JP6301986B2 - Vacuum insulation panel and method for manufacturing the same - Google Patents

Vacuum insulation panel and method for manufacturing the same Download PDF

Info

Publication number
JP6301986B2
JP6301986B2 JP2016032442A JP2016032442A JP6301986B2 JP 6301986 B2 JP6301986 B2 JP 6301986B2 JP 2016032442 A JP2016032442 A JP 2016032442A JP 2016032442 A JP2016032442 A JP 2016032442A JP 6301986 B2 JP6301986 B2 JP 6301986B2
Authority
JP
Japan
Prior art keywords
welding
vacuum
insulation panel
phase
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016032442A
Other languages
Japanese (ja)
Other versions
JP2017150548A (en
Inventor
努 東
努 東
仲子 武文
武文 仲子
弘久 三島
弘久 三島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP2016032442A priority Critical patent/JP6301986B2/en
Publication of JP2017150548A publication Critical patent/JP2017150548A/en
Application granted granted Critical
Publication of JP6301986B2 publication Critical patent/JP6301986B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thermal Insulation (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Description

本発明は、例えば冷蔵庫や保冷庫、或いは保温庫や住宅等の断熱壁等に好適に用いられる真空断熱パネルに関するものである。   The present invention relates to a vacuum heat insulating panel suitably used for a refrigerator, a cold storage, a heat insulating wall, a heat insulating wall of a house, or the like, for example.

昨今、電力不足などの影響によりあらゆる産業で省エネ製品や省エネ技術の開発が進められている。真空断熱パネルも省エネ対策の1つとして開発された商品であり、現在では薄くて高性能な断熱材として冷蔵庫や自動販売機用の断熱材として広く採用されている。
また、住宅用の断熱材としての適用検討も進められているが、現行の真空断熱パネルは、例えば図1の左図に示すように、グラスウール等の芯材をアルミラミネートフィルムでヒートシールした構造のものが一般的である。
In recent years, energy-saving products and energy-saving technologies are being developed in various industries due to the power shortage. Vacuum insulation panels have also been developed as an energy-saving measure, and are now widely used as insulation for refrigerators and vending machines as thin, high-performance insulation.
In addition, although examination of application as a heat insulating material for houses is underway, the current vacuum heat insulating panel has a structure in which a core material such as glass wool is heat sealed with an aluminum laminate film as shown in the left figure of FIG. The ones are common.

アルミラミネートフィルムでヒートシールした構造の真空断熱パネルでは、ヒートシール部から水分が透過し断熱性能が劣化することが一般的に知られており、その対策として活性炭やゼオライト等のガス吸着剤を芯材と一緒に入れて封止する方法が採用されているが、それでも7〜8年で断熱性能が半減するという問題がある。
このため、長期に亘って断熱性能を維持できる真空断熱パネルの開発が望まれている。
そこで、例えば図1の右図に示すように、グラスウール等の芯材をガスバリヤ製の高い金属製の外包材で包み込み、真空引きした後、端部を溶接接合した真空断熱パネルが各種提案されている。
It is generally known that vacuum insulation panels with a structure heat-sealed with an aluminum laminate film will permeate moisture from the heat-seal part and deteriorate the insulation performance. As a countermeasure, a gas adsorbent such as activated carbon or zeolite is used as a core. Although the method of sealing together with the material is adopted, there is still a problem that the heat insulation performance is halved in 7 to 8 years.
For this reason, development of the vacuum heat insulation panel which can maintain heat insulation performance over a long term is desired.
Therefore, for example, as shown in the right figure of FIG. 1, various vacuum heat insulating panels have been proposed in which a core material such as glass wool is wrapped in a high metal outer packaging material made of gas barrier, vacuumed and then welded at the end. Yes.

特許文献1の方法では、芯材を包む金属製外包材の一方にパネル内部の空気を排出するための溝を設け、溝に接続された排気口により真空引き行い溶接により封止する方法が提案されている。この方法では、予め真空引きを行う前にシーム溶接やプラズマ溶接などで溝及び排気口周辺の予備封止を行い、予備封止後に溝部を通して排気口より真空引きを行い、真空引き完了後、溝部周辺をプレスなどにより平らにした後に先と同じ溶接方法により平らになった溝部上を溶接し、真空断熱パネルを製造している。   In the method of Patent Document 1, a groove for discharging the air inside the panel is provided in one of the metal outer packaging materials that wrap the core material, and a method is proposed in which vacuuming is performed by an exhaust port connected to the groove and sealing is performed by welding. Has been. In this method, preliminary sealing around the groove and the exhaust port is performed by seam welding, plasma welding, or the like before vacuuming is performed in advance, and after the preliminary sealing, vacuuming is performed from the exhaust port through the groove. A vacuum insulation panel is manufactured by flattening the periphery with a press or the like and then welding the flattened groove by the same welding method.

また特許文献2の方法では、外周部が溶接接合された上下金属製外包材によって形成される略平板状の空間内に厚肉領域と薄肉領域を兼ね備えた芯材を挿入し、真空引き時は厚肉領域と薄肉領域で発生する段差を利用して上下包材の内面が接触することを防止するとともに、排気通路を確保しながら排気口より真空引きを行い、排気口を封止した後に排気口手前を溶接することで真空断熱パネルを製造している。   Further, in the method of Patent Document 2, a core material having both a thick region and a thin region is inserted into a substantially flat space formed by upper and lower metal outer packaging materials whose outer peripheral portions are welded together. Using the steps generated in the thick and thin areas, the inner surfaces of the upper and lower wrapping materials are prevented from contacting each other, and evacuation is performed after the exhaust opening is sealed while the exhaust passage is secured and the exhaust opening is sealed. Vacuum insulation panels are manufactured by welding the front.

特許文献1および2は、いずれも金属製外包材を使用し、溶接により接合することでシール部からの水分の透過を防ぎ、長期に亘り断熱性能が維持可能な真空断熱パネルを提案している。また、金属製外包材としてステンレス鋼板を用い、溶接にシーム溶接を使用することも開示されている。 Patent Documents 1 and 2 both propose a vacuum heat insulation panel that uses a metal outer packaging material and prevents moisture permeation from the seal part by welding to maintain the heat insulation performance over a long period of time. . It is also disclosed that a stainless steel plate is used as the metal outer packaging material and seam welding is used for welding.

特開2009‐228803号公報JP 2009-228803 A 特開2001‐311497号公報Japanese Patent Laid-Open No. 2001-311497

特許文献1および2では、金属製外包材としてガスバリヤ性の高いステンレス鋼板を用い、シーム溶接によりステンレス製の真空断熱パネルを製造する方法が提案されている。シーム溶接は2枚の金属材料を電極で加圧し、そこに電流を流すことにより金属材料間を溶融させて接合する方法である。金属材料間に隙間があっても、電極で加圧し隙間を潰しながら溶接することが可能なため、隙間がある箇所の溶接に適した溶接方法であると考えられる。ステンレス製の真空断熱パネルで使用される外包材の少なくともどちらか一方には芯材を収納するための膨出部の加工が必要であり、生産性の良いプレス加工により生産されるケースが多い。ステンレス鋼板で特に薄板を材料としたプレス加工ではフランジ部にしわが発生しやすく、電極の加圧によりこのしわの凹凸を潰しながら溶接することが可能なシーム溶接は、ステンレス製の真空断熱パネルの製造に適した溶接方法の一つであると考えられる。 Patent Documents 1 and 2 propose a method of manufacturing a stainless steel vacuum heat insulation panel by seam welding using a stainless steel plate having a high gas barrier property as a metal outer packaging material. Seam welding is a method in which two metal materials are pressurized with an electrode and a current is passed therethrough to melt and join the metal materials. Even if there is a gap between the metal materials, it is possible to perform welding while crushing the gap by applying pressure with an electrode. At least one of the outer packaging materials used in the stainless steel vacuum heat insulation panel requires processing of the bulging portion for storing the core material, and is often produced by press work with high productivity. Stainless steel sheets, especially thin plates, are prone to wrinkles in the flange, and seam welding, which can be welded while crushing the wrinkles by pressing the electrodes, produces stainless steel vacuum insulation panels. This is considered to be one of the welding methods suitable for the above.

しかしながら、シーム溶接により真空断熱パネルを製造する場合には問題点もある。先述したように外包材の少なくともどちらか一方には、芯材を収納するための膨出部の加工が必要であり、プレス加工により角筒状に加工されるケースが多い。角筒状にプレス加工された包材を使用した場合、特に加工部のコーナーRが小さい場合には、この1回のシーム溶接で周縁部全周を溶接することは困難なため、図2(a)に見られるように複数の溶接に分けて溶接ラインが交差するように溶接する方法を取る必要がある。この方法では必ず溶接ラインが交差しラップ部が生じることとなる。通常の交差していない溶接ラインの断面は、図2(b)に示すように、ナゲットが規則正しく安定して形成されている。一方、ラップ部の断面は同じ箇所を2回溶接することになるため先の溶接の影響を受けて、図2(c)、(d)に示すように、2本のラインの交差点でナゲットが過剰に成長し、交差点近傍にはナゲット未形成部位が生じたり、ブローホールや溶着部が生じたりと溶接不良品の発生頻度が高くなり生産性が低下する。また、溶接熱の影響で素材金属板が歪み、図2(e)に示すように、フランジ部が波打ち2枚の金属製外包材間には隙間が発生するため、電極の加圧により材料の隙間を潰しながら溶接を行うシーム溶接であっても、電極と外包材との接触面積が低下する現象は避けきれず、電流密度の増加に伴い溶接時にスパッターが発生し、内部に挿入した芯材がスパッターにより損傷し、断熱性能が低下するといった問題も発生する。これらの現象は板厚が薄く、溶接線長が長くなるほど顕著となる。 However, there is a problem when manufacturing a vacuum heat insulation panel by seam welding. As described above, at least one of the outer packaging materials requires processing of the bulging portion for storing the core material, and is often processed into a rectangular tube shape by pressing. When a packaging material pressed into a rectangular tube shape is used, particularly when the corner R of the processed portion is small, it is difficult to weld the entire periphery of the peripheral portion by this one seam welding, so FIG. As shown in a), it is necessary to divide into a plurality of welds so that the welding lines intersect each other. In this method, the weld lines always intersect and a lap portion is generated. As shown in FIG. 2B, the nugget is regularly and stably formed in a cross section of a normal non-intersecting weld line. On the other hand, since the cross section of the lap part is welded twice at the same location, the nugget is affected at the intersection of the two lines as shown in FIGS. 2 (c) and 2 (d). If it grows excessively and an nugget-unformed site is formed in the vicinity of the intersection, a blowhole or a welded portion is generated, the frequency of occurrence of defective welds increases and productivity decreases. In addition, the material metal plate is distorted by the influence of welding heat, and as shown in FIG. 2 (e), a gap is generated between the two metal outer packaging materials with the wavy flange portion. Even in seam welding where welding is performed while crushing the gap, the phenomenon that the contact area between the electrode and the outer packaging material decreases is unavoidable, and spatter is generated during welding as the current density increases, and the core material inserted inside However, there is a problem that the thermal insulation performance is deteriorated due to damage by sputtering. These phenomena become more prominent as the plate thickness is thinner and the weld line length is longer.

本発明は、このような問題点を解消するために案出されたものであり、溶接熱歪やスパッターの発生を抑え、長期に亘って性能変化の無い高性能な真空断熱パネルを安定して提供することを目的とする。   The present invention has been devised to solve such problems, and suppresses the occurrence of welding thermal distortion and spatter, and stably produces a high-performance vacuum insulation panel that does not change its performance over a long period of time. The purpose is to provide.

本発明の真空断熱パネルは、その目的を達成するため、断熱性を有する芯材と、その周囲を覆う二枚の外包金属板からなり、前記芯材を覆う二枚の外包金属板の内部が真空状態とされて前記外包金属板の周縁部が溶接により接合された真空断熱パネルであって、溶接による接合部は全長が固相接合であって、かつ接合部の板厚減少率が10%以下であることを特徴とする真空断熱パネルである。   In order to achieve the object, the vacuum heat insulation panel of the present invention comprises a heat-insulating core material and two outer metal plates covering the periphery thereof, and the inside of the two outer metal plates covering the core material is A vacuum heat insulating panel in which the outer peripheral metal plate is joined by welding in a vacuum state, and the welded joint is solid-phase joined in total length, and the thickness reduction rate of the joined part is 10%. It is the vacuum heat insulation panel characterized by the following.

また、二枚の外包金属板は、フェライト相、マルテンサイト相またはオーステナイト相のうち2種以上からなる複相組織を有する複相系ステンレス鋼板であることを特徴とする真空断熱パネルである。 Further, the two enveloping metal plates are a vacuum heat insulating panel characterized by being a duplex stainless steel plate having a duplex structure composed of two or more of a ferrite phase, a martensite phase or an austenite phase.

さらに、本発明の真空断熱パネルの製造方法は、二枚の外包金属板の内部を圧力1Pa以下とし、パルス通電によるシーム溶接により外包金属板の周縁部を接合することを特徴とする真空断熱パネルの製造方法である。 Furthermore, the manufacturing method of the vacuum heat insulation panel of the present invention is characterized in that the inside of two outer metal plates is set to a pressure of 1 Pa or less, and the peripheral edge portion of the outer metal plate is joined by seam welding by pulse energization. It is a manufacturing method.

本発明であれば、固相接合により二枚の外包金属板を溶接するので、ナゲットが形成されない低い入熱条件での溶接を行うことになる。そのため、従来技術のようにシーム溶接を用いて連続的にステンレス製の真空断熱パネルを製造しても、先述した溶接ラップ部での溶接不良の発生や熱ひずみによる変形、スパッターによる芯材へのダメージを防止することが可能となり、長期にわたって性能劣化の無い高性能な真空断熱パネルを安定して提供できる。   According to the present invention, since two outer metal plates are welded by solid phase bonding, welding is performed under a low heat input condition where no nugget is formed. Therefore, even if a stainless steel vacuum insulation panel is manufactured continuously using seam welding as in the prior art, the above-described welding failure occurs at the weld lap, deformation due to thermal strain, and spattering to the core material. It is possible to prevent damage and to stably provide a high-performance vacuum insulation panel that does not deteriorate in performance over a long period of time.

真空断熱パネルの構造を説明する概略図Schematic explaining the structure of the vacuum insulation panel シーム溶接で真空断熱パネルを製造する際の問題点を説明する図Diagram explaining problems in manufacturing vacuum insulation panels by seam welding 真空断熱パネルの分解図Exploded view of vacuum insulation panel 溶融接合と固相接合の違いを説明する図Diagram explaining the difference between melt bonding and solid phase bonding 本発明方法におけるシーム溶接時のパルス通電形態を説明するA pulse energization mode during seam welding in the method of the present invention will be described. パルス通電条件による間欠的なナゲット形成状況を説明する図The figure explaining the state of intermittent nugget formation under pulse energization conditions 実施例での真空断熱パネルの作製に使用した装置の概略構造を示す図The figure which shows the schematic structure of the apparatus used for preparation of the vacuum heat insulation panel in an Example. 実施例での接合形態を説明する図The figure explaining the joining form in an Example

以下、真空断熱パネルの製造方法の実施形態について説明する。この実施形態に係る製造方法によって製造される真空断熱パネルは、例えば図3に示すように、芯材1をステンレス鋼板製の外包材2で包み込み、その芯材1を包み込んだ外包材2の内部空間3を真空状態としたものである。   Hereinafter, the embodiment of the manufacturing method of a vacuum heat insulation panel is described. For example, as shown in FIG. 3, the vacuum heat insulation panel manufactured by the manufacturing method according to this embodiment wraps the core material 1 with an outer packaging material 2 made of stainless steel plate, and the inside of the outer packaging material 2 that wraps the core material 1. The space 3 is in a vacuum state.

芯材1は、製造後真空断熱パネル10の外包材2が大気圧によって圧潰しないように、内側から外包材2を支持するものである。この芯材1には無機繊維が使用される。無機繊維としては、グラスウール、セラミックファイバー等が例示される。この芯材1には、バインダーを一切含まないものを使用することが望ましい。バインダーを含む芯材を使用すれば、経時的に芯材からアウトガスが発生し、断熱性能が経時的に悪化するおそれがあるからである。また、芯材は事前に加熱処理し水分を除去した物を用いる方が良い。これは、製造後に芯材に付着した水分がガス化し性能劣化の一因となるためである。   The core material 1 supports the outer packaging material 2 from the inside so that the outer packaging material 2 of the vacuum heat insulating panel 10 after manufacture is not crushed by atmospheric pressure. An inorganic fiber is used for the core material 1. Examples of the inorganic fiber include glass wool and ceramic fiber. It is desirable to use a core material that does not contain any binder. This is because if a core material containing a binder is used, outgas is generated from the core material over time, and the heat insulation performance may deteriorate over time. Moreover, it is better to use the thing which heat-processed the core material beforehand and removed the water | moisture content. This is because the moisture adhering to the core after the production is gasified and contributes to performance deterioration.

外包材2は、2枚の外包板2A,2Bで構成されている。これらの外包板2A,2Bには、表面粗さRaが0.2μm以下のステンレス鋼板を使用する。ステンレス鋼板の表面には水分が吸着しており、この表面粗さRaが低いほど外包材の内部空間に持ち込まれる水分量が減少し、真空断熱パネル製造後の水分のガス化による断熱性能の劣化を防止できるからである。また、後述説明する溶接工程においてステンレス鋼板を固相接合する際には表面の凹凸いわゆるRaが小さいほど固相接合性が向上するためである。2枚の外包板2A,2Bは、周縁部の形状およびサイズが一致している。少なくとも一方の外包板2Bに膨出部4が形成されており、2枚の外包板2A,2Bの周縁部を揃えて重ね合わせることで、一方の外包板2Bの膨出部4の凹側面と、もう一方の外包板2Aとの間に内部空間3が形成される。この内部空間3に芯材1が収容される。図面に例示する2枚の外包板2A,2Bは、厚さ方向から視て矩形状のものとなっている。   The outer packaging material 2 is composed of two outer packaging plates 2A and 2B. For these outer cover plates 2A and 2B, stainless steel plates having a surface roughness Ra of 0.2 μm or less are used. Moisture is adsorbed on the surface of the stainless steel plate, and the lower the surface roughness Ra, the smaller the amount of moisture brought into the inner space of the outer packaging material. It is because it can prevent. In addition, when the stainless steel plate is solid-phase bonded in the welding process described later, the smaller the surface irregularity, the so-called Ra, the better the solid-phase bonding property. The two outer packaging plates 2A and 2B have the same shape and size at the peripheral edge. A bulging portion 4 is formed on at least one outer packaging plate 2B, and the peripheral sides of the two outer packaging plates 2A and 2B are aligned and overlapped to form a concave side surface of the bulging portion 4 of one outer packaging plate 2B. An internal space 3 is formed between the other outer packaging plate 2A. The core material 1 is accommodated in the internal space 3. The two outer cover plates 2A and 2B illustrated in the drawings are rectangular when viewed from the thickness direction.

次に先述した外包材と芯材を用いて真空断熱パネルを製造する方法について説明する。本発明の真空断熱パネルは、真空中で真空引きを行い、図2(a)に示すように真空引き後に外包材の周縁部4辺をシーム溶接で接合することにより製造される。しかしながら、先述したように通常のナゲットが連続して形成されるようなシーム溶接条件では、溶接ラインが交差するラップ部で溶接不良を回避することは難しく、又溶接熱ひずみによる変形やスパッターの発生による芯材へのダメージを回避することは難しい。さらには、真空中でシーム溶接を行うと溶接で発生した熱を外に排出できず熱が蓄積され、結果的に製造装置の機能低下につながり、長時間の連続操業を行うことができなくなってしまう可能性もある。このため、通常のナゲットが形成されるようなシーム溶接条件では、長期にわたって断熱性能を維持可能な真空断熱パネルを安定して製造することは難しい。
そこで、本発明者らは、真空中でシーム溶接を使って固相接合により接合することが可能であれば、低入熱での溶接となるため先述したような溶接不良や各種問題も回避できると考え、シーム溶接を使って固相接合する方法について鋭意検討する過程で、本発明に到達した。
Next, a method for manufacturing a vacuum heat insulation panel using the above-described outer packaging material and core material will be described. The vacuum heat insulation panel of the present invention is manufactured by performing evacuation in vacuum and joining the four peripheral edges of the outer packaging material by seam welding after evacuation as shown in FIG. However, under the seam welding conditions in which normal nuggets are continuously formed as described above, it is difficult to avoid poor welding at the lap where the welding lines intersect, and deformation and spatter are generated due to welding thermal strain. It is difficult to avoid damage to the core material. Furthermore, when seam welding is performed in a vacuum, the heat generated by the welding cannot be discharged to the outside, and heat is accumulated. As a result, the function of the manufacturing apparatus is degraded, and continuous operation for a long time cannot be performed. There is also a possibility of end. For this reason, it is difficult to stably manufacture a vacuum heat insulating panel capable of maintaining heat insulating performance over a long period of time under seam welding conditions in which a normal nugget is formed.
Therefore, the present inventors can avoid welding defects and various problems as described above because welding with low heat input is possible if jointing by solid phase joining using seam welding in a vacuum is possible. The present invention was reached in the process of earnestly examining the method of solid phase bonding using seam welding.

シーム溶接法は、接合しようとする金属材料を加圧保持した状態で電流を流し抵抗発熱させ、その熱で接合するものである。一般的なシーム溶接条件では図4(a)に示すようにナゲットが連続的に形成されており、加圧により溶接部表面に窪みが大きく発生している。このような条件の場合、1度の溶接では特に問題なく溶接が可能であるが、ラップ部のように2度の溶接を行なう箇所では、先述したナゲットや窪みの影響により溶接電流が分流したり局部的に流れたりすることにより溶接不良が発生すると考えられる。そこで、図4(b)に示すようにナゲットが形成されず板表面の窪みの発生が小さくなるような低入熱の接合条件(固相接合)であれば、先述したような問題の発生もなく、安定して真空断熱パネルが製造可能と考えた。そこで、通常のナゲットが形成される溶融接合条件と同等程度の強度と気密性が得られる固相接合条件があるか調査した。
各種予備実験を繰り返した結果、シーム溶接により固相接合された真空断熱パネルであっても、十分固相接合されていれば溶融接合と同等程度の強度を有しており、気密性を維持できることを確認した。以下にその詳細を説明する。
In the seam welding method, an electric current is passed in a state where the metal materials to be joined are pressed and held to generate resistance heat, and the heat is joined by the heat. Under general seam welding conditions, a nugget is continuously formed as shown in FIG. 4A, and a large depression is generated on the surface of the weld due to pressurization. Under such conditions, welding can be performed without any particular problem with one-time welding, but at locations where welding is performed twice, such as a lap, the welding current may be shunted due to the effects of the nuggets and depressions described above. It is considered that poor welding occurs due to local flow. Therefore, as shown in FIG. 4 (b), if the joining condition is low heat input (solid phase joining) so that the nugget is not formed and the generation of the depression on the plate surface is reduced, the above-described problem may occur. It was thought that the vacuum insulation panel could be manufactured stably. Therefore, an investigation was made as to whether there are solid-phase bonding conditions that can provide strength and airtightness comparable to those of melt-bonding conditions in which ordinary nuggets are formed.
As a result of repeating various preliminary experiments, even if it is a vacuum insulation panel that is solid-phase bonded by seam welding, if it is sufficiently solid-phase bonded, it has the same strength as melt bonding and can maintain airtightness It was confirmed. Details will be described below.

本発明者は先ず、1Pa以下の真空中でシーム溶接テストを行い、連続通電で溶接速度を一定とし、加圧力・電極形状および溶接電流などの溶接条件を変更して、溶接部の窪み発生による溶接前に対する板厚減少率を算出し、ナゲットの形成状態の相関関係について調査した。その結果、何れの条件でも板厚減少率とナゲットの形成には相関性があり、窪み量が大きく板厚減少率が溶接前の総板厚の10%を超えるような条件では、溶接時に材料板間が融点以上に加熱され溶接全長に亘ってナゲットが形成されており通常の溶融接合状態であること、更には窪み量が小さく板厚減少率が10%以下の条件では、溶接前半が固相接合で溶接後半になると溶融接合になっている条件があることが判明した。この固相接合部と溶融接合部の比率は、溶接速度や溶接電流の大きさや溶接部の長さに影響を受け、例えば溶接電流が高いほど、溶接全長が長くなるほど溶融接合の比率が高くなり、連続通電ではいずれの条件に変更しても溶接部全長を固相接合とすることは難しいことが判明した。この原因として連続通電では例え溶接開始直後で固相拡散接合されている条件であっても、溶接後半になるに従って先に行った溶接による予熱効果で材料の温度が上昇し入熱量も増加するため、溶接部全長を融点以下の温度で均一に加熱することは難しいためと考えられる。   First, the inventor performs a seam welding test in a vacuum of 1 Pa or less, makes welding speed constant by continuous energization, changes welding conditions such as pressure, electrode shape, and welding current, and generates a dent in the weld. The thickness reduction rate before welding was calculated, and the correlation of the nugget formation state was investigated. As a result, there is a correlation between the plate thickness reduction rate and the formation of the nugget under any conditions. Under conditions where the amount of depression is large and the plate thickness reduction rate exceeds 10% of the total plate thickness before welding, the material is used during welding. When the space between the plates is heated to the melting point or higher and the nugget is formed over the entire length of the weld and is in the normal melt-bonded state, and further, when the amount of dents is small and the plate thickness reduction rate is 10% or less, the first half of welding is solid. It became clear that there was a condition of fusion bonding in the second half of welding in phase bonding. The ratio between the solid-phase joint and the fusion joint is affected by the welding speed, the magnitude of the welding current, and the length of the weld.For example, the higher the welding current, the longer the total weld length, the higher the fusion joint ratio. In continuous energization, it has been found that it is difficult to make the entire length of the welded portion solid-phase bonded regardless of the conditions. As a cause of this, even in the case of solid-state diffusion bonding immediately after the start of welding in continuous energization, the temperature of the material rises and the amount of heat input increases due to the preheating effect of the welding performed earlier as the second half of welding. It is considered that it is difficult to uniformly heat the entire length of the weld at a temperature below the melting point.

なお、板厚減少率は、図8を参照して、次の式により求めるものである。
板厚減少率(%)= (溶接前板厚―溶接後板厚)/溶接前板厚 × 100
The thickness reduction rate is obtained by the following equation with reference to FIG.
Plate thickness reduction rate (%) = (plate thickness before welding-plate thickness after welding) / plate thickness before welding x 100

溶接前板厚、溶接後板厚は、いずれもマイクロメーターを用いて測定した。溶接前板厚は、二枚の外包金属材の溶接前におけるフランジ部の板厚の合計である。また、溶接後板厚は、図8(c)にその一例を示すように、溶接ラインAと溶接ラインDが交差するラップ部をはさんだD1からD2の位置において、窪みが発生したことにより板厚が最も薄くなった箇所の板厚を求めた。この最も薄くなった箇所の板厚を、ラップ部4箇所について求め、それらの平均値を溶接後板厚とした。 The plate thickness before welding and the plate thickness after welding were both measured using a micrometer. The plate thickness before welding is the sum of the plate thicknesses of the flange portions before the two outer metal materials are welded. Further, as shown in FIG. 8 (c), the post-weld plate thickness is determined by the formation of a depression at the positions D1 to D2 across the lap portion where the welding line A and the welding line D intersect. The thickness of the portion where the thickness was the smallest was determined. The thickness of the thinnest portion was obtained for four lap portions, and the average value thereof was defined as the post-welding plate thickness.

そこで、連続通電で溶接するのではなく、間欠的に電流を流すパルス通電条件(図5)で溶接することにより溶接部全長を固相接合することが可能な条件があるか調査した。その結果、先ほどの連続通電では板厚減少率が10%を超えると完全にナゲットが連続的に形成される溶融接合であったのに対し、今回のパルス通電条件では板厚減少率が15%を超えないとナゲットが連続的に形成されないことが判明した。また、板厚減少率が11〜15%の間では図6に示したように溶融接合と固相接合が一定の間隔で混在し形成されていることが判明した。更には板厚減少率が10%以下となる条件では、いずれの条件でもナゲットが未形成であったが、これらの条件について溶接部の剥離試験を実施したところ、ある一定の電流範囲おいてはナゲットが未形成なのにもかかわらず母材破断し、十分な強度を有した固相接合された領域があることが確認できた。 Therefore, it was investigated whether there was a condition capable of solid-phase joining the entire length of the welded portion by welding under pulsed energization conditions (FIG. 5) in which current is intermittently supplied instead of welding with continuous energization. As a result, in the previous continuous energization, when the plate thickness reduction rate exceeded 10%, the nugget was completely formed continuously, whereas in the current pulse energization condition, the plate thickness reduction rate was 15%. It has been found that the nugget cannot be continuously formed unless it exceeds. Further, it has been found that when the plate thickness reduction rate is between 11 and 15%, melt bonding and solid phase bonding are mixed and formed at regular intervals as shown in FIG. Furthermore, under the conditions where the plate thickness reduction rate was 10% or less, no nugget was formed under any conditions. However, when a peel test of the welded part was performed under these conditions, the nugget was not in a certain current range. Although the nugget was not formed, the base material was broken, and it was confirmed that there was a solid-phase bonded region having sufficient strength.

次に、真空度が固相接合へ及ぼす影響を調査するため、真空度を100〜0.001Paの間で変更して同様の実験を行った結果、1Paを越える条件においては接合状態にバラツキが見られたものの、真空度1Pa以下の条件においては一定の電流範囲で固相拡散接合可能な領域があることが判明した。また、真空度は高ければ高い程固相拡散接合条件の電流範囲が広がる傾向にあることが確認されたが、高真空にするためには排気時間が長くなり生産性が低下することから、真空度は実用上0.1〜1Paの範囲が好ましいと考えられる。
以上の結果より、1Pa以下の高真空中で溶接速度を一定とし、溶接後の板厚減少率が溶接前の総板厚の10%以下に納まるように溶接電流を間欠的に流し調整することにより、溶接部全長を固相接合できることが判明した。
Next, in order to investigate the influence of the degree of vacuum on the solid phase bonding, the degree of vacuum was changed between 100 and 0.001 Pa, and the same experiment was performed. As a result, the bonding state varied under conditions exceeding 1 Pa. Although it was observed, it was found that there was a region capable of solid phase diffusion bonding in a certain current range under the condition of a vacuum degree of 1 Pa or less. Moreover, it was confirmed that the higher the degree of vacuum, the wider the current range of the solid phase diffusion bonding conditions tends to be. However, in order to achieve a high vacuum, the evacuation time becomes longer and the productivity decreases. The degree is considered to be preferably in the range of 0.1 to 1 Pa for practical use.
From the above results, the welding speed is kept constant in a high vacuum of 1 Pa or less, and the welding current is intermittently adjusted so that the plate thickness reduction rate after welding falls within 10% of the total plate thickness before welding. Thus, it has been found that the entire length of the weld can be solid-phase bonded.

本発明の採用により、真空中でシーム溶接を用いて連続的にステンレス製の真空断熱パネルを製造しても、ナゲットが形成されない低い入熱条件での溶接となるため、たとえ2本の溶接ラインが交差する部位においても、1回目のシーム溶接時にナゲットが形成されておらず窪みも少ないため、2回目のシーム溶接を行っても溶接電流が分流することもなく溶接不良も発生しない。更に、真空中で連続溶接を行っても、溶接熱歪みによるフランジ部の平坦性の悪化や熱が蓄積されることによる製造装置の機能低下も起こらない。このため、高性能で性能変化のないステンレス製の真空断熱パネルを安定して提供することが可能となる。   By adopting the present invention, even if a stainless steel vacuum insulation panel is manufactured continuously using seam welding in a vacuum, welding is performed under low heat input conditions where no nugget is formed. Even in the region where the crosses, the nugget is not formed at the time of the first seam welding and there are few dents. Therefore, even if the second seam welding is performed, the welding current is not diverted and no welding failure occurs. Further, even if continuous welding is performed in a vacuum, the deterioration of the flatness of the flange due to welding thermal distortion and the deterioration of the function of the manufacturing apparatus due to the accumulation of heat do not occur. For this reason, it is possible to stably provide a stainless steel vacuum insulation panel having high performance and no performance change.

芯材を覆う上下の外包金属板には、表1に示した成分のフェライト+オーステナイト相の2相系組織となるステンレス鋼板で表面粗さが0.05μmの物を使用した。上下外包金属板の寸法は、220mm×220mm×板厚0.1mmで外形寸法が一致する。また、一方の外包金属板には芯材収容用に190mm×190mm×5.0mmの膨出部をプレス成形により設けた。芯材は、約1200g/mの目付のグラスウールを用い、本芯材は事前に大気雰囲気の炉で温度400℃の条件で3時間加熱処理した物を用いた。そして、一方の外包金属板の膨出部の内面側に前記芯材をすき間なく充填し、もう片方の外包金属板と重ね合わせた。この重ね合わせた外包金属板の周縁部は接合されていないため、上下外包金属板の間には全周に亘り隙間が空いており、後述説明する真空チャンバー内での真空引きの際の開口部となる。 For the upper and lower enveloping metal plates covering the core material, stainless steel plates having a surface roughness of 0.05 μm and having a two-phase structure of ferrite + austenite phases having the components shown in Table 1 were used. The dimensions of the upper and lower outer metal plates are 220 mm × 220 mm × plate thickness 0.1 mm, and the outer dimensions match. In addition, one outer metal plate was provided with a bulging portion of 190 mm × 190 mm × 5.0 mm by press molding for accommodating the core material. The core material used was glass wool with a basis weight of about 1200 g / m 2 , and the core material used was pre-heated for 3 hours in an air atmosphere furnace at a temperature of 400 ° C. Then, the core material was filled without gaps on the inner surface side of the bulging portion of one outer metal plate, and was overlapped with the other outer metal plate. Since the peripheral portions of the overlapped outer metal plates are not joined, there is a gap between the upper and lower outer metal plates over the entire circumference, which becomes an opening when evacuating in a vacuum chamber described later. .

Figure 0006301986
Figure 0006301986

真空断熱パネルの製造は、図7に示した真空チャンバー内にシーム溶接機を設置した装置を用いて行った。本装置には、チャンバー内にワークを固定するためのワーク用テーブルが備えられており、ワーク(被溶接材)を360°回転させることと位置調整が可能な構造となっている。このワーク用テーブルに先述した芯材を内装した上下の外包金属板を固定し、チャンバー内の真空度が1Pa以下になるまで真空引きを行った。この際、真空引きは外包金属板端部にある4辺すべての開口部を通して真空引きが行われるため、パネル内部の空気が強制的に且つ効率的に排気され、真空チャンバー内の真空度とほぼ同一となっていると推定される。目標とする真空度到達後、外包金属板をシーム溶接により一辺ずつ4辺とも溶接して封止することによりステンレス製の真空断熱パネルが完成した。 The vacuum insulation panel was manufactured using an apparatus in which a seam welder was installed in the vacuum chamber shown in FIG. This apparatus is provided with a work table for fixing the work in the chamber, and has a structure capable of rotating the work (material to be welded) 360 ° and adjusting the position. The upper and lower outer metal plates with the core material described above were fixed to the work table, and vacuuming was performed until the degree of vacuum in the chamber became 1 Pa or less. At this time, since the vacuuming is performed through the openings on all four sides at the edge of the outer metal plate, the air inside the panel is forcibly and efficiently exhausted, and the degree of vacuum in the vacuum chamber is almost the same. Presumed to be the same. After reaching the target degree of vacuum, the envelope metal plate was welded and sealed on all four sides one by one by seam welding to complete a stainless steel vacuum insulation panel.

この時に使用したシーム溶接機は、単相交流式で上側電極が円盤状、下側電極が棒状で上側電極が下電極の上を回転移動しながら溶接するタイプの装置を使用した。上下電極には、先端形状は同一として幅4mmで40Rの曲率を付いた電極を使用し、溶接条件は加圧力:150N、溶接速度:1m/min、通電時間on/off:2/1msとし、溶接電流を変更して溶接部の板厚減少率、接合状態(未接合or溶融接合or固相接合・強度・スパッター発生有無)について調査した。板厚減少率については、先述したようにマイクロメーターで溶接前後の総板厚を測定し算出した。接合状態についてはシーム溶接したラップ部の一部からサンプルを切り出して断面観察とピール試験により接合状態の判定を実施した。以下に実験結果について説明する。 The seam welding machine used at this time was a single-phase AC type, and the upper electrode was disk-shaped, the lower electrode was rod-shaped and the upper electrode was welded while rotating over the lower electrode. For the upper and lower electrodes, electrodes having the same tip shape and a width of 4 mm and a curvature of 40 R are used. The welding conditions are a pressurizing force: 150 N, a welding speed: 1 m / min, an energization time on / off: 2/1 ms, The welding current was changed and the thickness reduction rate of the welded part and the joining state (unjoined or melted joint or solid-phase joint / strength / sputtering presence / absence) were investigated. The plate thickness reduction rate was calculated by measuring the total plate thickness before and after welding with a micrometer as described above. As for the joined state, a sample was cut out from a part of the seam welded lap portion, and the joined state was judged by cross-sectional observation and a peel test. The experimental results will be described below.

表2に実験結果を示す。本発明品に該当する板厚減少率が10%以下となる溶接電流が0.6kAと0.8kAの条件では、ナゲットが未形成にも係わらず母材破断する十分な強度を有しており、固相接合されていることが確認できた。また、スパッターの発生もなく芯材へのダメージも見られなかった。一方、本発明品に該当しない板厚減少率が10%を超える条件となる溶接電流が1.0kA以上の条件では、いずれも強度は十分であるがナゲットが形成されており溶融接合していることが確認された。また、内部にスパッターが発生しており、スパッターが発生した付近では芯材にダメージを受けた痕跡が見られた。 Table 2 shows the experimental results. Under the conditions of a welding current of 0.6 kA and 0.8 kA at which the sheet thickness reduction rate corresponding to the product of the present invention is 10% or less, the base material has sufficient strength to break despite the fact that the nugget is not formed. It was confirmed that solid-phase bonding was performed. Moreover, no spatter was generated and no damage to the core material was observed. On the other hand, under conditions where the plate thickness reduction rate not exceeding the present invention exceeds 10%, the welding current is 1.0 kA or more, all of which have sufficient strength, but a nugget is formed and melt-bonded. It was confirmed. In addition, spatter was generated inside, and in the vicinity where spatter was generated, traces of damage to the core material were observed.

Figure 0006301986
Figure 0006301986

続いて、溶接電流が0.6 kA、0.8 kA、1.0kAの条件で試作した真空断熱パネルについて性能評価を実施した。真空断熱パネルの性能は、英弘精機社製の熱伝導率測定装置HC−074/200を用い、真空断熱パネルの中央部の平均温度が25℃となる条件で熱伝導率を測定し評価した。この結果、本発明品に該当する板厚減少率が10%以下となる条件(溶接電流:0.6 kA、0.8kA)は、いずれも熱伝導率が2.5mW/m・Kであった。また、比較として性能評価した板厚減少率が10%を超える条件(溶接電流:1.0kA)は、熱伝導率が3.3mW/m・Kであり、芯材がダメージを受けたことによりやや性能がやや悪化したものと推測される。
以上、説明したように本発明品であれば、溶接全長が固相接合で接合されるためスパッターの発生もなく、性能も良好な物が得られることが確認できた。
Then, performance evaluation was implemented about the vacuum heat insulation panel made as an experiment on the conditions whose welding current is 0.6 kA, 0.8 kA, and 1.0 kA. The performance of the vacuum heat insulation panel was evaluated by measuring the heat conductivity under the condition that the average temperature at the center of the vacuum heat insulation panel was 25 ° C. using a thermal conductivity measuring device HC-074 / 200 manufactured by Eiko Seiki Co., Ltd. As a result, the conditions (welding current: 0.6 kA, 0.8 kA) at which the sheet thickness reduction rate corresponding to the product of the present invention is 10% or less are both thermal conductivity 2.5 mW / m · K. It was. Moreover, the condition (welding current: 1.0 kA) where the plate thickness reduction rate evaluated for performance exceeds 10% as a comparison is that the thermal conductivity is 3.3 mW / m · K, and the core material is damaged. It is presumed that the performance slightly deteriorated.
As described above, in the case of the product of the present invention as described above, it was confirmed that a product with good performance was obtained without spattering because the entire welding length was joined by solid phase joining.

Claims (2)

断熱性を有する芯材と、その周囲を覆う二枚の外包金属板からなり、前記芯材を覆う二枚の前記外包金属板の内部が真空状態とされて前記外包金属板の周縁部が溶接により接合された真空断熱パネルであって、溶接による接合部は全長が固相接合であって、かつ接合部の板厚減少率が10%以下である前記真空断熱パネルの製造方法であって、
二枚の前記外包金属板の内部を圧力1Pa以下とし、溶接速度を一定とし、パルス通電によるシーム溶接により二枚の前記外包金属板の周縁部を接合する、真空断熱パネルの製造方法
A core material having a heat insulating property, made from two of the outer cover metal plate covering the periphery, the periphery of the interior of the outer hull metal plate two covering the core material is a vacuum state the outer hull metal plates welded a vacuum insulation panel which is joined by the joining portion by welding is a full-length solid-phase bonding, and there the sheet thickness reduction rate of the junction Ru der 10% or less in vacuum insulation panel manufacturing method of And
A method for manufacturing a vacuum heat insulating panel, wherein the inside of the two outer metal plates is set to a pressure of 1 Pa or less, the welding speed is constant, and the peripheral portions of the two outer metal plates are joined by seam welding by pulse energization .
前記外包金属板の金属組織がフェライト相、マルテンサイト相またはオーステナイト相のうち2種以上からなる複相組織を有する複相系ステンレス鋼板である、請求項1に記載の真空断熱パネルの製造方法The outer hull metal plate metal structure ferrite phase, Ru dual phase stainless steel der having a duplex structure comprising two or more of the martensite phase, or austenite phase, the production of vacuum insulation panel according to Motomeko 1 Way .
JP2016032442A 2016-02-23 2016-02-23 Vacuum insulation panel and method for manufacturing the same Active JP6301986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016032442A JP6301986B2 (en) 2016-02-23 2016-02-23 Vacuum insulation panel and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016032442A JP6301986B2 (en) 2016-02-23 2016-02-23 Vacuum insulation panel and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2017150548A JP2017150548A (en) 2017-08-31
JP6301986B2 true JP6301986B2 (en) 2018-03-28

Family

ID=59740641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016032442A Active JP6301986B2 (en) 2016-02-23 2016-02-23 Vacuum insulation panel and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP6301986B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7269468B2 (en) * 2019-02-13 2023-05-09 日本製鉄株式会社 Vacuum insulation panel manufacturing method and vacuum insulation panel

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6297785A (en) * 1985-10-21 1987-05-07 Sky Alum Co Ltd Ultrasonic seam welding method for aluminum thin sheet
JP4322081B2 (en) * 2003-09-26 2009-08-26 国立大学法人 新潟大学 Joining method of aluminum alloy die-casting member
JP6105993B2 (en) * 2013-03-25 2017-03-29 日新製鋼株式会社 Molded product made of stainless steel foil joined by resistance heat
JP6143593B2 (en) * 2013-07-18 2017-06-07 日新製鋼株式会社 Vacuum insulation panel
JP6378471B2 (en) * 2013-07-18 2018-08-22 日新製鋼株式会社 Vacuum insulation panel

Also Published As

Publication number Publication date
JP2017150548A (en) 2017-08-31

Similar Documents

Publication Publication Date Title
WO2017217233A1 (en) Vacuum insulation panel manufacturing method, and vacuum insulation panel
JP6385319B2 (en) Vacuum insulating panel manufacturing method and manufacturing apparatus, and vacuum insulating panel
JP5377763B2 (en) Beam welding method, vacuum packaging method, and vacuum heat insulating material produced by the vacuum packaging method
JP6285749B2 (en) Manufacturing method of vacuum insulation panel
JP6301986B2 (en) Vacuum insulation panel and method for manufacturing the same
JP2010091105A (en) Vacuum heat insulation material
JP4942616B2 (en) Hermetic compressor and method for producing tubular shell for hermetic compressor
JP6378471B2 (en) Vacuum insulation panel
JP6143593B2 (en) Vacuum insulation panel
CN101979204A (en) Indirect-heating braze-welding method for packaging shell with thermal sensitive element
JPH04305383A (en) Manufacture of clad steel material
JP5924729B2 (en) Manufacturing method of vacuum insulation panel
JP2006017165A (en) Manufacturing method for vacuum heat insulating material and heat insulator
JP4746898B2 (en) Insulated container and manufacturing method thereof
JP7269468B2 (en) Vacuum insulation panel manufacturing method and vacuum insulation panel
JP5717590B2 (en) Ion source electrode and manufacturing method thereof
JP2015117830A (en) Manufacturing method of vacuum insulation panel
JP2008082416A (en) Vacuum thermal insulation material and method of manufacturing the same
JP5591149B2 (en) Method and apparatus for manufacturing vacuum insulation panel
JP2016150342A (en) Method for manufacturing clad steel product, assembly slab, and apparatus for manufacturing clad steel product
JP2020057463A (en) Battery exterior material, battery, and manufacturing method thereof
JP3748427B2 (en) Rectangular channel built-in cooling panel and method of manufacturing the same
JP2018035924A (en) Vacuum heat insulation panel for electrical equipment
JP2011094638A (en) Vacuum bag body and vacuum heat insulating material
JP2014152847A (en) Manufacturing method of vacuum heat insulation panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170712

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170712

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171213

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20171213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180301

R150 Certificate of patent or registration of utility model

Ref document number: 6301986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350