plane deformation. However, it is possible to bend and deform the steel sheet into a shape with the desired curvature by adjusting the conditions such as the position of the linear heating region and the non-heating region, the interval and width of the linear heating region as follows: It becomes.

横変形モードを利用した鋼板の曲げ加工は、例えば、図3に示すように、長方形の鋼板の辺1及び辺2に対して垂直な方向で、かつ中央部を除く鋼板の表面または裏面上を線状加熱し、線状加熱方向の中央部(非加熱領域)を除く辺1及び辺2の両側に、辺1及び辺2に沿って間隔を隔てて、複数の線状加熱領域3(図中のハッチング部分)を形成する。鋼板の辺1及び辺2の両側に形成されたそれぞれの線状加熱領域3では加熱後の冷却により横収縮し、熱加工により鋼板の辺1、2に発生した横収縮5が生じ、横変形が生じる。その結果、線状加熱をしていない鋼板中央部(非加熱領域)に対して鋼板の辺1及び辺2の両側(線状加熱領域3)における横方向(線状加熱方向に対して垂直な方向)の長さが相対的に短くなり、鋼板は曲げ(面外)変形される。

Of the steel plate using the transverse deformation mode bending, for example, as shown in FIG. 3, with respect to the sides 1 and side 2 of the rectangular steel plates in vertical direction, and the steel sheet surface or on the back surface except the central portion Are heated linearly, and a plurality of linear heating regions 3 (on both sides of side 1 and side 2 excluding the central portion (non-heated region) in the linear heating direction are spaced along sides 1 and 2. The hatched portion in the figure is formed. In the respective linear heating regions 3 formed on both sides of the side 1 and the side 2 of the steel plate, lateral shrinkage occurs due to cooling after heating, and lateral shrinkage 5 occurs on the sides 1 and 2 of the steel plate due to thermal processing, resulting in lateral deformation. Occurs. As a result, the lateral direction (perpendicular to the linear heating direction) on both sides (linear heating region 3) of side 1 and side 2 of the steel plate with respect to the central portion (non-heated region) of the steel plate not subjected to linear heating. The direction is relatively short, and the steel plate is bent (out-of-plane).

本発明者らの検討の結果、線状加熱により最終形状の最大曲率半径が小さい鋼板の曲げ加工を行う場合は、横変形モードを利用する方が、角変形モードを利用する場合に比べて、曲げ加工の作業効率を向上させるために有効であることを確認した。つまり、上述したように、角変形モードを利用した鋼板の曲げ加工では、船体先頭部分などの図2(B)に示す方向1及び方向2の何れから見ても、曲率半径が所定以下の曲げ形状を得るためには、線状加熱により、先ず方向1から見て図2(A)に示す曲げ形状に加工した後、方向2から見ても同様な線状加熱による曲げ加工を施す必要が生じる。しかし、図2(B)に示す曲げ形状に加工した後は、加工前に比べて、鋼板の曲げ剛性が増加するため、線状加熱による鋼板の曲げ加工は困難となり、加熱の繰り返し数の増加など、作業効率は低下する。   As a result of the study by the inventors, when bending a steel sheet having a small maximum curvature radius of the final shape by linear heating, it is better to use the lateral deformation mode than to use the angular deformation mode. It was confirmed that it is effective for improving the work efficiency of bending. That is, as described above, in the bending process of the steel sheet using the angular deformation mode, the bending radius is not more than a predetermined value when viewed from either the direction 1 or the direction 2 shown in FIG. In order to obtain the shape, it is necessary to first perform the bending process shown in FIG. 2 (A) by linear heating and then perform the same bending process by linear heating as viewed from direction 2. Arise. However, after processing into the bending shape shown in FIG. 2 (B), the bending rigidity of the steel sheet increases compared to before processing, so bending of the steel sheet by linear heating becomes difficult and the number of repetitions of heating increases. As a result, work efficiency decreases.

これに対して、横変形モードを利用した鋼板の曲げ加工では、図3に示すような線状加熱領域3と非加熱領域との位置関係、線状加熱領域3の間隔などの条件を調整することにより、図3(B)に示すように2方向(矢印4)から見て所定の曲率半径11を有する曲げ形状に曲げ加工することが可能となる。このため、横変形モードを利用した鋼板の曲げ加工では、船体先頭部分などの曲率半径が小さい曲げ加工をする場合でも、角変形モードを利用した鋼板の曲げ加工のような、加工後の曲げ剛性の増加に起因する、加熱繰り返し数の増加などの作業効率低下の問題は生じず、作業効率の向上が図れる。   On the other hand, in the bending process of the steel sheet using the lateral deformation mode, conditions such as the positional relationship between the linear heating region 3 and the non-heating region, the interval between the linear heating regions 3 as shown in FIG. 3 are adjusted. Thus, as shown in FIG. 3B, it is possible to bend into a bent shape having a predetermined radius of curvature 11 when viewed from two directions (arrow 4). For this reason, in bending of steel plates using the transverse deformation mode, bending rigidity after processing, such as bending of steel plates using the angular deformation mode, even when bending with a small radius of curvature such as the top part of the hull, is performed. As a result, there is no problem of reduction in work efficiency such as increase in the number of heating repetitions due to the increase in work efficiency, and work efficiency can be improved.

また、横変形モードを利用した鋼板の曲げ加工による作業効率の向上は、線状加熱時の加熱部の最高到達温度が900℃以下の条件で特に有利な効果があることがわかった。
本発明は、上記知見を基になされたものであり、最終形状の最大曲率半径が4.0m以下となるように曲げ加工する際に、成分組成と、室温降伏強度および室温引張り強度を規定した鋼板を使用することにより、加熱部の最高到達温度が900℃以下の線状加熱により、加熱部全体が均一に鋼板面の方向に収縮させ(図1(A)に示される板厚方向で横収縮量の差が小さい)、横変形量を増加させることにより、曲げ加工の作業効率を向上させることを技術思想とする。
Further, it has been found that the improvement in work efficiency by bending the steel sheet using the transverse deformation mode has a particularly advantageous effect under the condition that the maximum temperature reached by the heating part during linear heating is 900 ° C. or less.
The present invention has been made on the basis of the above knowledge, and the component composition, room temperature yield strength, and room temperature tensile strength were defined when bending so that the maximum curvature radius of the final shape was 4.0 m or less. By using a steel plate, the entire temperature of the heating unit is uniformly shrunk in the direction of the steel plate surface by linear heating with a maximum temperature of the heating unit of 900 ° C. or less (in the thickness direction shown in FIG. 1 (A)). The technical idea is to improve the working efficiency of bending by increasing the amount of lateral deformation.

以下に、上記技術思想を基に、本発明の鋼板の熱加工方法における、線状加熱時に横変形量が高い鋼板の成分組成、機械的特性、および、線状加熱変形の条件、さらに、好ましい鋼板組織の組織の限定について説明する。   Below, based on the above technical idea, in the thermal processing method of the steel sheet of the present invention, the component composition of the steel sheet having a high amount of lateral deformation at the time of linear heating, the mechanical properties, and the conditions for the linear heat deformation, more preferably The limitation of the structure of the steel sheet structure will be described.

(最終形状の最大曲率半径)
以下に、本発明で、最終形状の最大曲率半径の上限を4mとする理由を述べる。
(Maximum curvature radius of final shape)
The reason why the upper limit of the maximum curvature radius of the final shape is set to 4 m in the present invention will be described below.

本発明は、線状加熱時に横変形量が大きい鋼板を利用し、鋼板曲げ加工の作業効率を向上させることを目的とするが、この作業効率向上の効果は、最終形状の曲率半径により低下するものではない。しかし、最終形状の曲率半径が大きくなるほど、従来の線状加熱時に角変形量が大きい鋼板を利用した曲げ加工方法(例えば特許文献3および4、参照)との効果の有意差が小さくなるため、本発明の鋼板曲げ加工の作業効率の有利な効果が得られる、熱加工による最終形状の最大曲率半径を4m以下と規定した。   An object of the present invention is to use a steel plate having a large amount of lateral deformation during linear heating, and to improve the working efficiency of the steel plate bending process. The effect of improving the working efficiency is reduced by the radius of curvature of the final shape. It is not a thing. However, as the radius of curvature of the final shape increases, a significant difference in effect from a bending method using a steel sheet having a large amount of angular deformation during conventional linear heating (for example, see Patent Documents 3 and 4) decreases. The maximum curvature radius of the final shape by thermal processing, which can obtain the advantageous effect of the work efficiency of the steel sheet bending process of the present invention, was defined as 4 m or less.

上述したとおり、線状加熱による角変形を利用して鋼板の曲げ加工を行う場合には、最終形状の最大曲率半径が4m以下と小さい条件では、図2(B)に示す方向1から見て図2(A)の曲げ形状に加工する際に剛性が増加し、次に方向2から見て同様な曲げ加工する際の加工性を低下させる結果、加熱繰り返し数の増加などの作業効率低下が生じる。   As described above, when bending the steel sheet by utilizing the angular deformation caused by linear heating, when the maximum curvature radius of the final shape is as small as 4 m or less, it is viewed from the direction 1 shown in FIG. The rigidity increases when processing into the bent shape shown in FIG. 2A, and the workability when the same bending process is performed next as seen from direction 2 is reduced. As a result, the work efficiency decreases such as an increase in the number of heating repetitions. Arise.

本発明では、最終形状の最大曲率半径が4m以下と小さい条件でも、線状加熱による横変形量が大きい鋼板を利用し、横変形により、図2(B)に示す2方向(方向1および方向2)から見て図2(A)の曲げ形状となる曲げ加工が同時に達成できるため、従来法に比べて大幅に作業効率の向上が図れる。   In the present invention, even when the maximum radius of curvature of the final shape is as small as 4 m or less, a steel plate having a large amount of lateral deformation due to linear heating is used, and two directions (direction 1 and direction) shown in FIG. Since the bending process shown in FIG. 2A as viewed from 2) can be achieved at the same time, the working efficiency can be greatly improved as compared with the conventional method.

(鋼板の降伏強度(YP)および引張強度(TS))
次に、本発明における鋼板の降伏強度および引張強度の限定理由について説明する。
(Yield strength (YP) and tensile strength (TS) of steel plate)
Next, the reasons for limiting the yield strength and tensile strength of the steel sheet in the present invention will be described.

線状加熱による鋼板の熱変形は、加熱部が熱膨張後、冷却により収縮する際に、その周囲の非加熱領域からの拘束により鋼板の加熱部が降伏し、塑性変形する現象であるため、鋼板の降伏強度が関係する。本発明では、線状加熱条件や冷却条件を変えずに、線状加熱時に横変形量が大きい鋼板を利用することにより、最終形状の最大半径が小さい曲げ加工の作業効率を向上させることを技術思想とする。線状加熱時に横変形量が大きくなる鋼板の熱特性としては、図1(A)に示すように、加熱部の表裏面での局所的な横収縮量の差が小さく、板厚方向で均一に横収縮量が増加するものが好ましい。このため、本発明で使用する鋼板は、線状加熱時に最高到達温度が900℃以下となる直接加熱面に比べて、低温となる非加熱面でも降伏しやすく十分に塑性ひずみを導入させ、加熱部の板厚方向で均一に横収縮量を増加させる必要がある。この作用効果を得るため、本発明では、非加熱面の低い加熱温度でも降伏しやすい鋼板として、降伏強度(YP)の上限が300MPaの鋼板を用いる必要がある。鋼板の室温での降伏強度(YP)が300MPaより高い場合には、直接加熱面に比べて、低温となる非加熱面では降伏し難く、横収縮量が小さくなるため、横収縮量が大きい直接加熱面側に角変形しやすくなり、加熱部の板厚方向で均一に横収縮量を増加させ、横変形を利用した曲げ変形の作業効率を向上する効果が十分に得られなくなる。   The thermal deformation of the steel sheet due to linear heating is a phenomenon in which when the heating part shrinks by cooling after thermal expansion, the heating part of the steel sheet yields due to restraint from the surrounding non-heated area, and plastic deformation occurs. This is related to the yield strength of the steel sheet. In the present invention, it is a technology to improve the work efficiency of bending work with a small maximum radius of the final shape by using a steel plate having a large amount of lateral deformation during linear heating without changing the linear heating condition and cooling condition. It is thought. As shown in FIG. 1 (A), the thermal characteristics of the steel sheet, in which the amount of lateral deformation increases during linear heating, the difference in local lateral shrinkage between the front and back surfaces of the heating unit is small and uniform in the thickness direction. In particular, those that increase the amount of lateral shrinkage are preferred. For this reason, the steel sheet used in the present invention is more likely to yield even on a non-heated surface at a low temperature, compared to a directly heated surface where the maximum temperature reached 900 ° C. or less during linear heating, and sufficiently introduces plastic strain. It is necessary to increase the amount of lateral shrinkage uniformly in the thickness direction of the part. In order to obtain this effect, in the present invention, a steel plate having an upper limit of yield strength (YP) of 300 MPa needs to be used as a steel plate that easily yields even at a low heating temperature of the non-heated surface. When the yield strength (YP) at room temperature of the steel sheet is higher than 300 MPa, it is difficult to yield on the non-heated surface, which is at a lower temperature than the directly heated surface, and the amount of lateral shrinkage is small. Angular deformation is likely to occur on the heating surface side, and the effect of increasing the amount of lateral shrinkage uniformly in the thickness direction of the heating portion and improving the work efficiency of bending deformation using lateral deformation cannot be obtained sufficiently.

一方、鋼板の降伏強度の下限は、横変形を利用した曲げ変形の作業効率の点から、特に限定する必要はないが、鋼板の降伏強度が200MPa未満の場合には、鋼板成分を純鉄に近い成分系にしなければならず、鋼板の製造コストを増加させる原因となるため、好ましくない。   On the other hand, the lower limit of the yield strength of the steel sheet is not particularly limited from the viewpoint of the work efficiency of bending deformation using lateral deformation, but when the yield strength of the steel sheet is less than 200 MPa, the steel sheet component is made of pure iron. It is not preferable because the components must be close to each other, which increases the manufacturing cost of the steel sheet.

以上の理由から、本発明では、鋼板の降伏強度を200MPa〜300MPaに限定する。   For the above reasons, in the present invention, the yield strength of the steel sheet is limited to 200 MPa to 300 MPa.

本発明では、上述のとおり、最終形状の最大曲率半径が4m以下と小さい条件での曲げ加工を前提とするため、最終形状の最大曲率半径に鋼板を曲げ変形させるために、図3に示される線状加熱領域3の同一箇所を何回も繰り返し線状加熱、冷却する熱加工処理を実施する必要がある。この線状加熱、冷却の熱加工処理の繰り返し回数増加に伴い、加熱領域3、つまり熱加工部に導入される塑性ひずみ量の増加により加工硬化が生じる。この結果、熱加工部の鋼板の降伏強度は、熱加工処理の繰り返し回数が増加するとともに高くなるため、線状加熱による加熱部の横変形量が小さくなり、曲げ加工の作業効率が低下してしまう。   In the present invention, as described above, since the bending is performed under the condition that the maximum curvature radius of the final shape is as small as 4 m or less, the steel sheet is bent and deformed to the maximum curvature radius of the final shape as shown in FIG. It is necessary to carry out a thermal processing treatment for repeatedly heating and cooling the same portion of the linear heating region 3 many times. With the increase in the number of repetitions of the linear heating and cooling thermal processing, work hardening occurs due to an increase in the amount of plastic strain introduced into the heating region 3, that is, the thermal processing section. As a result, the yield strength of the steel sheet in the heat-processed portion increases as the number of heat-processing repeats increases, so the amount of lateral deformation of the heated portion due to linear heating decreases, and the work efficiency of bending decreases. End up.

そこで、本発明では、線状加熱、冷却の熱加工処理により導入される塑性ひずみ量に起因する加工硬化を抑制するために、上記の鋼板の降伏強度の規定に加えて、鋼板の引張強度を以下のように規定する必要がある。   Therefore, in the present invention, in order to suppress the work hardening caused by the amount of plastic strain introduced by the linear heating and cooling thermal processing, in addition to the above-mentioned definition of the yield strength of the steel plate, the tensile strength of the steel plate is set. It is necessary to specify as follows.

図4は、同一降伏強度(280MPa)で引張強度の異なる2種(○:340MPa、●:440MPa)の鋼板を線状加熱、冷却の熱加工を繰り返して実施する際に、その熱加工処理の繰り返し回数と、熱加工部の降伏強度との関係を示す。なお、鋼板の熱加工は、ガスバーナーを用いて鋼板の加熱部の最高加熱温度が600℃になる条件で線状加熱した後、水冷し、この線状加熱と冷却を所定回数繰り返し、その時の熱加工部の降伏強度を測定した。   FIG. 4 shows two types of steel plates having the same yield strength (280 MPa) and different tensile strengths (◯: 340 MPa, ●: 440 MPa) when linear heating and cooling are repeatedly performed by thermal processing. The relationship between the number of repetitions and the yield strength of a heat-processed part is shown. In addition, the thermal processing of the steel sheet is performed by linear heating using a gas burner under the condition that the maximum heating temperature of the heating part of the steel sheet is 600 ° C., then water cooling, and this linear heating and cooling are repeated a predetermined number of times. The yield strength of the heat-processed part was measured.

図4に示されるように何れの鋼板も、線状加熱・冷却の熱加工の繰り返し回数の増加とともに熱加工部の加工硬化により降伏強度は増加するが、それぞれの降伏強度の最大は、それぞれの鋼板の引張強度に収束し、引張強度を超えることはない。例えば、最初はいずれの鋼板も降伏強度は280MPaであるが、熱加工の繰り返し回数が10回の時には、その熱加工部の降伏強度は、引張強度が340MPaの鋼板(○)の場合は311MPaまで増加し、引張強度が440MPaの鋼板(●)の場合は357MPaまで増加する。つまり、同じ本発明の範囲内にある降伏強度の鋼板を用いても、熱加工処理の繰り返し回数の増加に伴い、熱加工部の加工硬化に起因してその降伏強度は増加し、その増加の程度は、鋼板の初期の降伏強度に依存する。引張強度の高い鋼板は、引張強度の低い鋼板に比べ、1回あたりの熱加工処理による降伏強度の増加量は高くなるため、特に、最終形状の最大曲率半径が小さい条件での曲げ加工における作業効率の低下は顕著となる。   As shown in FIG. 4, the yield strength of each steel sheet increases with the work hardening of the heat-processed part as the number of repetitions of thermal processing of linear heating / cooling increases, but the maximum of each yield strength is It converges to the tensile strength of the steel sheet and does not exceed the tensile strength. For example, at first, the yield strength of all the steel plates is 280 MPa, but when the number of thermal processing is 10 times, the yield strength of the heat-processed portion is up to 311 MPa in the case of a steel plate (◯) with a tensile strength of 340 MPa. In the case of a steel plate (●) having a tensile strength of 440 MPa, it increases to 357 MPa. In other words, even when using a steel plate having a yield strength that falls within the same scope of the present invention, the yield strength increases due to work hardening of the heat-processed portion with an increase in the number of repetitions of the heat-processing treatment. The degree depends on the initial yield strength of the steel sheet. The steel plate with high tensile strength has a higher yield strength increase due to thermal processing per time than the steel plate with low tensile strength. Therefore, especially in the bending work under the condition that the maximum curvature radius of the final shape is small. The decrease in efficiency is significant.

本発明では、以上の検討結果を踏えて、最終形状の最大力率半径が4m以下と小さい条件で曲げ加工の作業効率を十分に向上させるために、上記鋼板の室温での降伏強度の規定に加えて、鋼板の引張強度の上限を400MPaに規定することにより、熱加工処理の繰り返し回数の増加に行う加工硬化、降伏強度の増加に起因する作業効率の低下を抑制しつつ、最終的な熱加工部の横変形量を十分に増加させる必要がある。上記鋼板の室温での降伏強度が本発明の範囲内であっても、鋼板の引張強度の上限が400MPaを超える場合には、熱加工処理の繰り返し回数の増加に行う降伏強度の増加に起因する作業効率の低下が顕著となり、最終形状の最大力率半径までの曲げ加工の作業効率を十分向上することはできなくなる。   In the present invention, based on the above examination results, in order to sufficiently improve the working efficiency of bending work under the condition that the maximum power factor radius of the final shape is as small as 4 m or less, the yield strength at room temperature of the steel sheet is specified. In addition, by defining the upper limit of the tensile strength of the steel sheet to 400 MPa, it is possible to reduce the work efficiency while reducing the work efficiency due to the increase in the number of repetitions of the thermal processing, the increase in the yield strength, and the final heat It is necessary to increase the lateral deformation amount of the processed part sufficiently. Even if the yield strength at room temperature of the steel sheet is within the range of the present invention, when the upper limit of the tensile strength of the steel sheet exceeds 400 MPa, it results from an increase in the yield strength performed to increase the number of repetitions of the thermal processing. The reduction in work efficiency becomes significant, and the work efficiency of bending up to the maximum power factor radius of the final shape cannot be sufficiently improved.

一方、鋼板の引張強度の下限は、横変形を利用した曲げ変形の作業効率の点から、特に限定する必要はないが、鋼板の引張強度が250MPa未満の場合には、鋼板成分を純鉄に近い成分系にしなければならず、鋼板の製造コストを増加させる原因となるため、好ましくない。   On the other hand, the lower limit of the tensile strength of the steel plate is not particularly limited from the viewpoint of the work efficiency of bending deformation using lateral deformation, but when the tensile strength of the steel plate is less than 250 MPa, the steel plate component is changed to pure iron. It is not preferable because the components must be close to each other, which increases the manufacturing cost of the steel sheet.

以上の理由から、本発明では、鋼板の引張強度を250MPa〜400MPaに限定する。   For the above reasons, in the present invention, the tensile strength of the steel sheet is limited to 250 MPa to 400 MPa.

(線状加熱冷却条件、最高到達温度)
次に、加熱冷却に対して、本発明の限定理由について述べる。
(Linear heating and cooling conditions, maximum temperature reached)
Next, the reason for limitation of the present invention will be described for heating and cooling.

本発明では、ガスバーナーを用いて鋼板を線状加熱した後、水冷する熱加工処理を繰り返すことにより最終形状の最大曲率半径が所定以下の曲げ加工を行う。線状加熱した後の水冷は、単に冷却時間の短縮のみならず、線状加熱部が横収縮する際に、その周囲の非加熱部分の温度の上昇を抑制し降伏応力の低下を抑制することで強い拘束力を作用させるために必要である。本発明では、鋼材の強度を低く限定しているため、加熱部の周囲からの拘束力をできるだけ高く維持するためには水冷は必須である。また、冷却は熱加工処理後の曲げ加工量を把握し、次の熱加工処理条件の修正を容易するためも必要である。   In the present invention, after the steel sheet is linearly heated using a gas burner, the bending process with the maximum radius of curvature of the final shape being not more than a predetermined value is performed by repeating the water-cooling thermal processing. Water cooling after linear heating not only shortens the cooling time, but also suppresses the decrease in yield stress by suppressing the temperature rise of the surrounding non-heated part when the linear heating part contracts laterally. It is necessary to apply a strong restraining force. In the present invention, since the strength of the steel material is limited to be low, water cooling is indispensable in order to maintain the restraining force from the periphery of the heating unit as high as possible. Cooling is also necessary for grasping the amount of bending after the thermal processing and facilitating correction of the next thermal processing conditions.

一般に、鋼板の線状加熱による曲げ加工において、1回あたりの熱加工処理時の塑性変形量は、線状加熱部の入熱が高くなるほど大きくなる傾向にある。これは、線状加熱部の入熱量の増加により、1回あたりの膨張および収縮する領域がそれだけ広くなるためである。しかし、入熱量の増加、つまり、線状加熱時の鋼板の最高到達温度が高くなるとともに加熱時間が長くなるため、過度に最高到達温度が高い条件では最終形状に曲げ加工を行う際の作業効率は低下することとなる。   Generally, in a bending process by linear heating of a steel sheet, the amount of plastic deformation during one thermal processing tends to increase as the heat input of the linear heating part increases. This is because the area of expansion and contraction per time becomes wider as the heat input amount of the linear heating unit increases. However, the increase in heat input, that is, the maximum ultimate temperature of the steel sheet during linear heating increases and the heating time becomes longer, so the work efficiency when bending to the final shape under excessively high ultimate temperature conditions Will drop.

本発明では、上記の通り、鋼材の降伏強度と引張強度を規定することにより、1回あたりの熱加工処理における横変形量を向上しつつ、熱加工処理の繰り返し回数の増加に伴う降伏強度の増加を抑制することができるため、従来に比べて線形加熱温度が低い条件でも曲げ加工の作業効率を十分に向上することができる。しかし、線状加熱時に鋼板の最高到達温度が900℃を超える場合には、1回あたりの熱加工処理で得られる変形量は大きくできても、加熱時間が長くなる結果、熱加工処理の繰り返しにより最終形状に曲げ加工を行う際の作業効率を十分に向上することは困難となる。例えば、1回の熱加工作業で得られる変形量が2倍になったとしても、作業時間が3倍になれば全体として効率は低下するため好ましくない。したがって、本発明では、線状加熱時の鋼板加熱部の最高到達温度を900℃以下に限定する。   In the present invention, as described above, by defining the yield strength and tensile strength of the steel material, while improving the amount of lateral deformation in the thermal processing per time, the yield strength accompanying the increase in the number of repetitions of the thermal processing. Since the increase can be suppressed, the working efficiency of the bending process can be sufficiently improved even under the condition where the linear heating temperature is lower than the conventional one. However, when the maximum temperature of the steel sheet exceeds 900 ° C. during linear heating, the amount of deformation obtained by one heat processing can be increased, but the heating time becomes longer, resulting in repeated heat processing. Thus, it is difficult to sufficiently improve the working efficiency when bending the final shape. For example, even if the amount of deformation obtained in one thermal processing operation is doubled, if the working time is tripled, the efficiency is lowered as a whole, which is not preferable. Therefore, in the present invention, the maximum temperature reached by the steel sheet heating part during linear heating is limited to 900 ° C. or less.

次に、本発明における上記鋼板の成分組成の限定理由について述べる。   Next, the reasons for limiting the component composition of the steel sheet in the present invention will be described.

以下に示す「%」は特に説明がない限り、「質量%」を意味するものとする。   Unless otherwise specified, “%” shown below means “% by mass”.

Cは、鋼板の強度を上げ、かつ焼入性も上げる元素である。Cの下限、0.001%は、これを下回るC量では、鋼板強度を本発明の範囲内に設定することができない。本発明では、曲率半径を限定しているため、あまり荷重が加わらない部位に限定されるが、最低限の強度は必要であるため、この値を下限とした。一般に、鋼板の強度は、Cのみならず、Si、Mnなどにも依存するが、Cが0.06%を上回る場合は、通常鋼板と同じレベルにまで強度が高くなるため上限をこの値としたが、実施例に示す本発明例の最大C量は0.048%であるC is an element that increases the strength of the steel sheet and increases the hardenability. If the lower limit of C, 0.001%, is less than C, the steel sheet strength cannot be set within the range of the present invention. In the present invention, since the radius of curvature is limited, it is limited to a portion where a load is not applied so much, but since a minimum strength is necessary, this value is set as the lower limit. In general, the strength of a steel sheet depends not only on C but also Si, Mn, etc., but when C exceeds 0.06%, the strength increases to the same level as that of a normal steel sheet, so the upper limit is set to this value. However, the maximum C amount of the present invention example shown in the examples is 0.048% .

Siは、脱酸元素であり、また強度維持元素でもある。Siの上限0.4%は、この値を超えると、添加量増加による強度向上が生じてしまうため、この値を設定した。下限の0.005%は、脱酸効果が発現できる最低のレベルとして設定した。   Si is a deoxidizing element and also a strength maintaining element. If the upper limit of 0.4% of Si exceeds this value, the strength is improved due to an increase in the amount added, so this value was set. The lower limit of 0.005% was set as the lowest level at which the deoxidation effect can be exhibited.

Mnも、C同様強度を確保する元素である。下限の0.05%は、強度確保という観点から最低の値として設定した。また、上限の0.6%は、これを上回る添加量では、本発明の強度範囲内を上回る強度になるためこの値を設定した。   Mn is an element that ensures the same strength as C. 0.05% of the lower limit was set as the lowest value from the viewpoint of securing strength. In addition, the upper limit of 0.6% is set at this value because the added amount exceeding the upper limit results in the strength exceeding the strength range of the present invention.

PおよびSは、本発明においては不純物である。しかし、これら元素が過度に含有されると鋼板およびHAZの靭性が劣化されるためその上限をそれぞれ0.03%、0.01%とした。   P and S are impurities in the present invention. However, if these elements are contained excessively, the toughness of the steel sheet and HAZ deteriorates, so the upper limits were made 0.03% and 0.01%, respectively.

AlはSi同様脱酸元素である。そのための下限として0.002%を設定した。これより低い場合は、鋼板中の酸素が増加し、鋼板特性上問題が生じる。また、過度の添加は溶接性を損ねるため、その上限を0.12%とする。   Al is a deoxidizing element like Si. For this purpose, 0.002% was set as the lower limit. When lower than this, the oxygen in a steel plate will increase and the problem on a steel plate characteristic will arise. Moreover, since excessive addition impairs weldability, the upper limit is made 0.12%.

Nは、微量では鋼片の加熱時に微細な窒化物を形成して加熱オーステナイト粒径を微細化して靭性に寄与する。そのためには、鋼中の含有量として0.001%以上必要である。一方、0.01%を越えて含有させると窒化物が粗大化し、あるいは、固溶Nが増加し靭性を劣化させるため、上限を0.01%と設定した。   In a small amount, N forms fine nitrides when the steel slab is heated to refine the heated austenite grain size and contribute to toughness. For that purpose, 0.001% or more is necessary as content in steel. On the other hand, if the content exceeds 0.01%, the nitride becomes coarse, or the solid solution N increases and the toughness is deteriorated, so the upper limit was set to 0.01%.

以上が本発明における鋼板の基本成分であるが、鋼板の強度を調整するために、さらに、以下のTi、V、NbおよびMoの1種または2種以上を以下の含有量で加することができる。   The above is the basic component of the steel sheet in the present invention, but in order to adjust the strength of the steel sheet, one or more of the following Ti, V, Nb and Mo may be added in the following content. it can.

Tiは、析出強化元素である。鋼板強度を本発明の範囲内に調整する場合において、有効に利用すれば、Mn添加量をその分少なくすることも可能である。しかし、0.02%を上回る添加量では、強度増加が著しくなり、本発明の範囲内に強度を収めることができなくなるため、上限を0.02%とした。下限の0.0005%は、これを下回る添加量では、鋼板強度確保の効果がなくなるため、この値を下限とした。   Ti is a precipitation strengthening element. In the case where the steel sheet strength is adjusted within the range of the present invention, if it is effectively used, the amount of Mn added can be reduced accordingly. However, if the addition amount exceeds 0.02%, the strength increases remarkably, and the strength cannot be kept within the range of the present invention, so the upper limit was made 0.02%. For the lower limit of 0.0005%, the effect of ensuring the strength of the steel sheet is lost at an addition amount lower than this, so this value was set as the lower limit.

VもTi同様、析出強化元素である。しかし、Tiと比べてその効果は小さい。そのため、Tiの上限以上に添加しても、鋼板強度を本発明の範囲内に設定することができる。しかし、添加量が0.1%を上回る場合は、強度増加が大きすぎ、本発明の範囲内に鋼板強度を収めることができなくなるためこの値を設定した。下限の0.005%は、これを下回る添加量では、鋼板強度確保の効果がなくなるため、この値を下限とした。   V, like Ti, is a precipitation strengthening element. However, the effect is small compared to Ti. Therefore, even if it adds more than the upper limit of Ti, steel plate strength can be set within the range of the present invention. However, when the added amount exceeds 0.1%, the strength increase is too large, and the steel plate strength cannot be kept within the range of the present invention, so this value was set. Since 0.005% of the lower limit loses the effect of securing the strength of the steel sheet when the addition amount is less than this, this value is set as the lower limit.

Nbも、TiおよびVと同じ働きをする元素である。しかし、効果の大きさがTiやVと異なるためその範囲をNbに合わせて設定する必要がある。添加量が0.05%を上回る場合は、強度増加が大きすぎ、本発明の範囲内に鋼板強度を収めることができなくなるためこの値を設定した。下限の0.0005%は、これを下回る添加量では、鋼板強度確保の効果がなくなるため、この値を下限とした。   Nb is also an element having the same function as Ti and V. However, since the magnitude of the effect is different from Ti and V, the range needs to be set in accordance with Nb. When the added amount exceeds 0.05%, the strength increase is too large, and the steel plate strength cannot be kept within the range of the present invention, so this value is set. For the lower limit of 0.0005%, the effect of ensuring the strength of the steel sheet is lost at an addition amount lower than this, so this value was set as the lower limit.

Moも、Ti、V、Nbと同じ働きをする元素である。しかし、効果の大きさがこれら元素と異なるためその範囲をMoに合わせて設定する必要がある。Moの下限、0.05%は、これを下回る場合は、強度向上効果が得られなくなるためこの値を設定した。一臂羽状元の0.3%は、これを上回る添加量では、室温における鋼板強度が、本発明の範囲を上回ってしまい、熱加工効率が悪くなるためこの値を設定した。   Mo is also an element having the same function as Ti, V, and Nb. However, since the magnitude of the effect is different from those of these elements, it is necessary to set the range according to Mo. The lower limit of Mo, 0.05%, is less than this, so this effect is set because the effect of improving the strength cannot be obtained. This value was set at 0.3% of the winged base because the steel sheet strength at room temperature exceeded the range of the present invention at an addition amount exceeding this, and the thermal processing efficiency deteriorated.

本発明では、さらに、Ni、Cu、Crのうち1種または2種以上を、合計で0.05%〜0.3%添加することもできる。   In the present invention, one or more of Ni, Cu and Cr may be added in a total amount of 0.05% to 0.3%.

これら元素は、Ti、V、Nb、Moと異なり、鋼板の焼入性を上げることにより鋼板強度向上に寄与するものである。一般に、Crは、析出強化元素でもあるが、これは、0.5%以上の添加量の場合であり、本発明のような添加量が少ない領域では、析出硬化はあまり期待できない。本発明の添加量では、Crの寄与は、焼入性向上による寄与である。この場合、Ni、Cu、Crの働きはほぼ同じであることから、これら元素の添加量は合計量で規定した。下限の0.05%は、これを下回る添加量では、鋼板強度に影響がないためこの値を設定した。上限の0.3%は、これを上回る添加量では、室温強度が高くなりすぎ、熱加工効率が悪くなり、従来鋼板と区別がつかなくなるのでこの値を設定した。   Unlike Ti, V, Nb, and Mo, these elements contribute to improving the strength of the steel sheet by increasing the hardenability of the steel sheet. Generally, Cr is also a precipitation strengthening element, but this is a case where the addition amount is 0.5% or more, and precipitation hardening cannot be expected so much in a region where the addition amount is small as in the present invention. In the addition amount of the present invention, the contribution of Cr is a contribution by improving hardenability. In this case, since the functions of Ni, Cu, and Cr are almost the same, the addition amount of these elements is defined by the total amount. The lower limit of 0.05% was set at this value because the addition amount below this value had no effect on the steel sheet strength. The upper limit of 0.3% is set at an addition amount exceeding this value, because the room temperature strength becomes too high, the thermal processing efficiency deteriorates, and is indistinguishable from the conventional steel plate.

本発明では、上記成分に加え、Mg、Ca、REMのうち1種または2種以上を、必要に応じて添加することができる。これら元素添加目的は、鋼板の延性向上や溶接後のHAZ靭性向上が目的である。効果を確実に発現させるためには、これら元素を合計で0.0005%以上添加する必要がある。一方、過度の添加は、粗大な介在物形成の原因となり、上限を合計で0.03%とした。   In this invention, in addition to the said component, 1 type (s) or 2 or more types among Mg, Ca, and REM can be added as needed. The purpose of these element additions is to improve the ductility of the steel sheet and to improve the HAZ toughness after welding. In order to ensure the effect, it is necessary to add 0.0005% or more of these elements in total. On the other hand, excessive addition causes coarse inclusion formation, and the upper limit is set to 0.03% in total.

(横変形の高い鋼板の組織)
次に、本発明の上記鋼板のミクロ組織を限定した理由について述べる。
(Structure of steel plate with high lateral deformation)
Next, the reason why the microstructure of the steel sheet of the present invention is limited will be described.

本発明では、上記の通り、降伏強度及び引張強度と成分組成を限定した鋼板を用いることにより、最終形状の曲率半径が4.0m以下と小さい条件で熱加工処理による曲げ加工を行う際の作業効率を従来に比べて大幅に向上することができる。   In the present invention, as described above, by using a steel plate with a limited yield strength, tensile strength, and component composition, work when performing bending by thermal processing under a condition where the radius of curvature of the final shape is as small as 4.0 m or less. The efficiency can be greatly improved compared to the conventional case.

上記鋼板は本発明の目的とする効果を達成するために特に限定するものではないが、より確実な効果を得るためには鋼板のミクロ組織を以下の組織に限定するのが好ましい。   The steel sheet is not particularly limited in order to achieve the intended effect of the present invention, but in order to obtain a more reliable effect, it is preferable to limit the microstructure of the steel sheet to the following structure.

ガスバーナーによる鋼板の線状加熱、水冷による熱加工における鋼板の塑性変形量は、上記鋼板の降伏強度と引張強度によりほぼ制御される。しかし、室温の降伏強度と引張強度が同じ鋼板でも、線状加熱時の高温強度、すなわち鋼板強度の温度依存性は鋼板のミクロ組織に依存するため、熱加工を繰り返することで最終形状に曲げ加工を行う場合の作業効率を向上するためには、鋼板のミクロ組織を限定することが望ましい。   The amount of plastic deformation of the steel plate in the linear heating of the steel plate by the gas burner and the thermal processing by water cooling is substantially controlled by the yield strength and tensile strength of the steel plate. However, even for steel sheets with the same yield strength and tensile strength at room temperature, the high temperature strength during linear heating, that is, the temperature dependence of the steel sheet strength, depends on the microstructure of the steel sheet, so it can be bent to the final shape by repeated thermal processing. In order to improve the working efficiency when processing, it is desirable to limit the microstructure of the steel sheet.

本発明では、線状加熱時に横変形量が大きくなる鋼板の熱特性として、線状加熱時に最高到達温度が900℃以下となる直接加熱面に比べて、低温となる非加熱面でも降伏しやすく十分に塑性ひずみを導入させ、図1(A)に示すように、加熱部の表裏面での局所的な横収縮量の差が小さく、板厚方向で均一に横収縮量が増加する鋼板を用いる。このため、本発明で使用する鋼板は、低温となる非加熱面でも降伏しやすいミクロ組織であることが好ましい。このような熱特性を有する鋼板は、基本的にMo、Nbなどの高温強度高める元素を用いずまたはその量を抑制し、組織制御で室温での強度を確保し、400〜600℃程度での降伏応力が、室温の降伏応力に対して十分に低い特性を有するミクロ組織が好ましい。鋼板の室温での強度を確保するために、細粒強化、固溶強化、析出強化、転位強化等が知られているが、室温での降伏応力に対する寄与に比べて、熱加工中の加熱時の降伏応力の寄与が小さくなる強化因子として、転位強化が最も好ましい。   In the present invention, as a thermal characteristic of a steel sheet that has a large amount of lateral deformation during linear heating, it is more likely to yield even on a non-heated surface that is at a lower temperature than a directly heated surface where the maximum temperature reached 900 ° C. or less during linear heating. A steel plate in which plastic strain is sufficiently introduced, and as shown in FIG. 1A, the difference in local lateral shrinkage between the front and back surfaces of the heating part is small, and the lateral shrinkage increases uniformly in the thickness direction. Use. For this reason, it is preferable that the steel plate used in the present invention has a microstructure that easily yields even on a non-heated surface at a low temperature. The steel sheet having such thermal characteristics basically does not use or suppress the amount of elements that increase the high-temperature strength such as Mo and Nb, and secures the strength at room temperature by the structure control, at about 400 to 600 ° C. A microstructure in which the yield stress is sufficiently low with respect to the yield stress at room temperature is preferred. Fine grain strengthening, solid solution strengthening, precipitation strengthening, dislocation strengthening, etc. are known to ensure the strength of steel sheets at room temperature, but compared to the contribution to yield stress at room temperature, during heating during thermal processing Dislocation strengthening is the most preferable as a strengthening factor that reduces the contribution of yield stress.

これらの理由から、本発明の鋼板の組織は、ミクロ組織中に、加工あるいは変態歪により転位が導入されたフェライト相が20〜95%含有するものが好ましい。   For these reasons, the structure of the steel sheet of the present invention preferably contains 20 to 95% of a ferrite phase in which dislocations are introduced by processing or transformation strain in the microstructure.

このようなフェライトマトリクスに加工転位を導入することにより強化を図った鋼板は、転位強化により室温での降伏応力は上昇するが、熱加工中の加熱時での比較的高温では、その転位は消滅、再配列して、強化への寄与が顕著に低減するため、室温での降伏応力に対する加熱時での降伏応力の比を有効に低減することが可能となる。   A steel sheet strengthened by introducing dislocations into such a ferrite matrix increases the yield stress at room temperature due to dislocation strengthening, but the dislocations disappear at a relatively high temperature during heating during thermal processing. Since the rearrangement significantly reduces the contribution to strengthening, the ratio of the yield stress during heating to the yield stress at room temperature can be effectively reduced.

鋼板のミクロ組織中に含有する、加工あるいは変態歪により転位が導入されたフェライト相は、鋼板の室温での降伏応力を確保すると同時に、鋼板加熱時での降伏応力を低下させる。鋼板中の加工あるいは変態歪により転位が導入されたフェライトの割合が20%未満であると鋼板の室温の降伏応力に対する加熱時における降伏応力の低下が十分でなく、95%超であると、鋼板の室温での降伏応力が高くなりすぎる。   The ferrite phase, which is contained in the microstructure of the steel sheet and into which dislocations are introduced by processing or transformation strain, secures the yield stress at room temperature of the steel sheet and at the same time lowers the yield stress during heating of the steel sheet. If the ratio of ferrite into which dislocations are introduced by processing or transformation strain in the steel sheet is less than 20%, the yield stress at the time of heating relative to the yield stress at room temperature of the steel sheet is not sufficient, and if it exceeds 95%, The yield stress at room temperature is too high.

したがって、本発明において、鋼板のミクロ組織中に加工あるいは変態歪により転位が導入されたフェライト相の含有量を20〜95%と限定した。   Therefore, in the present invention, the content of the ferrite phase in which dislocations are introduced into the microstructure of the steel sheet by processing or transformation strain is limited to 20 to 95%.

本発明で、鋼板組織中のフェライト相以外の第二相は、特に限定する必要はなく、例えば、パーライト、ベイナイト、マルテンサイト、炭窒化物などの析出物等が挙げられる。   In the present invention, the second phase other than the ferrite phase in the steel sheet structure is not particularly limited, and examples thereof include precipitates such as pearlite, bainite, martensite, and carbonitride.

本発明で規定する降伏強度、引張り強度および成分組成を満足する鋼板を製造するための方法の実施形態の一例を以下に説明する。   An example of an embodiment of a method for producing a steel sheet satisfying the yield strength, tensile strength and component composition defined in the present invention will be described below.

本発明の鋼板のフェライトマトリクスへの加工転位の導入は、上記本発明で規定する成分組成を有する鋼片を加熱し、オーステナイト域で圧延した後、(1)所定フェライト分率となる二相域(フェライト/オーステナイト共存域)〜フェライト温度域で、所定累積圧下率での圧延をするか、あるいは、(2)所定フェライト分率となる温度域から所定温度までを急冷し、熱膨張収縮されることにより達成できる。   The introduction of the working dislocations into the ferrite matrix of the steel sheet of the present invention is as follows. After heating the steel piece having the component composition defined in the present invention and rolling it in the austenite region, (1) a two-phase region having a predetermined ferrite fraction (Ferrite / austenite coexistence region)-Ferrite temperature range, rolling at a predetermined cumulative reduction rate, or (2) Rapid cooling from a temperature range where a predetermined ferrite fraction is reached to a predetermined temperature, and thermal expansion and contraction Can be achieved.

具体的には、本発明の鋼板は、以下の熱間圧延方法により製造できる。
(a)鋼片をAC3変態点以上、1300℃以下の温度に加熱し、Ar3変態点以上の温度域で累積圧下率が50%以上のオーステナイト域圧延を行った後、フェライト分率が20%以上となる温度域で累積圧下率が10〜75%の二相域圧延を行う。
(b)上記二相域圧延における各圧延パスの圧下率を15%以下とする。
(c)上記圧延終了後、400℃以下の温度域までを、3〜100℃/sの冷却速度で加速冷却する。
Specifically, the steel sheet of the present invention can be produced by the following hot rolling method.
(A) The steel slab is heated to a temperature not lower than the A C3 transformation point and not higher than 1300 ° C., and after performing austenitic rolling with a cumulative reduction of 50% or higher in the temperature range not lower than the Ar3 transformation point, the ferrite fraction is 20 % Phase rolling with a cumulative rolling reduction of 10 to 75% in a temperature range of at least%.
(B) The rolling reduction of each rolling pass in the two-phase region rolling is set to 15% or less.
(C) After completion of the rolling, accelerated cooling is performed at a cooling rate of 3 to 100 ° C./s up to a temperature range of 400 ° C. or lower.

或いは、上記二相域圧延を行わずに、オーステナイト域で熱間圧延を終了する場合は、
(d)鋼片をAC3変態点以上、1300℃以下の温度に加熱し、Ar3変態点以上の温度域で累積圧下率が50%以上のオーステナイト域圧延を行い、圧延終了後、フェライト分率が50%以上となる温度以下、500℃以上の温度域から400℃以下の温度域までを、3〜100℃/sの冷却速度で加速冷却する。
以上の(a)〜(d)の製造方法の条件について、以下に詳細に説明する。
Alternatively, when the hot rolling is terminated in the austenite region without performing the two-phase region rolling,
(D) The steel slab is heated to a temperature not lower than the A C3 transformation point and not higher than 1300 ° C., and subjected to austenite rolling with a cumulative reduction of 50% or higher in the temperature range not lower than the Ar3 transformation point. Is accelerated and cooled at a cooling rate of 3 to 100 ° C./s from a temperature range of 50% or higher, from a temperature range of 500 ° C. or higher to a temperature range of 400 ° C. or lower.
The conditions of the manufacturing methods (a) to (d) above will be described in detail below.

上記(a)において、鋼片の加熱温度をAC3変態点以上、1300℃以下の温度にする理由は、鋼材組織を均一にオーステナイト化するためである。加熱温度がAC3変態点未満であると100%オーステナイトにならないため、鋼板の最終組織に不均一が生じ、鋼板材質のばらつきが顕著になるため好ましくない。一方、加熱温度が1300℃超であると、加熱オーステナイト粒径が過大となって、その後、熱間圧延でも十分な組織微細化が困難となり、鋼板の靭性が劣化する可能性がある。このため、本発明においては、鋼片の加熱温度をAC3変態点以上、1300℃以下とする。 In the above (a), the reason why the heating temperature of the steel slab is set to a temperature not lower than the AC 3 transformation point and not higher than 1300 ° C. is to uniformly austenite the steel material structure. If the heating temperature is less than the A C3 transformation point, it does not become 100% austenite, so that the final structure of the steel sheet is not uniform, and the variation of the steel sheet material becomes significant, which is not preferable. On the other hand, when the heating temperature is higher than 1300 ° C., the heated austenite grain size becomes excessive, and thereafter, it becomes difficult to sufficiently refine the structure even by hot rolling, and the toughness of the steel sheet may be deteriorated. For this reason, in this invention, the heating temperature of a steel slab shall be AC3 transformation point or more and 1300 degrees C or less.

なお、鋳造された高温状態の鋼片をそのまま直接圧延しても、また、鋳造された鋼片を室温まで冷却する途中で加熱炉で加熱しても、上記の室温まで冷却した鋼片を加熱した場合と上記効果は同じである。   Even if the cast steel slab in a high temperature state is directly rolled as it is, or even if the cast steel slab is heated in a heating furnace while being cooled to room temperature, the steel slab cooled to the above room temperature is heated. The above effect is the same as the case.

また、上記(a)におけるオーステナイト域圧延は、鋼板の材質、特に靭性確保のために、フェライト変態前のオーステナイト粒径を均一に微細化し、フェライト変態組織の均一微細化を図るために行われる。
オーステナイト域圧延の条件は、Ar3変態点以上の温度域で累積圧下率が50%以上で行う必要がある。Ar3変態点以上の温度域で圧延を行う理由は、後続の二相域圧延の作用と区別され、オーステナイト域で圧延を完了するためである。オーステナイト域圧延は、後続の二相域圧延の温度及び累積圧下率の条件に対して管理されていれば、後続の二相域圧延との間に時間的な間隔をおく必要性はない。また、上記温度域での累積圧下率を50%以上とした理由は、この累積圧下率が50%未満であると、圧延温度域によっては、オーステナイトの細粒化が十分にできなかったり、顕著な混粒組織となる恐れがあるためである。特に鋼板の靭性向上を考慮する場合には、オーステナイトの再結晶域で累積圧下率50%以上、未再結晶域で累積圧下率30%以上の圧延を行うことがより好ましい。
In addition, the austenite region rolling in the above (a) is performed in order to uniformly refine the austenite grain size before ferrite transformation and to uniformly refine the ferrite transformation structure in order to ensure the material of the steel sheet, particularly toughness.
The austenite region rolling condition needs to be performed in a temperature range equal to or higher than the Ar3 transformation point and a cumulative reduction ratio of 50% or more. The reason why the rolling is performed in the temperature range equal to or higher than the Ar3 transformation point is that the rolling is completed in the austenite region as distinguished from the effect of the subsequent two-phase region rolling. As long as the austenite zone rolling is controlled with respect to the temperature and the cumulative reduction ratio of the subsequent two-phase zone rolling, there is no need to provide a time interval with the subsequent two-phase zone rolling. Further, the reason why the cumulative rolling reduction in the above temperature range is 50% or more is that if this cumulative rolling reduction is less than 50%, depending on the rolling temperature zone, the austenite may not be sufficiently refined. This is because there is a risk of becoming a mixed grain structure. In particular, when considering improvement in toughness of the steel sheet, it is more preferable to perform rolling at a cumulative reduction of 50% or more in the austenite recrystallization region and a cumulative reduction of 30% or more in the non-recrystallization region.

上記(a)における二相域圧延は、鋼板のフェライト組織に転位を適正量導入して、転位強化により鋼板の室温での降伏応力を高め、熱加工中の加熱時での鋼板の降伏応力は、前記転位を消滅、再配列することにより容易に軟化し、低下させるための重要な工程である。   In the two-phase rolling in (a) above, an appropriate amount of dislocation is introduced into the ferrite structure of the steel sheet, the yield stress at room temperature of the steel sheet is increased by strengthening the dislocation, and the yield stress of the steel sheet during heating during thermal processing is This is an important process for easily softening and lowering the dislocations by eliminating and rearranging the dislocations.

二相域圧延の温度域は、フェライト分率が過小な温度域で圧延すると圧延終了後の冷却過程で変態するフェライトへの転位導入が不十分となるため、フェライト分率が20%以上となる温度域で圧延する。フェライト分率が20%以上となる温度域であれば、圧延中のフェライト変態も確実に期待でき、その組織の大半に加工転位を導入することができる。   In the temperature range of the two-phase rolling, if the rolling is performed in a temperature range where the ferrite fraction is excessively small, the introduction of dislocations into the ferrite that transforms in the cooling process after the end of rolling becomes insufficient, so the ferrite fraction becomes 20% or more. Roll in the temperature range. If the ferrite region has a temperature range of 20% or more, ferrite transformation during rolling can be expected with certainty, and work dislocations can be introduced into most of the structure.

二相域圧延における累積圧下率は、鋼板のフェライト組織に加工転位を導入し、鋼板の室温での降伏応力を維持し、熱加工中の加熱時での鋼板の降伏応力の低下を確実とするために、10%以上とする必要がある。一方、二相域圧延における累積圧下率が75%超になると、加工転位が導入されたフェライトが再結晶して、逆に転位密度が低下し、熱加工中の加熱時での鋼板の降伏応力の十分な低下が望めなくなり、また、材質の異方性が大きくなって好ましくない。   Cumulative rolling reduction in two-phase rolling introduces work dislocations into the ferrite structure of the steel sheet, maintains the yield stress at room temperature of the steel sheet, and ensures a decrease in the yield stress of the steel sheet during heating during thermal processing. Therefore, it is necessary to make it 10% or more. On the other hand, when the cumulative rolling reduction in the two-phase rolling exceeds 75%, the ferrite into which the work dislocation has been introduced is recrystallized, conversely, the dislocation density is lowered, and the yield stress of the steel sheet during heating during the heat working is reduced. This is not preferable because a sufficient decrease in the thickness cannot be expected, and the anisotropy of the material increases.

なお、本発明において、上記二相域圧延は、厳密には二相域〜フェライト域圧延を包含するが、便宜上、フェライト域圧延も含めて二相域圧延と称している。つまり、本発明の鋼板の効果はフェライトへの転位導入によって図られるものであり、変態が終了したフェライト域での圧延を行っても同じ効果が得られるものである。   In the present invention, the two-phase region rolling strictly includes two-phase region to ferrite region rolling, but for convenience, it is referred to as two-phase region rolling including ferrite region rolling. That is, the effect of the steel sheet of the present invention can be achieved by introducing dislocations into ferrite, and the same effect can be obtained even when rolling is performed in a ferrite region where transformation is completed.

また、上記二相域圧延の生産性を高めたい場合には、二相域圧延の圧延開始温度を650℃超、700℃以下とするのが好ましい。なお、このような比較的高温の二相域温度域とする場合、再結晶が生じ、むしろ転位密度の低下を招くか、或いは、セル組織を形成しやすくなり、熱加工作業における加熱時の鋼板降伏応力の低下が不十分となる恐れが生じるため、二相域圧延の累積圧下率の上限を30%に限定し、10〜30%とするのが好ましい。   Moreover, when it is desired to increase the productivity of the two-phase region rolling, it is preferable to set the rolling start temperature of the two-phase region rolling to more than 650 ° C. and not more than 700 ° C. In addition, when it is set as such a comparatively high temperature range of two phases, recrystallization occurs, rather it causes a decrease in dislocation density, or it becomes easier to form a cell structure, and a steel sheet during heating in a heat processing operation Since the yield stress may be insufficiently reduced, the upper limit of the cumulative rolling reduction in the two-phase rolling is limited to 30%, and is preferably set to 10 to 30%.

また、上記二相域圧延における転位密度を十分導入し、さらに、熱加工作業における加熱時の鋼板降伏応力の低下量を大きくするには、二相域圧延の圧延開始温度を500℃超、650℃以下とし、累積圧下率を10〜70%とするのが好ましい。二相域圧延の圧延開始温度を500℃超、650℃以下とすれば、再結晶やセル組織の形成が抑制されるため、累積圧下率を大きくすることが可能となる。しかし、累積圧下率が70%超となると、二相域圧延温度によっては再結晶、セル組織の形成の恐れが生じるため、累積圧下率の上限を70%に限定することが好ましい。   Further, in order to sufficiently introduce the dislocation density in the above-mentioned two-phase region rolling and further increase the amount of reduction in the steel sheet yield stress during heating in the heat processing operation, the rolling start temperature of the two-phase region rolling exceeds 500 ° C., 650 It is preferable that the temperature is not higher than ° C. and the cumulative rolling reduction is 10 to 70%. If the rolling start temperature of the two-phase region rolling is more than 500 ° C. and 650 ° C. or less, the formation of recrystallization and cell structure is suppressed, so that the cumulative rolling reduction can be increased. However, when the cumulative rolling reduction exceeds 70%, depending on the two-phase region rolling temperature, recrystallization and the formation of a cell structure may occur. Therefore, it is preferable to limit the upper limit of the cumulative rolling reduction to 70%.

また、上記(a)の二相域圧延において、上記(b)に示すように、各圧延パスの1パスあたりの圧下率を15%以下とすることが好ましい。すなわち、二相域圧延における圧延温度が高い場合、あるいは/及び、累積圧下率が高い場合には、各圧延パスの1パスあたりの圧下率が15%超であると、再結晶が生じやすく、転位密度の上昇が有効に図られない恐れもあるため、各パスの圧下率の上限を15%とすることが好ましい。   In the two-phase rolling of (a), it is preferable that the rolling reduction per pass of each rolling pass is 15% or less as shown in (b). That is, when the rolling temperature in the two-phase rolling is high, or / and when the cumulative rolling reduction is high, if the rolling reduction per pass of each rolling pass is more than 15%, recrystallization is likely to occur. Since the increase in dislocation density may not be achieved effectively, the upper limit of the rolling reduction of each pass is preferably 15%.

また、上記(a)の二相域圧延終了後、さらに、上記(c)に示されるように、400℃以下の温度域までを、3〜100℃/sの冷却速度で加速冷却する工程を加えることが好ましい。   In addition, after the completion of the two-phase region rolling of (a), a step of accelerated cooling to a temperature range of 400 ° C. or lower at a cooling rate of 3 to 100 ° C./s as shown in (c) above. It is preferable to add.

すなわち、二相域圧延の終了後の二相域〜フェライト域から、上記温度域までを、加速冷却することにより、変態転位や表面と内部との温度差に起因する熱歪を導入してフェライト中の転位密度をさらに付加的に増加させることができる。   That is, accelerated cooling from the two-phase region to the ferrite region after the end of the two-phase region rolling to the above temperature region introduces thermal strain caused by the transformation dislocation and the temperature difference between the surface and the inside, and ferrite. The dislocation density therein can be further increased.

この加速冷却における冷却速度が3℃/s未満では急冷効果が得られず、転位の導入が十分でないため、3℃/s以上とするのが好ましい。一方、この冷却速度が100℃/s超では急冷効果が飽和するのと、工業的に100℃/sで冷却することが容易でないことから本発明では加速冷却の冷却速度の上限を100℃/sとするのが好ましい。但し、この冷却速度が100℃/s超であっても急冷効果が飽和するだけであって効果が低下するものではない。   If the cooling rate in this accelerated cooling is less than 3 ° C./s, the rapid cooling effect cannot be obtained and the introduction of dislocations is not sufficient, so that it is preferably 3 ° C./s or more. On the other hand, when the cooling rate exceeds 100 ° C./s, the quenching effect is saturated, and it is not easy to industrially cool at 100 ° C./s. Therefore, in the present invention, the upper limit of the accelerated cooling rate is 100 ° C./s. It is preferable to use s. However, even if the cooling rate exceeds 100 ° C./s, the quenching effect is only saturated and the effect is not reduced.

また、上記加速冷却における冷却停止温度域は、加速冷却後、室温まで空冷した場合でも転位密度が減少したり再配列したりすることを抑制するために、冷却停止温度域を400℃以下とするのが好ましい。   In addition, the cooling stop temperature range in the accelerated cooling is set to 400 ° C. or lower in order to prevent the dislocation density from being reduced or rearranged even when air-cooled to room temperature after accelerated cooling. Is preferred.

上記(a)〜(c)の製造方法は、主として二相域圧延によって鋼板のフェライトに加工転位を導入する方法であるが、上記(d)に示すように、主として圧延後の加速冷却によりフェライトへの転位導入を行うことも可能である。   The production methods (a) to (c) described above are methods in which work dislocations are introduced into the ferrite of the steel sheet mainly by two-phase rolling, but as shown in the above (d), the ferrite is mainly produced by accelerated cooling after rolling. It is also possible to introduce dislocations into

上記(d)に示す二相域圧延によらずに圧延後の加速冷却工程によって、鋼板のフェライト中への適切な転位導入する方法は、上記(a)〜(c)に示す、二相域圧延によって鋼板のフェライトに加工転位を導入する方法に比べて、生産性の低下や圧延荷重の増加、圧延形状の劣化等を抑制できる。   The method of introducing appropriate dislocations into the ferrite of the steel sheet by the accelerated cooling step after rolling without using the two-phase region rolling shown in (d) above is the two-phase region shown in (a) to (c) above. Compared with the method of introducing work dislocations into the ferrite of a steel sheet by rolling, it is possible to suppress a decrease in productivity, an increase in rolling load, a deterioration in rolling shape, and the like.

上記(d)における鋼片の加熱温度およびその限定理由は、上記(a)の製造方法と同じである。   The heating temperature of the steel slab in (d) and the reason for limitation are the same as in the manufacturing method in (a).

上記(d)におけるオーステナイト域圧延は、上記(a)と同様に、鋼板の靱性を確保するために、フェライト変態前のオーステナイト粒径を微細化し、フェライト変態組織を微細化するために限定する。オーステナイト域圧延における累積圧下率が50%未満では圧延温度域によってはオーステナイトの微細化が不十分となるため、この累積圧下率を50%以上とする。   The austenite region rolling in the above (d) is limited in order to refine the austenite grain size before ferrite transformation and refine the ferrite transformation structure in order to ensure the toughness of the steel sheet, as in the above (a). If the cumulative rolling reduction in austenite zone rolling is less than 50%, the austenite becomes insufficiently refined depending on the rolling temperature zone, so this cumulative rolling reduction is set to 50% or more.

また、オーステナイト域圧延において、1000℃以下での累積圧下率が30%以上含まれることがオーステナイト粒径微細化のためにはより好ましい。   Further, in the austenite region rolling, it is more preferable for the austenite grain size refinement to include a cumulative rolling reduction at 1000 ° C. or less of 30% or more.

上記(d)における熱間圧延終了後の加速冷却は、鋼板のフェライトに転位を導入するために行う。加速冷却における冷却開始温度域は、フェライト分率が50%以上となる温度以下、500℃以上の温度域とする必要がある。フェライト分率が50%未満の温度域から加速冷却を開始すると、加速冷却中の低温で変態したベイナイトないしはマルテンサイトが主要な組織となり、目的とする転位が導入されたフェライトが主要な組織とならない。鋼板中のベイナイトないしはマルテンサイトは室温での鋼板の降伏応力は十分に高められるが、500〜600℃での鋼板の降伏応力の低下が十分でなくなるため、これらの組織を過度に増加するのは好ましくない。   The accelerated cooling after the hot rolling in (d) is performed in order to introduce dislocations into the ferrite of the steel sheet. The cooling start temperature range in the accelerated cooling needs to be a temperature range where the ferrite fraction is 50% or more and a temperature range of 500 ° C. or more. When accelerated cooling is started from a temperature range where the ferrite fraction is less than 50%, bainite or martensite transformed at a low temperature during accelerated cooling becomes the main structure, and ferrite into which the desired dislocation is introduced does not become the main structure. . Bainite or martensite in the steel sheet can sufficiently increase the yield stress of the steel sheet at room temperature, but the decrease in the yield stress of the steel sheet at 500 to 600 ° C. is not sufficient. It is not preferable.

一方、加速冷却における冷却開始温度域が500℃未満であると、鋼板のフェライトに十分に転位が導入されず、室温での鋼板の降伏応力が確保できず、熱加工作業における加熱時の鋼板降伏応力の低下が十分でないため好ましくない。   On the other hand, when the cooling start temperature range in accelerated cooling is less than 500 ° C., dislocations are not sufficiently introduced into the ferrite of the steel sheet, the yield stress of the steel sheet at room temperature cannot be secured, and the yield of the steel sheet during heating in the heat processing operation Since the stress is not sufficiently lowered, it is not preferable.

また、加速冷却における冷却速度及び冷却停止温度域は、上記(c)と同じ理由により、3〜100℃/sで400℃以下に限定する。
以上が、本発明にて鋼板のミクロ組織および製造方法を限定した理由である。一般に、鋼板強度を所定の範囲内に限定する方法としては、添加元素量のコントロールとミクロ組織のコントロールまたはそのミクロ組織を得るための製造プロセスコントロールがあるが、鋼板製造コストは必ずしも両方法で同じになるとは限らない。一般に、二相域圧延は鋼板製造効率が悪く、コストの観点からは回避することが望ましい。しかし、転位導入による熱加工中の加熱時における鋼板強度の低下、それによる熱加工時のより高能率化というメリットがあるため、全体としてどの方法がより経済的であるかどうかは、当業者の置かれている状況に依存し、どちらの方法を選択するかは当業者の判断で決定すべきものである。
Moreover, the cooling rate and cooling stop temperature range in accelerated cooling are limited to 400 ° C. or less at 3 to 100 ° C./s for the same reason as in the above (c).
The above is the reason for limiting the microstructure and manufacturing method of the steel sheet in the present invention. In general, as a method for limiting the strength of a steel sheet within a predetermined range, there are control of the amount of added element and control of the microstructure or manufacturing process control for obtaining the microstructure, but the manufacturing cost of the steel sheet is not necessarily the same in both methods. It does not always become. In general, two-phase rolling has poor steel plate production efficiency, and it is desirable to avoid it from the viewpoint of cost. However, since there is a merit that the steel plate strength decreases during heating during heat processing by introducing dislocations, and the efficiency becomes higher during heat processing, it is difficult for those skilled in the art to determine which method is more economical as a whole. Depending on the situation, it is up to the skilled person to decide which method to choose.

(実施例1)
本実施例は、表面最高加熱温度が850℃の場合に関するものである。
Example 1
This example relates to the case where the maximum surface heating temperature is 850 ° C.

初めに、熱加工作業に供した鋼板について説明する。   First, a description will be given of a steel plate subjected to a heat processing operation.

表1は、鋼板成分であり、表2は鋼板製造条件である。表2に示すように、同一鋼板成分に対して異なる製造条件で作製した鋼板も用意している。また、鋼板の圧延前の板厚はすべて150mmと共通で、また鋼片加熱温度は1250℃であり、これも各条件に対して共通である。   Table 1 shows steel plate components, and Table 2 shows steel plate production conditions. As shown in Table 2, steel plates produced under different production conditions for the same steel plate components are also prepared. In addition, the plate thickness before rolling of the steel plate is all 150 mm, and the slab heating temperature is 1250 ° C., which is also common for each condition.

各鋼板は、表2に示す鋼板製造条件にて板厚18mmの鋼板に仕上げた。本発明の範囲内にある鋼板は、鋼板番号A1〜A14であり、本発明の範囲外にある鋼板、すなわち従来鋼板はB1〜7である。表2には、鋼板の引張り強度、降伏強度および鋼板のシャルピー試験におけるvTrsの値も載せた。表2におけるA1〜A14の鋼板は、降伏強度および引っ張り強度がすべて本発明例の範囲内にあるもので、強度が従来鋼板であるB1〜B7と比べ低いことが特徴である。   Each steel plate was finished into a steel plate having a thickness of 18 mm under the steel plate production conditions shown in Table 2. Steel plates within the scope of the present invention are steel plate numbers A1 to A14, and steel plates outside the scope of the present invention, that is, conventional steel plates are B1 to B7. Table 2 also lists the tensile strength and yield strength of the steel plate and the value of vTrs in the Charpy test of the steel plate. The steel sheets A1 to A14 in Table 2 are characterized in that the yield strength and tensile strength are all within the range of the examples of the present invention, and the strength is lower than that of B1 to B7, which are conventional steel sheets.

表2には、鋼板のミクロ組織も示している。フェライト、パーライト、ベイナイトの区別は通常の光学顕微鏡を用いたミクロ組織観察にて行なったが、フェライトに転位が導入されているかどうかは光学顕微鏡観察では判別できないため、透過電子顕微鏡観察を行なって転位導入フェライトと転位導入がないフェライトの区別を行った。表2からわかるように、二相域圧延を実施して製造された鋼板については、転位導入フェライトが十分含有されていることがわかる。   Table 2 also shows the microstructure of the steel sheet. The distinction between ferrite, pearlite, and bainite was made by microstructural observation using an ordinary optical microscope, but it is impossible to determine whether or not dislocations are introduced into ferrite by optical microscope observation. A distinction was made between introduced ferrite and ferrite without dislocation introduction. As can be seen from Table 2, it can be seen that the steel sheet produced by carrying out the two-phase region rolling contains sufficient dislocation-introducing ferrite.

表2には、シャルピー試験結果も示されているが、本発明においては、シャルピー試験については特に要求特性となるものではない。但し、シャルピー特性が要求される場合もあり、熱加工性の優れた鋼板で、かつシャルピー特性の優れた鋼板という産業界の要望に応える必要がある場合が考えられる。この場合は、強度を抑えながらシャルピー特性を確保する必要があるが、表2からわかるように、このような場合は、鋼板製造時に二相域圧延と加速冷却を行なえばよい。しかし、二相域圧延および加速冷却は、鋼板製造コストを増大させるため、当業者は、鋼板に要求される特性を考慮しながら、二相域圧延、加速冷却によって製造された鋼板を選択するかどうかを決定すればよい。   Table 2 also shows the Charpy test results. In the present invention, the Charpy test is not particularly required. However, there is a case where Charpy characteristics are required, and there may be a case where it is necessary to meet the industrial demand for a steel sheet with excellent heat workability and a steel sheet with excellent Charpy characteristics. In this case, it is necessary to secure the Charpy characteristics while suppressing the strength, but as can be seen from Table 2, in such a case, two-phase rolling and accelerated cooling may be performed at the time of manufacturing the steel sheet. However, since two-phase rolling and accelerated cooling increase the steel sheet manufacturing cost, those skilled in the art should select a steel plate manufactured by two-phase rolling and accelerated cooling while considering the characteristics required for the steel plate. You just have to decide.

表2の鋼板を、幅500mm、長さ1000mmの長方形に加工し、ガスバーナー加熱および水冷を実施した。ガスバーナー加熱は表3に示す条件とし、表面最高加熱温度はガスバーナー加熱速度で調節した。水冷は、加熱部分より10cm後方で行ない、水冷トーチはガスバーナーと同じ速度で移動させた。最高加熱温度は、鋼板裏面に直径3mmのドリル穴を機械加工で作製し、その中に熱電対を挿入することにより表面の最高加熱温度を測定した。図5は、熱加工要領を説明した概念図である。図5(a)に示すように、1000mmの辺から、この辺に直角な方向へ線状加熱を3箇所にて実施した。図5(a)のハッチング部分が熱加工を実施した部分である。なお、加熱した部分の長さは200mmである。図5の(b)は、熱加工作業を説明する概念図である。この図は、図5の(a)における曲線で囲った部分に対して熱加工作業を実施したときの図であるが、他の部分に対しても同様に行なった。作業は、ガスバーナートーチ6が一定速度で移動し、その後ろを水冷トーチ7が追いかけるように移動させて行なった。水冷トーチとガスバーナートーチの移動速度は同じである。   The steel plate of Table 2 was processed into a rectangle having a width of 500 mm and a length of 1000 mm, and gas burner heating and water cooling were performed. Gas burner heating was performed under the conditions shown in Table 3, and the maximum surface heating temperature was adjusted by the gas burner heating rate. Water cooling was performed 10 cm behind the heated portion, and the water cooling torch was moved at the same speed as the gas burner. As for the maximum heating temperature, a drill hole having a diameter of 3 mm was formed by machining on the back surface of the steel sheet, and the maximum heating temperature of the surface was measured by inserting a thermocouple therein. FIG. 5 is a conceptual diagram illustrating the thermal processing procedure. As shown in FIG. 5 (a), linear heating was performed at three locations from a 1000 mm side in a direction perpendicular to the side. The hatched portion in FIG. 5 (a) is a portion subjected to thermal processing. The length of the heated part is 200 mm. FIG. 5B is a conceptual diagram illustrating the thermal processing operation. Although this figure is a figure when the heat processing operation is carried out on the part surrounded by the curve in FIG. 5A, it was similarly carried out on the other parts. The work was performed by moving the gas burner torch 6 at a constant speed and moving the gas burner torch 7 to follow it. The moving speed of the water-cooled torch and the gas burner torch is the same.

加熱冷却は、一箇所に対して5回実施した。すなわち、図5(a)のハッチング部分に対して、5回加熱冷却を行なった。その後幅を測定し、加熱前の初期幅との差を計算すると加熱冷却することにより生じた収縮量(この場合は横収縮量)を決定することができる。図5(c)には、横収縮量の説明も載せた。加熱前に計測用の幅を定めてその幅を測定しておき、5回加熱冷却し、再びその幅を測定する。それらの値8をW1、W2とすると、それらの差、すなわちW=(W1−W2)が横収縮量に当たる。なお、このWは、図5(a)に示す熱加工を行なった6ヶ所全てに対して測定した値ではなく、図5(a)の曲線で囲んだ箇所に対して測定した値を、その鋼板およびその熱加工条件における横収縮量と定義した。   Heating and cooling were performed 5 times for one place. That is, the hatched portion in FIG. 5A was heated and cooled five times. Thereafter, the width is measured and the difference from the initial width before heating is calculated, whereby the amount of shrinkage (lateral shrinkage in this case) generated by heating and cooling can be determined. FIG. 5 (c) also describes the amount of lateral contraction. A width for measurement is determined before heating, the width is measured, heated and cooled five times, and the width is measured again. When those values 8 are W1 and W2, the difference between them, that is, W = (W1−W2) corresponds to the lateral contraction amount. In addition, this W is not a value measured for all six places subjected to the thermal processing shown in FIG. 5A, but a value measured for a place surrounded by a curve in FIG. It was defined as the amount of lateral shrinkage in the steel sheet and its thermal processing conditions.

表4は、表面の最高加熱温度が850℃の場合における、各鋼板の横収縮量を示している。試験番号がSA1〜14のものが本発明例であり、SB1〜7が比較例である。表4から、本発明の範囲内である試験番号SA1〜14までは、横収縮量が全て0.5mmを上回っているのに対し、比較例であるSB1〜7は、横収縮量が最大でも0.40mmと本発明例より小さい。これらの横収縮量は、加熱冷却条件が同じ、すなわち熱加工施工が同じという条件で得られた結果であり、本発明の範囲内にある鋼板を用いて熱加工作業を行なえば、従来技術より高い作業効率が得られることがわかる。   Table 4 shows the amount of lateral shrinkage of each steel plate when the maximum heating temperature of the surface is 850 ° C. Test numbers of SA1-14 are examples of the present invention, and SB1-7 are comparative examples. From Table 4, the test numbers SA1 to 14 within the scope of the present invention all have a lateral shrinkage amount exceeding 0.5 mm, whereas the comparative examples SB1 to 7 have the maximum lateral shrinkage amount. 0.40 mm, which is smaller than the example of the present invention. These lateral shrinkage amounts are the results obtained under the same heating and cooling conditions, i.e., the same thermal processing construction, and if the thermal processing work is carried out using a steel sheet within the scope of the present invention, it is more than the prior art. It can be seen that high work efficiency can be obtained.

表4の結果をさらに詳細に比較すると次のことがわかる。   When the results in Table 4 are compared in more detail, the following can be understood.

すなわち、試験番号のSA9〜SA14は、表2からわかるように、2相域圧延を実施し、転位導入フェライトを含有する鋼板を用いた例である。これら鋼板は、フェライトに転位が導入されるため室温強度が高くなる。その一方、転位は加熱されることにより消滅しやすいため、加熱時の強度は低くなりやすい。その効果が表4の結果からも読み取れる。例えば、SA7とSA14は、鋼板A7とA14を用いた場合であり、これら鋼板の強度レベルはほぼ同等である。しかし、横収縮量、すなわち熱加工特性はSA7よりSA14のほうが大きかった。これは、加熱時の鋼板強度低下がSA14の方が大きかったから、と考えられる。   That is, as shown in Table 2, test numbers SA9 to SA14 are examples in which two-phase region rolling was performed and a steel sheet containing dislocation-introducing ferrite was used. These steel sheets have high room temperature strength because dislocations are introduced into the ferrite. On the other hand, dislocations tend to disappear when heated, so the strength during heating tends to be low. The effect can also be read from the results in Table 4. For example, SA7 and SA14 are the cases where steel plates A7 and A14 are used, and the strength levels of these steel plates are substantially equal. However, the amount of lateral shrinkage, that is, the thermal processing characteristics, was greater for SA14 than for SA7. This is presumably because the decrease in steel sheet strength during heating was greater for SA14.

このように、同じ室温強度レベルでも、2相域圧延を実施する場合のほうが、熱加工特性が優れている。しかし、2相域圧延は、鋼板製造コストを高くするため、全体的に見てどちらのほうが優れているかは、当業者がそれぞれを比較して決定すればよい。   Thus, even when the same room temperature strength level is used, thermal processing characteristics are superior when two-phase rolling is performed. However, since the two-phase rolling increases the manufacturing cost of the steel sheet, a person skilled in the art may determine which is better overall by comparing them.

表4には、5回加熱冷却後にさらに加熱冷却を行ない、曲率半径が4.0mになるまでにかかった熱加工の作業時間も載せてある。なお、図5に示した熱加工方法では、曲率半径は図3に示すように、2方向に対して定義できるが、本実施例では、これら半径の平均値を、熱加工後の曲率半径と定義した。
表4からわかるように、本発明例では、全て150分を下回っており、比較例と比べて3割以上、場合によっては5割(半減)する場合もありえることがわかる。この結果からも本発明の効果の高さが理解できる。
Table 4 also shows the heat processing time required for heating and cooling after 5 times of cooling and cooling until the radius of curvature reaches 4.0 m. In the thermal processing method shown in FIG. 5, the radius of curvature can be defined in two directions as shown in FIG. 3, but in this embodiment, the average value of these radii is the radius of curvature after the thermal processing. Defined.
As can be seen from Table 4, in the examples of the present invention, all are less than 150 minutes, which is 30% or more compared with the comparative example, and in some cases, it may be 50% (halved). From this result, the high effect of the present invention can be understood.

Figure 0004959167
Figure 0004959167

Figure 0004959167
Figure 0004959167

Figure 0004959167
Figure 0004959167

Figure 0004959167
Figure 0004959167

(実施例2)
本実施例は、表面最高加熱温度が700℃の場合に関するものである。
(Example 2)
This example relates to the case where the maximum surface heating temperature is 700 ° C.

熱加工作業条件は実施例1とほぼ同等であるが、表面最高加熱温度を700℃にするために、加熱速度のみ変更した。   The thermal processing work conditions were almost the same as in Example 1, but only the heating rate was changed in order to set the maximum surface heating temperature to 700 ° C.

表5に、各鋼板の熱加工後の横収縮量を示した。本発明例では、横収縮量は全て0.30mmを上回っているのに対して、比較例は最高でも0.22mmであった。すなわち、表面最高加熱温度が700℃の場合でも、本発明の範囲内の鋼板を用いた場合、効率よく熱加工作業を行なうことができる。なお、表4の比較例と表5の本発明例を比べると、表4の比較例のほうも表5の本発明例と同程度の横収縮量が得られている。これは、最高加熱温度が異なるためであり、熱加工作業の効率向上には最高加熱温度が高いほうがいいように思われる。しかし、表5では最高加熱温度が表4より低くなっているため、加熱速度は逆に表5のほうが速い。そのため、同じ横収縮を得るために必要な作業時間は表5の条件のほうが短くてすむ。このため、最高加熱温度700℃の条件のほうが必ずしも850℃の条件より劣っているということにはならない。どちらの方がより高効率かということは、当業者が作業環境等を考慮して決定すればよい。   Table 5 shows the amount of lateral shrinkage after thermal processing of each steel plate. In the examples of the present invention, the amount of lateral shrinkage exceeded 0.30 mm, whereas in the comparative example, the maximum was 0.22 mm. That is, even when the maximum surface heating temperature is 700 ° C., when a steel plate within the scope of the present invention is used, the heat processing operation can be performed efficiently. In addition, when the comparative example of Table 4 and the example of this invention of Table 5 are compared, the comparative example of Table 4 also has the same amount of lateral shrinkage as the example of this invention of Table 5. This is because the maximum heating temperature is different, and it seems that a higher maximum heating temperature is better for improving the efficiency of the thermal processing work. However, in Table 5, since the maximum heating temperature is lower than that in Table 4, the heating rate is faster in Table 5 on the contrary. For this reason, the working time required to obtain the same lateral contraction is shorter under the conditions shown in Table 5. For this reason, the maximum heating temperature of 700 ° C. is not necessarily inferior to the 850 ° C. condition. Which one is more efficient may be determined by a person skilled in the art in consideration of the work environment and the like.

また、TA9〜14は、2相域圧延を実施した鋼板を用いた場合であるが、実施例1と同様に、同じ強度レベルでも2相域圧延を行なったほうが、熱加工特性が優れているという傾向が理解できる。但し、鋼板製造コストを増加させるという点は実施例1と同じであるため、2相域圧延を行なってでも熱加工特性をさらに向上させるのかどうかは、当業者が判断すべきことである。   Moreover, TA9-14 is a case where the steel plate which implemented the two-phase area rolling is used, but, like Example 1, the heat processing characteristic is more excellent when the two-phase area rolling is performed even at the same strength level. I can understand the tendency. However, since the point of increasing the steel sheet manufacturing cost is the same as that of Example 1, it should be determined by those skilled in the art whether or not the thermal processing characteristics are further improved even if the two-phase rolling is performed.

実施例1同様、ここでも5回加熱冷却後にさらに加熱冷却を行ない、曲率半径が4.0mになるまでに熱加工を実施した。そして、加熱冷却作業に必要な時間を測定した。実施例1同様に、本発明例では、全て120分を下回っており、比較例と比べて本発明の効果の高さが理解できる。   As in Example 1, heating and cooling were further performed after heating and cooling five times, and thermal processing was performed until the radius of curvature reached 4.0 m. And the time required for heating and cooling work was measured. As in Example 1, all of the examples of the present invention were less than 120 minutes, and the effectiveness of the present invention can be understood compared to the comparative example.

Figure 0004959167
Figure 0004959167

(実施例3)
本実施例は、最高加熱温度が600℃の場合に関するもので、加熱速度のみ実施例1および2と異なる。
(Example 3)
This example relates to the case where the maximum heating temperature is 600 ° C., and only the heating rate is different from those in Examples 1 and 2.

表6に、横収縮量を示した。本実施例の場合も、本発明例の場合は横収縮が全て0.20mmを上回っているのに対し、比較例では、最高でも0.16mmであった。実施例3では、最高加熱温度が600℃であるため、5回加熱水冷後の横収縮量が実施例1および2より小さくなっているが、それ以上に加熱速度を速くすることができるため、熱加工作業としての効率は必ずしも低くはない。実施例1および2同様、ここでも5回加熱冷却後にさらに加熱冷却を行ない、曲率半径が4.0mになるまでに熱加工を実施した。そして、加熱冷却作業に必要な時間を測定した。実施例1同様に、本発明例では、全て110分を下回っており、比較例と比べて本発明の効果の高さが理解できる。なお、表面最高加熱温度が低くなると、それだけ加熱スピードを上げることができ、実施例1および2と比較すると、実施例3の場合が最も短時間で曲率4.0mを得られる傾向が認められるが、逆に、作業回数は増えるため、どの施工条件で行なうかは当業者が必要に応じて選択すればよい。いずれの施工条件でも、本発明の範囲内の鋼板を用いる場合は、従来鋼板より効率よい熱加工作業が可能となる。   Table 6 shows the amount of lateral shrinkage. Also in the case of this example, in the case of the example of the present invention, all the lateral shrinkage exceeded 0.20 mm, whereas in the comparative example, the maximum was 0.16 mm. In Example 3, since the maximum heating temperature is 600 ° C., the amount of lateral shrinkage after 5 times of water heating and cooling is smaller than in Examples 1 and 2, but the heating rate can be increased more than that, Efficiency as a heat processing operation is not necessarily low. As in Examples 1 and 2, heating and cooling were further performed after heating and cooling five times, and thermal processing was performed until the curvature radius reached 4.0 m. And the time required for heating and cooling work was measured. Similarly to Example 1, all of the examples of the present invention were less than 110 minutes, and the high effect of the present invention can be understood compared to the comparative example. In addition, when the surface maximum heating temperature is lowered, the heating speed can be increased accordingly. Compared with Examples 1 and 2, the case of Example 3 has a tendency to obtain a curvature of 4.0 m in the shortest time. On the other hand, since the number of operations increases, a person skilled in the art may select which construction condition is performed as necessary. In any construction condition, when a steel plate within the scope of the present invention is used, a heat processing operation that is more efficient than a conventional steel plate is possible.

表6で、比較例UB8は、鋼板の降伏強度が本発明の範囲内であるものの鋼板の引っ張り強度が本発明の範囲外である鋼板B8を用いたものである。この場合、加熱部分の横収縮量は表6にあるように、本発明例の同等の横収縮量にまで達したが、曲率半径が4m以下になるまでの時間は、本発明例と比べてそれほど短くなかった。この理由は、最初の横収縮量はおおきかったものの、その後熱加工効率が低下したため、結果的に曲率半径が4mになるまでに熱加工作業を多数繰り返す必要があったためである。このように、本発明があつかっている加工量の大きな熱加工作業においては、鋼板の降伏強度のみならず引っ張り強度の限定も重要であることがわかる。   In Table 6, Comparative Example UB8 uses a steel plate B8 in which the yield strength of the steel plate is within the range of the present invention, but the tensile strength of the steel plate is outside the range of the present invention. In this case, as shown in Table 6, the amount of lateral shrinkage of the heated portion reached the same amount of lateral shrinkage as that of the example of the present invention, but the time until the radius of curvature was 4 m or less was shorter than that of the example of the present invention. It was not so short. The reason for this is that although the initial lateral shrinkage amount was large, the thermal processing efficiency was subsequently lowered, and as a result, it was necessary to repeat the thermal processing operation many times until the radius of curvature reached 4 m. Thus, it can be understood that not only the yield strength of the steel sheet but also the tensile strength is important in the thermal processing work with a large processing amount that is handled by the present invention.

Figure 0004959167
Figure 0004959167

(実施例4)
本実施例は、表面最高到達温度が1000℃の場合の例である。本発明は、最高到達温度の上限を900℃としているため、実施例4に示されているものは全て比較例である。試験番号VA1〜VA14までは、鋼板そのものは本発明例の範囲であるものの最高到達温度が1000℃であるため比較例となったもの、試験番号VB1〜VB7までは、鋼板そのものが本発明の範囲外であるものである。表7にその結果を示した。まず、表7からわかることは、表面最高到達温度を1000℃にするためには、加熱速度を極端に遅くする必要があることである。表4の最高到達温度が850℃の場合と比較しても、加熱速度を10cm/分から4cm/分までに落とさなければならなかった。確かに、5回加熱後における横収縮量は、表7に示す最高到達温度が1000℃の場合のほうが、表4に示す最高到達温度が850℃の場合より増加している。すなわち、加熱回数が同じという条件では、横収縮量が増加している。この意味からは、最高到達温度が高いほどより多くの収縮が得られることになる。しかし、本発明の目的は、熱加工法の効率向上であり、収縮量が多くなってもそれ以上に加熱に時間がかかってしまえば、熱加工作業の効率は悪くなる。実際、表7が示しているように、曲率半径4m以下になるまでの時間は、すべて200分を超えており、表4、5、6に示されている比較例と同程度の時間が必要であることがわかる。これは、低い加熱速度が原因となっている。そのため、本発明では、最高到達温度の上限を900℃に設定している。
Example 4
In this example, the maximum surface temperature is 1000 ° C. In the present invention, since the upper limit of the maximum temperature reached is 900 ° C., all shown in Example 4 are comparative examples. For test numbers VA1 to VA14, the steel sheet itself is in the range of the present invention, but the highest achieved temperature is 1000 ° C, so that it is a comparative example, and for test numbers VB1 to VB7, the steel sheet itself is in the range of the present invention. It is something that is outside. Table 7 shows the results. First, it can be seen from Table 7 that it is necessary to extremely slow the heating rate in order to set the maximum surface temperature to 1000 ° C. Even when compared with the case where the maximum temperature in Table 4 was 850 ° C., the heating rate had to be reduced from 10 cm / min to 4 cm / min. Certainly, the amount of lateral shrinkage after heating five times is greater when the maximum temperature shown in Table 7 is 1000 ° C. than when the maximum temperature shown in Table 4 is 850 ° C. That is, the amount of lateral contraction increases under the condition that the number of times of heating is the same. In this sense, the higher the maximum temperature reached, the more shrinkage can be obtained. However, an object of the present invention is to improve the efficiency of the thermal processing method. Even if the amount of shrinkage increases, if the heating takes longer than that, the efficiency of the thermal processing operation becomes worse. Actually, as shown in Table 7, the time until the radius of curvature becomes 4 m or less exceeds 200 minutes, and the time required for the comparative examples shown in Tables 4, 5, and 6 is required. It can be seen that it is. This is due to the low heating rate. For this reason, in the present invention, the upper limit of the maximum temperature reached is set to 900 ° C.

Figure 0004959167
Figure 0004959167

熱加工作業を実施した部分に発生する2つの変形モード、横収縮および角変形を説明する概念図である。It is a conceptual diagram explaining two deformation modes which generate | occur | produce in the part which implemented the heat processing operation | work, lateral contraction, and an angular deformation. 加熱部分に角変形を発生させ、鋼板に曲率を与える方法を説明した概念図である。It is the conceptual diagram explaining the method of generating an angular deformation in a heating part and giving a curvature to a steel plate. 加熱部分に横収縮を発生させ、鋼板に曲率を与える方法を説明した概念図である。It is the conceptual diagram explaining the method of generating transverse shrinkage in a heating part and giving a curvature to a steel plate. 加熱冷却回数と鋼板降伏強度の関係を示した図である。It is the figure which showed the relationship between the number of times of heating and cooling, and the steel plate yield strength. 本発明の実施例で用いた熱加工作業方法と、加熱部分に生じた横収縮量を説明する概念図である。It is a conceptual diagram explaining the heat processing work method used in the Example of this invention, and the amount of lateral shrinkage which arose in the heating part.

符号の説明Explanation of symbols

1,2:鋼板の辺
3:線状加熱領域
4:熱加工後の曲率半径を定義する方向
5:熱加工により鋼板の辺1、2に発生した横収縮
6:ガスバーナートーチ
7:水冷トーチ
8:熱加工前の幅(W1)および熱加工後の幅(W2)
9:鋼板
10:横収縮量
11:曲率半径
1, 2: Sides of steel plate 3: Linear heating region 4: Direction defining the radius of curvature after heat processing 5: Transverse shrinkage generated on sides 1, 2 of the steel plate by heat processing 6: Gas burner torch 7: Water-cooled torch 8: Width before thermal processing (W1) and Width after thermal processing (W2)
9: Steel plate 10: Lateral shrinkage 11: Radius of curvature

Claims (5)

ガスバーナーにより鋼板の表面または裏面を線状加熱し、引き続き該加熱部を水冷して鋼板を曲げ変形させることにより最大曲率半径が4.0m以下となるように加工する鋼板の熱加工方法において、前記鋼板として、質量%で、C:0.001〜0.048%、Si:0.005〜0.4%、Mn:0.05〜0.6%、Al:0.002〜0.12%、N:0.001〜0.01%を含有し、P:0.03%以下、S:0.01%以下を制限し、残部が鉄および不可避不純物からなり、室温における降伏強度が200〜300MPaであり、かつ室温における引張り強度が250〜400MPaである鋼板を用い、該鋼板の何れかの辺に対して垂直な方向で、かつ中央部を除く鋼板の表面または裏面上の範囲を、加熱部の最高到達温度が900℃以下となるように線状加熱することにより、該辺に沿って間隔を隔てて複数の線状加熱領域を形成し、該辺に沿う方向に生じる該線状加熱領域の収縮変形により該鋼板を曲げ変形させることを特徴とする鋼板の熱加工方法。
The front or back of the steel plate by a gas burner heating a linear, subsequently in a thermal processing method of the processing to the steel sheet so that a maximum radius of curvature of the heating unit by causing bending deformation of the steel sheet by water cooling becomes less 4.0 m, as the steel sheet, by mass%, C: 0.001~ 0.048%, Si: 0.005~0.4%, Mn: 0.05~0.6%, Al: 0.002~0.12 %, N: 0.001 to 0.01%, P: 0.03% or less, S: 0.01% or less are limited, the balance is made of iron and inevitable impurities, and the yield strength at room temperature is 200. a ~300MPa, and using a steel tensile strength of 250~400MPa at room temperature, in a vertical direction with respect to one of the sides of the steel plate, and the surface or area on the back surface of the steel sheet except for the central portion, Maximum temperature of the heating unit By linear heating to 900 ° C. or less, a plurality of linear heating regions are formed at intervals along the side, and the linear heating region shrinks and deforms in a direction along the side. A method for thermal processing of a steel sheet, comprising bending and deforming the steel sheet.
前記鋼板がミクロ組織中に加工あるいは変態歪により転位が導入されたフェライト相を20〜95%含有することを特徴とする請求項1に記載の鋼板の熱加工方法。   2. The method for heat-processing a steel sheet according to claim 1, wherein the steel sheet contains 20 to 95% of a ferrite phase in which dislocations are introduced by processing or transformation strain in the microstructure. 前記鋼板が、さらに、質量%で、Ti:0.0005〜0.02%、V:0.005〜0.1%、Nb:0.0005〜0.05%、および、Mo:0.05〜0.3%のうちの1種または2種以上を含有することを特徴とする請求項1または2記載の鋼板の熱加工方法。   The steel sheet is further, in mass%, Ti: 0.0005 to 0.02%, V: 0.005 to 0.1%, Nb: 0.0005 to 0.05%, and Mo: 0.05. It contains 1 type or 2 types or more of -0.3%, The heat processing method of the steel plate of Claim 1 or 2 characterized by the above-mentioned. 前記鋼板が、さらに、質量%で、Ni、Cu、および、Crのうちの1種または2種以上を、合計量で0.05〜0.3%含有することを特徴とする請求項1〜3の何れかに記載の鋼板の熱加工方法。   The steel sheet further contains 0.05% to 0.3% of Ni, Cu, and Cr in a total amount of one or more of Ni, Cu, and Cr. 4. A method for thermally processing a steel sheet according to any one of 3 above. 前記鋼板が、さらに、質量%で、Mg、Ca、および、REMのうちの1種または2種以上を、合計量で0.0005〜0.03%含有することを特徴とする請求項1〜4の何れかに記載の鋼板の熱加工方法。   The said steel plate contains 0.0005-0.03% of 1 type (s) or 2 types or more of Mg, Ca, and REM in the total amount further by the mass%. 5. A method for thermally processing a steel sheet according to any one of 4 above.
JP2005280135A 2005-09-27 2005-09-27 Thermal processing method for steel sheet Active JP4959167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005280135A JP4959167B2 (en) 2005-09-27 2005-09-27 Thermal processing method for steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005280135A JP4959167B2 (en) 2005-09-27 2005-09-27 Thermal processing method for steel sheet

Publications (2)

Publication Number Publication Date
JP2007090363A JP2007090363A (en) 2007-04-12
JP4959167B2 true JP4959167B2 (en) 2012-06-20

Family

ID=37976643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005280135A Active JP4959167B2 (en) 2005-09-27 2005-09-27 Thermal processing method for steel sheet

Country Status (1)

Country Link
JP (1) JP4959167B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5187151B2 (en) * 2008-11-17 2013-04-24 新日鐵住金株式会社 Thick steel plate excellent in bending workability by linear heating and its manufacturing method
WO2011024715A1 (en) * 2009-08-24 2011-03-03 新日本製鐵株式会社 Bow structure
JPWO2011024743A1 (en) * 2009-08-24 2013-01-31 新日鐵住金株式会社 Bow structure
RU2576355C1 (en) * 2011-12-26 2016-02-27 ДжФЕ СТИЛ КОРПОРЕЙШН Textured electrical steel sheet

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS537372B2 (en) * 1972-02-10 1978-03-17
JPH01159356A (en) * 1987-12-16 1989-06-22 Nippon Steel Corp High tension steel having superior tougeness at weld heat-affected zone
JP3262972B2 (en) * 1995-07-31 2002-03-04 新日本製鐵株式会社 Weldable high strength steel with low yield ratio and excellent low temperature toughness
JPH09125198A (en) * 1995-10-31 1997-05-13 Kobe Steel Ltd Low yield point thick steel plate
JPH09323129A (en) * 1996-06-05 1997-12-16 Ishikawajima Harima Heavy Ind Co Ltd Method for correcting real time of calculated data of linear shape deformation by heating

Also Published As

Publication number Publication date
JP2007090363A (en) 2007-04-12

Similar Documents

Publication Publication Date Title
JP4751137B2 (en) Steel plate manufacturing method that can be easily bent by linear heating
US9126283B2 (en) Electric resistance welded oil country tubular goods and manufacturing method of electric resistance welded oil country tubular goods
JP5423806B2 (en) High toughness wear resistant steel and method for producing the same
JP4926447B2 (en) Manufacturing method of high strength steel with excellent weld crack resistance
JP4959167B2 (en) Thermal processing method for steel sheet
JP2008075107A (en) Method for manufacturing high-strength/high-toughness steel
JP2000178645A (en) Production of steel excellent in strength and toughness
JP5153221B2 (en) Soft nitriding non-tempered machine parts
JP5484135B2 (en) Austenite + martensite duplex stainless steel sheet and method for producing the same
JP4846242B2 (en) Bending method of thick steel plate with excellent heat bending characteristics
JP2006342387A (en) High-strength hot-rolled steel sheet and its manufacturing method
JP2002003942A (en) Method for producing tough low yield ratio steel having small quality deviation
JP4038166B2 (en) Steel plate excellent in earthquake resistance and weldability and manufacturing method thereof
JP6926409B2 (en) Manufacturing method of high-strength steel plate and welded joint
JP4250112B2 (en) Steel plate manufacturing method with excellent earthquake resistance and weldability
JPS62151545A (en) Thick-walled, high-strength, low-pcm bended steel pipe and its production
JP2005298962A (en) Method for manufacturing high-strength steel plate superior in workability
JP2004218081A (en) Method for producing high-tension steel plate
JP5187151B2 (en) Thick steel plate excellent in bending workability by linear heating and its manufacturing method
JP2011144455A (en) Method for producing large thickness low yield ratio high-tensile steel plate
JP3945373B2 (en) Method for producing cold-rolled steel sheet with fine grain structure and excellent fatigue characteristics
JP4174041B2 (en) Method for producing welding steel having a tensile strength of 1150 MPa or more
JP4469354B2 (en) Method for producing high strength steel material with tensile strength of 780 MPa excellent in toughness of weld heat affected zone
JP4733950B2 (en) Linear heating deformation method of steel sheet
JP4715179B2 (en) Manufacturing method of high-tensile steel plate with excellent workability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4959167

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350