JP6105993B2 - Molded product made of stainless steel foil joined by resistance heat - Google Patents

Molded product made of stainless steel foil joined by resistance heat Download PDF

Info

Publication number
JP6105993B2
JP6105993B2 JP2013061458A JP2013061458A JP6105993B2 JP 6105993 B2 JP6105993 B2 JP 6105993B2 JP 2013061458 A JP2013061458 A JP 2013061458A JP 2013061458 A JP2013061458 A JP 2013061458A JP 6105993 B2 JP6105993 B2 JP 6105993B2
Authority
JP
Japan
Prior art keywords
stainless steel
interface
joined
less
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013061458A
Other languages
Japanese (ja)
Other versions
JP2014185369A (en
Inventor
学 奥
学 奥
淳史 須釜
淳史 須釜
景岡 一幸
一幸 景岡
山本 修
修 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP2013061458A priority Critical patent/JP6105993B2/en
Publication of JP2014185369A publication Critical patent/JP2014185369A/en
Application granted granted Critical
Publication of JP6105993B2 publication Critical patent/JP6105993B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、熱交換器、機械部品、燃料電池部品、家電製品部品、プラント部品、装飾品構成部材、建材、その他種々のステンレス鋼板およびステンレス箔(以下、ステンレス鋼という)が使用される部品において、インサート材なしに継手部に電流を流し、そこに発生する抵抗熱によって加熱し、圧力を加えて接合する方法(以下、「抵抗発熱法」という)にて接合を施したステンレス鋼製抵抗熱接合成形品に関する。   The present invention relates to a heat exchanger, a machine part, a fuel cell part, a household appliance part, a plant part, a decorative component, a building material, and other parts using various stainless steel plates and stainless foils (hereinafter referred to as stainless steel). Stainless steel resistance heat that is joined by a method in which current is applied to the joint without insert material, heated by resistance heat generated there, and joined by applying pressure (hereinafter referred to as “resistance heating method”) The present invention relates to a joint molded product.

ステンレス鋼の接合方法として、抵抗溶接による接合は、スポット溶接、シーム溶接、プロジェクション溶接などの手法により、様々な分野で使用されてきた。重ね抵抗溶接では、一般にはJISZ3001−1:08(溶接用語)の番号15201の図で示されるように、ナゲット、コロナボンド、熱影響部、散り、くぼみと呼ばれる部位で構成されており、JISZ3140:89(スポット溶接部の検査方法)では十分なナゲット径を有する状態が健全な成型品であるとされてきた。   As a joining method of stainless steel, joining by resistance welding has been used in various fields by techniques such as spot welding, seam welding, and projection welding. In lap resistance welding, generally, as shown in the figure of the number 15201 of JISZ3001-1: 08 (welding term), it is composed of parts called nuggets, corona bonds, heat-affected zones, scatters, and indentations, and JISZ3140: In 89 (inspection method for spot welds), a state having a sufficient nugget diameter has been regarded as a sound molded product.

ナゲットは、抵抗溶接時における鋼板への入熱を規制することにより適正量に調整することが可能である。例えば、入熱過小であれば接合強度不足、入熱過大であれば溶融部の溶け落ちが発生するため、これらを避けるための入熱選定が重要となる。しかし、板厚0.30mm未満の鋼板を含む抵抗溶接は、ナゲットが大きくなり過ぎて溶け落ちしやすく、また相手材が1.0mm程度の板厚になるとナゲットの位置が鋼板どうしの接合界面から離れた位置に形成されやすいなどの短所があった。また、ステンレス鋼の抵抗溶接は、鋼表面に存在する不動態皮膜により、散り(スパッタ)が発生しやすく、鋼板を美麗に保つための研磨や酸洗などの後処理が必要であるといった生産性を阻害する要因もあった。   The nugget can be adjusted to an appropriate amount by regulating the heat input to the steel plate during resistance welding. For example, if the heat input is excessively low, the joining strength is insufficient, and if the heat input is excessively high, the melted portion is melted. Therefore, it is important to select the heat input to avoid them. However, resistance welding including steel sheets with a thickness of less than 0.30 mm is likely to cause the nugget to become too large and melt away, and when the mating material has a thickness of about 1.0 mm, the position of the nugget is from the joint interface between the steel sheets. There were disadvantages such as being easily formed at a distant location. In addition, resistance welding of stainless steel is prone to scatter (sputtering) due to the passive film on the steel surface, and productivity such as polishing and pickling to keep the steel plate beautiful is necessary. There were also factors that hindered it.

薄板の接合は、TIG溶接やMIG溶接などのアーク溶接法でも同様に入熱管理を精度よく行う必要があり、抵抗溶接の代替手段としては容易ではない。一方、拡散接合に代表される固相接合法や、ろう付けに代表される液相接合法は、薄板でも比較的容易に接合可能であるが、一般には炉中で面圧を付与しながら接合されるため、生産性に劣るとともに、炉内の露点と鋼成分によっては着色を避けがたく、また接合後の冷却速度が緩慢なため、鋭敏化、σ相析出、475℃脆化などの感受性が高い鋼種には適用が困難であるとの短所があった。以上述べたように、板厚0.30mm未満のステンレス鋼薄板の接合において、溶融溶接、抵抗溶接、拡散接合、ろう付けなどの方法が各々の用途に対し検討されてきていたが、接合面の信頼性、外観、生産性という点では必ずしも十分とは言えない場合があった。   The joining of thin plates also requires accurate heat input management in an arc welding method such as TIG welding or MIG welding, and is not easy as an alternative means of resistance welding. On the other hand, solid-phase bonding methods typified by diffusion bonding and liquid-phase bonding methods typified by brazing can be bonded relatively easily even with thin plates, but in general, bonding while applying surface pressure in a furnace. Therefore, it is inferior in productivity, and depending on the dew point in the furnace and the steel components, it is difficult to avoid coloring, and the cooling rate after joining is slow, so sensitization, σ phase precipitation, sensitivity to 475 ° C embrittlement, etc. However, it is difficult to apply to high steel grades. As described above, methods of fusion welding, resistance welding, diffusion bonding, brazing, etc. have been studied for each application in joining stainless steel sheets with a thickness of less than 0.30 mm. In some cases, reliability, appearance, and productivity are not always sufficient.

特許文献1では、組電池の極間を接続する金属板のアークスポット溶接方法において、板厚に対する溶け込み深さを制限することで良好な溶接品質を得るものである。
特許文献2では、溶接部の変色や耐食性劣化を防止するために不活性ガスを供給した状態で溶接を行なう方法が開示されている。
特許文献3,4では、鋼板中の炭窒化物や各合金成分を制限することにより、溶接熱影響部の結晶粒粗大化を抑制し、継手強度を向上させる技術が開示されている。
In patent document 1, in the arc spot welding method of the metal plate which connects between the poles of an assembled battery, favorable welding quality is obtained by restricting the penetration depth with respect to the plate thickness.
Patent Document 2 discloses a method of performing welding in a state where an inert gas is supplied in order to prevent discoloration of the welded portion and deterioration of corrosion resistance.
Patent Documents 3 and 4 disclose technologies for suppressing the coarsening of crystal grains in the weld heat affected zone and improving the joint strength by restricting carbonitrides and respective alloy components in the steel sheet.

特開2008−210730号公報JP 2008-210730 A 特開平6−246659号公報JP-A-6-246659 特開2008−81758号公報JP 2008-81758 A 特開2010−100909号公報JP 2010-100909 A

抵抗溶接を薄板に適用する場合、適切なナゲット径が形成されるように入熱を調整するとともに、鋼板を上下から加熱しつつ所定の時間通電するため、一般には、ナゲットを形成する部分の板厚減少、すなわちくぼみ(インデンテーション)が、重ねた板の厚さに対して大きくなりやすく、その結果、接合部の強度低下や応力集中が課題の1つとして挙げられる。本発明が解決しようとする課題は、板厚0.30mm未満の被接合箇所を含む抵抗溶接において、上述した接合不足やくぼみによる強度低下、散りや着色による意匠性低下を抑制させるため、抵抗発熱法のうち、抵抗溶接の定義では良品と扱われない方法によって、ステンレス鋼製の接合成型品を得ることである。   When resistance welding is applied to a thin plate, the heat input is adjusted so that an appropriate nugget diameter is formed, and the steel plate is energized for a predetermined time while being heated from above and below. A decrease in thickness, that is, a dent (indentation) tends to increase with respect to the thickness of the stacked plates. As a result, a decrease in strength and stress concentration at the joint are one of the problems. The problem to be solved by the present invention is to generate resistance heating in order to suppress the above-described insufficient bonding, strength reduction due to dents, and deterioration in designability due to scattering and coloring in resistance welding including bonded portions with a thickness of less than 0.30 mm. Among the methods, a stainless steel joint molded product is obtained by a method that is not treated as a good product in the definition of resistance welding.

上記目的は、被接合素材の少なくとも一部の板厚が0.30mm未満のステンレス鋼板同士を直接接触させて通電で発生する抵抗熱により一体化した成型品であって、接合前の接触界面(以下「接合前界面」という)に垂直な断面において、(1)接合時の結晶粒界移動によって接合前界面を跨いで相手側の鋼材中へと侵入し接合前界面より相手側の位置に粒界三重点を形成した結晶粒をA、接合前界面に接する結晶粒のうちAを除くものをBとするとき、Aの個数をAとBの個数の和で除した値が0.20未満であること、(2)接合前界面位置上に占めるボイド存在箇所の長さ割合(ボイド線長)が5%以下であり且つナゲットの割合(ナゲット線長)が5%以下であることを満足する抵抗熱により接合されたステンレス鋼製成型品によって達成される。 The above object is a molded product integrated by resistance heat generated by energization by directly contacting stainless steel plates having a thickness of less than 0.30 mm of at least a part of the materials to be joined, and a contact interface ( (1) In the cross section perpendicular to the “interface before bonding”, (1) the grain boundary moves during bonding to penetrate into the mating steel material across the interface before bonding, and the grain is located at the position on the mating side from the interface before bonding. The value obtained by dividing the number of A by the sum of the number of A and B, where A is the crystal grain forming the boundary triple point, and B is the crystal grain in contact with the interface before bonding, excluding A, is less than 0.20 it is, that (2) before joining the ratio of the length of the void existence position occupied on the interface position (void line length) and nugget fraction of Ri der 5% (nugget line length) is 5% or less Stainless steel foil molded product joined with satisfactory resistance heat Is achieved.

ここで、接合前界面に垂直な断面において、接合界面の位置上に長さLの断面を想定し、結晶粒内に当該ラインの長さLの部分の少なくとも一部分を含む結晶粒をAとする。また、結晶粒の少なくとも一部が当該ラインの長さLに接しているライン両側の結晶粒の数を求め、そのうちAにカウントしたものを除いたものをBとする。Lを200μm以上とし、AとBの個数を求め、A/(A+B)<0.2を満足するものを本発明の範囲内とする。接合前界面の結晶粒は、接合前界面に垂直な断面をバフ研磨後、フッ酸−硝酸−グリセリン混合液中でエッチングしたのち、光学顕微鏡で組織観察すれば判定が可能である。   Here, in a cross section perpendicular to the interface before bonding, a cross section having a length L is assumed on the position of the bonding interface, and a crystal grain including at least a part of the length L of the line in the crystal grain is defined as A. . Further, the number of crystal grains on both sides of the line where at least part of the crystal grains is in contact with the length L of the line is obtained, and B excluding the number counted as A is B. L is set to 200 μm or more, the number of A and B is determined, and those satisfying A / (A + B) <0.2 are within the scope of the present invention. The crystal grains at the interface before bonding can be determined by buffing a cross section perpendicular to the interface before bonding, etching in a hydrofluoric acid-nitric acid-glycerin mixed solution, and then observing the structure with an optical microscope.

また、「接合前界面位置上に占めるボイド存在箇所の割合」は、接合前界面の位置上に上述の長さLのラインを想定し、そのライン上に存在するボイド(未接合部)の合計長さをLで除することにより算出できる。このときのLは200μm以上とし、走査電子顕微鏡により1000〜5000倍で観察すれば、ボイドの判定が可能である。このときのボイドは、未接合部を形成している空隙と接合前界面に残存した酸化物を含む。   The “ratio of void existing locations on the interface position before bonding” is the sum of the voids (unbonded portions) existing on the line assuming the above-mentioned length L line on the interface position before bonding. It can be calculated by dividing the length by L. If L is 200 μm or more at this time and observation is performed at 1000 to 5000 times with a scanning electron microscope, voids can be determined. The voids at this time include voids forming unbonded portions and oxide remaining at the interface before bonding.

「ステンレス鋼」は、JISG0203:09(鉄鋼用語(製品及び品質))の番号3801に示されているように、Cr含有量を十分に確保して耐食性を向上させた合金鋼である。ここでは、Cr量を9.0質量%以上の鋼を対象とすることができるが、Cr含有量10.5質量%以上を確保した鋼がより好適な対象となる。   “Stainless steel” is an alloy steel that has sufficiently secured Cr content and improved corrosion resistance, as indicated by number 3801 of JISG0203: 09 (steel term (product and quality)). Here, steel with a Cr content of 9.0% by mass or more can be targeted, but steel with a Cr content of 10.5% by mass or more is more suitable.

接合に供するステンレス鋼は、JISB0601:01(表面粗さ−定義及び表示)で規定される算術平均粗さRaが0.2μm以下に調整されたものである。Raは、接合面となる鋼板表面を圧延方向と垂直方向に測定した値が採用される。また、当該ステンレス鋼は、平均結晶粒径が50μm以下に調整されたものである。平均結晶粒径は、JISG0551:05(鋼−結晶粒度の顕微鏡試験方法)の附属書2(規定)(フェライト結晶粒の切断法よる評価方法)により粒度番号を求め、附属書C表1(結晶粒の各変数の関係)により結晶粒の平均直径を算出した値が採用される。   The stainless steel used for joining has an arithmetic average roughness Ra specified by JISB0601: 01 (surface roughness—definition and indication) adjusted to 0.2 μm or less. As Ra, a value obtained by measuring the surface of the steel sheet serving as the joining surface in the direction perpendicular to the rolling direction is employed. The stainless steel has an average crystal grain size adjusted to 50 μm or less. For the average crystal grain size, the grain size number is obtained according to JIS G 0551: 05 (steel-crystal grain size microscopic test method) Annex 2 (normative) (evaluation method based on ferrite grain cutting method), and Annex C Table 1 (Crystal A value obtained by calculating the average diameter of the crystal grains according to the relationship of each variable of grains) is adopted.

被接合素材の少なくとも一部のステンレス鋼材をフェライト系またはマルテンサイト系ステンレス鋼とする場合、Cr含有量が9〜40質量%、好ましくは10.5〜40質量%である鋼種を対象とすることができる。より好ましい成分組成範囲を例示すると、質量%で、C:0.0001〜0.10%、Si:0.001〜1.2%、Mn:0.001〜1.2%、P:0.001〜0.04%、S:0.0005〜0.03%、Ni:0〜2.0%、Cr:11.5〜32.0%、Mo:0〜2.5%、Cu:0〜1.5%、Nb:0〜0.8%、Ti:0〜0.4%、Al:0〜6.0%、N:0〜0.05%、Ca、Mg、Y、REM(希土類元素)の合計:0〜0.1%、不純物として含有されるPb、Sn、Znの合計:0〜0.03%、残部がFeおよび不可避的不純物からなるフェライト系またはマルテンサイト系ステンレス鋼種を挙げることができる。   When the stainless steel material of at least a part of the material to be joined is ferritic or martensitic stainless steel, it is intended for a steel type having a Cr content of 9 to 40% by mass, preferably 10.5 to 40% by mass. Can do. More preferable component composition ranges are exemplified by C: 0.0001 to 0.10%, Si: 0.001 to 1.2%, Mn: 0.001 to 1.2%, and P: 0.001% by mass. 001 to 0.04%, S: 0.0005 to 0.03%, Ni: 0 to 2.0%, Cr: 11.5 to 32.0%, Mo: 0 to 2.5%, Cu: 0 -1.5%, Nb: 0-0.8%, Ti: 0-0.4%, Al: 0-6.0%, N: 0-0.05%, Ca, Mg, Y, REM ( Rare earth elements): 0 to 0.1%, Pb, Sn and Zn contained as impurities: 0 to 0.03% Ferritic or martensitic stainless steel, the balance being Fe and inevitable impurities Can be mentioned.

被接合素材の少なくとも一部のステンレス鋼材をオーステナイト系ステンレス鋼またはオーステナイト+フェライト2相系ステンレス鋼とする場合、Cr含有量が9〜40質量%、好ましくは10.5〜40質量%、Ni含有量が3〜30質量%である鋼種を対象とすることができる。より好ましい成分組成範囲を例示すると、質量%で、C:0.0001〜0.10%、Si:0.001〜4.0%、Mn:0.001〜2.5%、P:0.001〜0.045%、S:0.0005〜0.03%、Ni:6.0〜28.0%、Cr:15.0〜26.0%、Mo:0〜7.0%、Cu:0〜3.5%、Nb:0〜1.0%、Ti:0〜1.0%、Al:0〜6.0%、N:0〜0.3%、Ca、Mg、Y、REM(希土類元素)の合計:0〜0.1%、不純物として含有されるPb、Sn、Znの合計:0〜0.03%、残部がFeおよび不可避的不純物からなるオーステナイト系ステンレス鋼またはオーステナイト+フェライト2相系ステンレス鋼種を挙げることができる。   When at least a part of the stainless steel material of the material to be joined is austenitic stainless steel or austenite + ferrite two-phase stainless steel, the Cr content is 9 to 40% by mass, preferably 10.5 to 40% by mass, and Ni is contained. A steel type whose amount is 3 to 30% by mass can be targeted. More preferable component composition ranges are exemplified by C: 0.0001 to 0.10%, Si: 0.001 to 4.0%, Mn: 0.001 to 2.5%, and P: 0.0. 001 to 0.045%, S: 0.0005 to 0.03%, Ni: 6.0 to 28.0%, Cr: 15.0 to 26.0%, Mo: 0 to 7.0%, Cu : 0-3.5%, Nb: 0-1.0%, Ti: 0-1.0%, Al: 0-6.0%, N: 0-0.3%, Ca, Mg, Y, REM (rare earth element) total: 0 to 0.1%, Pb, Sn and Zn contained as impurities: 0 to 0.03%, austenitic stainless steel or austenite with the balance being Fe and inevitable impurities + Ferritic duplex stainless steel types.

本発明によって、接合不足やくぼみによる強度低下、散りや着色による意匠性低下の少ない、板厚0.30mm未満の被接合箇所を含むステンレス鋼製の接合成型品を得ることが可能となる。また、ナゲット(溶融部)をほとんど含まないため、適用するステンレス鋼種本来の耐食性を活かすことができる。さらに、散りや着色の発生による接合部の手直しも不要となるため、ステンレス鋼を用いた抵抗溶接接合製品の普及に貢献しうる。   According to the present invention, it is possible to obtain a joined molded product made of stainless steel including a joined portion having a plate thickness of less than 0.30 mm, with less strength reduction due to insufficient bonding or depression, and less design deterioration due to scattering or coloring. Moreover, since it contains almost no nugget (melting part), the original corrosion resistance of the stainless steel type to be applied can be utilized. Furthermore, since it is not necessary to rework the joint due to the occurrence of scattering or coloring, it can contribute to the spread of resistance welding joint products using stainless steel.

加熱時に相互の粒が拡散せずに接している状態の接合部断面組織の模式図(a)、および本発明における接合部断面組織の模式図(b)、並びに加熱時にナゲット(溶融部)を形成している状態の接合部断面組織の模式図(c)である。Schematic diagram (a) of the cross-sectional structure of the joint in a state where the mutual grains do not diffuse during heating, and (b) a schematic diagram of the cross-sectional structure of the joint in the present invention, and a nugget (melting part) during heating. It is a schematic diagram (c) of the junction cross-sectional structure in the state of forming.

一般的に抵抗熱による接合では、(1)接合面の凹凸が変形して密着し、接合した箇所の接合面積が増加する過程、(2)密着した箇所で上下方向に加圧しながら通電させ、界面が高温に加熱されると同時に密着した箇所の接合面積がさらに増加する過程、(3)界面が溶融し接合されると同時に接触面積の少ない部分は高電流により散りが発生するか、溶融をともなわない圧接状態で接合される(コロナボンドを形成する)過程、が順に進行することで接合される。しかし、従来のこのメカニズムで抵抗溶接を行った場合、(3)の過程が存在することにより、上述したくぼみや散りの課題を解決することが非常に困難となる。一方で減肉を解決するために電極加圧力を下げたり、散りや着色を防止するために、接合時の入熱(溶接電流、通電時間)を下げたりすると、未接合部分が増加し接合強度そのものが低下するという、致命的な欠点が顕在化してしまう。   In general, in the joining by resistance heat, (1) the unevenness of the joining surface is deformed and closely adhered, the process of increasing the joining area of the joined part, (2) energization while pressing in the up and down direction at the adhered part, The process of further increasing the bonding area of the contacted area at the same time as the interface is heated to a high temperature. It joins by the process in which it joins in the press-contact state which does not accompany (forms a corona bond) advances in order. However, when resistance welding is performed by this conventional mechanism, it is very difficult to solve the above-described problem of indentation and scattering due to the presence of the process (3). On the other hand, if the electrode pressure is reduced to solve the thinning, or if the heat input during welding (welding current, energization time) is lowered to prevent scattering and coloring, the unbonded part increases and the bonding strength The fatal defect that it deteriorates becomes obvious.

発明者らは、板厚0.30mm未満のステンレス鋼の抵抗発熱法による接合を行うにあたり、部分的な板厚減少による応力集中がなく、かつ汎用的で確実に接合が行えるよう、各種ステンレス鋼に共通の支配的阻害要因について検討すべく、抵抗発熱法が適用可能なJISC9305:11(抵抗溶接装置)に記載のスポット溶接機を用いて種々のステンレス鋼の抵抗発熱法による接合を行った。   The inventors have made various stainless steels so that there is no stress concentration due to partial reduction in plate thickness, and general and reliable joining can be performed when joining stainless steels with a thickness of less than 0.30 mm by the resistance heating method. In order to examine the dominant obstructive factors common to the above, various stainless steels were joined by the resistance heating method using a spot welder described in JISC 9305: 11 (resistance welding apparatus) to which the resistance heating method can be applied.

その結果、接合時に素材の溶融によるナゲット形成を極力抑制し、圧接状態(メカニズムはコロナボンドを形成する際の拡散接合に類似すると推定される)とした上で、上記課題を解決し、本発明に至った。すなわち、圧接状態で散りや着色を生成させないためには、表面の仕上げ状態と鋼素地の成分が重要な役割を果たすこと、くぼみを抑制するためには抵抗発熱法による接合時の入熱ではなく、接合界面の金属組織の規制が重要であること、さらに十分な接合強度を得るためには接合界面の状態と鋼素地の結晶粒を厳密に調整する必要があること、これらを同時に満足する条件が存在することが明らかとなった。   As a result, the nugget formation due to melting of the material at the time of bonding is suppressed as much as possible, and the above-mentioned problems are solved by setting the pressure contact state (the mechanism is assumed to be similar to diffusion bonding when forming a corona bond), and the present invention. It came to. In other words, the surface finish and steel base components play an important role in order not to generate scattering or coloring in the pressure contact state, and not the heat input at the time of joining by the resistance heating method to suppress the dent. In addition, it is important to regulate the metal structure of the joint interface, and to obtain sufficient joint strength, it is necessary to strictly adjust the state of the joint interface and the crystal grains of the steel substrate, and a condition that satisfies these conditions simultaneously. It became clear that existed.

接合界面の形態は、図1を用いて説明する。図1の(a)は、加熱時に接合界面が溶融せず、なおかつ相互の粒が拡散せずに接合面が接している状態の接合部断面組織の模式図である。通常の抵抗溶接の場合、この状態からさらに溶接電流を増加させることにより、接合部が溶融してナゲットを形成する。図1の(c)には加熱時にナゲット(溶融部)を形成している状態の接合部断面組織の模式図を示す。通常のスポット溶接条件では、このように溶融部を形成し完全接合する。   The form of the bonding interface will be described with reference to FIG. FIG. 1A is a schematic diagram of a cross-sectional structure of a bonded portion in a state where the bonding interface is not melted during heating and the bonding surfaces are in contact with each other without diffusing each other's grains. In the case of normal resistance welding, by further increasing the welding current from this state, the joint is melted to form a nugget. FIG. 1 (c) shows a schematic view of a joint cross-sectional structure in a state where a nugget (melted portion) is formed during heating. Under normal spot welding conditions, the molten portion is formed in this way and completely joined.

[結晶粒の侵入により形成された固相接合界面の割合]
図1の(b)は本発明における接合部断面組織の模式図である。後述する鋼の表面状態、結晶粒径、鋼種成分を調整することにより、接合強度と意匠性を兼ね備えた接合成型品を得ることが可能となる。十分な接合強度を得るためには、接合界面の形態は、結晶粒の侵入により形成された固相接合界面が多く、残存酸化物(ボイド)が少ないことが必要となる。結晶粒の侵入により形成された固相接合界面は、2枚板の片方から反対側に向けて結晶粒が界面を跨ぐようにして侵入したものであり、外力に対しアンカー効果が働くことにより接合強度を確保することが可能となる。より高い接合強度を確保するためには全接合面の5%以上存在することが好ましい。この結晶粒の侵入により形成された固相接合界面は、多いほど好ましいが、多くするために抵抗発熱の電流を上昇させると、図1の(c)のようにナゲットが多く形成され、くぼみによる板厚減少を招く。このため、接合面に接している結晶粒界のうち、反対側の結晶粒が侵入することにより形成された結晶粒界の数は、接合面に接する結晶粒界の総数の20%未満とする。これにともない、ナゲットの接合面に対する割合は5%以下となり、結果として、粒界侵入を伴わない固相接合界面は、接合面(未接合部分を除く)に対し、70%以上となる。なお、粒界侵入を伴わない固相接合界面は、接合強度を向上させるという観点では、粒界侵入を伴う固相接合界面よりも有効とは言えないが、ガス成分が接合部分を出入りしないという密封性の点では十分に寄与すると言える。
[Ratio of the solid-phase bonding interface formed by the penetration of crystal grains]
FIG. 1B is a schematic view of a joint cross-sectional structure in the present invention. By adjusting the surface state, crystal grain size, and steel type component of steel, which will be described later, it is possible to obtain a joint molded product having both joint strength and design properties. In order to obtain sufficient bonding strength, it is necessary that the bonding interface has a large number of solid-phase bonding interfaces formed by the penetration of crystal grains and a small amount of residual oxide (void). The solid-phase bonding interface formed by the penetration of crystal grains is the one in which the crystal grains penetrated from one side of the two plates to the opposite side so as to straddle the interface. It is possible to ensure strength. In order to ensure higher bonding strength, it is preferable that 5% or more of the entire bonding surface is present. The number of solid-phase bonding interfaces formed by the penetration of crystal grains is preferably as many as possible. However, when the current of resistance heat generation is increased to increase the number of nuggets, a large amount of nuggets are formed as shown in FIG. Reduces sheet thickness. For this reason, among the crystal grain boundaries in contact with the joint surface, the number of crystal grain boundaries formed by the penetration of the opposite crystal grain is less than 20% of the total number of crystal grain boundaries in contact with the joint surface. . Along with this, the ratio of the nugget to the bonded surface is 5% or less , and as a result, the solid-phase bonded interface without grain boundary penetration is 70% or higher with respect to the bonded surface (excluding the unbonded portion). Note that a solid-phase bonding interface without grain boundary penetration is not as effective as a solid-phase bonding interface with grain boundary penetration in terms of improving the bonding strength, but gas components do not enter and exit the bonded portion. It can be said that it contributes sufficiently in terms of sealing performance.

[接合前界面位置上に占めるボイドの存在箇所の長さ割合]
接合界面を横断するボイドの横断率は、図1の(b)でボイドの径を求め、界面の線長で除して求めることができる。なおボイドは、板厚0.1mm程度の鋼鈑の接合であれば、接合部断面を結晶粒界が現出する程度にエッチングして、走査電子顕微鏡(SEM)にて観察し、接合界面の黒点(ボイドまたは粒状酸化物)をカウントすることで判定可能である。ボイドは、接合強度を低下させるため、少ないほうが好ましく、界面の線長に対し5%以下とした。なお、ボイドや粒界侵入を伴わない固相接合界面は、未接合界面との識別に留意する必要がある。すなわち、ボイドと未接合界面は、エッチングを行わずに断面検鏡を行うと、欠陥部分が研磨により埋まる場合には、固相接合界面との識別が困難となる。このため、上述したエッチングにより欠陥部分に埋まった研磨粉等を除去して判別する必要がある。ただしエッチングを行った場合でも、未接合界面と粒界侵入を伴わない固相接合界面の識別は困難であるため、後述する接合強度によって、接合状態を把握する必要がある。このため、本発明では、粒界侵入を伴わない固相接合界面の接合前界面位置上に占める割合を規定しなかった。
[Length ratio of voids existing on the interface before bonding]
The crossing ratio of voids crossing the bonding interface can be obtained by obtaining the void diameter in FIG. 1B and dividing by the line length of the interface. If the void is a steel plate with a thickness of about 0.1 mm, the cross section of the joint is etched to such an extent that a grain boundary appears, and observed with a scanning electron microscope (SEM). It can be determined by counting black spots (voids or granular oxides). Since voids decrease the bonding strength, it is preferable that the voids be less, and the voids be 5% or less with respect to the interface line length. It should be noted that a solid-phase bonded interface that does not involve voids or grain boundary penetration should be distinguished from an unbonded interface. In other words, when the cross-section inspection is performed without etching the void and the unbonded interface, it is difficult to distinguish the void from the solid-phase bonded interface when the defective portion is buried by polishing. For this reason, it is necessary to determine by removing the polishing powder or the like buried in the defective portion by the etching described above. However, even when etching is performed, it is difficult to distinguish between the unbonded interface and the solid-phase bonded interface that does not enter the grain boundary. Therefore, it is necessary to grasp the bonded state based on the bonding strength described later. For this reason, in this invention, the ratio which occupies on the interface position before joining of the solid-phase joining interface which does not accompany a grain boundary penetration | invasion was not prescribed | regulated.

[ステンレス鋼種]
素材として用いるステンレス鋼は基本的にはその種類を問わないが、抵抗発熱法による接合に対しては、使用される環境によって、例えば質量%で9〜40%のCrを含むフェライトまたはマルテンサイト系、もしくは質量%で9〜40%のCrと3〜30%のNiを含むオーステナイト系またはオーステナイト+フェライト2相系ステンレス鋼が用いることが可能である。これらの鋼種の具体的な成分組成範囲は前述のとおりである。
[Stainless steel grade]
The stainless steel used as the material is basically not limited to the kind, but for joining by the resistance heating method, depending on the environment used, for example, ferrite or martensite containing 9 to 40% by mass of Cr. Alternatively, an austenitic or austenitic + ferrite duplex stainless steel containing 9 to 40% Cr and 3 to 30% Ni by mass% can be used. Specific component composition ranges of these steel types are as described above.

[結晶粒径および粗さ]
接合部分にナゲットおよびボイドを形成させずに、粒界侵入を伴う固相接合界面や粒界侵入を伴わない固相接合界面を多く形成させるためには、固相接合の駆動力を上げておく必要がある。すなわち、高入熱側で生成しやすいナゲットと低入熱側で生成しやすいボイドを抑制し、抵抗発熱で固相接合が可能な入熱範囲を広くしておく必要がある。そこで、これらを達成するために種々の検討を行ったところ、粒界侵入を伴う固相接合界面を確保するには接合前の平均結晶粒が、粒界侵入を伴わない固相接合界面を確保するには接合前の鋼材のミクロ的な接触表面積を確保しておくことが、それぞれ重要であることを明らかにした。平均結晶粒径が50μmを超える場合は結晶粒接合界面を乗り越えるだけの駆動力を得ることが困難になること、表面粗さRaが0.2μmを超えると接合界面にできる隙間が大きくなってしまいボイドが消失しなくなるため、同じく粒界が接合界面を乗り越えることが困難になる。このため、接合前の鋼材の平均結晶粒径は50μm以下、表面粗さはRaが0.20μm以下に調整されたものとした。
[Crystal grain size and roughness]
In order to form a solid phase bonding interface with grain boundary penetration and a solid phase bonding interface without grain boundary penetration without forming nuggets and voids at the joint, increase the driving force of solid phase bonding. There is a need. That is, it is necessary to suppress the nuggets that are likely to be generated on the high heat input side and the voids that are likely to be generated on the low heat input side, and widen the heat input range in which solid-phase bonding can be performed by resistance heat generation. Therefore, various studies were conducted to achieve these, and in order to secure a solid-phase bonding interface with grain boundary penetration, the average crystal grain before joining secured a solid-phase bonding interface without grain boundary penetration. For this purpose, it was clarified that it is important to secure a microscopic contact surface area of the steel before joining. When the average crystal grain size exceeds 50 μm, it becomes difficult to obtain a driving force enough to overcome the crystal grain bonding interface, and when the surface roughness Ra exceeds 0.2 μm, the gap formed at the bonding interface becomes large. Since voids no longer disappear, it is also difficult for the grain boundary to overcome the joint interface. For this reason, the average crystal grain size of the steel material before joining was adjusted to 50 μm or less, and the surface roughness Ra was adjusted to 0.20 μm or less.

抵抗発熱法による接合は、スポット溶接機、シーム溶接機、プロジェクション溶接機などの装置によって実施することが可能である。実際の操業に際しては、接合前の鋼材の成分組成、平均結晶粒、表面粗さなどに応じて予備実験により適切な抵抗発熱パターンを予め把握しておけばよい。例えば、スポット溶接機を用いて、板厚0.25mmのフェライト系ステンレス鋼BA仕上材(SUS430J1L、Raで0.15μm程度)を接合する場合、電極径10mm、電極加圧力1000〜2000N、溶接電流4000〜8000A、スクイズ時間0.5〜1.5秒、通電時間0.5〜1.5秒の範囲内に適切なパターンを見つけることができる。なお、ここで用いた条件の用語は、JISZ3001−1:08(溶接用語)の番号15310の図に記されたものである。   Joining by the resistance heating method can be performed by an apparatus such as a spot welder, a seam welder, or a projection welder. In actual operation, an appropriate resistance heating pattern may be obtained in advance by preliminary experiments in accordance with the component composition, average crystal grain, surface roughness, and the like of the steel material before joining. For example, when joining a 0.25 mm thick ferritic stainless steel BA finish (SUS430J1L, about 0.15 μm Ra) using a spot welder, the electrode diameter is 10 mm, the electrode pressure is 1000 to 2000 N, the welding current Appropriate patterns can be found within the range of 4000 to 8000 A, squeeze time of 0.5 to 1.5 seconds, and energization time of 0.5 to 1.5 seconds. In addition, the term of the condition used here is described in the figure of the number 15310 of JISZ3001-1: 08 (welding term).

表1に示す成分のステンレス鋼を溶製し、熱間圧延で板厚3〜4mmの熱延板とし、焼鈍、酸洗、冷間圧延を2回繰り返し板厚0.25mmの冷延焼鈍板とした。その後、必要に応じて酸洗を施し、供試鋼板とした。F1〜F3はフェライト単相系、M1とM2はマルテンサイト系(一部フェライトも存在する)、A1〜A3はオーステナイト系、D1はオーステナイト+フェライト2相系のステンレス鋼である。   A stainless steel having the components shown in Table 1 is melted and hot rolled to form a hot rolled sheet having a thickness of 3 to 4 mm, and annealing, pickling and cold rolling are repeated twice and a cold rolled annealed sheet having a thickness of 0.25 mm. It was. Then, it pickled as needed and it was set as the test steel plate. F1 to F3 are ferrite single-phase, M1 and M2 are martensite (some ferrite is also present), A1 to A3 are austenitic, and D1 is austenite + ferrite two-phase stainless steel.

Figure 0006105993
Figure 0006105993

供試鋼板の表面粗さRaの調整は、必要に応じて#180〜#2000のエメリー紙で鋼板表面を湿式研磨する工程を冷間圧延後または仕上焼鈍後の酸洗前に挿入することにより行った。供試鋼板の平均結晶粒径は、仕上焼鈍温度を900〜1200℃の範囲で変えることにより種々のサイズに調整した。これらは接合前に、上述した方法にて表面粗さRaと平均結晶粒径を求めた。表面粗さRaは、0.2μm以下のものを○、それ以外を×と表記した。また、平均結晶粒径は、50μm以下のものを○、それ以外を×と表記した。   The surface roughness Ra of the test steel sheet is adjusted by inserting a step of wet polishing the steel sheet surface with emery paper of # 180 to # 2000 as necessary before cold pickling or after pickling after finish annealing. went. The average crystal grain size of the test steel sheet was adjusted to various sizes by changing the finish annealing temperature in the range of 900 to 1200 ° C. Before bonding, the surface roughness Ra and the average crystal grain size were determined by the method described above. As for the surface roughness Ra, those having a surface roughness of 0.2 μm or less were indicated by “◯”, and others were indicated by “X”. In addition, the average crystal grain size is indicated as “◯” when the particle size is 50 μm or less, and “X” when the other is not.

各供試鋼板から切削加工により20mm×50mmの平板材を作製した。同一の製造条件で作製した2枚の板を1組とし、長手方向を圧延方向として、スポット溶接機にて同一条件で5組の接合体を作製した。このときの抵抗発熱の条件は、電極にφ10mmのCuを用い、電極加圧力1500N、スクイズ時間1秒、通電時間1秒に固定し、溶接電流は6000Aを中心とし、3000〜9000Aの間で種々変動させた。そのうち3組を組織観察に、残りの2組を接合強度評価と接合外内面評価に用いた。   A flat plate of 20 mm × 50 mm was prepared from each test steel sheet by cutting. Two sets of plates produced under the same manufacturing conditions were made into one set, and the longitudinal direction was set as the rolling direction, and five sets of joined bodies were produced under the same conditions using a spot welder. The conditions of resistance heat generation at this time are as follows: Cu of φ10 mm is used for the electrode, the electrode pressing force is 1500 N, the squeeze time is 1 second, and the energization time is 1 second. The welding current is centered on 6000 A and varies between 3000 and 9000 A. Fluctuated. Three of them were used for structure observation, and the remaining two were used for joint strength evaluation and joint outer / inner surface evaluation.

組織観察では、接合体を圧延方向に平行に切り出し、上述した方法で、3箇所の接合部分について、各接合前界面上に長さL=300μmのラインを想定して、上述したAとBの個数を求め、粒界侵入の結晶粒の個数割合としてA/(A+B)を求めた。また、同様に接合前界面位置上に占めるボイド存在箇所の長さ割合を求めた。なお、抵抗発熱量が大きい条件の場合、ボイドが生成せずにナゲットが生成するため、この場合にはナゲットの線長を求めた。侵入結晶粒の生成程度は、A/(A+B)の値が0.20未満であるものを○(良好)、それ以外を×(不良)と評価した。ボイドの生成頻度は、ボイド線長が5%以下かつナゲット線長が5%以下のものを○(良好)、それ以外を×(不良)と評価した。   In the structure observation, the joined body was cut out in parallel with the rolling direction, and the above-described method was performed on the three joint portions assuming a line of length L = 300 μm on each pre-joining interface. The number was determined, and A / (A + B) was determined as the ratio of the number of crystal grains entering the grain boundary. Moreover, the length ratio of the void presence location which occupies on the interface position before joining similarly was calculated | required. Note that, in the case where the resistance heat generation amount is large, nuggets are generated without generating voids. In this case, the line length of the nugget was obtained. As for the degree of formation of the intruding crystal grains, those having an A / (A + B) value of less than 0.20 were evaluated as ◯ (good), and the others were evaluated as x (bad). The void generation frequency was evaluated as ◯ (good) when the void line length was 5% or less and the nugget line length was 5% or less, and x (bad) when it was not.

接合強度は、JISZ3001−1:08(溶接用語)の番号12315(はく離試験(ピール試験))の図に記載の方法にて評価した。はく離試験を行った後、JISZ3137:99(抵抗スポット及びプロジェクション溶接継手の十字引張試験に対する試験片寸法及び試験方法)の図1(十字引張試験の場合の主な破壊形態と溶接径)にてb)界面破断の場合とc)部分プラグ破断の場合を○(良好)、それ以外を×(不良)と評価した。   The joint strength was evaluated by the method described in the figure of JISZ3001-1: 08 (welding term) number 12315 (peeling test (peel test)). After the peel test, b in FIG. 1 (main fracture forms and weld diameters in the cross tension test) of JISZ3137: 99 (test specimen dimensions and test method for the cross tension test of resistance spot and projection welded joint) ) Interfacial fracture and c) Partial plug fracture were evaluated as ◯ (good) and the others were evaluated as x (defect).

接合外内面は、はく離試験後の外観で評価した。目視にて、JISZ3001−1:08(溶接用語)の番号15201(ナゲット)の図に記載の表散りまたは中散りが認められないものを○、それ以外を×と評価した。以上の結果を表2にまとめて記す。 The outer surface of the joint was evaluated by the appearance after the peeling test. When the surface scattering or the middle scattering described in the drawing of the number 15201 (nugget) of JISZ3001-1: 08 (welding term) was not visually observed, the evaluation was ○, and the others were evaluated as ×. The above results are summarized in Table 2.

Figure 0006105993
Figure 0006105993

本発明例はNo.1〜No.11である。表2からもわかるように、本発明例のものは粒界侵入粒の個数割合は0.20未満、かつボイドの存在割合が5%である抵抗熱接合部が形成され、その接合部は、接合強度の信頼性が高いとともに、散りがないため意匠性にも優れていた。   Examples of the present invention are No. 1-No. 11. As can be seen from Table 2, in the example of the present invention, a resistance thermal joint portion in which the number ratio of intergranular intruding grains is less than 0.20 and the existence ratio of voids is 5% is formed. In addition to high reliability of the bonding strength, it was excellent in design because there was no scattering.

No.12〜No.18は比較例である。比較例No.12およびNo.13は、抵抗発熱電流が低く、接合に十分な入熱がなかったため、粒界侵入の個数割合は満足していたが、ボイドの生成割合が多く接合強度に劣っていた。比較例No.14およびNo.15は、抵抗発熱電流が高く、粒界侵入の個数割合が0.20以上となるとともに、ボイド率が、ナゲットの形成によって×と判定された。このため、接合強度が高く、散りが発生するという、いわゆる一般的なスポット溶接のような接合状態となり、本発明の目的とする接合状態を得ることができなかった。比較例No.16およびNo.17は、供試鋼の表面粗さRaが大きすぎたため、接合界面のボイド率が多くなり、結果として接合強度に劣った。比較例No.18は、接合前の平均結晶粒径が大きすぎたため、接合界面を乗り越える駆動力が小さくなった結果、ボイド率が大きくなり、接合強度に劣った。   No. 12-No. 18 is a comparative example. Comparative Example No. 12 and no. No. 13 had a low resistance heating current and did not have sufficient heat input for bonding, so the number ratio of grain boundary penetration was satisfactory, but the void generation ratio was large and the bonding strength was poor. Comparative Example No. 14 and no. No. 15 had a high resistance heating current, the number ratio of grain boundary penetration was 0.20 or more, and the void ratio was determined to be x due to the formation of nuggets. For this reason, the joining strength is high, and a joining state such as so-called general spot welding in which scattering occurs occurs, and the joining state intended by the present invention cannot be obtained. Comparative Example No. 16 and no. In No. 17, since the surface roughness Ra of the test steel was too large, the void ratio at the joint interface increased, resulting in poor joint strength. Comparative Example No. In No. 18, since the average crystal grain size before joining was too large, the driving force over the joining interface was reduced. As a result, the void ratio was increased and the joining strength was inferior.

Claims (5)

被接合素材の少なくとも一部の板厚が0.30mm未満のステンレス鋼板同士を直接接触させて通電で発生する抵抗熱により一体化した成型品であって、接合前の接触界面(以下「接合前界面」という)に垂直な断面において、(1)接合時の結晶粒界移動によって接合前界面を跨いで相手側の鋼材中へと侵入し接合前界面より相手側の位置に粒界三重点を形成した結晶粒をA、接合前界面に接する結晶粒のうちAを除くものをBとするとき、Aの個数をAとBの個数の和で除した値が0.20未満であること、(2)接合前界面位置上に占めるボイド存在箇所の長さ割合(ボイド線長)が5%以下であり且つナゲットの割合(ナゲット線長)が5%以下であること、を満足する抵抗熱により接合されたステンレス鋼箔製成型品。 A molded product in which stainless steel plates having a thickness of less than 0.30 mm are brought into direct contact with each other and integrated by resistance heat generated by energization, and a contact interface before joining (hereinafter referred to as “before joining”) In the cross section perpendicular to the “interface”, (1) the grain boundary moves at the time of joining and penetrates into the mating steel material across the pre-joining interface, and the grain boundary triple point is located at the mating position from the pre-joining interface. A value obtained by dividing the number of A by the sum of the number of A and B, where A is the formed crystal grain, and B is the crystal grain that is in contact with the interface before bonding, excluding A, (2) prior to bonding that the length ratio proportion of and nugget Ri der (void line length) of 5% or less of voids present position occupied on the interface position (nugget line length) is 5% or less, satisfying the resistance A molded product made of stainless steel foil joined by heat. 被接合素材の少なくとも一部が、質量%で9〜40%のCrを含み、平均結晶粒径が50μm以下、表面粗さRaが0.2μm以下のフェライト系またはマルテンサイト系ステンレス鋼である請求項1に記載の抵抗熱により接合されたステンレス鋼箔製成型品。   At least a part of the material to be joined is a ferritic or martensitic stainless steel containing 9 to 40% by mass of Cr, having an average crystal grain size of 50 μm or less and a surface roughness Ra of 0.2 μm or less. Item 2. A molded product made of stainless steel foil joined by resistance heat according to Item 1. 被接合素材の少なくとも一部が、質量%で、C:0.0001〜0.10%、Si:0.001〜1.2%、Mn:0.001〜1.2%、P:0.001〜0.04%、S:0.0005〜0.03%、Ni:0〜2.0%、Cr:11.5〜32.0%、Mo:0〜2.5%、Cu:0〜1.5%、Nb:0〜0.8%、Ti:0〜0.4%、Al:0〜6.0%、N:0〜0.05%、Ca、Mg、Y、REM(希土類元素)の合計:0〜0.1%、不純物として含有されるPb、Sn、Znの合計:0〜0.03%、残部がFeおよび不可避的不純物である、請求項2に記載の抵抗熱により接合されたステンレス鋼箔製成型品。   At least a part of the materials to be joined is mass%, C: 0.0001 to 0.10%, Si: 0.001 to 1.2%, Mn: 0.001 to 1.2%, P: 0.00. 001 to 0.04%, S: 0.0005 to 0.03%, Ni: 0 to 2.0%, Cr: 11.5 to 32.0%, Mo: 0 to 2.5%, Cu: 0 -1.5%, Nb: 0-0.8%, Ti: 0-0.4%, Al: 0-6.0%, N: 0-0.05%, Ca, Mg, Y, REM ( The total resistance of rare earth elements): 0 to 0.1%, the total of Pb, Sn, and Zn contained as impurities: 0 to 0.03%, and the balance is Fe and inevitable impurities. A molded product made of stainless steel foil joined by heat. 被接合素材の少なくとも一部が、質量%で9〜40%のCrと3〜30%のNiを含む平均結晶粒径50μm以下,表面粗さRaが0.2μm以下のオーステナイト系ステンレス鋼またはオーステナイト+フェライト2相系ステンレス鋼を使用することを特徴とする、請求項1記載の抵抗熱により接合されたステンレス鋼箔製成型品。 Austenitic stainless steel or austenite having an average crystal grain size of 50 μm or less and a surface roughness Ra of 0.2 μm or less, in which at least a part of the material to be joined contains 9 to 40% Cr and 3 to 30% Ni by mass The molded product made of stainless steel foil joined by resistance heat according to claim 1, characterized in that + ferrite duplex stainless steel is used. 被接合素材が質量%で、C:0.0001〜0.10%、Si:0.001〜4.0%、Mn:0.001〜2.5%、P:0.001〜0.045%、S:0.0005〜0.03%、Ni:6.0〜28.0%、Cr:15.0〜26.0%、Mo:0〜7.0%、Cu:0〜3.5%、Nb:0〜1.0%、Ti:0〜1.0%、Al:0〜6.0%、N:0〜0.3%、Ca、Mg、Y、REM(希土類元素)の合計:0〜0.1%、不純物として含有されるPb、Sn、Znの合計:0〜0.03%、残部がFeおよび不可避的不純物である、請求項4に記載の抵抗熱により接合されたステンレス鋼箔製成型品。   The material to be joined is% by mass, C: 0.0001 to 0.10%, Si: 0.001 to 4.0%, Mn: 0.001 to 2.5%, P: 0.001 to 0.045. %, S: 0.0005 to 0.03%, Ni: 6.0 to 28.0%, Cr: 15.0 to 26.0%, Mo: 0 to 7.0%, Cu: 0 to 3. 5%, Nb: 0 to 1.0%, Ti: 0 to 1.0%, Al: 0 to 6.0%, N: 0 to 0.3%, Ca, Mg, Y, REM (rare earth element) Total: 0 to 0.1%, Pb, Sn and Zn contained as impurities: 0 to 0.03%, the balance being Fe and inevitable impurities, bonding by resistance heat according to claim 4 Stainless steel foil molded product.
JP2013061458A 2013-03-25 2013-03-25 Molded product made of stainless steel foil joined by resistance heat Active JP6105993B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013061458A JP6105993B2 (en) 2013-03-25 2013-03-25 Molded product made of stainless steel foil joined by resistance heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013061458A JP6105993B2 (en) 2013-03-25 2013-03-25 Molded product made of stainless steel foil joined by resistance heat

Publications (2)

Publication Number Publication Date
JP2014185369A JP2014185369A (en) 2014-10-02
JP6105993B2 true JP6105993B2 (en) 2017-03-29

Family

ID=51833210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013061458A Active JP6105993B2 (en) 2013-03-25 2013-03-25 Molded product made of stainless steel foil joined by resistance heat

Country Status (1)

Country Link
JP (1) JP6105993B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6129140B2 (en) * 2014-11-05 2017-05-17 日新製鋼株式会社 Stainless steel for diffusion bonding
JP6301986B2 (en) * 2016-02-23 2018-03-28 日新製鋼株式会社 Vacuum insulation panel and method for manufacturing the same
JP6493440B2 (en) * 2016-09-15 2019-04-03 Jfeスチール株式会社 Ferritic stainless steel sheet for heat exchanger of heat exchanger
MX2020003898A (en) * 2017-10-05 2020-08-20 Nippon Steel Corp Method for manufacturing spot weld joint, steel sheet for spot welding, and steel sheet member for spot welding.

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6024751B2 (en) * 1979-05-14 1985-06-14 三菱重工業株式会社 Improvements in diffusion welding
JP2004243410A (en) * 2003-01-20 2004-09-02 Nippon Steel Corp Metal foil tube, and method and device for manufacturing the same
JP5850763B2 (en) * 2012-02-27 2016-02-03 日新製鋼株式会社 Stainless steel diffusion bonding products

Also Published As

Publication number Publication date
JP2014185369A (en) 2014-10-02

Similar Documents

Publication Publication Date Title
JP6104008B2 (en) Stainless steel sheet molded product joined by resistance heat
JP5987982B2 (en) Spot welding joint and spot welding method
Ighodaro et al. Comparative effects of Al-Si and galvannealed coatings on the properties of resistance spot welded hot stamping steel joints
JP6265311B1 (en) ERW Welded Stainless Clad Steel Pipe and Manufacturing Method Thereof
JP6105993B2 (en) Molded product made of stainless steel foil joined by resistance heat
JP2007268604A (en) Resistance spot welding method
WO2004105994A1 (en) Liquid phase diffusion welding method for metallic machine part and metallic machine part
TWI305233B (en)
JP2002172469A (en) Spot welding method for high strength steel plate
JP2006159212A (en) Liquid phase diffusion joining method for metallic machine component, and metallic machine component
JP5720592B2 (en) Welded joint
JP7115223B2 (en) Method for manufacturing resistance spot welded joints
JP7243952B1 (en) Joined body of stainless steel and copper, manufacturing method thereof, and joining method of stainless steel and copper
JP7003806B2 (en) Joined structure and its manufacturing method
Viňáš et al. Optimization of resistance spot welding parameters for microalloyed steel sheets
JP2007277717A (en) Steel sheet for brazing bonding to aluminum based material, bonding material using the steel sheet, and bonding joint
JP7021591B2 (en) Joined structure and its manufacturing method
Singh et al. Influence of novel torch type on mechanical and microstructural characteristics of cold metal transfer brazed joints
JP7047543B2 (en) Joined structure and its manufacturing method
WO2020105267A1 (en) Joint structure and method for manufacturing joint structure
JP7456559B1 (en) Stainless steel and copper joined body and its manufacturing method, and stainless steel and copper joining method
Sheikhhasani et al. Investigation of the effect of friction stir spot welding of BH galvanized steel plates on process parameters and weld mechanical properties
JP7230976B1 (en) Friction stir welding method for electromagnetic steel strip and method for manufacturing electromagnetic steel strip
JP7296985B2 (en) Resistance spot welding method and method for manufacturing resistance spot welded joints
WO2024070459A1 (en) Resistance spot welding method and welded joint manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170127

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170303

R150 Certificate of patent or registration of utility model

Ref document number: 6105993

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250