JP6285749B2 - Manufacturing method of vacuum insulation panel - Google Patents

Manufacturing method of vacuum insulation panel Download PDF

Info

Publication number
JP6285749B2
JP6285749B2 JP2014034432A JP2014034432A JP6285749B2 JP 6285749 B2 JP6285749 B2 JP 6285749B2 JP 2014034432 A JP2014034432 A JP 2014034432A JP 2014034432 A JP2014034432 A JP 2014034432A JP 6285749 B2 JP6285749 B2 JP 6285749B2
Authority
JP
Japan
Prior art keywords
vacuum
welding
insulation panel
opening
heat insulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014034432A
Other languages
Japanese (ja)
Other versions
JP2015158261A (en
Inventor
努 東
努 東
弘久 三島
弘久 三島
仲子 武文
武文 仲子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP2014034432A priority Critical patent/JP6285749B2/en
Publication of JP2015158261A publication Critical patent/JP2015158261A/en
Application granted granted Critical
Publication of JP6285749B2 publication Critical patent/JP6285749B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thermal Insulation (AREA)
  • Laser Beam Processing (AREA)

Description

本発明は、例えば冷蔵庫や保冷庫、或いは保温庫や住宅等の断熱壁等に好適に用いられる真空断熱パネルの製造方法に関するものである。   The present invention relates to a method for manufacturing a vacuum heat insulation panel suitably used for, for example, a refrigerator, a cold storage, or a heat insulation wall of a heat storage or a house.

昨今、電力不足などの影響によりあらゆる産業で省エネ製品や省エネ技術の開発が進められている。真空断熱パネルも省エネ対策の1つとして開発された商品であり、現在では冷蔵庫や自動販売機などの断熱材として、断熱性能を高めて消費電力を抑えるために広く採用されている。
また、住宅用の断熱材としての適用検討も進められているが、現行の真空断熱パネルは、例えば図1の左図に示すように、グラスウール等の芯材をアルミラミネートフィルムでヒートシールした構造のものが一般的である。
In recent years, energy-saving products and energy-saving technologies are being developed in various industries due to the power shortage. Vacuum insulation panels are products that have been developed as an energy-saving measure, and are currently widely used as insulation materials for refrigerators and vending machines in order to enhance insulation performance and reduce power consumption.
In addition, although examination of application as a heat insulating material for houses is underway, the current vacuum heat insulating panel has a structure in which a core material such as glass wool is heat sealed with an aluminum laminate film as shown in the left figure of FIG. The ones are common.

アルミラミネートフィルムでヒートシールした構造の真空断熱パネルでは、ヒートシール部から水分が透過して真空度が低下するため、活性炭やゼオライト等の吸着剤を封入しているが、それでも7〜8年で断熱性能が半減するといった問題がある。
このため、長期に亘って断熱性を維持できる真空断熱パネルの開発が望まれている。
そこで、例えば図1の右図に示すように、グラスウール等の芯材をステンレス鋼などの薄金属板で包み、真空引きした後、端部を溶接接合して真空断熱パネルを製造することが各種試みられている。そして、真空引き方法として各種方法が提案されている。
In the vacuum heat insulation panel with the structure heat-sealed with aluminum laminate film, moisture permeates from the heat-sealed part and the degree of vacuum is lowered, so adsorbents such as activated carbon and zeolite are enclosed, but still in 7-8 years There is a problem that the heat insulation performance is halved.
For this reason, development of the vacuum heat insulation panel which can maintain heat insulation over a long term is desired.
Therefore, for example, as shown in the right diagram of FIG. 1, various types of manufacturing a vacuum heat insulating panel are made by wrapping a core material such as glass wool with a thin metal plate such as stainless steel, evacuating, and then welding and joining the ends. Has been tried. Various methods have been proposed as vacuuming methods.

特許文献1では、芯材を包む金属外包材の一方に空気を案内して排出するための溝と溝に接続された排気口を設けて真空引き行う方法が提案されている。この方法では、予め真空引きを行う前にシーム溶接やプラズマ溶接などで溝および排気口周辺の予備封止を行い、予備封止後に溝部を通して排気口より真空引きを行い、真空引き完了後、溝部周辺をプレスなどにより平らにした後に先と同じ溶接方法により平らになった溝部上を溶接し完全封止して、封止完了後、余分な材料をカットして真空断熱パネルを製造している。   Patent Document 1 proposes a method of evacuating by providing a groove for guiding and discharging air to one side of a metal outer packaging material that wraps the core material and an exhaust port connected to the groove. In this method, preliminary sealing around the groove and the exhaust port is performed by seam welding or plasma welding before performing vacuuming in advance, and after the preliminary sealing, vacuuming is performed from the exhaust port through the groove. After the periphery is flattened with a press, etc., the groove that has been flattened by the same welding method as above is welded and completely sealed, and after sealing is completed, excess material is cut to produce a vacuum insulation panel. .

また特許文献2では、外周部が溶接接合された上下包材によって形成される略平板状の空間内に厚肉領域と薄肉領域を兼ね備えたスペーサー(断熱材)を挿入し、真空引き時は厚肉領域と薄肉領域で発生する段差を利用して上下包材の内面が接触することを防止するとともに、排気通路を確保しながら排気口より真空引きを行った後、排気口を封止し、排気口手前を溶接接合し、その後に溶接箇所の外側をカットして真空断熱パネルを製造している。   Further, in Patent Document 2, a spacer (heat insulating material) having both a thick region and a thin region is inserted into a substantially flat space formed by upper and lower wrapping materials whose outer peripheral portions are welded and joined. While preventing the inner surface of the upper and lower packaging materials from contacting using the step generated in the meat region and the thin wall region, after evacuating from the exhaust port while securing the exhaust passage, the exhaust port is sealed, A vacuum insulation panel is manufactured by welding and joining the front of the exhaust port and then cutting the outside of the welded part.

特開2009‐228803号公報JP 2009-228803 A 特開2001‐311497号公報Japanese Patent Laid-Open No. 2001-311497

先述した特許文献はいずれも真空チャンバーを必要とせず、大気中で直接真空ポンプにより真空引きを行いシーム溶接などで真空断熱パネルを製造する方法であるが、これらの方法では10Pa以下の高真空の真空断熱パネルを製造することは難しい。真空断熱パネルは内部真空度が高いほど断熱性能が向上することは一般的に知られており、断熱性能の優れた真空断熱パネルを製造するためには内部真空度が重要となってくる。しかしながら、先述した方法では封止の際にパネル内部に大気が侵入し内部真空度が悪化する可能性がある。
また、溶接封止部に欠陥がありリークした場合、ポンプが大気を直接吸引する可能性があるため、ターボポンプのような高真空領域から使用する高性能な真空ポンプは破損の危険性があり使えない。このため、直接大気圧から吸引可能で到達真空度もそれほど高くない真空ポンプが採用されるケースが多く、真空度の高い真空断熱パネルを製造することは難しい。
None of the above-mentioned patent documents requires a vacuum chamber, and is a method for producing a vacuum heat insulation panel by seam welding or the like by directly evacuating in the atmosphere with a vacuum pump. In these methods, a high vacuum of 10 Pa or less is used. It is difficult to manufacture a vacuum insulation panel. It is generally known that the heat insulation performance of a vacuum heat insulation panel is improved as the internal vacuum level is high, and the internal vacuum degree is important for producing a vacuum heat insulation panel having excellent heat insulation performance. However, in the above-described method, there is a possibility that the atmosphere enters the panel during sealing and the degree of internal vacuum deteriorates.
Also, if there is a defect in the weld seal and leaks, the pump may directly suck the atmosphere, so there is a risk of damage to high performance vacuum pumps used from high vacuum areas such as turbo pumps. Not available. For this reason, there are many cases in which a vacuum pump that can be directly sucked from atmospheric pressure and does not have a high ultimate vacuum is employed, and it is difficult to manufacture a vacuum heat insulation panel having a high vacuum.

こうした理由などもあり、大気中で真空断熱パネル製造するのではなく真空チャンバー内で真空断熱パネルを製造する方法も検討されている。
真空中での封止により、大気侵入による内部真空度悪化の心配がなく、例えリークした場合でも周囲が高真空領域のために大気を直接吸引する可能性がなく、高性能な真空ポンプを使用できる利点が挙げられる。このため、高性能な真空ポンプを使ってパネル内部を高真空にした上で封止することにより、大気中で製造した真空断熱パネルよりも高真空・高性能な真空断熱パネルが得られることになる。
For these reasons, a method for manufacturing a vacuum heat insulation panel in a vacuum chamber instead of manufacturing a vacuum heat insulation panel in the atmosphere has been studied.
By sealing in vacuum, there is no risk of deterioration of the internal vacuum due to intrusion into the atmosphere, and even if it leaks, there is no possibility of directly sucking the atmosphere because the surroundings are in a high vacuum area, and a high performance vacuum pump is used Advantages that can be mentioned. For this reason, a high-performance vacuum pump with a higher vacuum and higher performance than a vacuum heat-insulated panel manufactured in the atmosphere can be obtained by sealing the panel with a high-performance vacuum pump. Become.

しかしながら、問題点もある。気密性が必要とされる燃料タンクや容器などの溶接にはシーム溶接が広く採用されているが、このシーム溶接を使って真空チャンバー内で真空断熱パネルを製造する場合、所定の真空度まで真空引きをした後にパネルの周縁部全てをシーム溶接により封止する事になる。しかし、真空中でシーム溶接を行うと、溶接により発生した熱が電極に蓄積され、電極が損耗し溶接不良が発生しやすくなるといった欠点がある。この現象は溶接する長さ・時間が長いほど発生しやすく、真空中でシーム溶接によりパネルの周縁部全てを溶接不良なく安定して溶接することは難しい。また、真空チャンバー内でシーム溶接により真空断熱パネルを製造する場合、真空チャンバー内にシーム溶接機だけでなく、パネルを固定するための治具やテーブル、更にはパネル形状に沿ってシーム溶接ヘッド若しくは固定テーブルが移動するための移動装置も別途必要となる。このため、設備構成が複雑となり真空チャンバーが大型になりやすくコスト高となる。   However, there are problems. Seam welding is widely used for welding fuel tanks and containers that require airtightness. However, when manufacturing vacuum insulation panels in a vacuum chamber using this seam welding, a vacuum is applied to a predetermined degree of vacuum. After pulling, the entire periphery of the panel is sealed by seam welding. However, when seam welding is performed in a vacuum, heat generated by the welding is accumulated in the electrodes, and there is a drawback that the electrodes are worn out and welding defects are likely to occur. This phenomenon is more likely to occur as the length and time of welding are longer, and it is difficult to stably weld all the peripheral portions of the panel without seam welding in a vacuum by seam welding. Moreover, when manufacturing a vacuum heat insulation panel by seam welding in a vacuum chamber, not only a seam welding machine in a vacuum chamber, but also a jig or table for fixing the panel, and a seam welding head or A separate moving device for moving the fixed table is also required. For this reason, the equipment configuration becomes complicated, and the vacuum chamber tends to be large, resulting in high costs.

本発明は、このような問題点を解消するために案出されたものであり、ガラス繊維やロックウール等の無機繊維や、合成繊維や天然繊維等の有機繊維等からなる断熱性に優れた芯材と、その周囲を覆うガス不透過性に優れた外包金属板からなり、前記芯材を内包する前記外包金属板の内部が真空状態とされて前記外包金属板周縁部で溶接封止された、高性能で耐久性に優れた真空断熱パネルを真空チャンバー内でシーム溶接により製造する際、真空チャンバー内で封止する長さを極力短くする事により大がかりな真空チャンバーを用いることなく、溶接不良を回避して安定して真空断熱パネルを製造できる方法を提供することを目的とする。   The present invention has been devised in order to solve such problems, and has excellent heat insulation properties composed of inorganic fibers such as glass fibers and rock wool, and organic fibers such as synthetic fibers and natural fibers. It consists of a core material and an enveloping metal plate excellent in gas imperviousness covering its periphery, and the inside of the enveloping metal plate that encloses the core material is evacuated and welded and sealed at the periphery of the enveloping metal plate In addition, when manufacturing high-performance, durable vacuum insulation panels by seam welding in a vacuum chamber, welding can be performed without using a large vacuum chamber by shortening the sealing length in the vacuum chamber as much as possible. It aims at providing the method which can manufacture a vacuum heat insulation panel stably, avoiding a defect.

本発明の真空断熱パネルの製造方法は、その目的を達成するため、断熱性を有する芯材と、その周囲を覆う二枚の外包金属板からなり、前記芯材を内包する前記二枚の外包金属板の内部が真空状態とされて前記外包金属板周縁部がシーム溶接法で最終封止された多角形の真空断熱パネルを製造する方法であって、二枚の外包金属板の内の少なくとも片方の外包金属板中央に多角形の膨出部が設けられた二枚の外包金属板を重ね合わせ、大気中で重ね合わされた二枚の外包金属板周縁部の内の1辺を除く他辺を交差するように溶接し、残された1辺の開口部は辺の両側を先に溶接された両側の溶接ラインと交差し且つ開口部が残るように溶接し、続いて真空チャンバー内で狭くした開口部を経由してパネル内部を高真空にした後、前記開口部をシーム溶接により最終封止することを特徴とする。
外包金属板としては、ステンレス鋼板を用いることが好ましい。
In order to achieve the object, the method for manufacturing a vacuum heat insulating panel of the present invention comprises a heat-insulating core material and two outer metal plates covering the periphery thereof, and the two outer packages enclosing the core material A method of manufacturing a polygonal vacuum heat insulation panel in which the inside of a metal plate is in a vacuum state and the outer periphery of the outer metal plate is finally sealed by a seam welding method, comprising at least one of the two outer metal plates Two outer metal plates with a polygonal bulge formed at the center of one outer metal plate are overlapped, and the other side excluding one of the two outer metal plate peripheral parts superimposed in the air Welded so that the left side opening intersects with the welding line on both sides of the side that was previously welded and left the opening, and then narrowed in the vacuum chamber. After the inside of the panel is evacuated through the opened opening, the opening is Wherein the final sealing by chromatography beam welding.
A stainless steel plate is preferably used as the outer metal plate.

本発明では、二枚の外包金属板の内の少なくとも片方の外包金属板中央に多角形の膨出部が設けられた二枚の外包金属板を重ね合わせ、重ね合わされた二枚の外包金属板周縁部の内の1辺を除く他辺を大気中で互いに交差するように溶接し、残された1辺は辺の両側を先に溶接された両側の溶接ラインと交差し且つ開口部が残るように溶接し、続いて真空チャンバー内で残された1辺の開口部よりパネル内部を真空引きした後、前記開口部をシーム溶接により最終封止している。   In the present invention, two enveloping metal plates in which two enveloping metal plates provided with a polygonal bulge portion are overlapped and overlapped at the center of at least one of the two enveloping metal plates. Weld the other sides except one side of the peripheral part so as to intersect each other in the atmosphere, and the remaining one side intersects the welding lines on both sides of the side that were welded first, and an opening remains. Then, the inside of the panel is evacuated from the opening on one side left in the vacuum chamber, and the opening is finally sealed by seam welding.

このため、真空チャンバー内で溶接する箇所は狭くなった開口部のみの1辺となり、真空チャンバー内で全辺をシーム溶接する場合と比較して設備が簡素化でき溶接する長さも短くする事ができる。このため、先述したような電極の温度上昇に伴い発生する溶接不良を回避することが可能となり、高性能で耐久性に優れた真空断熱パネルを安定して提供することが可能となる。   For this reason, the place to be welded in the vacuum chamber is only one side of the narrowed opening, and the equipment can be simplified and the welding length can be shortened as compared with the case of seam welding all sides in the vacuum chamber. it can. For this reason, it becomes possible to avoid the welding failure which generate | occur | produces with the temperature rise of an electrode as mentioned above, and it becomes possible to provide the vacuum heat insulation panel which was highly efficient and excellent in durability stably.

真空断熱パネルの構造を説明する概略図Schematic explaining the structure of the vacuum insulation panel 本発明の真空断熱パネルの製造方法を説明する概略図Schematic explaining the manufacturing method of the vacuum heat insulation panel of this invention 本発明で交差角度の影響を説明する図The figure explaining the influence of a crossing angle by this invention レーザー溶接とプラズマ溶接での第一工程の溶接方法を説明する図The figure explaining the welding method of the 1st process in laser welding and plasma welding 本発明の実施例を説明する図The figure explaining the Example of this invention 実施例に記載した真空断熱パネルの作製に使用した装置の概略構造を示す図The figure which shows the schematic structure of the apparatus used for preparation of the vacuum heat insulation panel described in the Example.

前記した通り、真空チャンバー内で金属板周縁部全てをシーム溶接により封止して真空断熱パネルを製造する場合、シーム溶接機だけでなくパネルを固定するためのテーブルや移動装置などの周辺設備も同時に真空チャンバー内に設置し機能させる必要がある。このため、真空チャンバーは大型になりやすくシステムも複雑となり設備投資が大きくなる。また、真空中でシーム溶接を行うと溶接により発生した熱が電極に蓄積され、電極が損耗し溶接不良が発生しやすくなるといった欠点もある。この現象は溶接する箇所が多いほど又溶接長さが長いほど発生しやすく製品サイズが拡大すれば増長される。このため、真空チャンバー内でシーム溶接を使って真空断熱パネルを製造する場合は、溶接箇所をできるだけ少なくし、溶接長さも短く抑える必要がある。
そこで、本発明者らは、真空チャンバー内で封止する溶接箇所を極力減らし設備も簡素化でき溶接不良のない真空断熱パネルを安定して製造できる方法について検討を重ね、本発明に到達した。
以下にその詳細を説明する。
As described above, when manufacturing a vacuum insulation panel by sealing all the metal plate peripheral parts in the vacuum chamber by seam welding, not only the seam welding machine but also peripheral equipment such as a table and a moving device for fixing the panel At the same time, it is necessary to install and function in a vacuum chamber. For this reason, the vacuum chamber tends to be large, the system becomes complicated, and capital investment increases. Further, when seam welding is performed in a vacuum, heat generated by welding is accumulated in the electrode, and the electrode is worn out, so that welding failure is likely to occur. This phenomenon is more likely to occur as the number of parts to be welded increases and the weld length increases, and increases as the product size increases. For this reason, when manufacturing a vacuum heat insulation panel using seam welding in a vacuum chamber, it is necessary to minimize the number of welding points and to shorten the welding length.
Therefore, the present inventors have studied the method for reducing the number of welds to be sealed in the vacuum chamber as much as possible, simplifying the equipment, and stably producing a vacuum heat insulation panel free from defective welding, and have reached the present invention.
Details will be described below.

少なくとも片方に芯材を収納する多角形の膨出部を有する上下2枚の外包金属板と、この外包金属板の前記膨出部に収納する、ガラス繊維やロックウール等の無機繊維や、合成繊維や天然繊維等の有機繊維等からなる芯材を準備する。用いる金属板としては、アルミニウム合金板等でも良いが、耐変形性や長期に亘っての外観維持の観点から、強度及び耐食性に優れたステンレス鋼板を用いることが好ましい。外包金属板膨出部の形状は五角形や六角形などの形状でもよいが、加工面・溶接面の観点から一般的な矩形が好ましい。   Two upper and lower outer metal plates having a polygonal bulging portion for storing a core material at least on one side, and inorganic fibers such as glass fiber and rock wool, synthetic fibers, which are accommodated in the bulging portion of the outer metal plate. A core material made of organic fibers such as fibers and natural fibers is prepared. As the metal plate to be used, an aluminum alloy plate or the like may be used, but it is preferable to use a stainless steel plate having excellent strength and corrosion resistance from the viewpoint of deformation resistance and long-term appearance maintenance. The shape of the bulging portion of the outer metal plate may be a pentagonal shape or a hexagonal shape, but a general rectangular shape is preferable from the viewpoint of the processing surface and the welding surface.

真空断熱パネルを製造する工程は、先述したとおり、大気中で溶接する第一工程と真空チャンバー内で最終封止する第二工程からなる。 例えば矩形の真空断熱パネルを製造する場合、第一工程では図2(a)に示したように、3辺の外包金属板周縁部を大気中でシーム溶接し、残された1辺は両側を先に溶接した両側の溶接ラインとθの角度で交差し且つ開口部が残るように溶接する。この際、交差する角度θは90°で交差するよりも70°≦θ<90°、90°<θ≦110°の範囲で交差する方が好ましい。これは90°で交差していると、後で行う第二工程での最終封止の際、図3(a)に示すように最終封止ラインと重ねる事が難しくなり、封止ミスが発生しやすくなるためである。また、図3(b)に示す交差角度θが110°を超えると、先述したような封止ミスは回避しやすくなるが懐寸法が広くなり、最終封止する溶接ラインが長くなるばかりでなく、熱橋部も広くなることから真空断熱パネルの断熱性能が低下する原因になる。また、交差角度θが70°未満でも先ほどと同じ理由で、懐寸法が広くなり熱橋部も広くなるため真空断熱パネルの断熱性能が低下する原因となる。このため、開口部がある辺の両端の溶接の交差角度θは先述したような範囲とする事が好ましい。 As described above, the process of manufacturing the vacuum heat insulation panel includes the first process of welding in the atmosphere and the second process of final sealing in the vacuum chamber. For example, when manufacturing a rectangular vacuum thermal insulation panel, in the first step, as shown in FIG. 2A, seam welding is performed on the periphery of the outer metal plate on three sides in the atmosphere, and the remaining one side is on both sides. It welds so that it may cross | intersect at the angle of (theta) with the welding line of the both sides welded previously, and an opening part may remain. In this case, it is preferable that the intersecting angle θ intersects in the range of 70 ° ≦ θ <90 ° and 90 ° <θ ≦ 110 ° rather than intersecting at 90 °. If this intersects at 90 °, it will be difficult to overlap with the final sealing line as shown in FIG. 3A at the time of final sealing in the second step to be performed later, and a sealing error will occur. It is because it becomes easy to do. Moreover, when the crossing angle θ shown in FIG. 3B exceeds 110 °, it becomes easy to avoid the sealing error as described above, but the size of the pocket becomes wider and the welding line for final sealing becomes longer. Since the thermal bridge portion is also widened, the heat insulation performance of the vacuum heat insulation panel is reduced. Moreover, even if the crossing angle θ is less than 70 °, for the same reason as described above, the size of the pocket increases and the thermal bridge portion also increases, which causes the heat insulation performance of the vacuum heat insulation panel to deteriorate. For this reason, it is preferable that the crossing angle θ of welding at both ends of the side where the opening is present be in the range as described above.

第一工程の溶接はシーム溶接に限定されずレーザー溶接やプラズマ溶接などを使用してもよい。また、レーザー溶接やプラズマ溶接を使用する際にはシーム溶接のように全ての溶接ラインが交差するのでは無く、図4に示したように一つの溶接ラインで開口部を残すように溶接し、前記開口部のある辺の両端の溶接ラインの交差角度が先述した角度θの範囲で納まるように溶接する。 The welding in the first step is not limited to seam welding, and laser welding or plasma welding may be used. In addition, when using laser welding or plasma welding, all the welding lines do not cross like seam welding, but welding is performed so as to leave an opening in one welding line as shown in FIG. Welding is performed so that the crossing angle of the welding lines at both ends of the side having the opening is within the range of the angle θ described above.

続く第二工程では、前記開口部を利用して真空チャンバー内で真空断熱パネル内部の真空引きを行う。真空引きが終わった後、図2(b)に示したように前記開口部をシーム溶接で最終封止する。全ての溶接ラインは交差する状態で接合されているため、重ねミスは確実に回避でき、重ねミスに起因する封止ミスのない気密性の高い真空断熱パネルを製造することが可能になる。
また第二工程での真空チャンバー内でのシーム溶接箇所を一箇所にする事ができ溶接長さも短くすることができるので、先述したような溶接不良も回避でき生産性を高めることができる。
In the subsequent second step, the inside of the vacuum heat insulation panel is evacuated in the vacuum chamber using the opening. After the evacuation is completed, the opening is finally sealed by seam welding as shown in FIG. Since all the welding lines are joined in an intersecting state, a stacking error can be reliably avoided, and a highly airtight vacuum heat insulating panel free from a sealing error caused by the stacking error can be manufactured.
Moreover, since the seam welding location in the vacuum chamber in the second step can be made one and the welding length can be shortened, the welding failure as described above can be avoided and the productivity can be improved.

真空断熱パネルは芯材と芯材を覆う上下包材から構成される。芯材を覆う上下包材として、寸法が220mm×220mm×0.1mmのSUS304ステンレス鋼板を用いた。一方の包材に190mm×190mm×5.0mmの芯材収容用の膨出部を張り出し成形により作製した。引き続いて、包材の膨出部形状に合わせて作製したグラスウール製芯材(寸法:180mm×180mm×5.0mm)を収容して上下包材を重ね合わせた。 The vacuum heat insulation panel is composed of a core material and upper and lower packaging materials covering the core material. As the upper and lower wrapping materials covering the core material, SUS304 stainless steel plates having dimensions of 220 mm × 220 mm × 0.1 t mm were used. A bulging portion for accommodating a core material having a size of 190 mm × 190 mm × 5.0 mm was formed on one packaging material by overhanging molding. Subsequently, a glass wool core material (dimensions: 180 mm × 180 mm × 5.0 t mm) prepared according to the shape of the bulging portion of the packaging material was accommodated and the upper and lower packaging materials were superposed.

上下包材を加圧保持した状態で、図5(a)に示すように先ず、第一工程として大気中で三辺の外包金属板周縁部を溶接ラインが互いに交差するようにシーム溶接した。その後、残った1辺については両端を先の溶接ラインと100°で交差し、且つ開口部を約50mm残してシーム溶接した。   In a state where the upper and lower wrapping materials were held under pressure, as shown in FIG. 5A, first, as a first step, seam welding was performed in the atmosphere so that the outer peripheral metal plate peripheral portions of the three sides intersected with each other. Thereafter, the remaining one side was seam welded with both ends intersecting the previous welding line at 100 ° and leaving an opening of about 50 mm.

続く第二工程では、図6に示したシーム溶接機を内蔵した真空チャンバーを用いて、最終封止を行った。先ず、真空チャンバー内で前記開口部を経由してパネル内部を1Pa以下の高真空にし、その後前記開口部をシーム溶接により最終封止した。最後に、周縁部の余分な部分を切除し、ステンレス鋼板を包材とした四角形の真空断熱パネルを作製した。   In the subsequent second step, final sealing was performed using a vacuum chamber incorporating the seam welder shown in FIG. First, the inside of the panel was set to a high vacuum of 1 Pa or less via the opening in a vacuum chamber, and then the opening was finally sealed by seam welding. Finally, an extra portion of the peripheral edge was cut off to produce a square vacuum heat insulation panel using a stainless steel plate as a packaging material.

芯材を覆う上下包材として寸法が220mm×220mm×0.1mmのSUS304ステンレス鋼板を用いた。一方の包材に190mm×190mm×5.0mmの芯材収容用の膨出部を張り出し成形により作製した。引き続いて、包材の膨出部形状に合わせて作製したグラスウール製芯材(寸法:180mm×180mm×5.0mm)を収容して上下包材を重ね合わせた。 A SUS304 stainless steel plate having dimensions of 220 mm × 220 mm × 0.1 t mm was used as the upper and lower packaging materials covering the core material. A bulging portion for accommodating a core material having a size of 190 mm × 190 mm × 5.0 mm was formed on one packaging material by overhanging molding. Subsequently, a glass wool core material (dimensions: 180 mm × 180 mm × 5.0 t mm) prepared according to the shape of the bulging portion of the packaging material was accommodated and the upper and lower packaging materials were superposed.

上下包材を加圧保持した状態で、図5(b)に示すように先ず、第一工程として大気中で三辺の外包金属板周縁部を溶接ラインが互いに交差するようにシーム溶接した。その後、残った1辺については両端のどちらか一方を先の溶接ラインと100°で交差し、且つ開口部の幅を約100mm残してシーム溶接した。   In a state where the upper and lower wrapping materials were held under pressure, as shown in FIG. 5B, first, seam welding was performed as a first step in the atmosphere so that the outer peripheral metal plate peripheral portions of the three sides intersected with each other. Thereafter, for the remaining one side, either one of both ends crossed the previous welding line at 100 °, and seam welding was performed with the opening width remaining about 100 mm.

続く第二工程では、図6に示したシーム溶接機を内蔵した真空チャンバーを用いて、最終封止を行った。先ず、真空チャンバー内で前記開口部を経由してパネル内部を1Pa以下の高真空にし、その後前記開口部をシーム溶接により最終封止した。最後に、周縁部の余分な部分を切除し、ステンレス鋼板を包材とした四角形の真空断熱パネルを作製した。   In the subsequent second step, final sealing was performed using a vacuum chamber incorporating the seam welder shown in FIG. First, the inside of the panel was set to a high vacuum of 1 Pa or less via the opening in a vacuum chamber, and then the opening was finally sealed by seam welding. Finally, an extra portion of the peripheral edge was cut off to produce a square vacuum heat insulation panel using a stainless steel plate as a packaging material.

芯材を覆う上下包材として寸法が500mm×500mm×0.15mmのSUS304ステンレス鋼板を用いた。一方の包材に470mm×470mm×20.0mmの芯材収容用の膨出部を絞り成形により作製した。引き続いて、包材の膨出部形状に合わせて作製したグラスウール製芯材(寸法:460mm×460mm×20.0mm)を収容して上下包材を重ね合わせた。 A SUS304 stainless steel plate having dimensions of 500 mm × 500 mm × 0.15 t mm was used as the upper and lower wrapping materials covering the core material. On one of the packaging materials, a bulge portion for accommodating a core material of 470 mm × 470 mm × 20.0 mm was produced by drawing. Subsequently, a glass wool core material (dimensions: 460 mm × 460 mm × 20.0 t mm) produced according to the shape of the bulging portion of the packaging material was accommodated and the upper and lower packaging materials were superposed.

上下包材を加圧保持した状態で、図5(c)に示すように先ず、第一工程として大気中で外包金属板周縁部を一つの溶接ラインで一部に幅50mm程度の開口部を残し、レーザー溶接する。この時、開口部のある辺の両端は後で行う最終封止ラインと重なりやすくするため、両隣の辺との溶接ラインの交角が80°になるようにレーザー溶接した。 In the state where the upper and lower wrapping materials are held under pressure, as shown in FIG. 5C, first, as a first step, an outer periphery of the outer metal sheet is partially opened in the atmosphere with an opening having a width of about 50 mm in one welding line. Leave and laser weld. At this time, in order to make it easy to overlap both ends of the side with the opening with the final sealing line to be performed later, laser welding was performed so that the angle of intersection of the welding line with both adjacent sides was 80 °.

続く第二工程では図6に示したシーム溶接機を内蔵した真空チャンバーを用いて最終封止を行った。先ず、真空チャンバー内で前記開口部を経由してパネル内部を1Pa以下の高真空にし、その後前記開口部をシーム溶接により最終封止した。引き続いて、余分な部分を切除し、ステンレス鋼板を包材とした四角形の真空断熱パネルを作製した。   In the subsequent second step, final sealing was performed using a vacuum chamber incorporating the seam welder shown in FIG. First, the inside of the panel was set to a high vacuum of 1 Pa or less via the opening in a vacuum chamber, and then the opening was finally sealed by seam welding. Subsequently, an extra portion was excised, and a square vacuum heat insulation panel made of a stainless steel plate was produced.

Claims (1)

断熱性を有する芯材と、前記芯材を内包する二枚の外包金属板からなり、
前記二枚の外包金属板の周縁部が溶接により封止されて、前記二枚の外包金属板の内部が真空状態とされている矩形の真空断熱パネルを製造する方法であって、
前記二枚の外包金属板が前記芯材を内包するように重ね合わせる工程と、
重ね合わされた前記二枚の外包金属板周縁部の一部に開口部を設けるように、複数の溶接線が互いに交差し、かつ、前記開口部のある辺の両端の溶接線が交差角度θが70°≦θ<90°または90°<θ≦110°の範囲で交差するように大気中で溶接して封止する工程と、
続いて、真空チャンバー内で前記開口部より前記二枚の外包金属板の内部を真空排気した後、前記開口部をシーム溶接により最終封止する工程と、
からなる真空断熱パネルの製造方法。
It consists of a core material having heat insulation properties and two outer metal plates that enclose the core material,
A method of manufacturing a rectangular vacuum heat insulation panel in which the peripheral portions of the two outer metal plates are sealed by welding, and the inside of the two outer metal plates is in a vacuum state,
A step of superposing the two enveloping metal plates so as to enclose the core material;
A plurality of weld lines intersect with each other so that an opening is provided at a part of the peripheral portion of the two encapsulated metal plates that are overlapped , and the weld lines at both ends of the side with the opening have an intersection angle θ. Sealing by welding in the air so as to intersect within a range of 70 ° ≦ θ <90 ° or 90 ° <θ ≦ 110 ° ;
Subsequently, after evacuating the inside of the two outer metal plates from the opening in the vacuum chamber, and finally sealing the opening by seam welding,
The manufacturing method of the vacuum insulation panel which consists of.
JP2014034432A 2014-02-25 2014-02-25 Manufacturing method of vacuum insulation panel Active JP6285749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014034432A JP6285749B2 (en) 2014-02-25 2014-02-25 Manufacturing method of vacuum insulation panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014034432A JP6285749B2 (en) 2014-02-25 2014-02-25 Manufacturing method of vacuum insulation panel

Publications (2)

Publication Number Publication Date
JP2015158261A JP2015158261A (en) 2015-09-03
JP6285749B2 true JP6285749B2 (en) 2018-02-28

Family

ID=54182393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014034432A Active JP6285749B2 (en) 2014-02-25 2014-02-25 Manufacturing method of vacuum insulation panel

Country Status (1)

Country Link
JP (1) JP6285749B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6385319B2 (en) * 2015-09-08 2018-09-05 日新製鋼株式会社 Vacuum insulating panel manufacturing method and manufacturing apparatus, and vacuum insulating panel
JP2018035922A (en) * 2016-09-02 2018-03-08 日新製鋼株式会社 Vacuum heat insulation panel for structure
JP2018035923A (en) * 2016-09-02 2018-03-08 日新製鋼株式会社 Vacuum heat insulation panel for automobile
EP3508771B1 (en) * 2016-09-02 2022-03-16 Nippon Steel Corporation Vacuum insulation panel
JP2018035924A (en) * 2016-09-02 2018-03-08 日新製鋼株式会社 Vacuum heat insulation panel for electrical equipment
CN111014954B (en) * 2019-12-23 2021-09-24 上海交通大学 Laser filler wire welding wire feeding and all-dimensional gas protection composite mechanism

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6235197A (en) * 1985-08-08 1987-02-16 株式会社クボタ Powder vacuum heat insulator and manufacture thereof
JP2001004091A (en) * 1999-06-21 2001-01-09 Benkan Corp Vacuum heat insulating material
JP2001219281A (en) * 2000-02-07 2001-08-14 Shin Sangyo Souzou Kenkyu Kiko Method ad apparatus for manufacturing vacuum forming body
JP2001311497A (en) * 2000-04-28 2001-11-09 Zojirushi Corp Vacuum heat insulation member
JP2002130583A (en) * 2000-10-26 2002-05-09 Zojirushi Corp Method for manufacturing vacuum insulation body
JP2009228803A (en) * 2008-03-24 2009-10-08 Kurabo Ind Ltd Metallic vacuum heat insulating material
JP2010242875A (en) * 2009-04-07 2010-10-28 Kurabo Ind Ltd Manufacturing method for vacuum heat insulating material and the vacuum heat insulating material manufactured by the same

Also Published As

Publication number Publication date
JP2015158261A (en) 2015-09-03

Similar Documents

Publication Publication Date Title
JP6285749B2 (en) Manufacturing method of vacuum insulation panel
WO2017217233A1 (en) Vacuum insulation panel manufacturing method, and vacuum insulation panel
JP6385319B2 (en) Vacuum insulating panel manufacturing method and manufacturing apparatus, and vacuum insulating panel
US10632564B2 (en) Vacuum insulation panel manufacturing device
JP2015117830A (en) Manufacturing method of vacuum insulation panel
JP5924729B2 (en) Manufacturing method of vacuum insulation panel
JP2015096743A (en) Manufacturing method of vacuum insulation panel
KR20130037640A (en) Vacuumed insulation marerial, and method and apparatus for manufacturing the same
WO2018043712A1 (en) Vacuum insulation panel
JP6143593B2 (en) Vacuum insulation panel
JP2018128129A (en) Manufacturing method of vacuum heat insulation panel, and vacuum heat insulation panel
JP6378471B2 (en) Vacuum insulation panel
JP6605890B2 (en) Vacuum insulating panel manufacturing method and vacuum insulating panel manufacturing apparatus
JP5591149B2 (en) Method and apparatus for manufacturing vacuum insulation panel
JP2014152847A (en) Manufacturing method of vacuum heat insulation panel
JP7499435B2 (en) Vacuum insulator and insulated container and insulated wall using same
JP6223507B1 (en) Vacuum insulating panel manufacturing method and vacuum insulating panel
JP7269468B2 (en) Vacuum insulation panel manufacturing method and vacuum insulation panel
JP6301986B2 (en) Vacuum insulation panel and method for manufacturing the same
JP2011094639A (en) Vacuum bag body and vacuum heat insulating material
KR20120128920A (en) Connecting apparatus for vaccum insulated pipes
JP2011094638A (en) Vacuum bag body and vacuum heat insulating material
JPWO2021095391A5 (en)
JP2018035924A (en) Vacuum heat insulation panel for electrical equipment
JP2015031339A (en) Vacuum heat insulation material and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180202

R150 Certificate of patent or registration of utility model

Ref document number: 6285749

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350